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Abstract

We give two equivalent conditions of the P -polynomial property of a symmetric
association scheme. The first equivalent condition shows that the P -polynomial
property is determined only by the first and second eigenmatrices of the symmetric
association scheme. The second equivalent condition is another expression of the
first using predistance polynomials.

Keywords: P -polynomial association scheme; distance-regular graph; graph spec-
trum; spectral excess theorem; predistance polynomial

1 Introduction

An association scheme is a finite set with higher regularity of relations among the elements
of the set. As interesting objects, P - or Q-polynomial association schemes are closely
related to the theory of orthogonal polynomials or linear programming [1, 8], and are main
topics in algebraic combinatorics. Kurihara and Nozaki [11] found a simple equivalent
condition of the Q-polynomial property using the first and second eigenmatrices of the
association scheme. In this paper, we give a “dual” version of the above theorem for the
P -polynomial property using the first eigenmatrix whose entries are the eigenvalues of
the adjacency matrices. Namely the following is a spectral equivalent condition of the
P -polynomial property for association schemes.
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Theorem 1.1. Let X = (X, {Ri}di=0) be a symmetric association scheme of class d.
Suppose that the entries {θj}dj=0 of the first column of the first eigenmatrix of X are
mutually distinct. Then the following are equivalent:

(1) X is a P -polynomial association scheme with respect to the first adjacency matrix A1.

(2) There exists l ∈ {0, 1, . . . , d} such that for each h ∈ {1, 2, . . . , d},
d∏
j=1
j 6=h

θ0 − θj
θh − θj

= −Qh(l), (1.1)

where Qh(l) is the (l, h)-entry of the second eigenmatrix of X.

Moreover if (2) holds, then Al is the d-th matrix with respect to the resulting polynomial
ordering.

After we obtained Theorem 1.1, Nomura and Terwilliger [13] gave its linear algebraic
generalization. In this paper, we give a simple proof of this result based on Kurihara and
Nozaki [11]. Moreover we investigate a relation between predistance polynomials and this
result.

P -polynomial association schemes are identified with distance-regular graphs. The
spectrum of a graph can give several properties of the graph. For example, we can know
regularity, bipartiteness, the number of the connected components, and so on [2]. Never-
theless distance-regularity is not determined only by the spectrum of a graph. Fiol and
Garriga [9] gave a characterization of distance-regularity using excesses and predistance
polynomials determined by the spectra of finite graphs, and this result is called a spectral
excess theorem. Here the excess of a vertex is the number of the vertices at distance D
from it, where D is the diameter of the graph. After this work other descriptions of the
spectral excess theorem were obtained by van Dam [6], and Fiol, Gago and Garriga [10].

The P -polynomial property demands a suitable ordering of adjacency matrices. On
the other hand, Theorem 1.1 implies that the P -polynomial property is determined only
by the spectrum of the first and the last matrices with respect to the resulting polynomial
ordering. The last matrix has the information of the excess of the graph (X,R1). For a
connected regular graph, the value corresponding to the left-hand side in (1.1) can be ex-
pressed by using the predistance polynomials. We give another expression of Theorem 1.1
by predistance polynomials of the graph (X,R1).

Theorem 1.2. Let X = (X, {Ri}di=0) be a symmetric association scheme of class d.
Suppose that the entries {θj}dj=0 of the first column of the first eigenmatrix of X are
mutually distinct. Let {pi}di=0 be the predistance polynomials of the graph (X,R1). Then
the following are equivalent:

(1) X is a P -polynomial association scheme with respect to A1.

(2) There exists l ∈ {0, 1, . . . , d} such that for each h ∈ {0, 1, . . . , d}, pd(θh) = Pl(h)
holds, where Pl(h) is the (h, l)-entry of the first eigenmatrix of X.
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2 Preliminaries

2.1 Association schemes

We begin with a review of basic definitions concerning association schemes. The reader
is referred to Bannai and Ito [1] for background materials.

A symmetric association scheme X = (X, {Ri}di=0) of class d consists of a finite set X
and a set {Ri}di=0 of binary relations on X satisfying

1. R0 = {(x, x) |x ∈ X},

2. {Ri}di=0 is a partition of X ×X,

3. tRi = Ri for each i ∈ {0, 1, . . . , d}, where tRi = {(y, x) | (x, y) ∈ Ri},

4. the numbers |{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}| are constant whenever (x, y) ∈
Rk, for each i, j, k ∈ {0, 1, . . . , d}.

Let ki denote the valency of the regular graph (X,Ri). Let MX(C) denote the algebra
of matrices over the complex field C with rows and columns indexed by X. The i-th
adjacency matrix Ai in MX(C) of X is defined by

Ai(x, y) =

{
1 if (x, y) ∈ Ri,

0 otherwise.

The vector space A spanned by {Ai}di=0 over C forms a commutative algebra, and is
called the Bose–Mesner algebra of X. It is well known that A is semi-simple [1, Section
2.3], hence A has the primitive idempotents E0, E1, . . . , Ed. We call mj := rankEj the
multiplicities of X. The first eigenmatrix P = (Pi(j))

d
j,i=0 and the second eigenmatrix

Q = (Qj(i))
d
i,j=0 of X are defined by

Ai =
d∑
j=0

Pi(j)Ej and Ej =
1

|X|

d∑
i=0

Qj(i)Ai,

respectively. Note that the pair of {Pi(j)}dj=0 and {mj}dj=0 corresponds to the spectrum
of the graph (X,Ri). In particular, we use the notation θj = P1(j) for 0 6 j 6 d.

A symmetric association scheme is called a P -polynomial scheme (or a metric scheme)
with respect to the ordering {Ai}di=0 (or {Ri}di=0), if for each i ∈ {0, 1, . . . , d}, there
exists a polynomial vi of degree i, such that Ai = vi(A1). Moreover, a symmetric
association scheme is called a P -polynomial scheme with respect to A1 (or R1) if the
symmetric association scheme has the P -polynomial property with respect to some or-
dering A0, A1, Aξ2 , Aξ3 , . . . , Aξd . Dually, a symmetric association scheme is called a Q-
polynomial scheme (or a cometric scheme) with respect to the ordering {Ej}dj=0, if for each
j ∈ {0, 1, . . . , d}, there exists a polynomial v∗j of degree j, such that |X|Ej = v∗j (|X|E1),
where the multiplication is the entrywise product.
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Remark 2.1. For a P -polynomial scheme (X, {Ri}di=0) with respect to R1, the graph
(X,R1) is distance-regular. Conversely, for a distance-regular graph (X,R) with diameter
d, letting Ri be the collection (x, y) ∈ X ×X such that the distance between x and y is
i for i ∈ {0, 1, . . . , d}, we have a P -polynomial scheme (X, {Ri}di=0) with respect to the
ordering {Ri}di=0 [1].

Remark 2.2. Kurihara and Nozaki [11] found a simple equivalent condition of the Q-
polynomial property using the character table of the association scheme. The detail of the
equivalent condition is as follows. For a symmetric association scheme X = (X, {Ri}di=0)
such that {Q1(i)}di=0 are mutually distinct, X is a Q-polynomial association scheme with
respect to E1 if and only if there exists l ∈ {0, 1, . . . , d} such that for each h ∈ {1, 2, . . . , d},

d∏
i=1
i 6=h

Q1(0)−Q1(i)

Q1(h)−Q1(i)
= −Ph(l).

2.2 The predistance polynomials of graphs

As we see in Remark 2.1, a distance-regular graph Γ has the structure of a P -polynomial
scheme and so has polynomials {vi}. In this section, we give “predistance polynomials” for
any regular connected graph, and we consider relations between predistance polynomials
and distance-regular graphs.

All graphs in this paper are assumed to be finite. Let Γ = (X,R) be a connected
regular graph with the adjacency matrix A and the spectrum {θm0

0 , θm1
1 , . . . , θmd

d }, where

θ0 > θ1 > · · · > θd. Let Z(t) :=
∏d

j=0(t − θj) ∈ R[t]. We define the inner product on
R[t]/(Z) by

〈p, q〉 =
1

|X|

d∑
j=0

mjp(θj)q(θj)

for p, q ∈ R[t]/(Z). The predistance polynomials p0, p1, . . . , pd of Γ are the unique poly-
nomials satisfying deg pi = i and for i, j ∈ {0, 1, . . . , d}, 〈pi, pj〉 is pi(θ0) if i = j and 0
otherwise. It is well known that pi(θ0) > 0 for any i ∈ {0, 1, . . . , d} [6].

For a graph of diameter D, the excess γx of a vertex x is the number of the vertices at
distance D from x. An application of predistance polynomials and excesses is shown in the
following theorem. Namely, distance-regularity is determined by predistance polynomials
and excesses.

Theorem 2.3 (Excess theorem (Fiol, Gago and Garriga [10])). Let (X,R) be a connected
regular graph with d+1 distinct eigenvalues and diameter D = d, {pi}di=0 be the predistance
polynomials, and γx be the excess of x ∈ X. Then

1

|X|
∑
x∈X

γx 6 pd(θ0).

Moreover equality is attained if and only if (X,R) is a distance-regular graph.
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There are many researches of distance-regularity or walk-regularity using predistance
polynomials [3, 4, 5, 6, 7, 9, 12].

Remark 2.4. If Γ is a distance-regular graph, the predistance polynomials {pi} of Γ coin-
cide with the polynomial {vi} associated with the P -polynomial structure of Γ [6].

The following lemma is used later.

Lemma 2.5. Let Γ be a connected regular graph with the spectrum {θm0
0 , θm1

1 , . . . , θmd
d }

and the predistance polynomials {pi}di=0. Then for each h ∈ {1, 2, . . . , d},

d∏
j=1
j 6=h

θ0 − θj
θh − θj

= −mhpd(θh)

pd(θ0)
.

Proof. Put fh(t) =
∏d

j=1,j 6=h(t− θj), for i ∈ {1, 2, . . . , d}. These polynomials have degree

d− 1 which is expressed as a linear combination of {pi}d−1i=0 , hence they are orthogonal to
pd. Thus, note that Γ is connected and m0 = 1, and we have

0 = |X|〈pd, fh〉 =
d∑
i=0

mipd(θi)fh(θi) = pd(θ0)fh(θ0) +mhpd(θh)fh(θh).

Therefore we obtain the desired equation.

3 Proof of Theorem 1.1

First, we prove that (1) implies (2) in Theorem 1.1. Suppose X is a P -polynomial associa-
tion scheme with respect to A1. Let {Ai}di=0 be the P -polynomial ordering and {vi}di=0 be
the polynomials associated with the P -polynomial structure. For each h ∈ {1, 2 . . . , d},
we put κh =

∏d
j=1, j 6=h(θ0 − θj)/(θh − θj), and define the matrix

M∗
h :=

d∏
j=1
j 6=h

A1 − θjI
θh − θj

in A. Since M∗
h is a polynomial in A1 of degree d−1, it can be expressed as a combination

of {Ai}d−1i=0 . Thus we have
M∗

h ◦ Ad = 0, (3.1)

where ◦ denotes the Hadamard product, that is, the entry-wise matrix product. On
the other hand, we consider the expansion of M∗

h in terms of the primitive idempotents
{Ej}dj=0. Since A1Ej = θjEj, we have

M∗
hEj =


κhE0 if j = 0,

Eh if j = h,

0 otherwise.
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This means M∗
h = κhE0 +Eh. Hence, by (3.1), it follows that Eh ◦Ad = −κhAd/|X|, that

is, Qh(d) = −κh. Therefore the desired result follows.
Conversely, we prove that (2) implies (1) in Theorem 1.1. The following lemmas are

used later.

Lemma 3.1 ([11]). For mutually distinct β1, β2, . . . , βd, the following formal identity
holds:

d∑
i=1

βki

d∏
j=1
j 6=i

x− βj
βi − βj

= xk

for all k ∈ {0, 1, . . . , d− 1}.

We say thatAj appears in an element M of A if there exists a non-zero complex number
α such that M ◦ Aj = αAj. Let N∗k denote the set of indices j such that Aj appears in
Ak1 but does not appear in Al1 for each 0 6 l 6 k − 1. We remark that N∗0 = {0} and

N∗1 = {1}. Moreover, if θ0 is distinct from {θj}dj=1, then J = |X|
∏d

j=1
A1−θjI
θ0−θj holds by

the property of the Hoffman polynomial. Therefore {0, 1, . . . , d} =
⋃d
k=0N

∗
k (a disjoint

union).

Lemma 3.2. Suppose X is a symmetric association scheme of class d satisfying θ0 is
distinct from {θi}di=1. Then, the following are equivalent.

(1) X is a P -polynomial scheme with respect to A1.

(2)
⋃d−1
k=0N

∗
k 6= {0, 1, . . . , d}.

Proof. Suppose X is a P -polynomial scheme with respect to A1. Let {Ai}di=0 be the P -
polynomial ordering. Then there exist polynomials vi of degree i, such that vi(A1) = Ai
for any i. This implies that N∗i = {i} for any i, that is,

⋃d−1
k=0N

∗
k = {0, 1, . . . , d− 1}.

Suppose
⋃d−1
k=0N

∗
k 6= {0, 1, . . . , d} holds. Since

⋃d
k=0N

∗
k = {0, 1, . . . , d}, it follows N∗d

is not empty. If N∗i is empty for some i, then N∗i+1 is also empty. This means that if
N∗d is not empty, then N∗i is not empty for any i. Since N∗0 , N

∗
1 , . . . , N

∗
d are disjoint, N∗i

has size 1 for each i ∈ {0, 1, . . . , d}. Put N∗i = {ξi} and order Aξ0 , Aξ1 , . . . , Aξd . Then we
can construct polynomials vi of degree i such that vi(A1) = Aξi , and the first statement
follows.

Remark 3.3. From the proof of Lemma 3.2, an ordering of a P -polynomial association
scheme with respect to A1 is uniquely determined.

Let us return to prove that (2) implies (1) in Theorem 1.1. We have

Ak1 =
θk0
|X|

J +
d∑

h=1

θkhEh.
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By our assumption, it follows that

Eh ◦ Al =
Qh(l)

|X|
Al = − 1

|X|

d∏
j=1
j 6=h

θ0 − θj
θh − θj

Al.

By Lemma 3.1,

Ak1 ◦ Al =

(
θk0
|X|

J +
d∑

h=1

θkhEh

)
◦ Al =

1

|X|

(
θk0 −

d∑
h=1

θkh

d∏
j=1
j 6=h

θ0 − θj
θh − θj

)
Al = 0

for every k 6 d − 1. This means that l is not an element of N∗k for every k 6 d − 1. By
Lemma 3.2, there exists an ordering {Aξi}di=0 such that X is a P -polynomial scheme with
respect to {Aξi}di=0. Moreover we have ξd = l. Therefore the desired result follows.

4 Proof of Theorem 1.2

First, we prove that (1) implies (2) in Theorem 1.2. Suppose X is a P -polynomial associ-
ation scheme with respect to A1. Let {vi}di=0 be the polynomials associated with the P -
polynomial structure of X. Then {vi}di=0 coincide with the predistance polynomials {pi}di=0

of the graph (X,R1) by Remarks 2.1 and 2.4. Therefore we have pd(θh) = vd(θh) = Pd(h)
for each h ∈ {0, 1, . . . , d}.

Next, we prove that (2) implies (1) in Theorem 1.2. Suppose pd(θh) = Pl(h) holds for
each h ∈ {0, 1, . . . , d}. Then by Lemma 2.5 and klQh(l) = mhPl(h) [1, Theorem 3.5, page
62] we have

d∏
j=1
j 6=h

θ0 − θj
θh − θj

= −mhpd(θh)

pd(θ0)
= −mhPl(h)

kl
= −Qh(l)

for each h ∈ {1, 2, . . . , d}. By Theorem 1.1, X is a P -polynomial association scheme with
respect to A1.
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