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Abstract

In this paper, we study the distribution of the number of consecutive pattern
matches of the five up-down permutations of length four, 1324, 2314, 2413, 1432,
and 3412, in the set of up-down permutations. We show that for any such τ , the gen-
erating function for the distribution of the number of consecutive pattern matches of
τ in the set of up-down permutations can be expressed in terms of what we call the
generalized maximum packing polynomials of τ . We then provide some systematic
methods to compute the generalized maximum packing polynomials for such τ .

1 Introduction

If σ = σ1 . . . σn is a permutation in the symmetric group Sn, then we let

Des(σ) = {i : σi > σi+1} and Ris(σ) = {i : σi < σi+1}.

Let N = {0, 1, . . . , } denote the natural numbers, P = {1, 2, . . .} denote the set of positive
integers, E = {0, 2, 4, . . .} denote the set of even numbers in N, and [n] = {1, 2, . . . , n} for
n ∈ P. We say that σ = σ1 . . . σn is an up-down permutation if either n = 1 or n > 1 and
Des(σ) = [n− 1] ∩ E. That is, we have

σ1 < σ2 > σ3 < σ4 . . . .

We let An denote the set of up-down permutations in Sn.
Given a sequence σ = σ1 . . . σn of distinct integers, let red(σ) be the permutation

found by replacing the ith smallest integer that appears in σ by i. For example, if
σ = 2754, then red(σ) = 1432. Given a permutation τ = τ1 . . . τj ∈ Sj and a permutation
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σ = σ1 . . . σn ∈ Sn, we say that τ occurs in σ if there are 1 6 i1 < . . . < ij 6 n such
that red(σi1 . . . σij ) = τ and we say that σ has a τ -match starting at position i in σ if
red(σiσi+1 . . . σi+j−1) = τ . We say that σ avoids τ if there are no occurrences of τ in σ.
We let τ -mch(σ) denote the number of τ -matches in σ. We let An,τ (x) =

∑

σ∈An
xτ -mch(σ).

These definitions are easily extended to sets of permutations Υ ⊆ Sj . For example,
we say that σ has a Υ-match starting at position i in σ if red(σiσi+1 . . . σi+j−1) ∈ Υ. We
let Υ-mch(σ) denote the number of Υ-matches in σ. We let An,Υ(x) =

∑

σ∈An
xΥ-mch(σ).

There have been several papers that have studied the number of up-down permutations
σ ∈ An which avoid a given pattern. For example, Mansour [19] and Deutsch and
Reifegerste (see [27, Problem h7] or [14]) showed that for any τ ∈ S3, the number of
up-down permutations σ ∈ An which avoid τ is always a Catalan number. For example,
the number of up-down permutations σ ∈ An that avoid 132 (231) is C⌊n/2⌋. In [18], it

was shown that the number of σ ∈ A2n that avoids 1234 or 2143 is 2(3n)!
n!(n+1)!(n+2)!

. There
has been somewhat less work on the distribution of τ -matches in up-down permutations.
Carlitz [5] found the generating function for the number of rises in the peaks of the up-
down permutations where a rise in the peaks of an up-down permutation is just 213-match
in σ.

The main goal of this paper is to study the generating functions

Aτ (t, x) = 1 +
∑

n>1

t2n

(2n)!

∑

σ∈A2n

xτ -mch(σ) (1)

and

Bτ (t, x) =
∑

n>1

t2n−1

(2n− 1)!

∑

σ∈A2n−1

xτ -mch(σ) (2)

in the case where τ ∈ A4. Note that there are 5 permutations in A4, namely,

τ (1) = 1324, τ (2) = 2314, τ (3) = 2413, τ (4) = 1423, and τ (5) = 3412.

In fact, the main ideas of this paper can be extended to study the distributions of τ -
matches in the set of up-down permutations where τ is a natural analogue of a minimal
overlapping permutation as studied by Duane and Remmel [8]. This work appears in
Duane’s thesis [7]. We have chosen to focus on the five up-down permutations of length
four because the arguments are simpler and the formulas are more tractable than in the
general case considered in Duane’s thesis. However such an extension will be the subject
of a forthcoming paper.

Let τ ∈ A4. If σ ∈ An where n > 4, then τ -matches can only start at odd positions.
If σ ∈ A2n and τ -mch(σ) = n − 1, then we say that σ is a maximum packing for τ .
Thus if σ ∈ A2n is a maximum packing for τ , then σ has τ -matches starting at positions
1, 3, . . . , 2n− 3. We let MP2n,τ denote the set of maximum packings for τ in A2n and we
let mp2n,τ = |MP2n,τ |. We shall see that it follows from results of Harmse and Remmel
[13] that

mp2n,τ (1) = mp2n,τ (3) = Cn−1 and
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mp2n,τ (2) = mp2n,τ (4) = mp2n,τ (5) = 1,

where Cn = 1
n+1

(

2n
n

)

is the nth Catalan number.
Our main theorem will show that for each i ∈ [5], the generating functions Aτ (i)(t, x)

and Bτ (i)(t, x) can be expressed in terms of what we call generalized maximum packings
for τ (i). We say that σ ∈ S2n is a generalized maximum packing for τ (i) if we can break σ

into consecutive blocks σ = B1 . . . Bk such that

1. for all 1 6 j 6 k, Bj is either an increasing sequence of length 2 or red(Bj) is a
maximum packing for τ (i) of length 2s for some s > 2 and

2. for all 1 6 j 6 k − 1, the last element of Bj is less than the first element of Bj+1.

Note that if σ is a generalized maximum packing for τ (i), there is only one possible block
structure. That is, if σ = σ1 . . . σ2n ∈ S2n is a generalized maximum packing for τ (i), our
definitions force that σ2j−1 < σ2j for i = 1, . . . , n. Then it is easy to see that σ2j−1σ2j and
σ2j+1σ2j+2 are in the same block if and only if σ2j > σ2j+1.

If σ is a generalized maximum packing for τ (i) of length 2n with block structure
B1 . . . Bk, then we define the weight w(Bj) of block Bj to be (x − 1)s if Bj has length
2s + 2 where s > 0. Thus if Bi is a block of length 2, then w(Bi) = 1. Then we define
the weight w(σ) of σ to be (−1)k−1

∏k
j=1w(Bj). For example,

σ = 1 2 3 5 4 7 6 9 8 10 11 12 13 14 15 17 16 18

is a generalized maximum packing for τ (1) = 1324 where B1 = 1 2, B2 = 3 5 4 7 6 9 8 10,
B3 = 11 12, B4 = 13 14 and B5 = 15 17 16 18. Thus w(B1) = w(B3) = w(B4) = 1,
w(B2) = (x− 1)3 and w(B5) = x− 1 so that w(σ) = (−1)4(x− 1)4 = (x− 1)4. Thus the

weight of σ is just (−1)k−1(x− 1)τ
(i)-mch(σ) where k is the number of blocks of σ. We let

GMP2n,τ (i) denote the set of σ ∈ S2n which are generalized maximum packings for τ (i)

and we let
GMP2n,τ (i)(x) =

∑

σ∈GMP
2n,τ(i)

w(σ). (3)

We say that σ ∈ S2n+1 is a generalized maximum packing for τ (i) if we can break σ

into consecutive blocks σ = B1 . . . Bk such that

1. for all 1 6 j < k, Bj is either an increasing sequence of length 2 or red(Bj) is a
maximum packing of τ (i) of length 2s for some s > 2,

2. Bk is a block of length 1, and

3. for all 1 6 j 6 k − 1, the last element of Bj is less than the first element of Bj+1.

If σ is a generalized maximum packing for τ (i) of length 2n + 1 with block structure
B1 . . . Bk, then we let w(Bk) = 1 and, for j < k, we let w(Bj) = (x− 1)s if Bj has length

2s+2. Then we let w(σ) = (−1)k−1
∏k

i=1w(Bi) = (−1)k−1(x−1)τ
(i)-mch(σ). For example,

σ = 1 2 3 5 4 7 6 9 8 10 11 12 13 14 15 17 16 18 19
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is a generalized maximum packing for τ (1) = 1324 where B1 = 1 2, B2 = 3 5 4 7 6 9 8 10,
B3 = 11 12, B4 = 13 14 and B5 = 15 17 16 18, and B6 = 19. Thus w(B1) = w(B3) =
w(B4) = w(B6) = 1, w(B2) = (x−1)3 and w(B5) = x−1 so that w(σ) = (−1)5(x−1)4 =
−(x − 1)4. We let GMP2n+1,τ (i) denote the set of σ ∈ S2n+1 which are generalized

maximum packings for τ (i). We then let

GMP2n+1,τ (i)(x) =
∑

σ∈GMP
2n+1,τ(i)

w(σ). (4)

We shall call GMPn,τ (i)(x) the generalized maximum packing polynomial for τ (i) of length
n.

In general, it is much more difficult to compute GMP2n,τ (i)(x) and GMP2n+1,τ (i)(x)
than to compute mp2n,τ (i) and mp2n+1,τ (i). Indeed, we do not have a closed expression
for either GMP2n,τ (i)(x) or GMP2n+1,τ (i)(x) as a function of n for any i. However, we
will show that for i ∈ {1, 2, 4}, GMPn,τ (i)(x) can be computed via simple recursions. For
example, we shall show that GMP2,τ (1)(x) = 1, GMP4,τ (1)(x) = x− 2, and, for 2n > 4,

GMP2n,τ (1)(x) = Cn−1(x− 1)n−1 −
n−1
∑

k=1

Ck−1(x− 1)k−1GMP2n−2k,τ (1)(x). (5)

Moreover, we shall show that GMP1,τ (1)(x) = 1 and GMP2n+1,τ (1)(x) = −GMP2n,τ (1)(x)
for n > 1.

Our main theorem is the following.

Theorem 1. For τ ∈ A4,

Aτ (t, x) =
1

1−
∑

n>1GMP2n,τ (x)
t2n

(2n)!

and (6)

Bτ (t, x) =

∑

n>1GMP2n−1,τ (x)
t2n−1

(2n−1)!

1−
∑

n>1GMP2n,τ (x)
t2n

(2n)!

. (7)

We shall prove Theorem 1 by applying the so-called homomorphism method which
has been developed in a series of papers [1, 3, 4, 13, 15, 21, 22, 24, 26, 27]. In particular,
we shall show that the generating functions in Theorem 1 arise by applying certain ring
homomorphisms defined on the ring of symmetric functions Λ in infinitely many variables
to simple symmetric function identities. For example, let hn denote the nth homogeneous
symmetric function in Λ and en denote the nth elementary symmetric function in Λ. That
is, hn and en are defined by the generating functions

H(t) :=
∑

n>0

hnt
n =

∏

i

1

1− xit
and E(t) :=

∑

n>0

ent
n =

∏

i

(1 + xit).

Then we shall show that (6) arises by applying a ring homomorphism θ to the simple
symmetric function identity

H(t) =
1

E(−t)
. (8)
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For example, we shall show that

(2n)!θ(h2n) = A2n,τ (i)(x) =
∑

σ∈A2n

xτ (i)-mch(σ) (9)

for an appropriately chosen ring homomorphism θ. Typically, one proves equations like
(9) by interpreting the left-hand side of (9) in terms of a signed weighted sum of filled
brick tabloids and then applying an appropriate sign-reversing weight-preserving involu-
tion to show that the combinatorial interpretation of (2n)!θ(h2n) reduces to the desired
polynomial. The situation in this paper is a bit different from previous examples of the
homomorphism method in that it requires two involutions to show that our combinatorial
interpretation of (2n)!θ(h2n) reduces to the right-hand of (9). Equation (7) is proved in a
similar manner except that we apply θ to a more complicated symmetric function identity.

The outline of the paper is as follows. In Section 2, we shall provide the necessary
background on symmetric functions that is required for our proofs. In Section 3, we shall
prove Theorem 1. In Section 4, we shall show how to compute mpn,τ (i) for i = 1, 2, 3, 4, 5.
In Section 5, we shall develop recursions for GMPn,τ (i)(x) for i = 1, 2, 4. The simplest case
is the set of the recursions for GMPn,τ (1)(x) described above. In that case, we shall show

that GMP2n,τ (1)(0) = (−1)n−1Cn for n > 1 and GMP2n,τ (1)(x)|x = (−1)n
(

2n
n−2

)

where for
any formal power series f(x) =

∑

n>0 fnx
n, we write f(x)|xn the coefficient of xn in f .

Using these facts, we can compute the generating functions for the number of up-down
permutations with no τ (1)-matches or with exactly one τ (1)-match. For example, we shall
show that

1 +
∑

n>1

t2n

(2n)!
N2n,τ (1) =

1

1 +
∑

n>1(−1)nCn
t2n

(2n)!

where N2n,τ (1) is the number of σ ∈ A2n with no τ (1)-matches. Finally, in Section 6,
we shall study the distribution of double rise pairs and double descent pairs in up-down
permutations. That is, if σ = σ1 . . . σn ∈ An is an up-down permutation, then we say
that a pair (2i − 1)(2i) is a double rise pair if both σ2i−1 < σ2i+1 and σ2i < σ2i+2. Thus
(2i−1)(2i) is a double rise pair in σ if and only if there is a 1324 match starting at position
2i− 1 in σ. We say that a pair (2i− 1)(2i) is a double descent pair if both σ2i−1 > σ2i+1

and σ2i > σ2i+2. Thus (2i − 1)(2i) is a double descent pair in σ if and only if there is a
D-match starting at position 2i− 1 in σ where D = {2413, 3412}.

2 Symmetric Functions

In this section we give the necessary background on symmetric functions needed for our
proofs of the generating functions (6) and (7).

Let Λ denote the ring of symmetric functions over infinitely many variables x1, x2, . . .

with coefficients in some field F . We let Λn denote the space of homogeneous symmetric
functions of degree n so that Λ = ⊕n>0Λn.

Let λ = (λ1, . . . , λℓ) be an integer partition, that is, λ is a finite sequence of weakly
increasing non-negative integers. Let ℓ(λ) denote the number of nonzero integers in λ.
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If the sum of these integers is n, we say that λ is a partition of n and write λ ⊢ n. For
any partition λ = (λ1, . . . , λℓ), let eλ = eλ1 · · · eλℓ

and hλ = hλ1 · · ·hλℓ
. The well-known

fundamental theorem of symmetric functions says that {eλ : λ is a partition} is a basis
for Λ or, equivalently, that {e0, e1, . . .} is an algebraically independent set of generators
for Λ. Since {e0, e1, . . .} is an algebraically independent set of generators for Λ, we can
specify a ring homomorphism θ on Λ by simply defining θ(en) for all n > 0.

A brick tabloid of shape (n) and type λ = (λ1, . . . , λk) where λ ⊢ n is a filling of a row
of n squares of cells with bricks of lengths λ1, . . . , λk such that bricks do not overlap. For
example, if λ = (12, 22), the six λ-brick tabloids of shape (6) are pictured in Figure 1.

Figure 1: The six brick tabloids of type (12, 22) and shape (6).

Let Bλ,n denote the set of all λ-brick tabloids of shape (n) and let Bλ,n = |Bλ,n|. We
shall write B = (b1, . . . , bk) if B is a brick tabloid of shape n such that the lengths of the
bricks in B are b1, . . . , bk as we read from left to right. Eğecioğlu and Remmel proved in
[9] that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,neλ =
∑

λ⊢n

(−1)n−ℓ(λ)
∑

(b1,...,bℓ(µ))∈Bλ,n

ℓ(µ)
∏

i=1

ebi . (10)

Next we define a class of symmetric functions pn,ν which have a relationship with
eλ that is analogous to the relationship between hn and eλ. These functions were first
introduced in [17] and [21]. Let ν be a function which maps the set of non-negative
integers into the field F . Recursively define pn,ν ∈ Λn by setting p0,ν = 1 and

pn,ν = (−1)n−1ν(n)en +
n−1
∑

k=1

(−1)k−1ekpn−k,ν for all n > 1. (11)

By multiplying series, this means that

(

∑

n>0

(−1)nent
n

)(

∑

n>1

pn,νt
n

)

=
∑

n>1

(

n−1
∑

k=0

pn−k,ν(−1)kek

)

tn =
∑

n>1

(−1)n−1ν(n)ent
n,

where the last equality follows from the definition of pn,ν . Therefore,

∑

n>1

pn,νt
n =

∑

n>1(−1)n−1ν(n)ent
n

∑

n>0(−1)nentn
(12)
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or, equivalently,

1 +
∑

n>1

pn,νt
n =

1 +
∑

n>1(−1)n(en − ν(n)en)t
n

∑

n>0(−1)nentn
. (13)

When taking ν(n) = 1 for all n > 1, (13) becomes

1 +
∑

n>1

pn,1t
n = 1 +

∑

n>1(−1)n−1ent
n

∑

n>0(−1)nentn
=

1
∑

n>0(−1)nentn
= 1 +

∑

n>1

hnt
n

which implies that pn,1 = hn for all n. Other special cases for ν give well-known generating
functions. For example, if ν(n) = n for n > 1, then pn,ν is the power symmetric function
pn =

∑

i x
n
i . For any statement A, we let χ(A) = 1 if A is true and χ(A) = 0 if A is false.

If ν(n) = (−1)kχ(n > k + 1) for some k > 1, then pn,ν is the Schur function s(1k ,n−k)

corresponding to the partition (1k, n).
The coefficient of eλ in pn,ν has a nice combinatorial interpretation similar to that of

hn. Suppose T is a brick tabloid of shape (n) and type λ and that the final brick in T

has length ℓ. Define the weight of a brick tabloid wν(T ) to be ν(ℓ) and let

wν(Bλ,n) =
∑

T∈Bλ,n

wν(T ).

It was proved in [17] and [21] that

pn,ν =
∑

λ⊢n

(−1)n−ℓ(λ)wν(Bλ,n)eλ =
∑

λ⊢n

(−1)n−ℓ(λ)
∑

(b1,...,bℓ(µ))∈Bλ,n

ν(bℓ(µ))

ℓ(µ)
∏

i=1

ebi . (14)

3 The proof of Theorem 1

In this section, we shall prove Theorem 1. Fix τ ∈ A4.
We start out by proving (6). Define a ring homomorphism θ from Λ into Q(x) by

setting θ(e0) = 1, θ(e2n+1) = 0 for all n > 0, and

θ(e2n) =
(−1)2n−1

(2n)!
GMP2n,τ (x) for all n > 1. (15)

Then we claim that θ(h2n−1) = 0 and

(2n)!θ(h2n) =
∑

σ∈A2n

xτ-mch(σ) (16)

for all n > 1. Note that by (10),

θ(h2n−1) =
∑

µ⊢2n−1

(−1)2n−1−ℓ(µ)Bµ,2n−1θ(eµ).
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Clearly if µ is a partition of 2n − 1, then µ must have an odd part so that θ(eµ) = 0.
Thus θ(h2n−1) = 0 for all n > 1. Note also that

θ(h2n) =
∑

µ⊢2n

(−1)2n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,2n

ℓ(µ)
∏

i=1

θ(ebi) (17)

so that there is no loss if we restrict the sum on the right-hand side of (17) to partitions
µ where every part of µ is even, i.e., to partitions of the form 2λ where λ is a partition of
n and 2λ = (2λ1, . . . , 2λℓ(λ)) if λ = (λ1, . . . , λℓ(λ)). Thus

(2n)!θ(h2n) = (2n)!
∑

λ⊢n

(−1)2n−ℓ(λ)
∑

(2b1,...,2bℓ(λ))∈B2λ,n

ℓ(µ)
∏

j=1

θ(e2bj )

= (2n)!
∑

λ⊢n

(−1)2n−ℓ(λ)
∑

(2b1,...,2bℓ(λ))∈B2λ,n

ℓ(µ)
∏

j=1

(−1)2bj−1

(2bj)!
GMP2bj ,τ(x)

=
∑

λ⊢n

∑

T=(2b1,...,2bℓ(λ))∈B2λ,2n

(

2n

2b1, . . . , 2bℓ(λ)

) ℓ(λ)
∏

j=1

GMP2bj ,τ (x). (18)

Next we want to give a combinatorial interpretation to the right-hand side of (18). We
start with a brick tabloid T = (2b1, . . . , 2bℓ(λ)) of type 2λ. Then the binomial coefficient
(

2n
2b1,...,2bℓ(λ)

)

allows us to pick a set partition ~U = (U1, . . . , Uℓ(λ)) of {1, . . . , 2n} where

|Ui| = 2bi for i = 1, . . . , ℓ(λ). Next we use the factor
∏ℓ(λ)

j=1 GMP2bj ,τ (x) to choose a

sequence of permutations ~σ = (σ(1), . . . , σ(ℓ(λ))) such that σ(j) ∈ S2λj
is a generalized

maximum packing for τ for j = 1, . . . , ℓ(λ). Then for each j, we let α(j) be the sequence
that arises by replacing the rth largest element of σ(j) by the rth largest element of Uj and
then we place the elements of α(j) in the cells of brick 2bj from left to right. For example,
we have illustrated this process in Figure 2 for τ = τ (1) = 1324 where the brick tabloid
is T = (2, 8, 6). We have also indicated the block structure in each brick by underlining

those elements in a common block. The weight w(T, ~U, ~σ) of such a triple (T, ~U, ~σ) is
∏ℓ(λ)

j=1 w(σ
(j)). We can interpret w(T, ~U, ~σ) as

∏2n
j=1L(j) where L : {1, . . . , 2n} → Q[x]

is a labeling of the cells of T which is defined as follows. First we define a labeling
L̄ : {1, . . . , 2n} → Q[x] where L̄(j) = 1 if cell j does not start a τ -match that is contained
in its brick and L̄(j) = x− 1 if cell j starts a τ -match that is contained in its brick. Then
we define L(j) = −L̄(j) if j is the first cell of its block and that block is not the last block
in its brick and L(j) = L̄(j) otherwise. Thus the RHS of (18) can be interpreted as the
sum of the weights of all triples (T, α, L) such that

1. T = (d1, . . . , dk) is a brick tabloid of shape (2n) where each brick dj has even length,

2. α is a permutation of S2n such that in each brick dj, the sequence of elements in
brick dj reduces to a permutation in GMPdj ,τ , and
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3. L : {1, . . . , 2n} → Q[x] is the labeling of the cells of T described above.

For example, in Figure 2, T = (2, 8, 6), α = 1 3 4 5 7 10 9 12 11 13 2 8 6 14 15 16, and L

is the labeling where all the cells which do not have an explicit label in them are assumed
to have label 1.

1 2

σ

31 4 5 7 9

σ

10 68213 141112 15 16

1 −1 (x−1) (x−1) 1−(x−1)

U  = {1,3} U  = {4,5,7,9,10,11,12,13}
3

σ

U  = {2,6,8,14,15,16}

(1) = 1 2 (2) = 1 2 3 5 4 7 6 8 (3) = 1 3 2 4 5 6

Figure 2: An element of T16,τ (1) .

We let T2n,τ denote the set of all such triples constructed in this way. It then follows
that

(2n)!θ(h2n) =
∑

(T,α,L)∈T2n,τ

w(T, α, L). (19)

Next we will define two involutions I and J which will show that right-hand side of
(19) is equal to the right-hand side of (16). We define I : T2n,τ → T2n,τ as follows. Suppose
that we are given a triple (T, α, L) where T = (d1, . . . , dk). Then read the bricks from
left to right until you find the first brick dj such that either (i) the generalized maximum
packing corresponding to the elements in dj consists of more than one block or (ii) the
generalized maximum packing corresponding to the elements in dj consists of a single
block and the last element of dj is less than the first element of the following brick dj+1.
In case (i), split dj into two bricks d∗ and d∗∗ where d∗ contains the cells of the first block
in the generalized maximum packing corresponding to the elements in dj and d∗∗ contains
the remaining cells of dj. We keep all the labels the same except that we change the label
on the first cell of d∗ from −1 to 1 if the first block of dj is of length 2 and from −(x− 1)
to (x−1) if the first block of dj has length > 4. In case (ii), we combine bricks dj and dj+1

into a single brick d. Note that since the last element of dj is less than the first element of
dj+1, the elements in the new brick d will still reduce to a generalized maximum packing
for τ . We keep all the labels the same except that we change the label on the first cell of
dj from 1 to −1 if dj is of length 2 and from (x− 1) to −(x− 1) if dj has length > 4. In
both cases, we do not change the underlying permutation α. If neither case (i) nor case
(ii) applies, then I(T, α, L) = (T, α, L). For example, if (T, α, L) is the element of T16,τ (1)

pictured in Figure 2, then we are in case (ii) since we can combine the first and second
bricks so that I(T, α, L) is pictured in Figure 3.
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31 4 5 7 910 68213 141112 15 16

−1 −1 (x−1)(x−1) −(x−1) 1

Figure 3: The image of (T, α, L) in Figure 2 under I.

It is easy to see that if I(T, α, L) = (T ′, α, L′) 6= (T, α, L), then I(T ′, α, L′) = (T, α, L)
and w(T, α, L) = −w(T ′, α, L′). Hence I shows that

(2n)!θ(h2n) =
∑

(T,α,L)∈T2n,τ

w(T, α, L)

=
∑

(T,α,L)∈T2n,τ

I(T,α,L)=(T,α,L)

w(T, α, L). (20)

Thus we must examine the fixed points of I. Clearly, if (T, α, L) is a fixed point of I,
then the elements of each brick d in T must reduce to a generalized maximum packing
of τ which consists of a single block. Second, we must not be able to combine any two
bricks so that if T = (d1, . . . , dk), then the last element of dj is greater than the first
element of dj+1 for j = 1, . . . , k−1. But this means that the underlying permutation α is
an up-down permutation. It follows that the fixed points of I consists of triples (T, α, L)
such that

(I) α is an up-down permutation of length 2n,

(II) T = (d1, . . . , dk) where each dj has even length and the elements of dj reduce to a
generalized maximum packing of τ which consists of a single block, and

(III) the label of L(j) of the jth cell of T is (x− 1) if j is the start of τ -match in α that
lies in its brick and is equal to 1 otherwise.

Next we want to modify our interpretation of the right-hand side of (20) to consist of
all triples (T ′, α, L′) such that

(I ′) α is an up-down permutation of length 2n,

(II ′) T = (d1, . . . , dk) where each dj has even length and the elements of dj reduce to a
generalized maximum packing of τ which consists of a single block, and

(III ′) the label of L(j) of the jth cell of T is either x or −1 if j is the start of τ -match
in α that lies in its brick and is equal to 1 otherwise.

We let FI2n,τ denote the set of triples (T ′, α, L′) satisfying (I ′)–(III ′). Then for any
(T ′, α, L′) ∈ FI2n,τ , we define the weight w(T ′, α, L′) of (T ′, α, L′) to be

∏2n
j=1L

′(j). For
example, Figure 4 pictures an element of FI16,τ (1) whose weight is x, where again the cells
which do not have labels are assumed to have label 1.
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1 4 5 910 68213 141112 15 167 3

x −1 −1

Figure 4: An element of FI16,τ (1) .

It then follows that

(2n)!θ(h2n) =
∑

(T ′,α,L′)∈FI2n,τ

w(T ′, α, L′). (21)

Next we define an involution J : FI2n,τ → FI2n,τ . Given an element (T, α, L) ∈
FI2n,τ , scan the cells of T = (d1, . . . , dk) from left to right looking for the first cell c such
that either (A) the label of c is −1 or (B) c is the second to last element of a brick dj
such that the elements of bricks dj and dj+1 reduce to a generalized maximum packing
of τ which consists of a single block. Note that in case (B), c must have label 1 since it
does not start match of τ in α that lies in its brick. In case (A), if c is in brick dj, then
break dj into two bricks d∗ and d∗∗ where d∗ contain the cells of dj up to and including
cell c+1 and d∗∗ contains the rest of the cells of dj . We then replace the −1 label on cell
c by 1. In case (B), we replace the bricks dj and dj+1 by a single brick d and replace the
label of 1 on c by −1. In either case, we do not change the underlying permutation α. If
neither case (A) nor case (B) applies, then we let J(T, α, L) = (T, α, L). For example, if
we consider the triple (T, α, L) pictured in Figure 4, we cannot combine bricks d1 and d2
because α does not have a τ (1)-match starting cell 1 and we cannot combine bricks d2 and
d3 because α does not have a τ (1)-match starting cell 3. Thus we are in case (B) where
dj = d3 and c = 7. Thus we split d3 at cells 8 and 9 so that J(T, α, L) = (T ′, α, L′) is
the filling pictured in Figure 5. Note that it will automatically be the case that the first
action that we can take for (T ′, α, L′) is to combine the two bricks that made up the d3
in (T, α, L).

1 4 5 910 68213 141112 15 167 3

x −1

Figure 5: J(T, α, L) for (T, α, L) of Figure 4.

It is easy to see that if J(T, α, L) = (T ′, α, L′) 6= (T, α, L), then w((T, α, L) =
−w(T ′, α, L′) and J(T ′, α, L′) = (T, α, L). Thus it follows that

(2n)!θ(h2n) =
∑

(T,α,L)∈FI2n,τ

J(T,α,L)=(T,α,L)

w(T, α, L). (22)
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Thus we must examine the fixed points of J . If J(T, α, L) = (T, α, L), then clearly
(T, α, L) can have no cells which have a −1 label. Thus in a brick d of T of length > 4,
the start of every τ -match contained in d is labeled with an x. Moreover, we claim that
there cannot be a τ -match that involves cells in two different bricks dj and dj+1. That is,
the only way a τ -match could span cells in both dj and dj+1 is if that τ match started in
cell c which is the second to last cell of dj. But this would imply that the elements of dj
and dj+1 would reduce to a generalized maximum packing for τ with a single block and,
hence, case (B) of our involution would apply to c. Hence if (T, α, L) is a fixed point of

J , then w(T, α, L) = xτ-mch(α).
For any α ∈ A2n, there is a unique fixed point (T, α, L) of J whose underlying per-

mutation is α. That is, we must define the bricks d1, d2, . . . inductively as follows. We let
d1 be of length 2 if there is no τ -match in α starting at 1 and d1 be of length 2s if there
are τ -matches starting at positions 1, 3, . . . , 2s − 3 but not at 2s− 1 in α. Then having
defined bricks d1, . . . , dr where dr ends at cell c = 2k < 2n, we let dr+1 be of length 2 if
there is no τ -match in α starting at 2k+1 and dr+1 be of length 2s if there are τ -matches
starting at positions 2k + 1, 2k + 3, . . . , 2k + 2s− 3 but not at 2k + 2s− 1 in α. Hence

(2n)!θ(h2n) =
∑

α∈A2n

xτ-mch(α).

It then follows that

θ

(

∑

n>0

hnt
n

)

= 1 +
∑

n>1

t2n

(2n)!

∑

α∈A2n

xτ-mch(α)

=
1

1 +
∑

n>1(−t)nθ(en)

=
1

1−
∑

n>1
t2n

(2n)!
GMP2n,τ (x)

which is what we wanted to prove.
To prove (7), we will use the same ring homomorphism θ with weight function ν : P →

Q(x) where

ν(2n− 1) = 0 and ν(2n) =
2nGMP2n−1,τ (x)

GMP2n,τ (x)
for all n > 1.

We have designed ν so that ν(2n)θ(e2n) =
(−1)2n−1

(2n−1)!
GMP2n−1,τ (x). Then we claim that for

all n > 0, θ(p2n+1,ν) = 0 and

(2n+ 1)!θ(p2n+2,ν) =
∑

σ∈A2n+1

xτ-mch(σ). (23)

Note that by (14),

θ(p2n+1,ν) =
∑

µ⊢2n+1

(−1)2n+1−ℓ(µ)wν(Bµ,2n+1)θ(eµ).
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Clearly if µ is a partition of 2n+1, then µ must have an odd part so that θ(eµ) = 0. Thus
θ(p2n+1,ν) = 0 for all n > 0. It also follows that when we want to compute θ(p2n+2,ν), we
can restrict ourselves to considering partitions of the form 2λ where λ is a partition of
n+ 1. Thus

(2n+ 1)!θ(p2n+2,ν)

= (2n+ 1)!
∑

λ⊢n+1

(−1)2n+2−ℓ(λ)
∑

(2b1,...,2bℓ(λ))∈B2λ,2n+2

ν(2bℓ(λ))θ(e2bℓ(λ))

ℓ(λ)−1
∏

j=1

θ(e2bj )

= (2n+ 1)!
∑

λ⊢n+1

(−1)2n+2−ℓ(λ)
∑

(2b1,...,2bℓ(λ))∈B2λ,2n+2

(−1)2bℓ(λ)−1

(2bℓ(λ) − 1)!
GPM2bℓ(λ)−1,τ (x)×

ℓ(λ)−1
∏

j=1

(−1)2bj−1

(2bj)!
GMP2bj ,τ (x)

=
∑

λ⊢n+1

∑

(2b1,...,2bℓ(λ))∈B2λ,2n+2

(

2n+ 1

2b1, . . . , 2bℓ(λ)−1, 2bℓ(λ) − 1

)

GPM2bℓ(λ)−1,τ (x)× (24)

ℓ(λ)−1
∏

j=1

GMP2bj ,τ(x).

As before, we want to give a combinatorial interpretation to the right-hand side of
(24). We start with a brick tabloid T = (2b1, . . . , 2bℓ(λ)) of length 2n + 2 and type
2λ. Then the binomial coefficient

(

2n+1
2b1,...,2bℓ(λ)−1,2bℓ(λ)−1

)

allows us to pick a set parti-

tion ~U = (U1, . . . , Uℓ(λ)) of {1, . . . , 2n + 1} where |Ui| = 2bi for i = 1, . . . , ℓ(λ) − 1

and |Uℓ(λ)| = 2bℓ(λ) − 1. Next we use the factor GMP2bℓ(λ)−1,τ (x)
∏ℓ(λ)−1

j=1 GMP2bj ,τ (x)

to choose a sequence of permutations ~σ = (σ(1), . . . , σ(ℓ(λ))) such that σ(j) ∈ S2bj is a

generalized maximum packing for τ for j = 1, . . . , ℓ(λ) − 1 and σ(ℓ(λ)) ∈ S2bℓ(λ)−1 is a

generalized maximum packing for τ . Then for each j, we let α(j) be the sequence that
arises by replacing the rth largest element of σ(j) by the rth largest element of Uj and
then we place the elements of α(j) in the cells of brick 2bj from left to right. This means
that for the last brick 2bℓ(λ), we will fill in all but the last cell which we leave blank.
For example, we have illustrated this process in Figure 6 for τ (1) = 1324 where the un-
derlying brick tableau T = (2, 8, 6). We have also indicated the block structure in each

brick by underlying those elements in a common block. The weight w(T, ~U, ~σ) of such a

triple (T, ~U, ~σ) is
∏ℓ(λ)

j=1 w(σ
(j)). Again we can interpret w(T, ~U, ~σ) to be

∏2n+1
j=1 L(j) where

L : {1, . . . , 2n} → Q[x] is a labeling of the cells of T . To define L, we label the blank cell
with 1 and then we label the remaining cells exactly as we did before. Thus the RHS of
(24) can be interpreted as the sum of the weights of all triples (T, α, L) such that

1. T = (d1, . . . , dk) is a brick tabloid of shape (2n + 2) where each brick dj has even
length,
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2. α is a permutation of S2n+1 such that in each brick dj with j < k, the elements in
brick dj reduce to a permutation in GMPdj ,τ and the elements in brick dk fill the
first dk − 1 cells of brick dk and reduce to a permutation in GMPdk−1,τ , and

3. L : {1, . . . , 2n} → Q[x] is the labeling of the cells of T described above.

For example, in Figure 6, T = (2, 8, 6), α = 1 4 3 7 5 10 9 12 11 13 2 8 6 14 15, and L is
the labeling where all the cells which do not have an explicit label in them are assumed
to have label 1.

1 2

σ

1 9

σ

10 6131112

1 (x−1) (x−1)

3

σ

14 152 84 3 7 5

(x−1) 1−(x−1)

U  = {1,4} U  = {3,5,7,9,10,11,12,13} U  = {2,6,8,14,15}

(1) = 1 2 (2) = 1 3 2 5 4 7 6 8 (3) = 1 3 2 4 5

Figure 6: An element of T15,τ (1) .

We let T2n+1,τ denote the set of all such triples constructed in this way. It then follows
that

(2n+ 1)!θ(p2n+2,ν) =
∑

(T,α,L)∈T2n+1,τ

w(T, α, L). (25)

Note that the only difference between the fillings of even length in the proof of (16)
and our current fillings is that, in our current fillings, the last brick ends in a blank cell
and the block structure of the reduction of the sequence of elements in the last brick must
end in a block of size 1. This means that we can define the two involutions I and J

exactly as before since the fact that the last block of the final brick is length 1 does not
change things. Using the same reasoning as in our proof of (16), it is easy to check that
our involutions I and J show that

(2n+ 1)!θ(p2n+2,ν) =
∑

α∈A2n+1

xτ-mch(α). (26)

It then follows that

θ(
∑

n>1

pn,νt
n) =

∑

n>0

t2n+2

(2n+ 1)!

∑

α∈A2n+1

xτ-mch(α)

=

∑

n>1(−1)n−1ν(n)θ(en)t
n

∑

n>0(−1)nθ(en)tn
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=

∑

n>1
t2n

(2n−1)!
GMP2n−1,τ (x)

1−
∑

n>1
t2n

(2n)!
GMP2n,τ (x)

. (27)

Dividing the second and the last elements in the string of equalities in (27) by t gives (7)
which is what we wanted to prove.

4 Computing mpn,τ (i)

In this section, we shall consider the problem of computing mpτ (i),n since we will need
such computations to compute GMPτ (i),n.

The problem of computing mpτ (i),2n has been studied by Harmse and Remmel [13]
in a different context. Harmse and Remmel studied maximum packings in column strict
arrays. That is, let Fn,k denote the set of all fillings of a k × n rectangular array with
the integers 1, . . . , kn such that the elements increase from bottom to top in each column.
We let (i, j) denote the cell in the ith row from the bottom and the jth column from the
left of the k × n rectangle and we let F (i, j) denote the element in cell (i, j) of F ∈ Fn,k.

If F is any filling of a k×n-rectangle with distinct positive integers such that elements
in each column increase, reading from bottom to top, then we let red(F ) denote the
element of Fn,k which results from F by replacing the ith smallest element of F by i.
For example, Figure 7 demonstrates a filling, F , with its corresponding reduced filling,
red(F ).

1 5

6

7

10 13

221612

15 178

1 2

3

4

5

6

7

8

9

10

11

12

F = red(F) =

Figure 7: An example of F ∈ F3,4 and red(F ).

If F ∈ Fn,k and 1 6 c1 < · · · < cj 6 n, then we let F [c1, . . . , cj] be the filling of
the k × j rectangle where the elements in column a of F [c1, . . . , cj] equal the elements
in column ca in F for a = 1, . . . , j. If P ∈ Fj,k and F ∈ Fn,k where j 6 n, then we
say there is a P -match in F starting at position i if red(F [i, i + 1, . . . , i + j − 1]) = P .
We let P -mch(F ) denote the number of P -matches in F . For example, if we consider
the fillings P ∈ F3,3 and F,G ∈ F6,3 shown in Figure 8, then it is easy to see that there
are no P -matches in F and there are 2 P -matches in G starting at positions 1 and 2 so
P -mch(F ) = 0 and P -mch(G) = 2.

If P ∈ F2,k, then we define MPP
n to be the set of F ∈ Fn,k with P -mch(F ) = n − 1,

i.e. the set of F ∈ Fn,k with the property that there are P -matches in F starting at
positions 1, 2, . . . , n− 1. We let mpP

n = |MPP
n | and, by convention, we define mpP

1 = 1.
Given an F ∈ Fn,2, we let σ(F ) be the permutation

σ(F ) = F (1, 1)F (2, 1)F (1, 2)F (2, 2) . . .F (1, n)F (2, n).

the electronic journal of combinatorics 21(3) (2014), #P3.2 15



1

2

4

6

8

12

15

17

18

3

13

16

5

10

11

7

9

14

4

2 5

3

1

6

7

8

9
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1
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11

Figure 8: Computing the number of P -matches for elements in F6,3.

We then let P (i) denote the element of F2,2 such that σ(P (i)) = τ (i). For example,
P (1), . . . , P (5) are pictured in Figure 9. It is then easy to see that for any maximum
packing F ∈ Fn,2 of P (i), σ(F ) is an up-down permutation in A2n which is a maximum
packing for τ (i). Vice versa, if σ = σ1 . . . σ2n is a maximum packing of τ (i), then the 2× n

array Fσ where Fσ(1, i) = σ2i−1 and Fσ(2, i) = σ2i is a maximum packing for P (i). An
example of this correspondence is pictured at the top of Figure 9 for τ (1) = 1324 and

P (1) =
3 4
1 2

.

1 2

5 6

3

8 9

12

1615

4 7

13

14

11

10
1 5 2 6 3 8 4 9 7 11 10 13 12 15 14 16

(5)

3 4 = Pτ =
(2)

2
2314

= Pτ =
(3)

1 2

3 41324
(1)

= Pτ = (1) (2)

(3)4 3

12

= Pτ =

1 2
= Pτ =

(4) (4)

(5)(5)

1432 4 3

3412
3

4

1

2

1

2431

Figure 9: The correspondence between MP2n,τ (i) and MPP (i)

n .

It follows that for i = 1, . . . , 5, mp2n,τ (i) = mpP (i)

n . Now Harmse and Remmel [13]

proved that for n > 2, mpP (1)

n = mpP (3)

n = Cn−1 and mpP (2)

n = mpP (4)

n = mpP (5)

n = 1. Thus
we obtain the following theorem.

Theorem 2. For all n > 2, mp2n,τ (1) = mp2n,τ (3) = Cn−1 and

mp2n,τ (2) = mp2n,τ (4) = mp2n,τ (5) = 1.
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Our next goal is to prove the following.

Theorem 3. For all n > 2, mp2n+1,τ (1) = 2nCn−1, mp2n+1,τ (2) = 2n,
mp2n+1,τ (3) = Cn−1 + Cn, mp2n+1,τ (4) = n+ 1 and mp2n+1,τ (5) = 2.

Proof. To compute mp2n+1,τ (i) , we must exploit some of the techniques used by Harmse
and Remmel [13] to compute mpP

n for P ∈ F2,k. To help us visualize the order relationships
within P (i), we form a directed graph GP (i) on the cells of the 2× 2 rectangle by drawing
a directed edge from the position of the number j to the position of the number j+1 in P

for j = 1, 2, 3. For example, in Figure 10, the graph GP (1) is pictured immediately to the
right of P (1). Then GP (i) determines the order relationships between all the cells in P (i)

since P (i)(r, s) < P (i)(u, v) if there is a directed path from cell (r, s) to cell (u, v) in GP (i).

Now suppose that F ∈ MPP (i)

n where n > 3. Because there is a P (i)-match starting in
column j for each 1 6 j < n, we can superimpose GP (i) on the cells in columns j and j+1
to determine the order relations between the elements in those two columns. If we do this
for every pair of columns, j and j + 1 for j = 1, . . . , n − 1, we end up with a directed
graph on the cells of the 2×n rectangle which we will call Gn,P (i). For example, in Figure

10, G6,P (1) is pictured in the second row. It is then easy to see that if F ∈ MPP (i)

n and
there is a directed path from cell (r, s) to cell (u, v) in Gn,P (i), then it must be the case
that F (r, s) < F (u, v). Note that Gn,P (i) will always be a directed acyclic graph with no
multiple edges.

(1)
P    =

a

a

1 2

3 4

b

Figure 10: The graphs Gn,P (1) and G+
n,P (1).

Harmse and Remmel [13] proved that the problem of computing mpP (i)

n for any P (i) ∈
F2,2 of shape 2

2 can be reduced to finding the number of linear extensions of a certain poset
associated with P (i). That is, the graphGn,P (i) induces a posetWG

n,P (i)
= ({(i, j) : 1 6 i 6

2 & 1 6 j 6 n}, <W ) on the cells of the 2× n rectangle by defining (i, j) <W (s, t) if and
only if there is a directed path from (i, j) to (s, t) in Gn,P (i). Harmse and Remmel proved
that there is a 1:1 correspondence between the elements of MPn and the linear extensions

of Wn,P (i). That is, if F ∈ MPP (i)

n , then it is easy to see that (a1, b1), . . . , (a2n, b2n) where
F (ai, bi) = i is a linear extension ofWG

n,P (i)
. Vice versa, if (a1, b1), . . . , (a2n, b2n) is a linear
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extension of WG
n,P (i)

, then one can define F so that F (ai, bi) = i and it will automatically

be the case that F ∈ MPP (i)

n .
We can define a similar poset for maximum packings of τ (i) of length 2n + 1. Note

that in a maximum packing F ∈ MPP (i)

n , the element a in the top right-hand corner
of F corresponds to the last element of σ(F ) so that, to account for the last element
in a permutation α = α1 . . . α2n+1 ∈ A2n+1 which has τ (i)-matches starting at positions
1, 3, . . . 2n − 3, we must add an extra element b to graph Gn,P (i) with a directed arrow
from b to a since we know that α2n > α2n+1. We let G+

n,P (i) denote this extended graph.

For example, the graph G+
6,P (1) is pictured in the third line of Figure 10. It follows that

mp2n+1,τ (i) equals the number of linear extensions of WG+

n,P (i)
.

First consider the problem of computing mpP (1)

2n+1 for n > 2. In this case, let a be
the rightmost element in the top row of Gn,P (1). Since there is a directed path in Gn,P (1)

from every element other than a to a, it must be the case that a is the last element in

any linear extension of WG
n,P (1)

and, hence, in any F ∈ MPP (1)

n , F (a) = 2n. Note that

the same thing happens in G+
n,P (1). That is, there is a directed path in G+

n,P (1) from every

element other than a to a. Thus it must be the case that a is the last element in any linear
extension of WG+

n,P (1)
so that a would be assigned the label 2n+1 in any linear extension.

But then it is easy to see that b can be assigned any element in {1, . . . , 2n}. Thus once we
pick the value assigned to b, then the number of linear extensions of G+

n,P (1) just reduces

to the number of linear extensions of Gn,P (1) which is Cn−1. Thus mp2n+1,τ (1) = 2nCn−1.

a

b

3 4
P    =

(2)

12

a

Figure 11: The graphs Gn,P (2) and G+
n,P (2).

In Figure 11, we have pictured the graphs of G6,P (2) and G+
6,P (2) in the second line.

In this case, it is easy to see that there is a unique linear extension of WG
n,P (2)

and the

rightmost top element a must be the largest element 2n since there is a directed path in
Gn,P (2) from every element other than a to a. The same thing happens in G+

n,P (2), namely

2n+ 1 must be assigned to a since there is a directed path in G+
n,P (2) from every element

other than a to a. But then it is easy to see that b can be assigned to any element in
{1, . . . , 2n}. Thus once we pick a value that is assigned to b, then the number of linear
extensions of G+

n,P (2) just reduces to the number of linear extensions of Gn,P (2) which is

just 1. Thus mp2n+1,τ (2) = 2n.
In Figure 12, we have pictured the graphs of G6,P (3) and G+

6,P (3) in the second line. Now
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a a

b

b  = 1
12

34

b  = 1

1 0

b  > 1

P    =
(3)

Figure 12: The graphs Gn,P (3) and G+
n,P (3).

consider the element b in G+
n,P (3). If we assign b the value 1, then there is no restriction

on the linear extensions of the remaining elements so that we get a total of Cn−1 linear
extensions in that case since mpn,P (3) = Cn−1. However, if b > 1, then it is easy to see
that the rightmost bottom element must be the first element in any linear extension since
there is a directed path from that element to any other element which is not equal to
b. Thus the rightmost bottom element must be assigned to 1. It then follows that we
can extend the graph G+

n,P (3) to a graph G++
n,P (3) by adding a new element 0 and adding

new directed edges connecting 0 to 1 and 1 to b. This process is pictured on line 4 of
Figure 12. It is easy to see that the number of linear extensions of G+

n,P (3) where b > 1 is

just the number of linear extensions of G++
n,P (3) which is the same as the number of linear

extensions of Gn+1,P (3). Since the number of linear extensions of Gn+1,P (3) is Cn, it follows
that mp2n+1,τ (3) = Cn−1 + Cn.

a

b

P    =

a

(4)

1

3

2

4

Figure 13: The graphs Gn,P (4) and G+
n,P (4).

In Figure 13, we have pictured the graphs of G6,P (4) and G+
6,P (4) in the second line.

In this case, it is easy to see that there is a unique linear extension of WG
n,P (4)

and the
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rightmost top element a of Gn,P (4) must be the (n+1)st element in the linear extension of

WG
6,P (4)

since there are n elements x for which there is a directed path in Gn,P (4) from x to

a and there are n− 1 elements y such that there is a directed path from a to y in Gn,P (4).
Similarly, a must be the (n+ 2)nd element in any linear extension of WG+

6,P (4)
since there

are n + 1 elements x for which there is a directed path in G
+

n,P (4) from x to a and there

are n− 1 elements y such that there is a directed path from a to y in G
+

n,P (4). Hence we
can assign b to be any element from 1, . . . , n + 1. Once we pick a value for b, then the

number of linear extensions of G
+

n,P (4) just reduces to the number of linear extensions of

Gn,P (4) which is just 1. Thus mp2n+1,τ (4) = n+ 1.

a

b

P    =
1

4

3

2(5)

a

Figure 14: The graphs Gn,P (5) and G+
n,P (5).

In Figure 14, we have pictured the graphs of G6,P (5) and G+
6,P (5) in the second line.

In the case of G+
n,P (5), it is easy to see that the rightmost top element a must be the

third element in any linear extension of WG+

6,P (5)
. Thus we have two linear extensions

depending upon how we order the two elements that have a directed edge into a. Hence
mp2n+1,P (5) = 2.

5 Computing GMPn,τ (i)(x)

In this section, we shall study the problem of computing GMPn,τ (i)(x) for n > 1 and
i = 1, . . . , 5. First it is easy to see that for any i, GMP1,τ (i)(x) = GMP2,τ (i)(x) = 1,
GMP3,τ (i)(x) = −1, and GMP4,τ (i)(x) = x − 2. That is, there is only one generalized
maximum packing of length 1 which consists of a block of length 1 and weight 1. Similarly,
there is only one generalized maximum packing of length 2 which consists of a block
of length 2 and weight 1. There is only one generalized maximum packing of length
3, namely, 123 where 12 is a block of length 2 and 3 is a block of length one. Thus
GMP3,τ (i) = w(123) = −1. There are two generalized maximum packings of length 4,

namely, 1234 which consists of two blocks of length 2 and has weight −1 and τ (i) which
consists of a single block with weight x− 1. Thus GMP4,τ (i) = x− 2.

In general, we do not know how to find closed formulas for GMPn,τ (i)(x) as function of
n, but for i ∈ {1, 2, 4} there are simple recursions for computing GMPn,τ (i)(x). The key
to our ability to develop recursions for GMPn,τ (i)(x) in the case where i ∈ {1, 2, 4} is due
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to the fact that τ (1), τ (2), and τ (4) either start with 1 or end with 4. This will allow us to
develop recursions based on either the length of the first block or the length of the last
block in a generalized maximum packing. Neither τ (3) = 2413 nor τ (5) = 3412 start with
1 or end with 4 and we have not been able to find any simple recursions for GMPn,τ (3) or
GMPn,τ (5) .

The easiest case is for τ (1) = 1324 where we have the following theorem.

Theorem 4. For n > 3,

GMP2n,τ (1)(x) = Cn−1(x− 1)n−1 −

n−1
∑

k=1

Ck−1(x− 1)k−1GMP2n−2k,τ (1)(x) (28)

and, for n > 2, GMP2n+1,τ (1)(x) = −GMP2n,τ (1)(x).

Proof. It is easy to see from the form of the graphs G2n,P (1) that any maximum packing
σ ∈ MP2n,τ (1) must start with 1 and end with 2n. By the definition of a generalized
maximum packing whose block structure is B1 . . . Bk, the last element of Bi must be
smaller than the first element of Bi+1 for all i < k. Thus all the elements of Bi are smaller
than any element in Bi+1 for all i < k.

Now suppose that n > 3 and σ = σ1 . . . σ2n ∈ GMP2n,τ (1) . There are two possibilities.

Case 1. σ consists of a single block.
In this case σ is a maximum packing of τ (1) and w(σ) = (x−1)n−1. Since mp2n,τ (i) = Cn−1,
the contribution of the permutations in case 1 to GMP2n,τ (1)(x) is Cn−1(x− 1)n−1.

Case 2. σ has block structure B1 . . . Bs where s > 2.
If B1 is of length 2, then B1 = 12 and has weight −1 = −C0 and red(B2 . . . Bs) is a gener-
alized maximum packing for τ (1) of length 2n− 2. If B1 has length 2k where k > 2, then
B1 = 1 . . . 2k is a maximum packing for τ (1) of length 2k which has weight −(x−1)k−1 and
red(B2 . . . Bs) is a generalized maximum packing of length 2n− 2k. Then there are Ck−1

choices for B1. Hence the contribution of the permutations in case 2 to GMP2n,τ (1)(x) is

−
∑n−1

k=1 Ck−1(x− 1)k−1GMP2n−2k,τ (1)(x).

Thus for n > 3, (28) holds.
It is also easy to compute GMP2n+1,τ (1)(x). That is, since a generalized maximum

packing σ ∈ A2n+1 has block structure B1 . . . Bk where Bk has length 1 and B1 . . . Bk−1

reduces to a generalized maximum packing for τ (1) of length 2n, we know that the last
element of Bk−1 is the largest element in B1 . . . Bk−1 and hence the element in Bk must
be 2n+ 1. Thus in this case GMP2n+1,τ (1)(x) = −GMP2n,τ (1)(x).

Here is the list of the first few values of GMP2n,τ (1)(x).

GMP2,τ (1)(x) = 1

GMP4,τ (1)(x) = −2 + x
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GMP6,τ (1)(x) = 5− 6x+ 2x2

GMP8,τ (1)(x) = −14 + 28x− 20x2 + 5x3

GMP10,τ (1)(x) = 42− 120x+ 135x2 − 70x3 + 14x4

GMP12,τ (1)(x) = −132 + 495x− 770x2 + 616x3 − 252x4 + 42x5

GMP14,τ (1)(x) = 429− 2002x+ 4004x2 − 4368x3 + 2730x4 − 924x5 + 132x6

GMP16,τ (1)(x) = −1430 + 8008x− 19656x2 + 27300x3 − 23100x4+

11880x5 − 3432x6 + 429x7

Plugging these values into the generating functions (6) and (7), we have computed the

following table of values of An,τ (1)(x) =
∑

σ∈An
xτ (1)-mch(σ).

A1,τ (1) = 1

A2,τ (1) = 1

A3,τ (1) = 2

A4,τ (1) = 4 + x

A5,τ (1) = 12 + 4x

A6,τ (1) = 35 + 24x+ 2x2

A7,τ (1) = 142 + 118x+ 12x2

A8,τ (1) = 546 + 672x+ 162x2 + 5x3

A9,τ (1) = 2816 + 3968x+ 1112x2 + 40x3

A10,τ (1) = 13482 + 24660x+ 11145x2 + 1220x3 + 14x4

A11,τ (1) = 84764 + 170996x+ 87200x2 + 10666x3 + 168x4

In this case, one can explicitly calculate the values of GMPn,τ (1)(x)|x0 = GMPn,τ (1)(0)
and GMPn,τ (1)(x)|x. One can obviously get recursions for GMPn,τ (1)(x)|xk for k > 2 but
we could not find nice explicit formulas for such coefficients. For example, the sequence
of absolute values of the coefficients of GMPn,τ (1)(x)|x2 does not appear in the On-Line
Encyclopedia of Integer Sequences (OEIS).

Theorem 5. 1. For all m > 1, G2m,τ (1)(0) = (−1)m−1Cm and

G2m+1,τ (1)(0) = (−1)mCm.

2. For all m > 2, G2m,τ (1)(x)|x = (−1)m
(

2m
m−2

)

and G2m+1,τ (1)(x)|x = (−1)m+1
(

2m
m−2

)

.

Proof. For (1), our formula obviously holds for m = 1 and m = 2. Now if n > 2 and we
assume that G2m,τ (1)(0) = (−1)m−1Cm for m < n, then by (28), we have

GMP2n,τ (1)(0) = Cn−1(−1)n−1 −
n−1
∑

k=1

Ck−1(−1)k−1GMP2n−2k,τ (i)(0)

= Cn−1(−1)n−1 −
n−1
∑

k=1

Ck−1(−1)k−1(−1)n−k−1Cn−k
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= (−1)n−1
n
∑

k=1

Ck−1Cn−k = (−1)n−1Cn.

For (2), GMP4,τ (1)(x)|x = 1 so our formula holds for n = 2. For n > 2, we have that

GMP2n,τ (1)(x)|x = Cn−1(x− 1)n−1|x −

n−1
∑

k=1

(Ck(x− 1)k|)|x(GMP2n−2k−2,τ (1)(x))|x0

−

n−1
∑

k=1

(Ck(x− 1)k)|x0(GMP2n−2k−2,τ (1)(x))|x.

Using induction and some simplifications with binomial coefficients, one can show that
this is equivalent to the following identity:

(−1)nGMP2n,τ (1)(x)|x =

(

2n− 1

n− 2

)

+
n−2
∑

k=1

1

n− k

(

2k

k − 1

)(

2n− 2k − 2

n− k − 1

)

(29)

+
n−3
∑

k=1

1

k + 1

(

2k

k

)(

2n− 2k − 2

n− k − 3

)

One can then verify that the right-hand side of (29) is equal to
(

2n
n−2

)

by induction using
a series of routine manipulations and some simple identities for binomial coefficients.

Let Nn,τ (1) denote the number of permutations σ ∈ An such that τ (1)-mch(σ) = 0

and Un,τ (1) denote the number of permutations σ ∈ An such that τ (1)-mch(σ) = 1. Our
previous theorem allows us to compute explicit generating functions for Nn,τ (1) and Un,τ (1).

Theorem 6. Let R(t) =
∑

n>1(−1)n−1Cn
t2n

(2n)!
and S(t) =

∑

n>2(−1)n
(

2n
n−2

)

t2n

(2n)!
. Then

1 +
∑

n>1

N2n,τ (1)
t2n

(2n)!
=

1

1−R(t)
, (30)

∑

n>0

N2n+1,τ (1)
t2n+1

(2n + 1)!
=

t−
∫ t

0
R(z)dz

1− R(t)
, (31)

1 +
∑

n>1

U2n,τ (1)
t2n

(2n)!
=

S(t)

(1−R(t))2
, and (32)

∑

n>0

N2n+1,τ (1)
t2n+1

(2n + 1)!
=

(1− R(t))(
∫ t

0
S(z)dz) + S(t)(t−

∫ t

0
R(z)dz)

(1−R(t))2
. (33)

Proof. By Theorem 5,

∑

n>1

GMP2n,τ (1)(x)
t2n

(2n)!
= R(t) + xS(t) +O(x2) (34)
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and

∑

n>1

GMP2n−1,τ (1)(x)
t2n−1

(2n− 1)!
= t+

∑

n>2

GMP2n−1,τ (1)(x)
t2n−1

(2n− 1)!

= t−
∑

n>2

GMP2n−2,τ (1)(x)
t2n−1

(2n− 1)!

= t−

∫ t

0

R(z) + xS(z) +O(x2)dz.

Plugging these expressions into Theorem 1, we see that

Aτ (1)(t, x) =
1

1−R(t)− xS(t) +O(x2)
(35)

and

Bτ (1)(t, x) =
t−
∫ t

0
R(z)dz − x

∫ t

0
S(z)dz +O(x2)

1−R(t)− xS(t) +O(x2)
. (36)

Equations (30) and (31) follow by putting x = 0 in (35) and (36), respectively.
To prove (32) and (33), note that

Aτ (1)(t, x)|x =

(

1 +
∑

n>1

(R(t) + xS(t))n

)

|x =
∑

n>1

nS(t)(R(t))n−1

=
S(t)

(1− R(t))2
. (37)

Similarly, one can compute that

Bτ (1)(t, x)|x =
(t−

∫ t

0
R(z)dz)S(t)

(1− R(t))2
+

∫ t

0
S(z)dz

1− R(t)

=
(1−R(t))(

∫ t

0
S(z)dz) + S(t)(t−

∫ t

0
R(z)dz)

(1− R(t))2
. (38)

Unfortunately, we have not been able to prove similar results for τ (i) where i > 2
because in these cases, we have not been able to find explicit formulas for GMPn,τ (i)(0)
or GMPn,τ (i)(x)|x.

Next we consider recursions for GMPn,τ (2)(x).

Theorem 7. For n > 3,

GMP2n,τ (2)(x) = (x− 1)n−1 −

n−1
∑

j=1

(

2n− j − 1

j − 1

)

(x− 1)j−1GMP2n−2j,τ (2)(x) (39)

and, for n > 2, GMP2n+1,τ (2)(x) = −GMP2n,τ (2)(x).
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Proof. It is clear from the graph Gn,P (2) that in the unique maximum packing σ =

σ1 . . . σ2n ∈ A2n for τ (2), σ2σ4 . . . σ2n = (n + 1)(n + 2) . . . (2n) and σ1σ3 . . . σn = n(n −
1)(n − 2) . . . 1. It follows that in a generalized maximum packing α ∈ S2n with block
structure B1 . . . Bk, the last element of each block Bi is the largest element in the block.

If σ is a maximum packing for τ (2) with block structure B1 . . . Bk, we shall sim-
ply write σ = B1 . . . Bk. Our recursion follows by classifying the generalized packings
σ = B1B2 . . . Bk for τ (2) by the size of the last block Bk. If k = 1, then σ is unique
and w(σ) = (x − 1)n−1. Thus suppose that k > 2. If Bk is length two, then its two
elements must be (2n − 1) and (2n) since they must be larger than all the largest ele-
ments in each block Bi for i 6= k. In that case, B1 . . . Bk−1 is just a generalized max-
imum packing for τ (2) of length 2n − 2 and w(σ) = −w(B1 . . . Bk−1). Thus such per-
mutations contribute −GMP2n−2,τ (2)(x) to GMP2n,τ (2)(x). If Bk has length 2j where

j > 2, then Bk = σ2n−2j+1 . . . σ2n reduces to a maximum packing for τ (2) of length 2j and
w(σ) = −(x−1)j−1w(B1 . . . Bk−1). Then we know that σ2n−2j+1 < σ2n−2j+2 < σ2n−2j+4 <

· · · < σ2n must be the j + 1 largest elements from {1, . . . , 2n} since they will be larger
than all the remaining elements of Bk and larger than the largest element of Bi for i 6= k.
It follows that first element of block Bk is (2n − j). Our conditions for a generalized
maximum packing for τ (2) do not impose any relations between the remaining elements of
Bk, namely σ2n−2j+3, σ2n−2j+5, . . . , σ2n−1, and the elements in blocks B1, . . . , Bk−1. Thus
we have

(

2n−j−1
j−1

)

ways to choose those elements. Once we have chosen those elements,

then B1 . . . Bk−1 must reduce to a generalized maximum packing for τ (2) of length 2n−2j.
Thus such permutations contribute−

(

2n−j−1
j−1

)

(x−1)j−1GMP2n−2j,τ (2)(x) to GMP2n,τ (2)(x).

Hence (39) holds.
Again, it is easy to compute GMP2n+1,τ (2)(x). That is, since a generalized maximum

packing σ ∈ A2n+1 has block structure B1 . . . Bk where Bk has length 1 and B1 . . . Bk−1

reduces to a generalized maximum packing for τ (2) of length 2n, we know that the last
element of Bk−1 is the largest element in B1 . . . Bk−1 and hence the element in Bk must
be 2n+ 1. Thus in this case GMP2n+1,τ (2)(x) = −GMP2n,τ (2)(x).

Here is the list of the first few values of GMP2n,τ (1)(x).

GMP2,τ (2)(x) = 1

GMP4,τ (2)(x) = x− 2

GMP6,τ (2)(x) = 6− 6x+ x2

GMP8,τ (2)(x) = −23 + 36x− 15x2 + x3

GMP10,τ (2)(x) = 106− 229x+ 160x2 − 37x3 + x4

GMP12,τ (2)(x) = −567 + 1574x− 1566x2 + 650x3 − 93x4 + x5

GMP14,τ (2)(x) = 3434− 11706x+ 15248x2 − 9310x3 + 2572x4 − 238x5 + x6

GMP16,τ (2)(x) = −23137 + 93831x− 151933x2 + 123814x3 − 52136x4+

10175x5 − 616x6 + x7

In this case the sequence ((−1)n−1GMP2n,τ (2)(0))n>1 which starts out with
1, 2, 6, 23, 106, 567, 23137, . . . is sequence A125273 in the OEIS. Unfortunately, there seems
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to be no exact formula for this sequence. The sequence ((−1)nGMP2n,τ (2)(x)|x)n>1 which
starts out 1, 6, 36, 1574, 11706, 933831, . . . does not appear in the OEIS.

Plugging these values into the generating functions (6) and (7), we have computed the

following table of values of An,τ (2)(x) =
∑

σ∈An
xτ (2)-mch(σ).

A1,τ (2) = 1

A2,τ (2) = 1

A3,τ (2) = 2

A4,τ (2) = 4 + x

A5,τ (2) = 12 + 4x

A6,τ (2) = 36 + 24x+ x2

A7,τ (2) = 148 + 118x+ 6x2

A8,τ (2) = 593 + 680x+ 111x2 + x3

A9,τ (2) = 3128 + 4032x+ 768x2 + 8x3

A10,τ (2) = 15676 + 25691x+ 8680x2 + 473x3 + x4

A11,τ (2) = 101094 + 180134x+ 68326x2 + 4228x3 + 10x4

Next we consider recursions for GMP2n,τ (4)(x).

Theorem 8. For n > 3,

GMP2n,τ (4)(x) = (x− 1)n−1 −
n−1
∑

j=1

(

2n− j − 1

j − 1

)

GMP2n−2j,τ (4)(x) (40)

and, for n > 2,

GMP2n+1,τ (4)(x) = −n(x− 1)n−1 −
n−1
∑

j=1

(

2n− j

j − 1

)

GMP2n+1−2j,τ (4)(x). (41)

Proof. It is clear from the graph Gn,P (4) that in the unique maximum packing σ =

σ1 . . . σ2n ∈ A2n for τ
(4), σ2σ4 . . . σ2n = (2n)(2n−1) . . . (n+1) and σ1σ3 . . . σ2n−1 = 12 . . . n.

It follows that in a generalized maximum packing α ∈ S2n with block structure B1 . . . Bk,
the first element of each block Bi is the smallest element in the block.

If σ is a maximum packing for τ (4) with block structure B1 . . . Bk, we shall simply
write σ = B1 . . . Bk. We will classify the generalized maximum packings σ = B1 . . . Bk

of τ (4) of length 2n by the size of the first block B1. If k = 1, then σ is unique and
w(σ) = (x − 1)n−1. Next consider the case where k > 2. If B1 is length two then, its
two elements must be 1 and 2 since they must be smaller than all the smallest elements
in each block Bi for i > 1. In that case B2 . . . Bk is just a generalized maximum packing
for τ (4) of length 2n − 2 and w(σ) = −w(B2 . . . Bk). Thus such permutations contribute
−GMP2n−2,τ (4)(x) to GMP2n,τ (4)(x). If B1 is of size 2j where j > 2, then B1 = σ1 . . . σ2j

reduces to a maximum packing for τ (4) of length 2j where 2 6 j 6 n − 1 and w(σ) =

the electronic journal of combinatorics 21(3) (2014), #P3.2 26



−(x−1)j−1w(B2 . . . Bk). Then it must be the case σ1 < σ3 < σ5 < · · · < σ2j−1 < σ2j must
be the j + 1 smallest elements from {1, . . . , 2n} since they will be smaller than all the
remaining elements of B1 and smaller than the smallest element of Bi for i > 1. It follows
that the last element of block B1 is (j + 1). Our definitions for a generalized maximum
packing for τ (4) do not impose any relations between the remaining elements of B1, namely
σ2, σ4, . . . , σ2j−2, and the elements in blocks B2, . . . , Bk. Thus we have

(

2n−j−1
j−1

)

ways to
choose those elements. Once we have chosen those elements, then B2 . . . Bk must reduce
to a generalized maximum packing for τ (4) of length 2n − 2j. Thus such permutations
contribute −

(

2n−j−1
j−1

)

(x− 1)j−1GMP2n−2j,τ (4)(x) to GMP2n,τ (4)(x). Hence (40) holds.

This is the same recursion as (39) and it implies that Aτ (2)(t, x) = Aτ (4)(t, x). This is
no surprise since even length up-down permutations are closed under reverse complement.
That is, if σ = σ1 . . . σn ∈ Sn, then the reverse of σ, σr, is defined to be σr = σn . . . σ1 and
the complement of σ, σc, is defined by σc = (n + 1 − σ1) . . . (n + 1 − σn). The reverse-
complement of σ is (σr)c. It is easy to check that σ ∈ A2n if and only if (σr)c ∈ A2n

and that (2314r)c = 1423. Thus the map which sends σ ∈ A2n to (σr)c shows that
Aτ (2)(t, x) = Aτ (4)(t, x).

It is not the case that Bτ (2)(t, x) = Bτ (4)(t, x) since for n > 2, the number of maximum
packings for τ (2) of length 2n+1 is 2n while the number of maximum packings for τ (4) of
length 2n+1 is (n+1). Nevertheless, we can still develop a recursion for GMP2n+1,τ (4)(x)

for n > 2. That is, since any generalized maximum packing for τ (4) of length 2n+ 1 has
block structure B1 . . . Bk where Bk has length 1 and B1 . . . Bk−1 reduces to a generalized
maximum packing for τ (4) of length 2n, it will still be the case that the first element in
each block is the smallest element.

Again, we will classify the generalized maximum packings σ = B1 . . . Bk of τ (4) of
length 2n + 1 by the size of the first block B1. If k = 2, then B1 has length 2n and B2

has length 1. One can see by the graph of Gn,P (4) and the fact that σ2n < σ2n+1 that
σ2n = n + 1. Then we have n choices for σ2n+1 and after we pick σ2n+1, σ1 . . . σ2n must
reduce to a maximum packing of τ (4). Since there is only one maximum packing of length
2n for τ (4), we have exactly n such permutations and the weight of each such permutation
is −(x−1)n−1. Thus such permutations contribute −n(x−1)n−1 to GMP2n+1,τ (4)(x). Next
consider the case where k > 3. If B1 is length two, then its two elements must be 1 and 2
since they must be smaller than all the smallest elements in each block Bi for i > 1. In that
case B2 . . . Bk is just a generalized maximum packing for τ (4) of length 2n−1 and w(σ) =
−w(B2 . . . Bk). Thus such permutations contribute −GMP2n−1,τ (4)(x) toGMP2n+1,τ (4)(x).
If B1 is of size 2j where j > 2, then B1 = σ1 . . . σ2j reduces to a maximum packing for
τ (4) of length 2j where 2 6 j 6 n − 1 and w(σ) = −(x − 1)j−1w(B2 . . . Bk). Then
it must be the case σ1 < σ3 < σ5 < · · · < σ2j−1 < σ2j must be the j + 1 smallest
elements from {1, . . . , 2n} since they will be smaller than all the remaining elements of
B1 and smaller than the smallest element of Bi for i > 1. It follows that the last element
of block B1 is (j + 1). Our definitions for a generalized maximum packing for τ (4) do
not impose any relations between the remaining elements of B1, namely σ2, σ4, . . . , σ2j−2,
and the elements in blocks B2, . . . , Bk. Thus we have

(

2n+1−j−1
j−1

)

ways to choose those
elements. Once we have chosen those elements, then B2 . . . Bk must reduce to a generalized

the electronic journal of combinatorics 21(3) (2014), #P3.2 27



maximum packing for τ (4) of length 2n + 1 − 2j. Thus such permutations contribute
−
(

2n−j
j−1

)

(x− 1)j−1GMP2n+1−2j,τ (4)(x) to GMP2n,τ (4)(x). Hence (41) holds.

Here is the list of the first few values of GMP2n+1,τ (4)(x).

GMP1,τ (4)(x) = 1

GMP3,τ (4)(x) = −1

GMP5,τ (4)(x) = 3− 2x

GMP7,τ (4)(x) = −10 + 12x− 3x2

GMP9,τ (4)(x) = 42− 74x+ 37x2 − 4x3

GMP11,τ (4)(x) = −210 + 498x− 394x2 + 110x3 − 5x4

GMP13,τ (4)(x) = 1199− 3596x+ 3946x2 − 1872x3 + 330x4 − 6x5

GMP15,τ (4)(x) = −7670 + 27908x− 39356x2 + 26604x3 − 8476x4 + 996x5 − 7x6

In this case, the sequence {GMP2n+1,τ (4)(0)}n>0 is A125274 in the OEIS. Unfortunately,
there is no exact formula for the elements in this sequence.

Plugging these values into the generating functions (6) and (7), we have computed the

following table of values of An,τ (4)(x) =
∑

σ∈An
xτ (4)-mch(σ).

A1,τ (4) = 1

A2,τ (4) = 1

A3,τ (4) = 2

A4,τ (4) = 4 + x

A5,τ (4) = 13 + 3x

A6,τ (4) = 36 + 24x+ x2

A7,τ (4) = 165 + 103x+ 4x2

A8,τ (4) = 593 + 680x+ 111x2 + x3

A9,τ (4) = 3507 + 3832x+ 592x2 + 5x3

A10,τ (4) = 15676 + 25691x+ 8680x2 + 473x3 + x4

A11,τ (4) = 113387 + 179369x+ 58016x2 + 3014x3 + 6x4

As we mentioned in the introduction to this section, we have not be able to find sim-
ple recursions for GMPn,τ (3)(x) or GMPn,τ (5)(x). However, J. Harmse [12] computed the
following initial values of GMPn,τ (3) and GMPn,τ (5) by computing the number of linear ex-
tensions of the posets associated with the various block structures of generalized maximal
packings.

Here is the list of the first few values of GMP2n,τ (3)(x).

GMP1,τ (3)(x) = 1

GMP2,τ (3)(x) = 1

GMP3,τ (3)(x) = −1
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GMP4,τ (3)(x) = −2 + x

GMP5,τ (3)(x) = 3− 2x

GMP6,τ (3)(x) = 9− 10x+ 2x2

GMP7,τ (3)(x) = −18 + 24x− 7x2

GMP8,τ (3)(x) = −74 + 132x− 64x2 + 5x3

GMP9,τ (3)(x) = 190− 376x+ 213x2 − 26x3

GMP10,τ (3)(x) = 974− 2394x+ 1927x2 − 520x3 + 14x4

GMP11,τ (3)(x) = −3078 + 8180x− 7287x2 + 2282x3 − 98x4

GMP12,τ (3)(x) = −17688 + 54228x− 59393x2 + 26807x3 − 3997x4 + 42x5

Plugging these values into the generating functions (6) and (7), we have computed the

following table of values of An,τ (3)(x) =
∑

σ∈An
xτ (3)-mch(σ).

A1,τ (3) = 1

A2,τ (3) = 1

A3,τ (3) = 2

A4,τ (3) = 4 + x

A5,τ (3) = 13 + 3x

A6,τ (3) = 39 + 20x+ 2x2

A7,τ (3) = 178 + 87x+ 7x2

A8,τ (3) = 710 + 552x+ 118x2 + 5x3

A9,τ (3) = 4168 + 3146x+ 603x2 + 19x3

A10,τ (3) = 29774 + 21666x+ 5370x2 + 2697x3 + 14x4

A11,τ (3) = 149030 + 152170x+ 27000x2 + 25536x3 + 56x4

Here is the list of the first few values of GMP2n,τ (5)(x).

GMP1,τ (5)(x) = 1

GMP2,τ (5)(x) = 1

GMP3,τ (5)(x) = −1

GMP4,τ (5)(x) = −2 + x

GMP5,τ (5)(x) = 4− 3x

GMP6,τ (5)(x) = 14− 14x+ x2

GMP7,τ (5)(x) = −39 + 44x− 6x2

GMP8,τ (5)(x) = −168 + 252x− 86x2 + x3

GMP9,τ (5)(x) = 594− 1002 + 416x2 − 7x3

GMP10,τ (5)(x) = 3352− 6704x+ 3782x2 − 430x3 + x4

GMP11,τ (5)(x) = −13814 + 30264x− 19404x2 + 2962x3 − 9x4
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GMP12,τ (5)(x) = −91038 + 224751x− 180196x2 + 48387x3 − 1906x4 + x5

Plugging these values into the generating functions (6) and (7), we have computed the

following table of values of An,τ (5)(x) =
∑

σ∈An
xτ (5)-mch(σ).

A1,τ (5) = 1

A2,τ (5) = 1

A3,τ (5) = 2

A4,τ (5) = 4 + x

A5,τ (5) = 14 + 2x

A6,τ (5) = 44 + 16x+ x2

A7,τ (5) = 214− 56x+ 2x2

A8,τ (5) = 896 + 448x+ 40x2 + x3

A9,τ (5) = 5610 + 2190x+ 134x2 + 2x3

A10,τ (5) = 29392 + 18496x+ 2552x2 + 80x3 + x4

A11,τ (5) = 224878 + 116776x+ 11880x2 + 256x3 + 2x4

6 Double rise pairs and double descent pairs

Suppose that σ = σ1 . . . σn ∈ An. Then we say that (2i − 1)(2i) is a double rise (double
descent) pair in σ if both σ2i−1 < σ2i+1 and σ2i < σ2i+2 (σ2i−1 > σ2i+1 and σ2i > σ2i+2). It
is easy to see that (2i− 1)(2i) is a double rise pair if and only if red(σ2i−1σ2iσ2i+1σ2i+2) =
1324 so that the number of double rise pairs in σ is just the number of 1324-matches in
σ. Similarly, (2i− 1)(2i) is a double descent pair if and only if red(σ2i−1σ2iσ2i+1σ2i+2) ∈
{3412, 2413} so that if D = {3412, 2413}, then the number of double descent pairs in σ

is just the number of D-matches in σ.
In general, if Υ ⊆ A4, we say that σ ∈ A2n is a maximum packing for Υ if Υ-mch(σ) =

n − 1. We say that σ ∈ S2n is a generalized maximum packing for Υ if we can break σ

into consecutive blocks σ = B1 . . . Bk such that

1. for all 1 6 j 6 k, Bj is either an increasing sequence of length 2 or red(Bj) is a
maximum packing for Υ of length 2s for some s > 2 and

2. for all 1 6 j 6 k − 1, the last element of Bj is less than the first element of Bj+1.

Similarly, we say that σ ∈ A2n+1 is a maximum packing for Υ if Υ-mch(σ) = n − 1.
We say that σ ∈ S2n+1 is a generalized maximum packing for Υ if we can break σ into
consecutive blocks σ = B1 . . . Bk such that

1. for all 1 6 j < k, Bj is either an increasing sequence of length 2 or red(Bj) is a
maximum packing for Υ of length 2s for some s > 2,

2. Bk is block of length 1, and
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3. for all 1 6 j 6 k − 1, the last element of Bj is less than the first element of Bj+1.

Then we can define the generalized maximum packing polynomials GMP2n,Υ(x) and
GMP2n+1,Υ(x) in the same manner that we defined GMP2n,τ (i)(x) and GMP2n+1,τ (i)(x).

If Υ ⊆ A4, the proof of Theorem 1 goes through without change if we replace maximum
packings for τ with maximum packings for Υ and generalized maximum packings for τ by
generalized maximum packings for Υ throughout the proof. Thus we have the following
theorem.

Theorem 9. Let Υ ⊆ A4. Then

AΥ(t, x) := 1 +
∑

n>1

t2n

(2n)!

∑

σ∈A2n

xΥ-mch(σ)

=
1

1−
∑

n>1GMP2n,Υ(x)
t2n

(2n)!

and

BΥ(t, x) :=
∑

n>1

t2n−1

(2n− 1)!

∑

σ∈A2n−1

xΥ-mch(σ)

=

∑

n>1GMP2n−1,Υ(x)
t2n−1

(2n−1)!

1−
∑

n>1GMP2n,Υ(x)
t2n

(2n)!

.

If we can compute GMPn,D(x), we would have the generating function for the distri-
bution of double descents in An. We can compute mp2n,D and mp2n+1,D. That is, we have
the following theorem.

Theorem 10. For all n > 1, mp2n,D = Cn and mp2n+1,D = Cn+1.

Proof. It is easy to see that mp2n,D equals the number of F ∈ F2,n such that for each

i < n, there is either a P (2)-match or a P (5)-match starting in column i. Let F r be the
reverse of F . That is, the first row of F r is F (1, n), F (1, n−1) . . . , F (1, 1) and the second
row of F r is F (2, n), F (2, n− 1) . . . , F (2, 1), reading from left to right. For example,

(P (3))r = P (1) =
3 4
1 2

and (P (5))r =
2 4
1 3

.

It is easy to see that F ∈ F2,n has the property that for each i < n, there is either a
P (2)-match or a P (5)-match starting at column i if and only if F r ∈ F2,n has the property
that for each i < n, there is either a (P (2))r-match or a (P (5))r-match starting at column
i. But note that (P (3))r and (P (5))r are the two standard tableaux of shape (2,2). Thus
F r has the property that for each i < n, there is either a (P (2))r-match or a (P (5))r-match
starting at column i if and only if F r is a standard tableau of shape (n, n). But it follows
from the Frame-Robinson-Thrall hook formula [10] for the number of standard tableaux
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of a given shape λ that the number of standard tableaux of shape (n, n) is the Catalan
number Cn. Thus mp2n,D = Cn.

The graph GD associated with D is pictured on the right in the first line of Figure
15. Then we can construct the graphs GD,n and G+

D,n using GD in the same way that we

constructed the graphs Gn,P (i) and G+
n,P (i) from GP (i). For example, the graphs GD,6 and

G+
D,6 are pictured on line 2 of Figure 15. Then mp2n,D is the number of linear extensions

of the poset determined by Gn,D and mp2n+1,D is the number of linear extensions of the
poset determined by G+

n,D.

a

{ },
a

b

a

4

3

2

1 2 1

4 3

0

b

D  =

Figure 15: The graphs Gn,D and G+
n,D.

We claim that the number of linear extensions of the poset determined by G+
n,D is just

Cn+1. Note that in Gn,D, the element in the bottom right-hand corner must be the first
element in any linear extension of the poset determined by Gn,D. Now create a new graph
G++

n,D by adding a new element 0 and new directed edges connecting 0 to the element in

the bottom right hand corner of G+
n,D and 0 to b to form a graph G++

n,D. It is easy to

see that the number of linear extensions of the poset determined by G+
n,D is equal to the

number of linear extensions of the poset determined by G++
n,D. However the number of

linear extensions of the poset determined by G++
n,D is just the number of linear extensions

of the poset determined by Gn+1,D which is Cn+1.

Unfortunately elements ofMP2n,D do not end in 1 or 2n so that there does not seem to
be any way to develop simple recursions for GMP2n,D(x) or GMP2n+1,D(x). Nevertheless,
J. Harmse [12] computed the following initial values of GMPn,D(x)

GMP1,D(x) = 1

GMP2,D(x) = 1

GMP3,D(x) = −1

GMP4,D(x) = 2x− 3

GMP5,D(x) = 6− 5x
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GMP6,D(x) = 24− 28x+ 5x2

GMP7,D(x) = −64 + 84x− 21x2

GMP8,D(x) = −369 + 648x− 294x2 + 14x3

GMP9,D(x) = 1288− 2439x+ 1236x2 − 84x3

GMP10,D(x) = 8970− 20792x+ 15189x2 − 3408x3 + 42x4

GMP11,D(x) = −31121 + 73723x− 54978x2 + 12705x3 − 330x4

GMP12,D(x) = −323736 + 933223x− 937838x2 + 369138x3 − 40920x4 + 132x5

Plugging these values into the generating functions (42) and (42), we have computed the

following table of values of An,D(x) =
∑

σ∈An
xD-mch(σ).

A1,D = 1

A2,D = 1

A3,D = 2

A4,D = 3 + 2x

A5,D = 11 + 5x

A6,D = 24 + 32x+ 5x2

A7,D = 125 + 133x+ 14x2

A8,D = 345 + 760x+ 266x2 + 14x3

A9,D = 1341 + 4359x+ 1194x2 + 42x3

A10,D = 7890 + 24928x+ 15609x2 + 2052x3 + 42x4

A11,D = 17752 + 162570x+ 115401x2 + 2937x3 + 132x4

A. Duane, in his Ph.D. thesis [7], showed that the techniques that we have developed in
this paper can be extended to find generating functions for the distribution of the number
of τ -matches in An where τ ∈ A2j is an up-down minimal overlapping permutation. Here
τ ∈ A2j is said to be an up-down minimal overlapping permutation if the smallest i such
that there exists a σ ∈ A2i such that τ -mch(σ) = 2 is 4j− 2. Also the techniques that we
have developed in this paper can be generalized to find the generating functions for the
distribution of the number of consecutive matches in generalized k-Euler permutations.
That is, let E

(k)
n = {σ ∈ Sn : Des(σ) = {kj : j > 1} ∩ [n − 1]}. In particular, we can

generalize the results of this paper to study the distribution of τ -matches in E
(k)
n where

τ ∈ E
(k)
2k .
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