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Abstract

In the generalized Russian cards problem, we have a card deck X of n cards and
three participants, Alice, Bob, and Cathy, dealt a, b, and c cards, respectively. Once
the cards are dealt, Alice and Bob wish to privately communicate their hands to
each other via public announcements, without the advantage of a shared secret or
public key infrastructure. Cathy, for her part, should remain ignorant of all but her
own cards after Alice and Bob have made their announcements. Notions for Cathy’s
ignorance in the literature range from Cathy not learning the fate of any individual
card with certainty (weak 1-security) to not gaining any probabilistic advantage in
guessing the fate of some set of δ cards (perfect δ-security). As we demonstrate in
this work, the generalized Russian cards problem has close ties to the field of combi-
natorial designs, on which we rely heavily, particularly for perfect security notions.
Our main result establishes an equivalence between perfectly δ-secure strategies
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and (c + δ)-designs on n points with block size a, when announcements are cho-
sen uniformly at random from the set of possible announcements. We also provide
construction methods and example solutions, including a construction that yields
perfect 1-security against Cathy when c = 2. Drawing on our equivalence results,
we are able to use a known combinatorial design to construct a strategy with a = 8,
b = 13, and c = 3 that is perfectly 2-secure. Finally, we consider a variant of the
problem that yields solutions that are easy to construct and optimal with respect to
both the number of announcements and level of security achieved. Moreover, this
is the first method obtaining weak δ-security that allows Alice to hold an arbitrary
number of cards and Cathy to hold a set of c = ba−δ2 c cards. Alternatively, the
construction yields solutions for arbitrary δ, c and any a > δ + 2c.

1 Introduction

In the generalized Russian cards problem, we have a card deck X and three participants,
Alice, Bob, and Cathy. Once the cards are dealt, Alice and Bob wish to privately com-
municate their hands to each other via public announcements, without the advantage of
a shared secret or public key infrastructure. Here we focus on protocols of length two,
which allows us to consider only Alice’s announcement. That is, Alice should make an
informative announcement, so that Bob learns the card deal. Bob, after hearing Al-
ice’s informative announcement, can always announce Cathy’s hand. Cathy, for her part,
should remain ignorant of all but her own cards after Alice and Bob have made their
announcements.

Notions for Cathy’s ignorance in the literature range from Cathy not learning the fate
of any individual card with certainty (weak 1-security) to not gaining any probabilistic
advantage in guessing the fate of some set of δ cards (perfect δ-security), where here we are
referring to cards not already held by Cathy. As we discuss in this work, the generalized
Russian cards problem has close ties to the field of combinatorial designs, on which we
rely heavily, particularly for perfect security notions.

If a scheme satisfies weak 1-security, Cathy should not be able to say whether a given
card is held by Alice or Bob (unless she holds the card herself). If a scheme satisfies
perfect 1-security, each card is equally likely to be held by Alice. When Alice’s strategy
is equitable (in the sense that Alice picks uniformly at random from some set of possible
announcements), we show an equivalence between perfectly secure strategies and sets of
2-designs on n points with block size a.

Generalizing these notions of weak and perfect security, which focus on the probability
that individual cards are held by Alice, we consider instead the probability that a given set
of δ cards is held by Alice. If the probability distribution is uniform across δ-sets, we say
the scheme satisfies perfect δ-security, and if the distribution is not uniform (but positive
for every possible δ-set), then we have weak δ-security. We consider equitable strategies
and show an equivalence between perfectly δ-secure strategies and (c + δ)-designs on n
points with block size a. For equitable, informative, and perfectly (a − c − 1)-secure
strategies, we show c = 1 and demonstrate an equivalence between these strategies and
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Steiner systems S(a − 1, a, n), a result first shown in Swanson and Stinson [24], albeit
with a much more complicated proof than we present here.

Building on results in Swanson and Stinson [24], we show how to use a t-(n, a, 1)-design
to construct equitable (a, b, c)-strategies that are informative for Bob and perfectly (t−c)-
secure against Cathy for any choice of c satisfying c 6 min{t−1, a− t}. In particular, this
indicates that if an appropriate t-design exists, it is possible to achieve perfect security for
deals where Cathy holds more than one card. We present an example construction, based
on inversive planes, for (q+ 1, q2− q−2, 2)-strategies which are perfectly 1-secure against
Cathy and informative for Bob, where q is a prime power. This example, first given in
Swanson [23], is among the first strategies presented in the literature that is informative
for Bob and achieves perfect 1-security against Cathy for c > 1. This example was found
independently from the work of Cordón-Franco et al. [8], discussed later, which presents
a protocol that for certain parameters achieves perfect 1-security against Cathy for c = 2.
Finally, our results allow us to draw on a known combinatorial designs in order to realize
a perfectly 2-secure (8, 13, 3)-strategy, which shows that it is possible, at least for some
deals, to achieve perfect security for c > 2.

Finally, we discuss a variation on the generalized Russian cards problem, where the
card deck is first split into a piles, and Alice and Cathy’s hands consist of at most one
card from each pile, with Bob receiving the remaining cards. This variant admits a nice
solution using transversal designs with λ = 1 that achieves weak (a − 2c)-security. In
particular, this solution is easy to construct and is optimal with respect to both the
number of announcements and level of security achieved. Moreover, this is the first
method obtaining weak δ-security that allows Alice to hold an arbitrary number of cards
and Cathy to hold a set of c = ba−δ

2
c cards. Alternatively, the construction yields solutions

for arbitrary δ, c and any a > δ + 2c.

2 Paper outline

After reviewing basic results from combinatorial designs in Section 3, we review the basic
framework for the generalized Russian cards problem and establish relevant notation in
Section 4. In Section 5, we study and define the notion of an informative strategy. We then
move to a formal discussion of secure strategies in Section 6. In Section 7, we explore
strategies that are simultaneously informative and either weakly or perfectly δ-secure,
discussing construction methods and examples in Section 8. In Section 9 we discuss a
variant of the generalized Russian cards problem and present a solution using transversal
designs. We discuss related work in Section 10. Finally, we give some concluding remarks
in Section 11.

3 Combinatorial designs

In this section, we present fundamental definitions and standard results from the theory
of combinatorial designs needed in this paper. For general references on this material, we
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refer the reader to Stinson [21] and Colbourn and Dinitz [5]. All results stated in this
section without proof can be found in [5, 21].

3.1 t-designs:

Definition 3.1. Let v, k, λ, and t be positive integers with v > k > t. A t-(v, k, λ)-design
is a pair (X,B) such that the following are satisfied:

1. X is a set of v elements called points,

2. B is a collection (i.e., a multiset) of nonempty proper k-subsets of X, called blocks,
and

3. every subset of t distinct points from X occurs in precisely λ blocks.

Definition 3.2. The design formed by taking λ copies of every k-subset of a v-set as
blocks is a t-

(
v, k, λ

(
v−t
k−t

))
-design, called a trivial t-design.

Definition 3.3. A t-(v, k, λ)-design (X,B) is simple if every block in B occurs with
multiplicity one.

Remark 3.4. In the context of the generalized Russian cards problem, we will consider
simple designs only, although we allow for multisets in Definition 3.1 for completeness.

The following two theorems are standard results for t-designs:

Theorem 3.5. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X such that |Y | = s 6 t. Then
there are precisely

λs =
λ
(
v−s
t−s

)(
k−s
t−s

)
blocks in B that contain Y .

Theorem 3.6. Let (X,B) be a t-(v, k, λ)-design. Let Y ⊆ X and Z ⊆ X such that
Y ∩ Z = ∅, |Y | = i, |Z| = j, and i+ j 6 t. Then there are precisely

λji =
λ
(
v−i−j
k−i

)(
v−t
k−t

)
blocks in B that contain all the points in Y and none of the points in Z.

Example 3.7. A 3-(8, 4, 1)-design.

X = {0, 1, 2, 3, 4, 5, 6, 7} and

B = {3456, 2567, 2347, 1457, 1367, 1246, 1235, 0467, 0357, 0245, 0236, 0156, 0134, 0127}.

The blocks of the design in Example 3.7 are the planes of AG(3, 2). This is an example
of a special type of design known as a Steiner system, which is a t-design with λ = 1.
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Definition 3.8. A t-(v, k, 1)-design is called a Steiner system with parameters t, k, v and
is denoted by S(t, k, v).

Steiner systems will be useful for constructing solutions to the generalized Russian
cards problem. We list constructions and existence results from the literature which we
will make use of here; interested readers may find further details in [5].

Definition 3.9. A Steiner triple system of order v, or STS(v), is an S(2, 3, v), i.e., a
Steiner system in which k = 3.

Theorem 3.10. It is known that an STS(v) exists if and only if v ≡ 1, 3 mod 6, v > 7.

Definition 3.11. A Steiner quadruple system of order v is an S(3, 4, v).

Theorem 3.12. Steiner quadruples exist if and only if v ≡ 2, 4 mod 6.

Theorem 3.13. Known infinite families of S(t, k, v) are

1. S(2, q, qn), for prime powers q, n > 2, called affine geometries;

2. S(2, q+ 1, qn + · · ·+ q+ 1), for prime powers q, n > 2, called projective geometries;

3. S(2, q + 1, q3 + 1), for prime powers q, called unitals;

4. S(2, 2r, 2r+s + 2r − 2s), for 2 6 r < s, called Denniston designs;

5. S(3, q+ 1, qn + 1), for prime powers q, n > 2, called spherical geometries (or, when
n = 2, inversive planes);

Only finitely many Steiner systems are known for t = 4, 5 and none are known for
t > 5. All known S(4, a, n) designs are derived designs from S(5, a + 1, n + 1) designs,
formed by choosing an element x, selecting all blocks containing x and then deleting x
from these blocks. A list of the parameters for which these designs are known to exist
may be found in Table 1 of Section 8.

Definition 3.14. A large set of t-(v, k, 1)-designs is a set {(X,B1), . . . , (X,BN)} of t-
(v, k, 1)-designs (all of which have the same point set, X), in which every k-subset of X
occurs as a block in precisely one of the Bis. That is, the Bis form a partition of

(
X
k

)
.

Remark 3.15. It is easy to prove that there must be exactly N =
(
v−t
k−t

)
designs in a large

set of t-(v, k, 1)-designs.

Theorem 3.16. A large set of STS(v) exists if and only if v ≡ 1, 3 mod 6 and v > 9.

Example 3.17. A large set of STS(9) [18,20].

X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B1, . . . ,B7,

where the 7 block sets B1, . . . ,B7 are given by the rows of the following table:
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123 145 169 178 249 257 268 348 356 379 467 589
124 136 158 179 235 267 289 349 378 457 468 569
125 137 149 168 238 247 269 346 359 458 567 789
126 139 148 157 234 259 278 358 367 456 479 689
127 135 146 189 239 248 256 347 368 459 578 679
128 134 159 167 236 245 279 357 389 469 478 568
129 138 147 156 237 246 258 345 369 489 579 678

The concept of balanced incomplete block designs (BIBDs), which are t-designs with
t = 2, will also be useful:

Definition 3.18. A 2-(v, k, λ)-design is also called a (v, k, λ)-balanced incomplete block
design, or (v, k, λ)-BIBD.

Remark 3.19. In a (v, k, λ)-BIBD, every point occurs in precisely r = λ(v − 1)/(k − 1)
blocks and the total number of blocks is b = vr/k.

Definition 3.20. Let (X,B) be a (v, k, λ)-BIBD. A parallel class in (X,B) is a set of
blocks that partition the point set. If B can be partitioned into parallel classes, we say
(X,B) is a resolvable BIBD.

Symmetric designs will also be useful in constructing solutions to the generalized
Russian cards problem:

Definition 3.21. A symmetric BIBD is a (v, k, λ)-BIBD in which there are v blocks.

Theorem 3.22. In a symmetric BIBD, any two blocks intersect in exactly λ points.

Two infinite families of symmetric BIBDs, which we will use later, are

1. hyperplanes in projective spaces, which are
(
qd+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1

)
-BIBDs, for prime

powers q, and d > 2; and

2. Hadamard designs, which are
(
q, q−1

2
, q−3

4

)
-BIBDs, for odd prime powers q satisfying

q ≡ 3 mod 4.

3.2 Transversal designs

Definition 3.23. Let t, v, k, and λ be positive integers satisfying k > t > 2. A transversal
design TDλ(t, k, v) is a triple (X,G,B) such that the following properties are satisfied:

1. X is a set of kv elements called points,

2. G is a partition of X into k subsets of size v called groups,

3. B is a set of k-subsets of X called blocks,
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4. any group and any block contain exactly one common point, and

5. every subset of t points from distinct groups occurs in precisely λ blocks.

Many of the standard results for t-designs can be extended to transversal designs. The
following terminology and results are useful:

Definition 3.24. Let (X,G,B) be a TDλ(t, k, v) and write G = {Gj : 1 6 j 6 k}.
Suppose Z ⊆ X such that |Z| = i 6 k and |Z ∩ Gj| 6 1 for 1 6 j 6 k. We say Z is a
partial transversal of G. If i = k, then we say Z is a transversal of G.

Definition 3.25. For a partial transversal Z of G, we let GZ = {Gj ∈ G : Z ∩ Gj 6= ∅}
denote the set of groups that intersect Z. If Y , Z ⊆ X are partial transversals of G such
that GZ ∩GY = ∅, we say Y , Z are group disjoint.

Theorem 3.26. Let (X,G,B) be a TDλ(t, k, v). Suppose Y ⊆ X such that |Y | = s 6 t
and Y is a partial transversal of G. Then there are exactly λs = λvt−s blocks containing
all the points in Y .

Proof. Fix a subset of t − s groups disjoint from Y , say G′1, . . . , G
′
t−s. Consider a t-

subset X consisting of all the points from Y and one point from each of G′1, . . . , G
′
t−s. In

particular, there are vt−s such t-subsets X, and each such X occurs in precisely λ blocks.
Note that every block that contains Y is a transversal of G, so every such block contains
exactly one such t-subset X. Therefore Y occurs in precisely λvt−s blocks, as desired.

Theorem 3.27. Let (X,G,B) be a TDλ(t, k, v). Suppose Y , Z ⊆ X are group disjoint
partial transversals of G such that |Y | = i, |Z| = j, and i+ j 6 t. Then there are exactly

λji = λvt−i−j(v − 1)j

blocks in B that contain all the points in Y and none of the points in Z.

Proof. Consider the set of groups GZ that intersect Z. There are (v− 1)j subsets X such
that X consists of all the points from Y and one point from each group in GZ , but X
contains no points from Z. Each such (i+ j)-subset X occurs in precisely λi+j blocks by
Theorem 3.26. Therefore there are λi+j(v − 1)j = λvt−i−j(v − 1)j blocks that contain all
the points of Y but none of the points of Z.

We can also apply the notion of large sets to transversal designs:

Definition 3.28. A large set of TDλ(t, k, v) on the point set X and group partition G is a
set {(X,G,B1), . . . , (X,G,BN)} of TDλ(t, k, v) in which every set of k points from distinct
groups of X occurs as a block in precisely one of the Bis.

Remark 3.29. It is easy to see that there must be N = vk

λvt
transversal designs in a large

set of TDλ(t, k, v).

Transversal designs are equivalent to orthogonal arrays :
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Definition 3.30. Let t, v, k, and λ be positive integers satisfying k > t > 2. An orthog-
onal array OAλ(t, k, v) is a pair (X,D) such that the following properties are satisfied:

1. X is a set of v elements called points,

2. D is a λvt by k array whose entries are elements of X, and

3. within any t columns of D, every t-tuple of points occurs in precisely λ rows.

Example 3.31. An OA1(2, 4, 3).
1 1 1 1
1 2 3 3
1 3 2 2
2 1 2 3
2 2 1 2
2 3 3 1
3 1 3 2
3 2 2 1
3 3 1 3

It is easy to see the correspondence between orthogonal arrays and transversal designs.
Suppose (X,D) is an OAλ(t, k, v). We define a bijection φ between the rows rj of D and
the blocks Bj of a TDλ(t, k, v) as follows. For each row rj = [xj1xj2 · · ·xjk] of D, let

φ(rj) = {(xj1, 1), (xj2, 2), . . . (xjk, k)} = Bj

define a block Bj. Define Gi = {1, . . . , v}×{i} for 1 6 i 6 k. Then (X×{1, . . . , k},G,B)
is a TDλ(t, k, v) with G = {Gi : 1 6 i 6 k} and B = {Bj : 1 6 j 6 λvt}.

Example 3.32. The blocks of the TD1(2, 4, 3) obtained from the OA1(2, 4, 3) in Exam-
ple 3.31:

B1 : (1, 1) (1, 2) (1, 3) (1, 4)
B2 : (1, 1) (2, 2) (3, 3) (3, 4)
B3 : (1, 1) (3, 2) (2, 3) (2, 4)
B4 : (2, 1) (1, 2) (2, 3) (3, 4)
B5 : (2, 1) (2, 2) (1, 3) (2, 4)
B6 : (2, 1) (3, 2) (3, 3) (1, 4)
B7 : (3, 1) (1, 2) (3, 3) (2, 4)
B8 : (3, 1) (2, 2) (2, 3) (1, 4)
B9 : (3, 1) (3, 2) (1, 3) (3, 4)

The above construction method can be reversed for an arbitrary TDλ(t, k, v), say
(X,G,B). To see this, note that we can relabel the points such that X = {1, . . . , v} ×
{1, . . . , k} and G = {Gi : 1 6 i 6 k}. Then the fact that any block and any group
must contain exactly one common point implies that for each B ∈ B, we can form the
k-tuple (b1, . . . , bk), where bi ∈ B ∩ Gi for 1 6 i 6 k. We can form an orthogonal array
OAλ(t, k, v) by taking all of these k-tuples as rows.
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Definition 3.33. A large set of OAλ(t, k, v) on the point set X is a set of OAλ(t, k, v),
say {(X,D1), . . . , (X,DN)}, in which every k-tuple of elements from X occurs as a row
in precisely one of the Dis. That is, the Dis form a partition of the set Xk of k-tuples
with entries from X.

Remark 3.34. It is easy to see that there must be N = vk

λvt
orthogonal arrays in a large

set of OAλ(t, k, v).

A useful type of orthogonal array is a linear array, especially for constructing large
sets:

Definition 3.35. Let (X,D) be an OAλ(t, k, v). We say (X,D) is linear if X = Fq for
some prime power q and the rows of D form a subspace of (Fq)k of dimension logq|D|.

Linear orthogonal arrays (and hence the corresponding transversal designs) are easy
to construct. In particular, the following is a useful construction method.

Theorem 3.36. Suppose q is a prime power and k and ` are positive integers. Suppose M
is an ` by k matrix over Fq such that every set of t columns of M is linearly independent.
Then (X,D) is a linear OAq`−t(t, k, q), where D is the q` by k matrix formed by taking
all linear combinations of the rows of M .

Let q be a prime power and for every x ∈ Fq, let ~x = [1, x, x2, . . . , xt−1] ∈ (Fq)t for
some integer t > 2. Construct the t by q matrix M by taking the columns to be the vectors
(~x)T for every x ∈ Fq, where here (~x)T means the transpose of ~x. Applying Theorem 3.36
to M yields the following result:

Corollary 3.37. Let t > 2 be an integer and let q be a prime power. Then there exists a
linear OA1(t, q, q).

The following result is immediate.

Corollary 3.38. Let t > 2 be an integer and let q be a prime power. Then there exists a
linear TD1(t, q, q).

Remark 3.39. The constructions discussed in Corollaries 3.37 and 3.38 are known as Reed-
Solomon codes [21].

We now discuss how to construct a large set of orthogonal arrays from a “starting”
linear orthogonal array. Suppose (X,D) is a linear OAλ(t, k, v). We can obtain a large
set of orthogonal arrays (and therefore transversal designs) from (X,D) by taking the set
of cosets of D in (Fq)k. In particular, D is a subspace of (Fq)k, so the cosets of D form a
partition of (Fq)k.
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4 Terminology and notation

We now review the terminology and notation established by Swanson and Stinson [24].
Throughout, we let

(
X
t

)
denote the set of

(
n
t

)
t-subsets of X, where t is a positive integer.

Let X be a deck of n cards. In an (a, b, c)-deal of X, Alice is dealt a hand HA of a
cards, Bob is dealt a hand HB of b cards, and Cathy is dealt a hand HC of c cards, such
that a + b + c = n. That is, it must be the case that HA ∪ HB ∪ HC = X. We assume
these hands are random and dealt by some external entity.

An announcement by Alice is a subset of
(
X
a

)
containing Alice’s current hand, HA.

More generally, Alice chooses a set of m announcements A1,A2, . . . ,Am ⊆
(
X
a

)
satisfying⋃m

i=1Ai =
(
X
a

)
. For every HA ∈

(
X
a

)
, we define g(HA) = {i : HA ∈ Ai}, i.e., the set

of possible announcements for Alice given the hand HA. Alice’s announcement strategy,
or simply strategy, consists of a probability distribution pHA defined on g(HA), for every
HA ∈

(
X
a

)
.

In keeping with Kerckhoffs’ principle, we assume the set of announcements and prob-
ability distributions are fixed ahead of time and public knowledge. For a given hand
HA ∈

(
X
a

)
, Alice randomly chooses an index i ∈ g(HA) according to the probability dis-

tribution pHA . Alice broadcasts the integer i to specify her announcement Ai. Without
loss of generality, we assume that pHA(i) > 0 for all i ∈ g(HA).

For the purposes of this paper, we assume there exists some constant γ such that
|g(HA)| = γ for every HA and that every probability distribution pHA is uniform; such
strategies are termed γ-equitable, or simply equitable. Throughout, we use the phrase
(a, b, c)-strategy G to denote a strategy for an (a, b, c)-deal, where G is the associated set
of possible announcements for Alice.

The following notation is useful in discussing the properties of a given strategy G. For
any subset Y ⊆ X and any announcement A ∈ G, we define

P (Y,A) = {HA ∈ A : HA ∩ Y = ∅} .

That is, P (Y,A) is the set of hands of A that do not intersect the subset Y .

5 Informative strategies

Suppose we have an (a, b, c)-deal and Alice chooses announcement A from the set G of
possible announcements. From Bob’s point of view, the set of possible hands for Alice
given Alice’s announcement A and Bob’s hand HB ∈

(
X
b

)
is

P (HB,A) = {HA ∈ A : HA ∩HB = ∅} .

We say Alice’s strategy is informative for Bob provided that

|P (HB,A)| 6 1 (1)

for all HB ∈
(
X
b

)
and for all A ∈ G. That is, if Equation (1) is satisfied, Bob can

determine the set of a cards that Alice holds from Alice’s announcement. In particular,
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this implies that Bob can announce Cathy’s hand, thereby informing Alice of the card
deal as well. Specified on the level of individual announcements, we say an announcement
A is informative provided |P (HB,A)| 6 1 for any hand HB ∈

(
X
b

)
.

The following theorem, first shown by Albert et al. [1], is a useful equivalence condition
for informative announcements:

Theorem 5.1. [1] The announcement A is informative for Bob if and only if there do
not exist two distinct sets HA, H ′A ∈ A such that |HA ∩H ′A| > a− c.

The following is an immediate corollary.

Corollary 5.2. Suppose there exists a strategy for Alice that is informative for Bob. Then
a > c.

We make the following observation, which follows directly from Theorem 5.1 and the
definition of a t-design.

Corollary 5.3. Let n = a + b + c. Suppose a > c and each announcement A in an
(a, b, c)-strategy is a t-(n, a, 1)-design for some t, where t 6 a − c. Then the strategy is
informative for Bob.

It is possible to have informative (a, b, c)-strategies using announcements which are
t-designs with λ > 1. In particular, Theorem 5.1 indicates that the block intersection
properties of the chosen design are relevant to whether or not the strategy is informative.
If every announcement is a symmetric BIBD, for example, then the strategy is guaranteed
to be informative when a− c > λ. This is because the intersection of any two blocks in a
symmetric BIBD contains exactly λ points, as stated in Theorem 3.22.

We make one more observation relating combinatorial designs and informative strate-
gies.

Lemma 5.4. Let n = a+ b+ c. Suppose a > c and each announcement A in an (a, b, c)-
strategy G is a t-(n, a, λ)-design for some t and λ, where t > a − c. If G is informative
for Bob, then t = a− c and λ = 1 for all A ∈ G.

Proof. Consider an announcement A ∈ G. If λ > 1, then there exist two blocks whose
intersection has cardinality at least t > a− c. This contradicts Theorem 5.1, so λ = 1, as
desired.

If t > a− c, then from Theorem 3.5, there are

v − (t− 1)

k − (t− 1)
> 1

blocks that contain t− 1 fixed points. Since t− 1 > a− c, this contradicts Theorem 5.1,
so t = a− c, as desired.
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6 Secure strategies

We provide the general security definitions and state the equivalent combinatorial char-
acterization of secure equitable strategies from Swanson and Stinson [24].

Definition 6.1. Let 1 6 δ 6 a.

1. Alice’s strategy is weakly δ-secure against Cathy provided that for any announce-
ment A, for any HC ∈

(
X
c

)
such that P (HC ,A) 6= ∅, and for any δ′-subset

Y ⊆ X\HC where 1 6 δ′ 6 δ, it holds that

0 < Pr [Y ⊆ HA | A, HC ] < 1.

Weak security means that, from Cathy’s point of view, any set of δ or fewer elements
from X\HC may or may not be held by Alice.

2. Alice’s strategy is perfectly δ-secure against Cathy provided that for any announce-
ment A, for any HC ∈

(
X
c

)
such that P (HC ,A) 6= ∅, and for any δ′-subset

Y ⊆ X\HC where 1 6 δ′ 6 δ, it holds that

Pr [Y ⊆ HA | A, HC ] =

(
a
δ′

)(
a+b
δ′

) .
Perfect security means that, from Cathy’s point of view, the probability that any
set of δ or fewer cards from X\HC is held by Alice is a constant.

Remark 6.2. The requirement that P (HC ,A) 6= ∅ ensures that it is feasible (within the
constraints of the announcement) for Cathy to hold the given hand HC ; we sometimes
refer to a hand that satisfies this condition as a possible hand for Cathy.

Swanson and Stinson [24] show that in an equitable strategy any hand HA ∈ P (HC ,A)
is equally likely from Cathy’s point of view:

Lemma 6.3. [24] Suppose that Alice’s strategy is γ-equitable, Alice’s announcement is
A, HC ∈

(
X
c

)
and HA ∈ P (HC ,A). Then

Pr [HA | HC ,A] =
1

|P (HC ,A)|
. (2)

Swanson and Stinson [24] also establish the following equivalent combinatorial condi-
tions:

Theorem 6.4. [24] Suppose that Alice’s strategy is γ-equitable. Then the following hold:

1. Alice’s strategy is weakly δ-secure against Cathy if and only if, for any announcement
A, for any HC ∈

(
X
c

)
such that P (HC ,A) 6= ∅, and for any δ′-subset Y ⊆ X\HC

where 1 6 δ′ 6 δ, it holds that

1 6 |{HA ∈ P (HC ,A) : Y ⊆ HA}| 6 |P (HC ,A)| − 1.
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2. Alice’s strategy is perfectly δ-secure against Cathy if and only if, for any announce-
ment A and for any HC ∈

(
X
c

)
such that P (HC ,A) 6= ∅, it holds that

|{HA ∈ P (HC ,A) : Y ⊆ HA}| =
(
a
δ

)
|P (HC ,A)|(

a+b
δ

)
for any δ-subset Y ⊆ X\HC.

We have the following elementary result:

Lemma 6.5. Consider an (a, b, c)-strategy G that is weakly 1-secure. Then for all A ∈ G
and x ∈ X, we have P ({x},A) 6= ∅.

Proof. We proceed by contradiction. Suppose P ({x},A) = ∅ for some A ∈ G and
x ∈ X. Then x occurs in every hand of A. That is, if Alice announces A, then Alice
must hold x. In particular, this implies that Cathy’s hand, say HC , does not contain x
and Pr [x ∈ HA | A, HC ] = 1.

Here is a sufficient condition for an equitable strategy to be perfectly 1-secure against
Cathy, first shown by Swanson and Stinson [24]:

Lemma 6.6. [24] Let n = a+ b+ 1. Suppose that each announcement A in an equitable
(a, b, 1)-strategy G is a 2-(n, a, λ)-design for some λ. Then the strategy is perfectly 1-secure
against Cathy.

In fact, the condition that every announcement A be a 2-(n, a, λ)-design for some λ
is also a necessary condition for an equitable (a, b, 1)-strategy to be perfectly 1-secure, as
the following Theorem shows.

Theorem 6.7. Let n = a+ b+1. Suppose we have an equitable (a, b, 1)-strategy G that is
perfectly 1-secure against Cathy. Then every announcement A ∈ G is a 2-(n, a, λ)-design
for some λ.

Proof. First observe that since Cathy holds only one card, Lemma 6.5 immediately implies
that any element x ∈ X is a possible hand for Cathy. Consider an announcement A ∈ G.
We proceed by showing that every pair of distinct elements x, y ∈ X occurs in a constant
number of hands of A.

Let x ∈ X. Define rx to be the number of hands of A containing x. We proceed by
counting rx in two different ways. On the one hand, we immediately have

rx = |A| − |P ({x},A)| . (3)

On the other hand, we can relate rx to P ({y},A) for any y 6= x ∈ X as follows.
By Theorem 6.4.2, x occurs a

a+b
|P ({y},A)| times in P ({y},A). In particular, this is

the number of times x occurs in a hand of A without y. That is, letting λxy denote the
number of times x occurs together with y in a hand of A, we have

rx = λxy +
a

a+ b
|P ({y},A)| . (4)
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This gives us

|A| = λxy +
a

a+ b
|P ({y},A)|+ |P ({x},A)| . (5)

Now, following the same logic for y, we also have

|A| = λxy +
a

a+ b
|P ({x},A)|+ |P ({y},A)| . (6)

Equating Equations (5) and (6) shows that |P ({x},A)| is independent of the choice
of x ∈ X. That is, rx is independent of x (by Equation (3)), so every point of X occurs
in a constant number of hands of A, say r hands. Moreover, Equation (4) then gives

λxy = r − a

a+ b
|P ({y},A)| = r − a

a+ b
(|A| − r) ,

so λxy is independent of x and y. That is, every pair of points x, y ∈ X occurs a constant
number of times, which we denote by λ. This implies A is a 2-(n, a, λ)-design.

The relationship between combinatorial designs and strategies that satisfy our notion
of perfect security is quite deep. We now generalize the results from Swanson and Stin-
son [24] and Theorem 6.7 above to account for perfect δ-security and card deals with c > 1.
We begin with a generalization of Lemma 6.6 that shows that in an equitable (a, b, c)-
strategy, if each announcement is a t-design with block size a, the strategy satisfies perfect
(t− c)-security.

Theorem 6.8. Let n = a + b + c. Suppose that each announcement A in an equitable
(a, b, c)-strategy G is a t-(n, a, λ)-design for some t and λ, where c 6 t − 1. Then the
strategy is perfectly (t− c)-secure against Cathy.

Proof. Consider an announcement A ∈ G and a possible hand HC for Cathy. Since c 6 t,
Theorem 3.6 implies there are

|P (HC ,A)| =
λ
(
n−c
a

)(
n−t
a−t

) =
λ
(
a+b
a

)(
n−t
a−t

)
blocks in A that do not contain any of the points of HC .

Let δ 6 t − c. Then Theorem 3.6 also implies that each set of δ points x1, . . . , xδ ∈
X\HC is contained in precisely

|{HA ∈ P (HC ,A) : x1, . . . , xδ ∈ HA}| =
λ
(
n−δ−c
a−δ

)(
n−t
a−t

) =
λ
(
a+b−δ
a−δ

)(
n−t
a−t

)
of these blocks.

Thus, for any set of δ points x1, . . . , xδ ∈ X\HC , we have

|P (HC ,A)|
|{HA ∈ P (HC ,A) : x1, . . . , xδ ∈ HA}|

=
(a+ b)!(a− δ)!
a!(a+ b− δ)!

=

(
a+b
δ

)(
a
δ

) ,
so Condition 2 of Theorem 6.4 is satisfied.
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We approach a true generalization of Theorem 6.7 incrementally for readability. For
deals satisfying c = 1, we have the following necessary condition for an equitable strategy
to be perfectly δ-secure.

Theorem 6.9. Let n = a+ b+1. Suppose we have an equitable (a, b, 1)-strategy G that is
perfectly δ-secure against Cathy. Then every announcement A ∈ G is a (δ + 1)-(n, a, λ)-
design for some λ.

Proof. We proceed by induction on δ. The base case (δ = 1) is shown in Theorem 6.7.
Consider an announcement A ∈ G. For a subset Y ⊆ X, let λY denote the number of

hands of A that contain Y . We show A must be a (δ + 1)-design as follows.
Suppose we have Y ⊆ X, where |Y | = δ + 1. Pick an element y ∈ Y . Since c = 1,

we have P ({y},A) 6= ∅ by Lemma 6.5, so {y} is a possible hand for Cathy. Since G is
equitable and perfectly δ-secure, we have (by Theorem 6.4)

|{HA ∈ P ({y},A) : Y \{y} ⊆ HA}| =
(
a
δ

)
|P ({y},A)|(

a+b
δ

) .

Moreover, since perfect δ-security implies perfect 1-security, |P ({y},A)| is independent
of y, as shown in the proof of Theorem 6.7. That is, the number of hands of A that
contain the δ-subset Y \{y} but do not contain y is independent of the choice of Y and
y ∈ Y , i.e., is some constant, say s.

Now, G must be perfectly (δ − 1)-secure (since G is perfectly δ-secure), so by the
inductive hypothesis, A is a δ-(n, a, λ′)-design for some λ′. Therefore, the number of
hands of A that contain the δ-subset Y \{y} is precisely λ′.

We have

λY \{y} = λY +

(
a
δ

)
|P ({y},A)|(

a+b
δ

)
⇐⇒ λ′ = λY + s.

Therefore, λY is some constant independent of Y , so every (δ + 1)-subset occurs in a
constant number of hands of A, say λ. This implies A is a (δ + 1)-(n, a, λ)-design, as
desired.

We are now ready to give a combinatorial characterization of general (a, b, c)-strategies
that are equitable and perfectly δ-secure for some δ > 1. We give an inductive proof that
relies on Theorem 6.9 as the base case.

Theorem 6.10. Let n = a+b+c. Suppose we have an equitable (a, b, c)-strategy G that is
perfectly δ-secure against Cathy. Then every announcement A ∈ G is a (c + δ)-(n, a, λ)-
design for some λ.

Proof. We proceed by induction on c. The base case c = 1 is shown in Theorem 6.9.
Let y ∈ X and define X ′ = X\{y}. For any A ∈ G, we define A′ to be the set of

hands in A that do not contain y; that is, A′ = P ({y},A).
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We then define an (a, b, c− 1)-strategy G′ by

G′ = {A′ : A ∈ G} .

We now show G′ is perfectly δ-secure. Suppose Cathy holds a (c− 1)-subset Y ⊆ X ′

satisfying P (Y,A′) 6= ∅ for some A′ = P ({y},A) ∈ G′. In particular, note that if no such
A′ exists, then G′ is trivially perfectly δ-secure.

Consider a δ-subset Z ⊆ X ′\Y = X\(Y ∪{y}). We wish to count the number of hands
in P (Y,A′) that contain Z. Now, P (Y,A′) = P (Y ∪ {y},A), so P (Y ∪ {y},A) 6= ∅ and
hence Y ∪{y} is a possible hand for Cathy in the original strategy G. Since G is perfectly
δ-secure, we see that (by Theorem 6.4)

|{HA ∈ P (Y ∪ {y},A) : Z ⊆ HA}| =
(
a
δ

)
|P (Y ∪ {y},A)|(

a+b
δ

) ,

which together with the fact that P (Y,A′) = P (Y ∪ {y},A), immediately implies G′ is
perfectly δ-secure. Moreover, since G′ is a perfectly δ-secure (a, b, c−1)-strategy, we have
by the inductive hypothesis that every announcement A′ ∈ G′ is a (c−1+δ)-(n−1, a, λy)-
design for some λy, where λy may depend on y.

That is, every (c − 1 + δ)-subset of X\{y} occurs in λy hands of A′ = P ({y},A).
We show this implies G is a (c − 1 + δ)-perfectly secure (a, b + c − 1, 1)-strategy by
counting the total number (with repetition) of (c − 1 + δ)-subsets of P ({y},A) in two
ways and then applying Theorem 6.4. First we observe that there are

(
a+b+c−1
c−1+δ

)
ways

of picking a (c − 1 + δ)-subset of X\{y}, and each of these subsets occurs in λy hands
of P ({y},A). Second, we observe there are |P ({y},A)| possible hands for Alice (from
Cathy’s perspective), and each of these possible hands yields

(
a

c−1+δ

)
many (c − 1 + δ)-

subsets.
This gives, for any (c− 1 + δ)-subset Z ′ ⊆ X\{y},

|{HA ∈ P ({y},A) : Z ′ ⊆ HA}| = λy =

(
a

c−1+δ

)
|P ({y},A)|(

a+b+c−1
c−1+δ

) .

Since we chose y to be an arbitrary element of X, by applying Theorem 6.4 we see
that G is a (c − 1 + δ)-perfectly secure (a, b + c − 1, 1)-strategy. Then the base case
(Theorem 6.9) implies that every announcement A ∈ G is a (c + δ)-(n, a, λ)-design for
some λ, as desired.

Theorem 6.10 immediately implies the following bound on the security parameter δ
for equitable strategies:

Corollary 6.11. Suppose we have an equitable (a, b, c)-strategy G that is perfectly δ-secure
against Cathy. Then δ 6 a− c.

Remark 6.12. If we have an equitable (a, b, c)-strategy G that is perfectly δ-secure against
Cathy, where δ = a − c, then each announcement A ∈ G is an a-design. In fact, since
every a-subset of X must appear a constant number of times in each A, we see that each
A is a trivial a-design. In this case, we see Alice’s strategy is not informative for Bob.
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Together, Theorem 6.8 and Theorem 6.10 show a direct correspondence between t-
designs and equitable announcement strategies that are perfectly δ-secure for some δ
satisfying δ 6 t− c. We state this result in the following theorem for clarity.

Theorem 6.13. A γ-equitable (a, b, c)-strategy G on card deck X that is perfectly δ-secure
against Cathy is equivalent to a set of (c + δ)-designs with point set X and block size a
having the property that every a-subset of X occurs in precisely γ of these designs.

7 Simultaneously informative and secure strategies

In general, we want to find an (a, b, c)-strategy (for Alice) that is simultaneously infor-
mative for Bob and (perfectly or weakly) δ-secure against Cathy. We first consider infor-
mative strategies that provide security for individual cards and then consider informative
strategies that provide security for multiple cards.

The following was first shown by Albert et al. [1]:

Theorem 7.1. [1] If a 6 c + 1, then there does not exist a strategy for Alice that is
simultaneously informative for Bob and weakly 1-secure against Cathy.

It is worth observing that a strategy that is not informative for Cathy implies, for any
announcement A by Alice and possible hand HC ∈

(
X
c

)
such that P (HC ,A) 6= ∅ , that

|P (HC ,A)| > 2. That is, there must exist distinct HA, H
′
A ∈ P (HC ,A). Following the

same technique as in the proof of Lemma 5.1, this implies |HA ∩H ′A| > a−b. If in addition
the strategy is informative for Bob, by Lemma 5.1 we have a− c > |HA ∩H ′A| > a− b, so
c < b. This gives us the following result (which is also discussed by Albert et al. [1]):

Theorem 7.2. If c > b, then there does not exist a strategy for Alice that is simultaneously
informative for Bob and weakly 1-secure against Cathy.

We now focus on (3, n− 4, 1)-deals and examine the relationship between informative
and perfectly 1-secure strategies and Steiner triple systems.

The following is an immediate consequence of Theorem 6.7 and Lemma 5.4.

Corollary 7.3. Suppose (a, b, c) = (3, n− 4, 1) and suppose that Alice’s strategy is equi-
table, informative for Bob, and perfectly 1-secure against Cathy. Then every announce-
ment is a Steiner triple system.

In fact, any (a, b, a− 2)-strategy that is informative, equitable, and perfectly 1-secure
also satisfies c = 1 (and hence a = 3). This result was first shown in Swanson and
Stinson [24], but the proof provided here is greatly simplified.

Theorem 7.4. Consider an (a, b, c)-deal such that a−c = 2. Suppose that Alice’s strategy
is equitable, informative for Bob, and perfectly 1-secure against Cathy. Then a = 3 and
c = 1.
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Proof. Theorem 6.10 implies that every announcement is an (a− 1)-design. Since c > 1,
we have a − 1 > a − c, so we may apply Lemma 5.4. This implies a − 1 = a − c, so we
have c = 1, as desired.

Our proof technique works for the generalizations of Theorem 7.4 and Corollary 7.3
shown in Swanson and Stinson [24] as well. That is, strategies that are equitable, infor-
mative for Bob, and perfectly (a − c − 1)-secure against Cathy must satisfy c = 1 and
each announcement must be an (a − 1)-(n, a, 1)-design, also known as a Steiner system
S(a− 1, a, n).

Theorem 7.5. Consider an (a, b, c)-deal. Suppose that Alice’s strategy is equitable, in-
formative for Bob, and perfectly (a− c− 1)-secure against Cathy. Then c = 1.

Proof. The proof is identical to the proof of Theorem 7.4.

Corollary 7.6. Let n = a + b + 1. Consider an equitable (a, b, 1)-strategy that is infor-
mative for Bob and perfectly (a− 2)-secure against Cathy. Then every announcement is
a Steiner system S(a− 1, a, n).

Proof. The fact that every announcement is an (a − 1)-design follows immediately from
Theorem 6.10. To see that λ = 1, we may apply Lemma 5.4. This is easy to see, however:
since every (a−1)-subset occurs λ times, the fact that the strategy is informative for Bob
implies λ = 1.

In fact, we can use Theorem 6.10 and Lemma 5.4 to derive the following bound on
the security parameter δ for perfectly δ-secure and informative strategies, which helps put
the above results in context.

Corollary 7.7. Suppose we have an equitable (a, b, c)-strategy that is perfectly δ-secure
against Cathy and informative for Bob. Then δ 6 a− 2c.

Proof. If the strategy is perfectly δ-secure, then by Theorem 6.10, every announcement is
a (c+ δ)-design. Now, if c+ δ < a− c holds, then δ < a− 2c, as desired. If c+ δ > a− c,
then since the strategy is informative for Bob, we can apply Lemma 5.4. This yields
c+ δ = a− c, so we have δ = a− 2c in this case.

8 Construction methods and examples

Theorem 6.8 indicates that we can use t-designs to construct equitable strategies that are
perfectly δ-secure against Cathy for δ = t − c, where c 6 t − 1. In fact, so long as we
use t-designs with λ = 1 and c 6 a − t, such a strategy will also be informative for Bob
(Corollary 5.3). This is a very interesting result, as we can use a single “starting design”
to obtain equitable strategies that are informative for Bob and perfectly δ-secure against
Cathy. We give a general method for this next. First we require some definitions.

the electronic journal of combinatorics 21(3) (2014), #P3.29 18



Definition 8.1. Suppose that D = (X,B) is a t-(v, k, λ)-design. An automorphism of D
is a permutation π of X such that π fixes the multiset B. We denote the collection of all
automorphisms of D by Aut(D).

Remark 8.2. It is easy to see that Aut(D) is a subgroup of the symmetric group S|X|.

Theorem 8.3. Suppose D = (X,B) is a t-(n, a, 1)-design. Then there exists a γ-equitable
(a, n− a− c, c)-strategy with m announcements that is informative for Bob and perfectly
(t − c)-secure against Cathy for any choice of c such that c 6 min{t − 1, a − t}, where
m = n!/|Aut(D)| and γ = m

/(
n−t
a−t

)
.

Proof. Let the symmetric group Sn act on D. We obtain a set of designs isomorphic to D,
which are the announcements in our strategy. Since each announcement is a t-(n, a, 1)-
design, the resulting scheme is perfectly (t − c)-secure against Cathy by Theorem 6.8.
Furthermore, since a − c > t and λ = 1, no two blocks have more than a − c − 1 points
in common, so Theorem 5.1 implies the scheme is informative for Bob.

The total number of designs m is equal to n!/|Aut(D)| (as this is the index of Aut(D) in
Sn). To see that γ = m

/(
n−t
a−t

)
, consider a fixed t-subset A of X. Then in particular, there

are
(
n−t
a−t

)
possible blocks of size a that contain A. Now, every one of the m designs contains

exactly one of these
(
n−t
a−t

)
blocks, and these

(
n−t
a−t

)
blocks occur equally often among the

m designs. Thus, a given block B occurs in m
/(
n−t
a−t

)
of the designs, as desired.

Remark 8.4. Theorem 8.3 is a generalization of a result in Swanson and Stinson [24], in
which the case c = 1 is treated.

Remark 8.5. The technique described in Theorem 8.3 shows how to use a single “starting
design” D on n points to construct a strategy that inherits its properties from D. That
is, the strategy obtained by letting the symmetric group Sn act on D will be informative
and perfectly δ-secure if D is an informative announcement that satisfies Condition 2 of
Definition 6.1 for the fixed announcement D.

We now discuss some other constructions of strategies using results from design theory,
including some applications of Remark 8.5. All constructions discussed may be found in
Colbourn and Dinitz [5].

It is clear that we can use any Steiner triple system, or 2-(n, 3, 1)-design, as a starting
design to obtain an equitable (3, n−4, 1)-strategy that is informative for Bob and perfectly
1-secure against Cathy. It is known that an STS(n) exists if and only if n ≡ 1, 3 mod 6,
n > 7. We state this result in the following Corollary.

Corollary 8.6. There exists an equitable (3, n−4, 1)-strategy for Alice that is informative
for Bob and perfectly 1-secure against Cathy for any integer n such that n ≡ 1, 3 mod 6,
n > 7.

Similarly, Steiner quadruple systems, or 3-(n, 4, 1)-designs, exist if an only if n ≡
2, 4 mod 6, which yields the following result:

Corollary 8.7. There exists an equitable (4, n−5, 1)-strategy for Alice that is informative
for Bob and perfectly 1-secure against Cathy for any integer n such that n ≡ 2, 4 mod 6.
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More generally, we can use any Steiner system S(t, a, n) as a starting design to obtain
an equitable (a, n − a − c, c)-strategy that is perfectly (t − c)-secure against Cathy for
c 6 min{t − 1, a − t}. Known infinite families of S(2, a, n) include affine geometries,
projective geometries, unitals, and Denniston designs [5], which together give the following
result:

Corollary 8.8. Let q be a prime power and ` > 2. There exist the following equitable
strategies that are perfectly 1-secure against Cathy:

1. A (q, q` − q − 1, 1)-strategy (constructed from affine geometries);

2. A (q + 1, q` + · · ·+ q2 − 1, 1)-strategy (constructed from projective geometries);

3. A (q + 1, q3 − q − 1, 1)-strategy (constructed from unitals); and

4. A (2r, 2r+s−2s−1, 1)-strategy, for 2 6 r < s (constructed from Denniston designs).

In fact, we can use the same method to construct equitable (a, b, c)-strategies that are
perfectly δ-secure against Cathy, informative for Bob, and allow Cathy to hold more than
one card. Such a solution to the generalized Russian cards problem has not been proven
to exist in the literature. We next give an infinite class of equitable and perfectly 1-secure
strategies where Cathy holds two cards.

Example 8.9. Consider the inversive plane with q = 23; this is a 3-(65, 9, 1)-design. The
construction method in Theorem 8.3 yields an equitable (9, 55, 1)-strategy that is perfectly
2-secure against Cathy and informative for Bob and (more interestingly) a (9, 54, 2)-
strategy that is perfectly 1-secure against Cathy and informative for Bob.

It is known that 3-(q2 + 1, q + 1, 1)-designs (or inversive planes) exist whenever q is a
prime power. This gives us the following result.

Corollary 8.10. There exists an equitable (q + 1, q2 − q − 2, 2)-strategy that is informa-
tive for Bob and perfectly 1-secure against Cathy and an equitable (q + 1, q2 − q − 1, 1)-
strategy that is informative for Bob and perfectly 2-secure against Cathy, for every prime
power q > 4.

More generally, we can use spherical geometries, which are 3-(qn + 1, q + 1, 1)-designs
(or, equivalently, S(3, q+ 1, qn + 1)) for q a prime power and n > 2 to construct strategies
allowing Cathy to hold two cards:

Corollary 8.11. There exists an equitable (q + 1, qn − q − 2, 2)-strategy that is informa-
tive for Bob and perfectly 1-secure against Cathy and an equitable (q + 1, qn − q − 1, 1)-
strategy that is informative for Bob and perfectly 2-secure against Cathy, for every prime
power q and n > 2.

However, only finitely many Steiner t-designs are known for t > 3 and none are known
for t > 5. Table 1 lists strategies resulting from known Steiner 5- and 4-designs; see [5]
for examples of these designs. All known S(4, a, n) designs are derived designs from
S(5, a+ 1, n+ 1) designs, formed by choosing an element x, selecting all blocks containing
x and then deleting x from these blocks.
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Table 1: Perfectly (t− c)-secure strategies from Steiner t-designs for t = 4, 5
5-design (a, b, c)-strategy 5− c Derived 4-design (a, b, c)-strategy 4− c

S(5, 8, 24) (8, 15, 1) 4 S(4, 7, 23) (7, 15, 1) 3
(8, 14, 2) 3 (7, 14, 2) 2
(8, 13, 3) 2 (7, 13, 3) 1

S(5, 7, 28) (7, 20, 1) 4 S(4, 6, 27) (6, 20, 1) 3
(7, 19, 2) 3 (6, 19, 2) 2

S(5, 6, 12) (6, 5, 1) 4 S(4, 5, 11) (5, 5, 1) 3
S(5, 6, 24) (6, 17, 1) 4 S(4, 5, 23) (5, 17, 1) 3
S(5, 6, 36) (6, 29, 1) 4 S(4, 5, 35) (5, 29, 1) 3
S(5, 6, 48) (6, 41, 1) 4 S(4, 5, 47) (5, 41, 1) 3
S(5, 6, 72) (6, 65, 1) 4 S(4, 5, 71) (5, 65, 1) 3
S(5, 6, 84) (6, 77, 1) 4 S(4, 5, 83) (5, 77, 1) 3

S(5, 6, 108) (6, 101, 1) 4 S(4, 5, 107) (5, 101, 1) 3
S(5, 6, 132) (6, 125, 1) 4 S(4, 5, 131) (5, 125, 1) 3
S(5, 6, 168) (6, 161, 1) 4 S(4, 5, 167) (5, 161, 1) 3
S(5, 6, 244) (6, 137, 1) 4 S(4, 5, 243) (5, 137, 1) 3

Example 8.12. As Table 1 indicates, a S(5, 8, 24) exists. This design and its derived
S(4, 7, 23) are called the Witt designs. In particular, the S(5, 8, 24) implies that for an
(8, 13, 3)-deal, it is possible to achieve perfect 2-security. This is the only construction of
which the authors are aware that achieves perfect security for c > 2.

We next discuss existence results for optimal strategies. As shown in Swanson and
Stinson [24], the number of announcements m in an informative (a, b, c)-strategy must
satisfy m >

(
n−a+c

c

)
. A strategy is optimal if m =

(
n−a+c

c

)
. The following result by

Swanson and Stinson [24] follows immediately from the existence of large sets of Steiner
triples, discussed in Remark 3.16, and Lemma 6.6.

Theorem 8.13. [24] Suppose (a, b, c) = (3, n−4, 1), where n ≡ 1, 3 mod 6, n > 7. Then
there exists an optimal strategy for Alice that is informative for Bob and perfectly 1-secure
against Cathy.

Example 8.14. Consider the large set of STS(9) from Example 3.17. This set of an-
nouncements is an optimal (3, 5, 1) strategy that is perfectly 1-secure against Cathy and
informative for Bob.

As discussed before Theorem 8.13, if we can construct a large set of 2-(n, 3, 1)-designs,
this set forms an optimal strategy that is informative and perfectly 1-secure, and a large
set of STS(n) exists whenever n ≡ 1, 3 mod 6 and n > 7. However, there are certain
choices of n for which there is a particularly nice construction for a large set of STS(n),
such that it would be easy for Alice and Bob to create this large set on their own. We
forego the details of this construction, which is due to Schreiber [20], but remark that
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this construction method applies whenever each prime divisor p of n− 2 has the property
that the order of (−2) modulo p is congruent to 2 modulo 4.

Two other types of designs that can be used to construct informative and perfectly
1-secure strategies where Cathy holds one card are hyperplanes in projective spaces and
Hadamard designs. For a discussion of these constructions, we refer the reader to Stin-
son [21]. We have the following results.

Corollary 8.15. There exists an equitable
(
qd−1
q−1 , q

d − 1, 1
)

-strategy that is informative

for Bob and perfectly 1-secure against Cathy, where q > 2 is a prime power and d > 2 is
an integer.

Proof. It is known that there exists a symmetric
(
qd+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1

)
-BIBD D for every

prime power q and integer d > 2. The design D is a hyperplane in a projective space (or,
in the case d = 2, a finite projective plane). Let the symmetric group Sn act on D as in
the proof of Theorem 8.3, where n = (qd+1 − 1)/(q − 1), to obtain Alice’s strategy.

Lemma 6.6 immediately implies that this strategy is perfectly 1-secure against Cathy.
To see that this strategy is informative, recall that the intersection of two blocks in a
symmetric BIBD has size λ = (qd−1 − 1)/(q − 1). It is easy to see that the strategy will
be informative provided a− c > λ, which is the case here.

Corollary 8.16. There exists an equitable
(
q−1
2
, q−1

2
, 1
)
-strategy that is informative for

Bob and perfectly 1-secure against Cathy, where q ≡ 3 mod 4 is an odd prime power.

Proof. It is known that there exists a symmetric
(
q, q−1

2
, q−3

4

)
-BIBD D for every odd prime

power q such that q ≡ 3 mod 4. The design D is a Hadamard design. Let the symmetric
group Sq act on D as in the proof of Theorem 8.3 to obtain Alice’s strategy.

Lemma 6.6 immediately implies that this strategy is perfectly 1-secure against Cathy.
To see that this strategy is informative, recall that the intersection of two blocks in a
symmetric BIBD has size λ = (q − 3)/4. It is easy to see that the strategy will be
informative provided a− c > λ, which is the case here.

Remark 8.17. Any symmetric BIBD may be used to construct equitable strategies that
are perfectly 1-secure against Cathy for c = 1. If D is a symmetric 2-(n, a, λ)-design,
the order of D is a − λ. The block intersection property we need to guarantee that the
strategy is informative is that the order is greater than 1, which will always be the case.
Colbourn and Dinitz [5] list known families of symmetric BIBDs.

8.1 Cordón-Franco et al. geometric protocol

Cordón-Franco et al. [8] present a protocol based on hyperplanes that yields informative
and weakly δ-secure equitable (a, b, c)-strategies for arbitrary c, δ > 0 and appropriate
parameters a and b. The geometric protocol is stated as follows.

Protocol 1 (Geometric Protocol [8]). Let p be a prime power and let d and s < p be
positive integers. Let X be a deck of pd+1 cards and suppose we have an (a, b, c)-deal such
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that a = spd. Given a hand HA ∈
(
X
a

)
, the set of possible announcements for Alice is the

set of bijections from X to AGd+1(p) satisfying the condition that HA maps to the union
of s parallel hyperplanes in AGd+1(p). For every HA ∈

(
X
a

)
, assume Alice picks uniformly

at random from the set of possible bijections.

In particular, the geometric protocol defines an equitable strategy in which Cathy
may hold more than one card. We analyze when the geometric protocol achieves perfect,
rather than weak, security, whereas Cordón-Franco et al. [8] show that the general case
achieves weak s-security for a card deck of size pd+1, where a = spd, if c < spd − s2pd−1
and max{c+ s, cs} 6 p.

We now translate the geometric protocol into our model.

Observation 8.18. Let G be the strategy defined by the geometric protocol. An announce-
ment Ai ∈ G is equivalent to the set of all possible unions of s parallel hyperplanes.

We first consider general results from design theory with respect to an announcement
in the above strategy G. Let us view X as the set of points in AGd+1(p), and let B
be denote the set of all hyperplanes in AGd+1(p). It is well known that (X,B) is a
resolvable

(
pd+1, pd, λ

)
-BIBD, where λ = (pd − 1)/(p− 1). Moreover, each point has

degree r = (pd+1 − 1)/(p− 1), and there are r equivalance classes of parallel hyperplanes,
each of size p. Let Π1, . . . ,Πr denote these equivalence classes. For each i, where 1 6 i 6 r,
let the blocks in Πi be denoted Bj

i , for 1 6 j 6 p.
We define the design (X, C) by forming a collection of all possible unions of s parallel

hyperplanes. Stated formally, let D be the set of all s-subsets of a set Y , where |Y | = p.
For each i, where 1 6 i 6 r, and for each D ∈ D, define

Ci,D =
⋃
j∈D

Bj
i .

We then let
C = {Ci,D : 1 6 i 6 r,D ∈ D}.

As discussed in Stinson et al. [22], this construction (X, C) is a
(
pd+1, spd, λ′

)
-BIBD,

where λ′ =
(
p−1
s−1

)
spd−1
p−1 . The above immediately implies the following observation:

Observation 8.19. Let p be a prime power and let d > 1 be a positive integer. Let
X be a deck of pd+1 cards and fix an (a, b, c)-deal with a = spd. Then in the strategy
G defined by the geometric protocol, each announcement A is a 2-

(
pd+1, spd, λ

)
-design,

where λ =
(
p−1
s−1

)
spd−1
p−1 . In particular, there are

(
p
s

)
(pd+1 − 1)/(p− 1) possible hands for

Alice in each A.

Observation 8.19 and Theorem 6.8 imply that the Geometric Protocol achieves perfect
1-security when Cathy holds one card, i.e., for (spd, pd+1 − spd − 1, 1)-deals where p is a
prime power and s < p.
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Moreover, as shown by Stinson et al. [22], the design (X, C) is a 3-design precisely when
p = 2s, so p must be an even prime power. In this case, (X, C) is a 3-

(
pd+1, pd+1/2, λ′′

)
-

design, where

λ′′ =

(
p− 1

p/2− 1

)
pd+1 − 4

4(p− 1)
.

That is, for card decks and deals satisfying certain parameters, the strategy defined by
the geometric protocol is a 3-design. This implies that we can sometimes achieve perfect
2-security for deals in which Cathy holds one card, or perfect 1-security for deals in which
Cathy holds two cards. We state the result in the following theorem for clarity.

Theorem 8.20. Let p be a prime power and let d > 1 be a positive integer. Let X be a
deck of pd+1 cards and fix an (a, b, c)-deal with a = spd. Then the geometric protocol gives
perfect 1-security with c = 2 (and therefore also perfect 2-security with c = 1) if and only
if p = 2` for some positive integer ` and s = 2`−1.

9 The transversal Russian cards problem

In this section, we consider a variation of the generalized Russian cards problem, which
we name the transversal Russian cards problem, in which we change the manner in which
the cards are dealt. Our motivation for restricting the deal is to widen the solution
space. Since the generalized Russian cards problem requires a suitable set of t-designs to
maximize security against Cathy—and constructing t-designs for t > 2 is in general quite
difficult—we explore certain types of deals where suitable constructions are more readily
available. An added advantage of our deal restriction is that in this new framework, we
can view Alice’s hand as an a-tuple over an alphabet of size v. If Alice’s hand represents
a secret key, this variation is more in keeping with traditional key agreement schemes in
cryptography, as typically secret keys are tuples rather than sets.

Suppose our deck X consists of n = va cards, where v and a are positive integers
such that v > a. Rather than allowing Alice, Bob, and Cathy to have any hand of the
appropriate size, we first split the deck X into a piles, each of size v. Alice is given a hand
HA of a cards, such that she holds exactly one card from each pile. Cathy’s hand HC

of c cards is assumed to contain no more than one card from each pile. The remainder
of the deck becomes Bob’s hand, HB. We will refer to this type of deal as a transversal
(a, b, c)-deal (or simply, a transversal deal). Observe that we can use the same framework
for this problem as for the original; we have only placed a limitation on the set of possible
hands Alice, Bob, and Cathy might hold. The necessary modifications to the security
definitions and the definition of an informative strategy are straightforward.

This variant admits a nice solution using transversal designs ; we refer the reader to
Section 3.2 for the relevant definitions and a discussion of these designs. In the context of
a transversal design TDλ(t, a, v), we can view the piles of cards as the groups G1, . . . , Ga

of the design. In this case, Alice’s hand is a transversal and Cathy’s hand is a partial
transversal of G1, . . . , Ga. Note that Cathy therefore only considers transversals as pos-
sible hands for Alice. When we discuss weak (or perfect) δ-security, we are interested in
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the probability (from Cathy’s point of view) that Alice holds partial transversals of order
δ.

We first show Theorem 5.1 holds for this variant of the Russian cards problem:

Theorem 9.1. The announcement A is informative for Bob if and only if there do not
exist two distinct sets HA, H

′
A ∈ A such that |HA ∩H ′A| > a− c.

Proof. Suppose there exist two distinct sets HA, H
′
A ∈ A such that |HA ∩H ′A| > a − c.

We proceed by constructing a card deal consistent with the announcement A such that
{HA, H

′
A} ⊆ P (HB,A) , which implies the announcement is not informative for Bob.

Write |HA ∩H ′A| = `. Let Alice’s hand be HA, so it is possible for Alice to announce
A. Let Cathy’s hand contain all the cards in H ′A that are not also contained in HA; this
is possible since c > a − `. Then Bob’s hand HB contains all the remaining cards. In
particular, we have HB ∩ (HA ∪H ′A) = ∅, so {HA, H

′
A} ⊆ P (HB,A), as desired.

Conversely, suppose {HA, H
′
A} ⊆ P (HB,A), where HA 6= H ′A. Then |HA ∪H ′A| 6

n− b = a+ c, and hence |HA ∩H ′A| > a− c.

In light of Theorem 9.1, the following result is straightforward.

Theorem 9.2. Consider a transversal (a, b, c)-deal and suppose that each announcement
in an equitable (a, b, c)-strategy is a TD1(t, a, v) satisfying t 6 a− c. Then the strategy is
informative for Bob.

We can use an argument similar to that of Swanson and Stinson [24] to derive a lower
bound on the size of Alice’s announcement.

Theorem 9.3. Consider a transversal (a, b, c)-deal. Suppose a > c and there exists a
strategy for Alice that is informative for Bob. Then the number of announcements m
satisfies m > vc.

Proof. Fix a set of cards X ′ of size a− c, no two of which are from the same pile. There
are vc possible hands for Alice that contain X ′. These hands must occur in different
announcements, by Theorem 9.1. Therefore m > vc.

As before, we refer to a strategy that meets this bound as optimal. We have the
following result.

Theorem 9.4. Consider a transversal (a, b, c)-deal and suppose that a > c. An opti-
mal (a, b, c)-strategy for Alice that is informative for Bob is equivalent to a large set of
TD1(t, a, v), where t = a− c.

Proof. Suppose there exists a large set of TD1(a−c, a, v). Recall from Definition 3.28 that
the set of all blocks sets (i.e., possible announcements) in this large set form a partition
of the set of all transversals and that there are precisely vc designs in such a set. Then
it is easy to see that this immediately yields an optimal (a, b, c)-strategy for Alice that is
informative for Bob.
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Conversely, suppose there is an optimal (a, b, c)-strategy for Alice that is informative
for Bob. We need to show that every announcement is a TD1(a− c, a, v). As in the proof
of Theorem 9.3, fix a set of cards X ′ of size a− c, no two of which are from the same pile.
The vc possible hands for Alice that contain X ′ must occur in different announcements.
However, there are a total of vc announcements, so every announcement must contain
exactly one block that contains X ′.

The following result shows how transversal designs with arbitrary t can be used to
achieve weak δ-security for permissible parameters δ 6 t− c. As in Definition 3.25, for a
transversal design TDλ(t, a, v), say (X,G,B), and a partial transversal Y of G, we let GY

denote the set of groups of the transversal design that have nonempty intersection with
the partial transversal Y .

Theorem 9.5. Consider a transversal (a, b, c)-deal and suppose that each announcement
in an equitable (a, b, c)-strategy is a TDλ(t, a, v) for some t and λ, where c 6 t− 1. Then
the strategy is weakly (t− c)-secure against Cathy.

Proof. Fix an announcement A for Alice. Suppose A is a TDλ(t, a, v), say (X,G,B).
Consider a possible hand HC for Cathy. In particular, HC is a partial transversal of the
groups G1, . . . , Ga ∈ G.

Since c 6 t, Theorem 3.27 implies there are

|P (HC ,A)| = λvt−c(v − 1)c

blocks in A that do not contain any of the points of HC .
Consider a partial transversal Y of order δ 6 t − c. Since Y is not necessarily group

disjoint from HC , we must consider the number of groups which intersect both Y and
HC . In particular, the δ-subset Y never occurs with any other cards from GY ∩GHC , by
definition of transversal designs.

Let ` = |GHC\GY |. That is, ` is the number of groups that do not intersect Y , but
from which Cathy has cards. Write z1, . . . , z` for Cathy’s cards from these ` groups. We
wish to compute the number of blocks which contain all the points in Y but miss all of
the points of HC . This is the same as the number of blocks that contain all the points
in Y but miss all the points in {z1, . . . , z`}. Since ` + δ 6 t, by Theorem 3.27, we have
λvt−`−δ(v − 1)` such blocks.

That is, a given set of points x1, . . . , xδ ∈ X\HC that might be held by Alice is
contained in precisely

|{HA ∈ P (HC ,A) : x1, . . . , xδ ∈ HA}| = λvt−`−δ(v − 1)`

of the blocks in P (HC ,A), where ` =
∣∣GHC

∖
G{x1,...,xδ}

∣∣ .
Thus, for any partial transversal of δ distinct points x1, . . . , xδ ∈ X\HC , we have

|{HA ∈ P (HC ,A) : x1, . . . , xδ ∈ HA}|
|P (HC ,A)|

=
λvt−`−δ(v − 1)`

λvt−c(v − 1)c
=

1

vδ+`−c(v − 1)c−`
,

so Condition 1 of Theorem 6.4 is satisfied.
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Remark 9.6. We do not achieve perfect (t−c)-security in Theorem 9.5 because the number
of hands of P (HC ,A) containing a given partial transversal Y of δ distinct points, where
δ 6 t− c, depends on ` = |GHC\GY |. In fact, we cannot expect to achieve better security
than that of the construction given in Theorem 9.5 for this variant of the generalized
Russian cards problem. This is because the rules for the deal imply that for each pile
from which Cathy holds a card, Cathy knows that Alice holds one of the other (v − 1)
cards, and for every other pile, Cathy knows only that Alice holds one of the other v
cards.

As discussed in Section 3.2, large sets of transversal designs TDλ(t, k, v) are easy to con-
struct when you have a linear TDλ(t, k, v) “starting design”. As stated in Theorem 3.37,
a linear TD1(t, q, q) exists whenever the point set X = (Fq)2 and q is a prime power. The
construction method for such a transversal design is simple; we refer the reader to the
relevant discussion in Section 3.2 on Theorem 3.36 and Corollaries 3.37 and 3.38.

In particular, we can construct a linear TD1(t, a, q) for a prime power q > a by first
constructing a TD1(t, q, q) and then (if necessary) deleting q−a groups. This yields a wide
range of informative and weakly (t − c)-secure (a, n − a − c, c)-strategies for card decks
of size n = aq and any choice of c satisfying c 6 min{t − 1, a − t}. If we take t = a − c,
these strategies are optimal. We summarize this result in the following theorem.

Theorem 9.7. Consider the transversal Russian cards problem. Let q be a prime power
such that q > a and c 6 a−1

2
. Then there exists an equitable (a, aq− a− c, c)-strategy that

is optimal, informative for Bob, and weakly (a− 2c)-secure against Cathy.

10 Discussion and comparison with related work

The Russian cards problem and variants of it has received a fair amount of attention in
the literature, with focus ranging from possible applications to key generation [2, 3, 11–
15,17,19], to analyses based on epistemic logic [9,25,26,28], to card deals with more than
three players [10, 16]. Of more relevance to our work is the recent research that takes a
combinatorial approach [1–4,6, 24], on which we now focus.

Many useful results concerning parameter bounds and announcement sizes for weak
1-security, some of which we use in this paper, are given by Albert et al. [1]. Albert
et al. [2, 3] and Cordón-Franco et al. [6] discuss protocols for card deals of a particular
form that achieve weak 1-security, using card sums modulo an appropriate parameter
for announcements. Atkinson et al. [4] is the only work of which we are aware that
treats security notions stronger than weak 1-security, other than work by Swanson and
Stinson [24] and subsequent work by Cordón-Franco et al. [8].

In addition, there has been recent work [7, 27] in which protocols consisting of more
than one announcement by Alice and Bob are considered, which is a generalization of the
problem which we consider here. Van Ditmarsch and Soler-Toscano [27] show that no
good announcement exists for card deals of the form (4, 4, 2) using bounds from Albert
et al. [1]. The authors instead give an interactive protocol that requires at least three
rounds of communication in order for Alice and Bob to learn each other’s hands; their
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protocol uses combinatorial designs to determine the initial announcement by Alice and
the protocol analysis is done using epistemic logic.

Cordón-Franco et al. [7] consider four-step solutions that achieve weak 1-security for
the generalized Russian cards problem with parameters (a, b, c) such that c > a; this is
the first work that shows it is possible to achieve weak 1-security in cases where Cathy
holds more cards than one of the other players. The authors demonstrate the existence of
a necessary construction for Bob’s announcement when the card deal parameters satisfy
specific conditions and briefly address the feasibility of finding such constructions in prac-
tice. In particular, the authors leave as an interesting open problem efficient algorithms
for producing Bob’s announcement.

In this paper, we build extensively on results by Swanson and Stinson [24]. In particu-
lar, we greatly simplify the proofs for results connecting certain types of perfectly δ-secure
deals and Steiner systems, originally shown in Swanson and Stinson [24]. The construc-
tion technique using a “starting design”, given in Theorem 8.3 is a generalization of the
technique given by Swanson and Stinson [24]. This generalized construction technique
allows us to answer in the affirmative the question on the existence of perfectly secure
and informative strategies for deals in which Cathy holds more than one card.

Cordón-Franco et al. [8] further elaborate on protocols of length two and the notion of
weak δ-security. The authors present a geometric protocol, discussed in Section 8.1, based
on hyperplanes that yields informative and weakly δ-secure equitable (a, b, c)-strategies
for appropriate parameters. In particular, this protocol allows Cathy to hold more than
one card. In certain card deals, this protocol achieves perfect δ-security for δ equal to one
or two. We remark that with the exception of Section 8.1, our results were completed
independently of Cordón-Franco et al. [8].

11 Concluding remarks and future work

We give a characterization for solutions to the generalized Russian cards problem that are
perfectly δ-secure. That is, we show an equivalence between a γ-equitable strategy that
is perfectly δ-secure for some δ and a set of (c + δ)-designs on n points with block size
a, where this set must satisfy the additional property that every a-subset of X occurs in
precisely γ of these designs.

Building on the results of Swanson and Stinson [24], we show how to use a “starting” t-
(n, a, 1)-design to construct equitable (a, b, c)-strategies that are informative and perfectly
(t−c)-secure against Cathy for any choice of c satisfying c 6 min{t−1, a−t}. In particular,
this indicates that if an appropriate t-design exists, it is possible to achieve perfect security
for deals where Cathy holds more than one card. We present an example construction,
based on inversive planes, for (q + 1, q2 − q − 2, 2)-strategies which are perfectly 1-secure
against Cathy and informative for Bob, where q is a prime power. We also analyze the
security properties of Cordón-Franco et al.’s [8] geometric protocol, remarking that this
protocol yields a nice construction for a 3-design for certain parameters.

In addition, we discuss a variation of the Russian cards problem which admits nice
solutions using transversal designs. The variant changes the manner in which the cards
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are dealt, but the resulting problem can be solved using large sets of transversal designs
with λ = 1 and arbitrary t, which are easy to construct. In particular, this solution is
optimal in terms of the number of announcements and provides the strongest possible
security for appropriate parameters. That is, for card decks of size aq, where q > a is a
prime power, we achieve (a, aq−a− c, c)-strategies that are optimal, informative for Bob,
and weakly (a− 2c)-secure against Cathy for c 6 a−1

2
.

There are many open problems in the area, especially for deals with c > 1. Given the
general difficulty of constructing t-designs for t > 2 and λ = 1, we see that constructing
perfectly δ-secure and informative strategies for c > 1 is a difficult combinatorial problem.
A more promising direction for the case c > 1 may be strategies that are weakly δ-secure
for δ > 1, a concept first introduced by Swanson and Stinson [24], which has received some
attention in current literature [8]. In particular, further characterizing such strategies
using combinatorial notions might prove informative.
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