Counting the Palstars

L. Bruce Richmond
Combinatorics and Optimization
University of Waterloo
Waterloo, ON N2L 3G1
Canada
lbrichmo@uwaterloo.ca

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1
Canada
shallit@cs.uwaterloo.ca

Submitted: Jun 12, 2014; Accepted: Jul 28, 2014; Published: Aug 13, 2014
Mathematics Subject Classifications: 05A05, 05A15, 05A16, 68R15

Abstract

A palstar (after Knuth, Morris, and Pratt) is a concatenation of even-length palindromes. We show that, asymptotically, there are $D_k \alpha_k^n$ palstars of length $2n$ over a k-letter alphabet, where D_k and α_k are positive constants with $2k - 1 < \alpha_k < 2k - \frac{1}{2}$. In particular, $\alpha_2 \approx 3.33513193$.

Keywords: palindrome, palstar, prime palstar unique factorization, generating function, enumeration.

1 Introduction

We are concerned with finite strings over a finite alphabet Σ_k having $k \geq 2$ letters. A palindrome is a string x equal to its reversal x^R, like the English word radar. If T, U are sets of strings over Σ_k then (as usual) $TU = \{tu : t \in T, u \in U\}$. Also $T^i = T T \cdots T$ and $T^* = \bigcup_{i \geq 0} T^i$ and $T^+ = \bigcup_{i \geq 1} T^i$.

We define

$$P = \{x x^R : x \in \Sigma_k^+\},$$

the language of nonempty even-length palindromes. Following Knuth, Morris, and Pratt [3], we call a string x a palstar if it belongs to P^*, that is, if it can be written as the concatenation of elements of P. Clearly every palstar is of even length.

We call x a prime palstar if it is a nonempty palstar, but not the concatenation of two or more palstars; alternatively, if $x \in P^+ - P^2 P^*$ where $-$ is set difference. Thus, for example, the the English word noon is a prime palstar, but the English word appall and the French word assailli are palstars that are not prime. Knuth, Morris, and Pratt [3]
proved that no prime palstar is a proper prefix of another prime palstar, and, consequently, every palstar has a unique factorization as a concatenation of prime palstars.

A nonempty string x is a border of a string y if x is both a prefix and a suffix of y and $x \neq y$. We say a string y is bordered if it has a border. Thus, for example, the English word ionization is bordered with border ion. Otherwise a word is unbordered. Rampersad et al. [6] recently gave a bijection between the unbordered strings of length n and the prime palstars of length $2n$. As a consequence they obtained a formula for the number of prime palstars.

Despite some interest in the palstars themselves [4, 1], it seems no one has enumerated them. Here we observe that the bijection mentioned previously, together with the unique factorization of palstars, provides an asymptotic enumeration for the number of palstars.

2 Generating function for the palstars

Again, let $k \geq 2$ denote the size of the alphabet. Let $p_k(n)$ denote the number of palstars of length $2n$, and let $u_k(n)$ denote the number of unbordered strings of length n.

Lemma 1. For $n \geq 1$ and $k \geq 2$ we have $$p_k(n) = \sum_{1 \leq i \leq n} u_k(i)p_k(n-i).$$

Proof. Consider a palstar of length $2n > 0$. Either it is a prime palstar, and by [6] there are $u_k(n) = u_k(n)p_k(0)$ of them, or it is the concatenation of two or more prime palstars. In the latter case, consider the length of this first factor; it can potentially be $2i$ for $1 \leq i \leq n$. Removing this first factor, what is left is also a palstar. This gives $u_k(i)p_k(n-i)$ distinct palstars for each i. Since factorization into prime palstars is unique, the result follows. \[\square\]

Now we define generating functions as follows:

$$P_k(X) = \sum_{n \geq 0} p_k(n)X^n$$
$$U_k(X) = \sum_{n \geq 0} u_k(n)X^n.$$

The first few terms are as follows:

$$P_k(X) = 1 + kX + (2k^2 - k)X^2 + (4k^3 - 3k^2)X^3 + (8k^4 - 8k^3 + k)X^4 + \cdots$$
$$U_k(X) = 1 + kX + (k^2 - k)X^2 + (k^3 - k^2)X^3 + (k^4 - k^3 - k^2 + k)X^4 + \cdots.$$

Theorem 2.

$$P_k(X) = \frac{1}{2 - U_k(X)}.$$
Proof. From Lemma 1, we have

\[U_k(X)P_k(X) = \left(\sum_{n \geq 0} u_k(n)X^n \right) \left(\sum_{n \geq 0} p_k(n)X^n \right) = \]

\[= 1 + \sum_{n \geq 1} \left(\sum_{0 \leq i \leq n} u_k(i)p_k(n-i) \right)X^n = 1 + \left(\sum_{n \geq 1} \sum_{1 \leq i \leq n} u_k(i)p_k(n-i)X^n \right) + \sum_{n \geq 1} p_k(n)X^n = \]

\[= 1 + \sum_{n \geq 1} p_k(n)X^n + \sum_{n \geq 1} p_k(n)X^n = 2P_k(X) - 1, \]

from which the result follows immediately.

\[\square \]

3 The main result

Theorem 3. For all \(k \geq 2 \) there are positive constants \(D_k \) and \(\alpha_k \), with \(2k - 1 < \alpha_k < 2k - \frac{1}{2} \), such that the number of palstars of length \(2n \) is asymptotically \(D_k\alpha_k^n \).

Proof. From Theorem 2 and the “First Principle of Coefficient Asymptotics” [2, p. 260], it follows that the asymptotic behavior of \([X^n]P_k(X) \), the coefficient of \(X^n \) in \(P_k(X) \), is controlled by the behavior of the roots of \(U_k(X) = 2 \). Since \(u_k(0) = 1 \) and \(U_k(X) \to \infty \) as \(X \to \infty \), the equation \(U_k(X) = 2 \) has a single positive real root, which is \(\rho = \rho_k = \alpha_k^{-1} \).

We first show that \(2k - 1 < \alpha_k < 2k - \frac{1}{2} \).

Recalling that \(u_k(n) \) is the number of unbordered strings of length \(n \) over a \(k \)-letter alphabet, we see that \(u_k(n) \leq k^n - k^{n-1} \) for \(n \geq 2 \), since \(k^n \) counts the total number of strings of length \(n \), and \(k^{n-1} \) counts the number of strings with a border of length 1. Similarly

\[u_k(n) \geq \begin{cases} k^n - k^{n-1} - \ldots - k^{n/2}, & \text{if } n \geq 2 \text{ is even;} \\ k^n - k^{n-1} - \ldots - k^{(n+1)/2}, & \text{if } n \geq 2 \text{ is odd,} \end{cases} \]

since this quantity represents removing strings with borders of lengths 1, 2, \ldots, \(n/2 \) (resp., 1, 2, \ldots, \((n-1)/2\)) if \(n \) is even (resp., odd) from the total number. Here we use the classical fact that if a word of length \(n \) has a border, it has one of length \(\leq n/2 \).

It follows that for real \(X > 0 \) we have

\[U_k(X) = \sum_{n \geq 0} u_k(n)X^n = 1 + kX + \sum_{n \geq 2} u_k(n)X^n \leq 1 + kX + \sum_{n \geq 2} (k^n - k^{n-1})X^n = kX^2 - 1 \quad kX - 1. \]
Similarly for real $X > 0$ we have

$$U_k(X) = \sum_{n \geq 0} u_k(n) X^n$$

$$= 1 + kX + \sum_{l \geq 1} u_k(2l)X^{2l} + \sum_{m \geq 1} u_k(2m + 1)X^{2m+1}$$

$$\geq 1 + kX + \sum_{l \geq 1} (k^{2l} - k^{2l-1} - \cdots - k^l)X^{2l} + \sum_{m \geq 1} (k^{2m+1} - \cdots - k^{m+1})X^{2m+1}$$

$$= 1 - 2kX^2 \left(\frac{1}{kX - 1}(kX^2 - 1) \right).$$

This gives, for $k \geq 2$, that

$$2 < \frac{(2k - 1)(4k^2 - 6k + 1)}{(k - 1)^2(4k - 1)} \leq U_k \left(\frac{1}{2k - 1} \right)$$

and

$$U_k \left(\frac{1}{2k - \frac{1}{2}} \right) \leq \frac{16k^2 - 12k + 1}{(4k - 1)(2k - 1)} < 2.$$

It follows that $\frac{1}{2k - \frac{1}{2}} < \rho_k < \frac{1}{2k - 1}$ and hence $2k - 1 < \alpha_k < 2k - \frac{1}{2}$.

To understand the asymptotic behavior of $[X^n]P_k(X)$, we need to rule out other (complex) roots with the same magnitude as ρ. Here we follow the argument of the anonymous referee, which replaces our earlier and more complicated argument [7].

Suppose $X = -\rho$ is a solution. Then, since $u_k(n) > 0$ for all n, we have

$$2 = \sum_{n \geq 0} u_k(n)(-\rho)^n < \sum_{n \geq 0} u_k(n)\rho^n = 2.$$

This is a contradiction, so if there exists another solution it must be of the form

$$X = \rho e^{i\psi} = \rho(\cos n\psi + i \sin n\psi)$$

with $0 < \psi < 2\pi$. Since $2 - U_k(X) = 0$, the imaginary part of $U_k(\rho e^{i\psi})$ must equal 0. Therefore

$$0 = 2 - \sum_{n \geq 0} u_k(n)\rho^n \cos n\psi$$

$$= 2 - \sum_{n \geq 0} u_k(n)\rho^n + \sum_{n \geq 0} u_k(n)\rho^n(1 - \cos n\psi)$$

$$= \sum_{n \geq 0} u_k(n)\rho^n(1 - \cos n\psi).$$

Since $u_k(n) > 0$ and $\rho^n > 0$ for all n, we must have $1 - \cos n\psi = 0$ for all n. So for all n there exists an integer ℓ_n such that $n\psi = 2\pi\ell_n$. Hence

$$\psi = (n + 1)\psi - n\psi = 2\pi\ell_{n+1} - 2\pi\ell_n = 2\pi(\ell_{n+1} - \ell_n).$$
Since ℓ_{n+1} and ℓ_n are both integers, this contradicts the assumption $0 < \psi < 2\pi$. Therefore $P_k(X)$ has only one singularity with $|X| = \rho$.

It remains to determine the order of the zero ρ. From above $U_k(X) = 2$ has a solution α_k^{-1} which satisfies $2k - 1 < \alpha_k < 2k - \frac{1}{2}$. Nielsen [5] showed that $u_k(n) = \Theta(k^n)$, and so $U_k(X)$ has radius of convergence $1/k$. Therefore $1/\alpha_k$ lies in the region where U_k is analytic. Hence $2 - U_k(X)$ has a zero at $X = 1/\alpha_k$ of multiplicity m. If $m \geq 2$, then the derivative of $2 - U_k(X)$ equals 0 at $X = 1/\alpha_k$. However $C_k := U_k'(\alpha_k^{-1}) > 0$ since $u_k(n) > 0$ for some n. Thus $2 - U_k(X)$ has a simple zero at $X = 1/\alpha_k$, and so $P_k(X)$ has a simple pole at $X = 1/\alpha_k$. Near α_k^{-1} the generating function $U_k(X)$ has the expansion

$$
P_k(X) = \frac{1}{2 - U_k(X)} = \frac{1}{-C_k(X - 1/\alpha_k) - C'_k(X - 1/\alpha_k)^2 + \cdots}.
$$

As we have seen,

$$
P_k(X) - \frac{\alpha_k}{C_k} \left(\frac{1}{1 - \alpha_k X} \right)
$$

has no singularity on the circle $|X| = 1/\alpha_k$, and so it has radius of convergence $> 1/\alpha_k$. Now

$$
P'_k(X) = \frac{U_k'(X)}{(2 - U_k(X))^2},
$$

so from standard results (e.g., [2, Thm. IV.7, p. 244]) there exists a positive δ such that

$$
[X^n]P_k(X) = [X^n] \frac{1}{C_k(1/\alpha_k - X)} + \cdots
= [X^n] \frac{\alpha_k}{C_k} \left(\frac{1}{1 - \alpha_k X} \right) + \cdots
= \frac{\alpha_k^{n+1}}{C_k} + O((\alpha_k - \delta)^n).
$$

Now, setting $D_k = \alpha_k/C_k$ completes the proof.

\begin{proof}

4 Numerical results

Here is a table giving the first few values of $P_k(n)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>66</td>
<td>220</td>
<td>732</td>
<td>2440</td>
<td>8134</td>
<td>27124</td>
<td>90452</td>
</tr>
<tr>
<td>$k = 3$</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>81</td>
<td>435</td>
<td>2349</td>
<td>12681</td>
<td>68499</td>
<td>370023</td>
<td>1998945</td>
<td>10798821</td>
</tr>
<tr>
<td>$k = 4$</td>
<td>1</td>
<td>4</td>
<td>28</td>
<td>208</td>
<td>1540</td>
<td>11440</td>
<td>84976</td>
<td>631360</td>
<td>4690972</td>
<td>34854352</td>
<td>258971536</td>
</tr>
</tbody>
</table>

\end{proof}
By truncating the power series $U_k(X)$ and solving the equation $U_k(X) = 2$ we get better and better approximations to α_k^{-1}. For example, for $k = 2$ we have

\[
\alpha_2^{-1} \approx 0.29983821359352690506155111814579603919303182364781730366339199333065202 \\
\alpha_2 \approx 3.3351319300357936677896261037624842363270634405611577104447308511860 \\
C_2 \approx 6.278652437421018217684895562492005276088368718322063642652328654828673 \\
D_2 \approx 0.5311859452764195757199152035728758998220694173731602615487298417
\]

To determine an asymptotic expansion for α_k as $k \to \infty$, we compute the Taylor series expansion for $P_k(n)/P_k(n+1)$, treating k as an indeterminate, for n large enough to cover the error term desired. For example, for $O(k^{-10})$ it suffices to take $k = 16$, which gives

\[
\alpha_k^{-1} = \frac{1}{2k} + \frac{1}{8k^2} + \frac{3}{32k^3} + \frac{1}{16k^4} + \frac{27}{512k^5} + \frac{93}{2048k^6} + \frac{83}{2048k^7} + \frac{155}{4096k^8} + \frac{4735}{131072k^9} + O(k^{-10})
\]

and hence

\[
\alpha_k = 2k - \frac{1}{2} - \frac{1}{4k} - \frac{3}{32k^2} - \frac{5}{64k^3} - \frac{31}{512k^4} - \frac{25}{512k^5} - \frac{23}{512k^6} - \frac{683}{16384k^7} + O(k^{-8}).
\]

Acknowledgment

We thank the anonymous referee for his/her very helpful report.

References

