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Abstract

Let b(n) denote the number of overcubic partition pairs of n. In this paper,
we establish two Ramanujan type congruences and several infinite families of con-
gruences modulo 3 satisfied by b(n). For modulus 5, we obtain one Ramanujan
type congruence and two congruence relations for b(n), from which some strange
congruences are derived.
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1 Introduction

In a series of papers [4, 5, 6], Chan investigated congruence properties of cubic partition
function a(n) which is defined by

1

(q; q)∞(q2; q2)∞
=
∞∑
n=0

a(n)qn. (1)

Throughout this paper, we assume |q| < 1 and adopt the following customary notation

(a; q)∞ =
∞∏
n=1

(1− aqn−1).
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After Chan’s work, many analogous partition functions have been studied. Kim [10]
studied its overpartiton analog in which the overcubic partition function a(n) was given
by

(−q; q)∞(−q2; q2)∞
(q; q)∞(q2; q2)∞

=
∞∑
n=0

a(n)qn. (2)

It is worth mentioning that Hirschhorn [8] has given an elementary proof of the results
satisfied by a(n) appeared in [10]. Later, Zhao and Zhong [14] established congruences
modulo 5, 7 and 9 for the following partition function

1

(q; q)2∞(q2; q2)2∞
=
∞∑
n=0

b(n)qn. (3)

Kim [11] introduced two partition statistics to explain the congruences modulo 5 and
7 for b(n). Since b(n) counts a pair of cubic partitions, Kim [11] christened b(n) the
number of cubic partition pairs. Zhou [15] also found combinatorial interpretations for
the congruences modulo 5 and 7 satisfied by b(n). Recently, Kim [12] focused on studying
congruence properties of b(n) whose generating function is

(−q; q)2∞(−q2; q2)2∞
(q; q)2∞(q2; q2)2∞

=
∞∑
n=0

b(n)qn. (4)

Similarly, Kim named b(n) as the number of overcubic partition pairs of n. Using arith-
metic properties of quadratic forms and modular forms, Kim [12] derived the following
two congruences

b(8n+ 7) ≡ 0 (mod 64), (5)

b(9n+ 3) ≡ 0 (mod 3). (6)

The paper is organized as follows. In Section 2 we introduce necessary notation and
some preliminary results. In Section 3 we aim to establish two Ramanujan type congru-
ences and several infinite families of congruences modulo 3 satisfied by b(n). We obtain
some unexpected congruence results for b(n) with modulus 5 in Section 4.

2 Preliminaries

We first recall that Ramanujan’s general theta function f(a, b) is defined by

f(a, b) =
∞∑

n=−∞

an(n−1)/2bn(n+1)/2, |ab| < 1. (7)

In Ramanujan’s notation, the Jacobi triple product identity takes the shape

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (8)
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Three special cases of f(a, b) are defined by

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, (9)

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)2∞
(q; q)∞

, (10)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞, (11)

where the above three product representations follows from (8).
We now list the necessary preliminary results in the following lemmas, which will be

used in our later proofs.

Lemma 1.

ϕ(−q) =
(q; q)2∞

(q2; q2)∞
, (12)

ϕ2(−q2) = ϕ(q)ϕ(−q). (13)

Proof. Applying (8), we have

ϕ(−q) = (q; q2)∞(q; q2)∞(q2; q2)∞

=
(q; q)2∞

(q2; q2)∞
.

Multiplying (9) by (12), we immediately get (13).

Lemma 2.

ϕ(q) = ϕ(q9) + 2qf(q3, q15), (14)

ϕ(q) = ϕ(q4) + 2qψ(q8), (15)

ϕ2(q) = ϕ2(q2) + 4qψ2(q4). (16)

Proof. The detailed proofs can be found in [2, p. 49] and [2, p. 40] respectively.

In Section 4, we will involve Ramanujan’s congruence modulo 5 for partition function
p(n). It is well known that the generating function of p(n) satisfies

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

The congruence modulo 5 for p(n) which we require is stated as follows.

the electronic journal of combinatorics 21(3) (2014), #P3.35 3



Lemma 3. For all n > 0,
p(5n+ 4) ≡ 0 (mod 5). (17)

Proof. See [3, p. 31] for a proof.

An overpartition of n is a partition of n for which the first occurrence of a number
may be overlined. Let p(n) denote the number of overpartitions of n. For convenience,
define p(0) = 1. Since the overlined parts form a partition into distinct parts and the
non-overlined parts form an ordinary partition, the generating function for overpartitions
satisfies

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

=
1

ϕ(−q)
. (18)

Recently, Chen and Xia [7] confirmed the following congruence first conjectured by
Hirschhorn and Sellers [9]

p(40n+ 35) ≡ 0 (mod 5). (19)

In [13], the author presented an alternative proof of (19) by firstly establishing the fol-
lowing congruence relation.

Lemma 4.

∞∑
n=0

p(5n)qn ≡ ϕ(−q)ϕ2(−q5) + q
(q10; q10)2∞
(q2; q2)∞

ψ(q2)ϕ(q) (mod 5). (20)

At the end of this section, we introduce the following congruence relations which will
be frequently adopted throughout the paper without explicitly mentioning it.

Lemma 5. For any prime p, we have

(q; q)p∞ ≡ (qp; qp)∞ (mod p),

ϕ(−q)p ≡ ϕ(−qp) (mod p).

Proof. By the binomial theorem, we have

(1− q)p ≡ 1− qp (mod p),

which yields the first congruence relation. The second congruence relation follows from
the first congruence relation and the product representation for ϕ(−q).

3 Congruences modulo 3 for b(n)

In this section, we aim to establish two Ramanujan type congruences and several infinite
families of congruences modulo 3 for b(n). We begin by rewriting the generating function
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for b(n) in the following form

∞∑
n=0

b(n)qn =
(q4; q4)2∞

(q; q)4∞(q2; q2)2∞

= ϕ2(q)
(q4; q4)6∞
(q2; q2)12∞

. (21)

First we introduce two Ramanujan type congruences modulo 3 for b(n).

Theorem 6. For all n > 0,

b(12n+ 10) ≡ 0 (mod 3), (22)

b(24n+ 16) ≡ 0 (mod 3). (23)

Proof. Invoking (16), we can reformulate (21) as

∞∑
n=0

b(n)qn =
(
ϕ2(q2) + 4qψ2(q4)

) (q4; q4)6∞
(q2; q2)12∞

.

Choosing the terms for which the power of q is a multiple of 2, replacing q2 by q yields

∞∑
n=0

b(2n)qn = ϕ2(q)
(q2; q2)6∞
(q; q)12∞

, (24)

and
∞∑
n=0

b(2n)qn ≡
(
ϕ(q9) + 2qf(q3, q15)

)2 (q6; q6)2∞
(q3; q3)4∞

(mod 3).

If we extract those terms whose power of q is congruent to 2 modulo 3, divide by q2, and
replace q3 by q, we obtain

∞∑
n=0

b(6n+ 4)qn ≡ f 2(q, q5)
(q2; q2)2∞
(q; q)4∞

(mod 3).

It is straightforward to check that

f(q, q5) ≡ (q; q)2∞(q4; q4)2∞
(q2; q2)∞

(mod 3).

Combining the above two identities together, we have

∞∑
n=0

b(6n+ 4)qn ≡ (q4; q4)∞(q12; q12)∞ (mod 3). (25)

Equating the coefficients of q2n+1 and q4n+2 respectively, we deduce that for all n > 0,

b(12n+ 10) ≡ b(24n+ 16) ≡ 0 (mod 3).

This completes the proof.
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As a consequence of (25), we obtain the following corollary.

Corollary 7. We have

∞∑
n=0

b(24n+ 4)qn ≡ (q; q)∞(q3; q3)∞ (mod 3). (26)

With the aid of (26), we get the following result.

Theorem 8. For any prime p > 5,
(
−3
p

)
= −1, we have

∞∑
n=0

b(24pn+ 4p2)qn ≡ (qp; qp)∞(q3p; q3p)∞ (mod 3). (27)

Proof. Substituting (11) into (26), we obtain

∞∑
n=0

b(24n+ 4)qn ≡
∞∑

m,n=−∞

(−1)m+nqm(3m+1)/2+3n(3n+1)/2 (mod 3). (28)

We claim that if

m(3m+ 1)

2
+

3n(3n+ 1)

2
≡ p2 − 1

6
(mod p), (29)

there exist some k and l such that

m(3m+ 1)

2
+

3n(3n+ 1)

2
=
p2 − 1

6
+
p2(3k2 + k)

2
+

3p2(3l2 + l)

2

and (−1)m+n = (−1)k+l.
First it follows from (29) that

(6m+ 1)2 + 3(6n+ 1)2 ≡ 0 (mod p),

which implies that 6m+ 1 ≡ 6n+ 1 ≡ 0 (mod p) since
(
−3
p

)
= −1.

Case 1. If p ≡ 1 (mod 6), then

m ≡ n ≡ p− 1

6
(mod p).

Let m = kp+ (p− 1)/6 and n = lp+ (p− 1)/6, we have

m(3m+ 1)

2
+

3n(3n+ 1)

2
=
p2 − 1

6
+
p2(3k2 + k)

2
+

3p2(3l2 + l)

2

and
(−1)m+n = (−1)(k+l)p+(p−1)/3 = (−1)(k+l)p = (−1)k+l.
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Case 2. If p ≡ −1 (mod 6), then

m ≡ n ≡ −p− 1

6
(mod p).

Let m = −kp− p+1
6

and n = −lp− (p+ 1)/6, we also have

m(3m+ 1)

2
+

3n(3n+ 1)

2
=
p2 − 1

6
+
p2(3k2 + k)

2
+

3p2(3l2 + l)

2

and
(−1)m+n = (−1)−(k+l)p−(p+1)/3 = (−1)(k+l)p = (−1)k+l.

Hence our claim holds.
If we extract those terms whose power of q is congruent to (p2 − 1)/6 modulo p from

(28), and employ the above analysis, we obtain

∞∑
n=0

b(24(pn+ (p2 − 1)/6) + 4)qpn+
p2−1

6 ≡
∞∑

k,l=−∞

(−1)k+lq
p2−1

6
+

p2(3k2+k)
2

+
3p2(3l2+l)

2 (mod 3),

which can be simplified as

∞∑
n=0

b(24pn+ 4p2)qn ≡
∞∑

k,l=−∞

(−1)k+lqp(3k
2+k)/2+3p(3l2+l)/2 (mod 3).

Applying (11), we have

∞∑
n=0

b(24pn+ 4p2)qn ≡ (qp; qp)∞(q3p; q3p)∞ (mod 3),

which finishes the proof.

From Theorem 8 and by induction, we obtain the following theorem.

Theorem 9. For any prime p > 5,
(
−3
p

)
= −1, α > 1, we have

∞∑
n=0

b(24p2α−1n+ 4p2α)qn ≡ (qp; qp)∞(q3p; q3p)∞ (mod 3). (30)

Note that the right-hand side of (30), when expanded as a power series, contains only
terms of the form qpm for some m. Based on this fact, we deduce the following corollary.

Corollary 10. For any prime p > 5,
(
−3
p

)
= −1, α > 1, and all n > 0, we have

b(24p2αn+ 24p2α−1i+ 4p2α) ≡ 0 (mod 3), (31)

where i = 1, 2, . . . , p− 1.
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To conclude this section, we present another two infinite families of congruences mod-
ulo 3 for b(n).

Theorem 11. For α > 2 and all n > 0,

b(3α(3n+ 2)) ≡ 0 (mod 3), (32)

b(3α(4n+ 2)) ≡ 0 (mod 3). (33)

Proof. Putting (14) into (21), we find that

∞∑
n=0

b(n)qn ≡
(
ϕ(q9) + 2qf(q3, q15)

)2 (q12; q12)2∞
(q6; q6)4∞

(mod 3).

Collecting the terms whose power of q is a multiple of 3, replacing q3 by q, we get

∞∑
n=0

b(3n)qn ≡ ϕ2(q3)
(q4; q4)2∞
(q2; q2)4∞

≡ ϕ2(q3)
1

ϕ(−q2)2

≡ ϕ2(q3)
ϕ(−q2)
ϕ(−q6)

≡ ϕ2(q3)
ϕ(−q18)− 2q2f(−q6,−q30)

ϕ(−q6)
(mod 3). (34)

It can be readily seen that no terms on the right-hand of (34) can have its power of q to
be congruent to 1 modulo 3. Thus, equating the coefficients of q3n+1 yields

b(9n+ 3) ≡ 0 (mod 3),

which is due to Kim [12].
Extracting those terms with power of q being a multiple of 3 from (34), then replacing

q3 by q, we conclude that

∞∑
n=0

b(9n)qn ≡ ϕ2(q)ϕ(−q6)
ϕ(−q2)

≡ ϕ2(q)ϕ2(−q2)

≡ ϕ(q3)ϕ(−q) (35)

≡ ϕ(q3)
(
ϕ(−q9)− 2qf(−q3,−q15)

)
(mod 3). (36)

Furthermore, if we choose those terms in which the power of q is a multiple of 3 from
(36), and replace q3 by q, we obtain

∞∑
n=0

b(27n)qn ≡ ϕ(q)ϕ(−q3) (mod 3).
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Combing together (35) with the above congruence relation, we find that

∞∑
n=0

b(9n)qn ≡
∞∑
n=0

b(27n)(−q)n (mod 3),

from which we deduce that for n > 0,

b(9n) ≡ (−1)nb(27n) (mod 3). (37)

For each term on the right-hand of (36), the power of q can not be congruent to 2 modulo
3, thus we immediately derive that for n > 0,

b(27n+ 18) ≡ 0 (mod 3). (38)

On the other hand, substituting (15) into (35), we see that

∞∑
n=0

b(9n)qn ≡
(
ϕ(q12) + 2q3ψ(q24)

)
×
(
ϕ(q4)− 2qψ(q8)

)
(mod 3).

It follows from the fact there exist no terms of the form q4n+2 in the above identity that

b(36n+ 18) ≡ 0 (mod 3). (39)

Based on (37), (38) and (39), and proceeding by induction on α, the desired results (32)
and (33) follows immediately.

4 Congruences modulo 5 for b(n)

The goal of this section is devoted to proving the following unexpected results, from which
we obtain some strange congruences modulo 5 for b(n).

Theorem 12. For all n > 0, we have b(20n+ 10) ≡ 0 (mod 5) and

b(40n) ≡ b(80n) (mod 5), (40)

b(20n) ≡ b(100n) (mod 5). (41)

Proof. From (24), we have

∞∑
n=0

b(2n)qn =
ϕ2(q)

ϕ6(−q)

≡ ϕ2(q)ϕ4(−q)
ϕ2(−q5)

(mod 5).

Thus,
∞∑
n=0

b(2n)(−q)n ≡ ϕ2(−q)ϕ4(q)

ϕ2(q5)
(mod 5). (42)
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Recall Ramanujan’s identity [1, p. 28, Entry 1.6.2]

16q(q2; q2)2∞(q10; q10)2∞ = (ϕ2(q)− ϕ2(q5))(5ϕ2(q5)− ϕ2(q)).

It follows that

− q(q2; q2)2∞(q10; q10)2∞ ≡ ϕ4(q)− ϕ2(q)ϕ2(q5) (mod 5), (43)

and

ϕ2(−q)ϕ4(q) ≡ ϕ2(−q)
(
ϕ2(q)ϕ2(q5)− q(q2; q2)2∞(q10; q10)2∞

)
= ϕ4(−q2)ϕ2(q5)− q(q; q)4∞(q10; q10)2∞

≡ ϕ2(q5)ϕ(−q10)
ϕ(−q2)

− q (q5; q5)∞(q10; q10)2∞
(q; q)∞

(mod 5).

Invoking the above identity, we can rewrite (42) in the following form

∞∑
n=0

b(2n)(−q)n ≡ ϕ(−q10)
ϕ(−q2)

− (q5; q5)∞(q10; q10)2∞
ϕ2(q5)

∞∑
n=0

p(n)qn+1 (mod 5).

If we extract the terms whose power of q is divisible by 5, replace q5 by q, we find that
∞∑
n=0

b(10n)(−q)n ≡ ϕ(−q2)
∞∑
n=0

p(5n)q2n − (q; q)∞(q2; q2)2∞
ϕ2(q)

∞∑
n=0

p(5n+ 4)qn.

Applying (17), we have

∞∑
n=0

b(10n)(−q)n ≡ ϕ(−q2)
∞∑
n=0

p(5n)q2n (mod 5). (44)

Note that the right-hand side of (44), when expanded as a power series, only contains
terms of the form q2m for some m. Thus, we get

b(20n+ 10) ≡ 0 (mod 5).

Selecting the terms for which the power of q is even from (44), replacing q2 by q, we obtain

∞∑
n=0

b(20n)qn ≡ ϕ(−q)
∞∑
n=0

p(5n)qn (mod 5). (45)

Employing (20) and (43), we deduce that

∞∑
n=0

b(20n)qn ≡ ϕ2(−q)ϕ2(−q5) + q
(q10; q10)2∞
(q2; q2)∞

ψ(q2)ϕ2(−q2) (46)

≡ ϕ4(−q)− q(q2; q2)2∞(q10; q10)2∞ + q
(q10; q10)2∞
(q2; q2)∞

· (q4; q4)2∞
(q2; q2)∞

· (q2; q2)4∞
(q4; q4)2∞

≡ ϕ(−q5)
∞∑
n=0

p(n)qn (mod 5). (47)
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Applying (16) to (46), we have
∞∑
n=0

b(20n)qn ≡
(
ϕ2(q2)− 4qψ2(q4)

)
×
(
ϕ2(q10)− 4q5ψ2(q20)

)
+ q

(q10; q10)2∞
(q2; q2)∞

ψ(q2)ϕ2(−q2) (mod 5).

If we extract the terms with even power of q from the above identity and then replace q2

by q, we find that
∞∑
n=0

b(40n)qn ≡ ϕ2(q)ϕ2(q5) + q3ψ2(q2)ψ2(q10) (mod 5). (48)

Using the same argument to (48) yields
∞∑
n=0

b(80n)qn ≡ ϕ2(q)ϕ2(q5) + q3ψ2(q2)ψ2(q10) (mod 5). (49)

Combining (48) with (49) and equating the coefficients of qn, we obtain

b(40n) ≡ b(80n) (mod 5).

It follows from (47) that
∞∑
n=0

b(100n)qn ≡ ϕ(−q)
∞∑
n=0

p(5n)qn (mod 5). (50)

Combining the above identity and (45) together, we conclude that

b(20n) ≡ b(100n) (mod 5).

This completes the proof.

Employing (40) and (41), and by induction, we have the following corollary.

Corollary 13. For all k > 0 and n > 0,

b(40× 2kn) ≡ b(40n) (mod 5), (51)

b(20× 5kn) ≡ b(20n) (mod 5). (52)

Utilizing the above result and the known fact that

b(20) ≡ 2 (mod 5), b(40) ≡ 4 (mod 5), b(380) ≡ 0 (mod 5),

we obtain the following strange congruences modulo 5 for b(n).

Corollary 14. For all k > 0,

b(20 · 5k) ≡ 2 (mod 5), (53)

b(40 · 2k) ≡ 4 (mod 5), (54)

b(380 · 5k) ≡ 0 (mod 5). (55)
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