
An Erdős-Ko-Rado theorem for
permutations with fixed number of cycles

Cheng Yeaw Ku
Department of Mathematics

National University of Singapore
Singapore 117543

matkcy@nus.edu.sg

Kok Bin Wong
Institute of Mathematical Sciences

University of Malaya
50603 Kuala Lumpur, Malaysia

kbwong@um.edu.my

Submitted: Feb 4, 2014; Accepted: Jul 18, 2014; Published: Jul 25, 2014

Mathematics Subject Classifications: 05D05

Abstract

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. For a positive
integer k, define Sn,k to be the set of all permutations of [n] with exactly k disjoint
cycles, i.e.,

Sn,k = {π ∈ Sn : π = c1c2 · · · ck},

where c1, c2, . . . , ck are disjoint cycles. The size of Sn,k is

[
n
k

]
= (−1)n−ks(n, k),

where s(n, k) is the Stirling number of the first kind. A family A ⊆ Sn,k is said to
be t-cycle-intersecting if any two elements of A have at least t common cycles. In
this paper we show that, given any positive integers k, t with k > t+ 1, if A ⊆ Sn,k
is t-cycle-intersecting and n > n0(k, t) where n0(k, t) = O(kt+2), then

|A| 6
[
n− t
k − t

]
,

with equality if and only if A is the stabiliser of t fixed points.

Keywords: t-intersecting family; Erdős-Ko-Rado; permutations; Stirling number
of the first kind

1 Introduction

Let [n] = {1, . . . , n}, and let
(
[n]
k

)
denote the family of all k-subsets of [n]. A family A of

subsets of [n] is t-intersecting if |A ∩ B| > t for all A,B ∈ A. One of the most beautiful
results in extremal combinatorics is the Erdős-Ko-Rado theorem.

the electronic journal of combinatorics 21(3) (2014), #P3.16 1



Theorem 1 (Erdős, Ko, and Rado [12], Frankl [13], Wilson [36]). Suppose A ⊆
(
[n]
k

)
is

t-intersecting and n > 2k − t. Then for n > (k − t+ 1)(t+ 1), we have

|A| 6
(
n− t
k − t

)
.

Moreover, if n > (k − t + 1)(t + 1) then equality holds if and only if A = {A ∈
(
[n]
k

)
:

T ⊆ A} for some t-set T .

Later, Ahlswede and Khachatrian [1] extended the Erdős-Ko-Rado theorem by de-
termining the structure of all t-intersecting set systems of maximum size for all possible
n. There have been many recent results showing that a version of the Erdős-Ko-Rado
theorem holds for combinatorial objects other than set systems (see [3, 4, 5, 6, 7, 8, 9, 10,
11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 32, 33, 34, 35, 37]).

Let Sn denote the set of permutations of [n]. A family of Sn is said to be t-intersecting
if any two permutations in the family agree in at least t points. In 1977, Deza and Frankl
[9] proved that a 1-intersecting family has size at most (n − 1)!. Much later, it was
proved by several authors via different approaches that the only families achieving the
maximum size are the cosets of stabilisers of a point (see [7, 15, 29, 35]). More recently,
Ellis, Friedgut and Pilpel [11] have settled an old conjecture of Deza and Frankl regarding
an analogue of the Erdős-Ko-Rado theorem for permutations. In particular, they showed
that for sufficiently large n depending on t, a t-intersecting family A of Sn has size at
most (n− t)!, with equality if and only if A is a coset of the stabilizer of t points. Their
proof uses spectral methods and representations of the symmetric group.

The concept of t-cycle intersection for permutations was introduced by Ku and Ren-
shaw [23]. A family A of permutations is t-cycle-intersecting if any two permutations in
A, when written in their cycle decomposition form, have at least t cycles in common.
Obviously, if A is t-cycle-intersecting, it is t-intersecting but the converse is not true.

In this paper, we are interested in the t-cycle-intersection problem for permutations
that have a prescribed number of cycles. For a positive integer k, define Sn,k to be the
set of all permutations of [n] with exactly k disjoint cycles, i.e.,

Sn,k = {π ∈ Sn : π = c1c2 · · · ck},

where c1, c2, . . . , ck are disjoint cycles. It is well known that the size of Sn,k is given by[
n
k

]
= (−1)n−ks(n, k), where s(n, k) is the Stirling number of the first kind.

We shall use the following notations:

(a) Let N(c) = {a1, a2, . . . , al} denote the set of points occurring in the cycle c =
(a1, a2, . . . , al);

(b) Let M(π) = {c1, c2, . . . , ck} denote the set of cycles in the cycle decomposition of
the permutation π = c1c2 . . . ck ∈ Sn,k.

Thus, a family A ⊆ Sn,k is t-cycle-intersecting if |M(π1)∩M(π2)| > t for any π1, π2 ∈ A.

the electronic journal of combinatorics 21(3) (2014), #P3.16 2



Theorem 2. Suppose k, t are positive integers with k > t + 1. There exists a function
n0(k, t) = O(kt+2) such that if A ⊆ Sn,k is t-cycle-intersecting and n > n0(k, t), then

|A| 6
[
n− t
k − t

]
,

with equality if and only if A is the stabiliser of t fixed points, i.e. A consists of all
permutations in Sn,k with some t fixed cycles of length one.

2 Stirling number revisited

The unsigned Stirling number

[
n
k

]
satisfies the recurrence relation

[
n
k

]
=

[
n− 1
k − 1

]
+ (n− 1)

[
n− 1
k

]
, (1)

with initial conditions

[
0
0

]
= 1 and

[
n
0

]
=

[
0
k

]
= 0, n > 0. Note that

[
n
n

]
= 1, and[

n
1

]
= (n− 1)!.

It is well-known that the sequence

[
n
k

]
, 1 6 k 6 n, is strongly log-concave (SLC):

[
n
k

]2
>

[
n

k + 1

] [
n

k − 1

]
, for 2 6 k 6 n− 1. (2)

Using Newton’s inequality for symmetric functions, Lieb [31] obtained the following
inequality which implies the SLC property.

Theorem 3 (Lieb [31]). The following sequences are strictly decreasing for any n =
3, 4, . . .:

k − 1

n− k + 1

[
n
k

]/[ n
k − 1

]
, for 2 6 k 6 n. (3)

Corollary 4. The following inequalities are obtained by considering the ends of the se-
quence in (3):

n− k + 1

(k − 1)(n− 1)
Hn−1 >

[
n
k

]/[ n
k − 1

]
>

2(n− k + 1)

(k − 1)n
, for 2 6 k 6 n, (4)

where Hm =
∑m

i=1
1
i

is the m-th Harmonic number.
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3 Proof of Theorem 2

We may assume that A is maximally t-intersecting (with respect to inclusion).
Suppose k = t+ 1. Since A is t-intersecting, there are π1, π2 ∈ A such that

π1 = c1c2 . . . ctd1

π2 = c1c2 . . . ctd2

where c1, . . . , ct, d1 are disjoint cycles, d2 6= d1 and N(d2) = N(d1). Suppose there is a
π ∈ A with ci0 /∈ M(π) for some i0. Then d1, d2 ∈ M(π). But this is impossible as
N(d1) = N(d2). Hence,

A = {π ∈ Sn,k : ci ∈M(π) for i = 1, 2, . . . , t},

since A is maximally t-intersecting. Let P =
⋃t
i=1N(ci). Then

|A| =
[
n− |P |

1

]
6

[
n− t

1

]
,

with equality if and only if |N(ci)| = 1 for i = 1, 2 . . . , t, i.e., A is the stabilizer of at least
t fixed points. Now, if n > t+ 2, then A is the stabilizer of t fixed points.

From now on, we may suppose that k > t + 2 and that A ⊆ Sn,k is a t-intersecting
family of maximum size. Assuming that A is not the stabilizer of t points, we shall prove

that |A| <
[
n− t
k − t

]
.

Pick any π ∈ A and assume that π = c1c2 · · · ck, where k > t+1. Let T = {c1, . . . , ct}.
We set

A(T ) = {π ∈ A : T ⊆M(π)}.

If A ⊆ A(T ), then at least one of the ci, 1 6 i 6 t, must be of size greater than
1 (otherwise A will be the stabilizer of t points). Thus, in this case, |A| 6 |A(T )| 6[
n−

∑t
i=1 |N(ci)|
k − t

]
<

[
n− t
k − t

]
, where the last inequality follows from (1).

Therefore, there must be a permutation σ ∈ A that does not contain all the t-cycles in
T . Every permutation in the subfamily A(T ) must t-intersect σ, and so it must contain
an additional cycle from σ that is different from those in T . There are at most k−1 ways
to pick such a cycle from σ since at least one cycle from σ would contain elements from
the cycles in T . Consequently, the maximum size of the subfamily A(T ) is at most

(k − 1)

[
n− t− 1
k − t− 1

]
.

Since every permutation in A must t-intersect π, we deduce that

|A| =

∣∣∣∣∣ ⋃
T⊆M(π)

A(T )

∣∣∣∣∣ 6
(
k

t

)
(k − 1)

[
n− t− 1
k − t− 1

]
.
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Since we can write [
n− t
k − t

]
=

[
n− t− 1
k − t− 1

]
+ (n− t− 1)

[
n− t− 1
k − t

]
it remains to show that(

k

t

)
(k − 1) < 1 + (n− t− 1)

[
n− t− 1
k − t

]/[n− t− 1
k − t− 1

]
. (5)

By Corollary 4, it is enough to show that(
k

t

)
(k − 1) < 1 + (n− t− 1)

2(n− k)

(k − t− 1)(n− t− 1)
(6)

which implies that

n > k +
(k − t− 1)

2

(
(k − 1)

(
k

t

)
− 1

)
.

This concludes the proof of Theorem 2.

4 Dependence of n on k and t

For 0 6 i 6 b(k − t)/2c, define the family

Fi = {π ∈ Sn,k : |M(π) ∩ {(1), (2), . . . , (t+ 2i)}| > t+ i}.

These families are analogous to those first defined by Frankl for set systems:{
F ∈

(
[n]

k

)
: |F ∩ [t+ 2i]| > t+ i

}
.

Clearly, Fi is t-cycle-intersecting for 0 6 i 6 b(k − t)/2c. Note that F0 is the stabiliser
of t fixed points. Therefore, Theorem 2 says that if n > n0(k, t), then the only largest
t-cycle-intersecting families of Sn,k are those isomorphic to F0. The following proposition
shows that the condition n > n0(k, t) cannot be replaced by n > n0(t) or k > k0(t).

Proposition 5. Let r be a fixed positive integer. If k = n − r then |F1| > |F0| for all
sufficiently large n in terms of r, regardless of the value of t.

Proof. Note that

|F1| =
(
t+ 2

t+ 1

)[
n− t− 1
k − t− 1

]
− (t+ 1)

[
n− t− 2
k − t− 2

]
, |F0| =

[
n− t
k − t

]
.
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It follows that

|F1| − |F0| =
(
t+ 2

t+ 1

)[
n− t− 1
k − t− 1

]
− (t+ 1)

[
n− t− 2
k − t− 2

]
−
([
n− t− 1
k − t− 1

]
+ (n− t− 1)

[
n− t− 1
k − t

])
= (t+ 1)

[
n− t− 1
k − t− 1

]
− (t+ 1)

[
n− t− 2
k − t− 2

]
− (n− t− 1)

[
n− t− 1
k − t

]
= (t+ 1)(n− t− 2)

[
n− t− 2
k − t− 1

]
− (n− t− 1)

[
n− t− 2
k − t− 1

]
− (n− t− 1)(n− t− 2)

[
n− t− 2
k − t

]
= (t(n− t− 1)− (t+ 1))

[
n− t− 2
k − t− 1

]
− (n− t− 1)(n− t− 2)

[
n− t− 2
k − t

]
.

(7)

To show that the right-hand side of (7) is greater than 0, we shall prove the inequality[
n− t− 2
k − t

]/[n− t− 2
k − t− 1

]
<

(t(n− t− 1)− (t+ 1))

(n− t− 1)(n− t− 2)
. (8)

By Corollary 4,[
n− t− 2
k − t

]/[n− t− 2
k − t− 1

]
6

n− k − 1

(k − t− 1)(n− t− 3)
Hn−t−3

<
n− k − 1

(k − t− 1)(n− t− 3)
(1 + ln(n− t− 3))

=
r − 1

(n− r − t− 1)(n− t− 3)
(1 + ln(n− t− 3)). (9)

Clearly, the right-hand side of (9) is now less than (t(n−t−1)−(t+1))
(n−t−1)(n−t−2)

for sufficiently large n
in terms of r, regardless of the value of t.

5 Concluding remarks

The technique used in the proof of the main theorem of this paper is the kernel method
introduced by Hajnal and Rothschild [16]. The limitation of this method is that it only
works from some threshold. This method usually yields short and easy proofs but rarely
gives the exact range of results. We were rather cavalier in our estimates of the function
n0(k, t). A better bound is perhaps possible by using a more delicate approximation of
the unsigned Stirling number of the first kind. We believe that the bound n0(k, t) =
O(kt+2) is not optimal, and that a different technique similar to the shifting operation
and compression for set systems may be needed to derive the exact optimal bound for n.
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In the original EKR theorem (Theorem 1), the condition n > 2k is optimal for t = 1
since taking all k-subsets of [n] with n = 2k− 1 yields a 1-intersecting family of k-subsets
which has size greater than

(
n−1
k−1

)
=
(
2k−2
k−1

)
. A similar construction for permutations can

be given as follows. Suppose n = 2k − 3, where k > 4. Consider the family A ⊆ S2k−3,k

which consists of permutations with exactly k − 1 fixed points and one cycle of length
n− (k − 1) = k − 2. Since k − 1 > n/2, any two permutations of A must intersect in at
least one fixed point, so A is 1-cycle-intersecting. The size of A is given by

|A| =
(

2k − 3

k − 1

)
(k − 3)!,

which is greater than |F0| when k = 4. Unfortunately, our numerical computation suggests

that this size is smaller than |F0| =
[
n− 1
k − 1

]
=

[
2k − 4
k − 1

]
all k > 5.

It is worth noting that the idea in the above construction is that if n and k are close
and t is small, then all permutations in Sn,k will be t-cycle-intersecting. In general, take
k = n− r for some r. By the pigeonhole principle, every permutation in Sn,k has at least
n− 2r fixed points. If n− 4r > t, then every two permutations in Sn,k must intersect in
at least t fixed points. By substituting r = n − k and t = 1, the condition n − 4r > t
becomes n 6 4k−1

3
. We conjecture that the optimal lower bound for n in Theorem 2 for

t = 1 is O(4k/3).
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