Arithmetic properties of overcubic partition pairs

Bernard L.S. Lin*
School of Sciences
Jimei University
Xiamen 361021, P.R. China
linlsjmu@163.com

Submitted: May 25, 2014; Accepted: Aug 27, 2014; Published: Sep 4, 2014
Mathematics Subject Classifications: 05A17, 11P83

Abstract

Let $\bar{b}(n)$ denote the number of overcubic partition pairs of n. In this paper, we establish two Ramanujan type congruences and several infinite families of congruences modulo 3 satisfied by $\bar{b}(n)$. For modulus 5 , we obtain one Ramanujan type congruence and two congruence relations for $\bar{b}(n)$, from which some strange congruences are derived.

Keywords: overcubic partition pairs; theta function; congruence

1 Introduction

In a series of papers $[4,5,6]$, Chan investigated congruence properties of cubic partition function $a(n)$ which is defined by

$$
\begin{equation*}
\frac{1}{(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{\infty} a(n) q^{n} . \tag{1}
\end{equation*}
$$

Throughout this paper, we assume $|q|<1$ and adopt the following customary notation

$$
(a ; q)_{\infty}=\prod_{n=1}^{\infty}\left(1-a q^{n-1}\right)
$$

[^0]After Chan's work, many analogous partition functions have been studied. Kim [10] studied its overpartiton analog in which the overcubic partition function $\bar{a}(n)$ was given by

$$
\begin{equation*}
\frac{(-q ; q)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{\infty} \bar{a}(n) q^{n} \tag{2}
\end{equation*}
$$

It is worth mentioning that Hirschhorn [8] has given an elementary proof of the results satisfied by $\bar{a}(n)$ appeared in [10]. Later, Zhao and Zhong [14] established congruences modulo 5,7 and 9 for the following partition function

$$
\begin{equation*}
\frac{1}{(q ; q)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}}=\sum_{n=0}^{\infty} b(n) q^{n} \tag{3}
\end{equation*}
$$

Kim [11] introduced two partition statistics to explain the congruences modulo 5 and 7 for $b(n)$. Since $b(n)$ counts a pair of cubic partitions, Kim [11] christened $b(n)$ the number of cubic partition pairs. Zhou [15] also found combinatorial interpretations for the congruences modulo 5 and 7 satisfied by $b(n)$. Recently, Kim [12] focused on studying congruence properties of $\bar{b}(n)$ whose generating function is

$$
\begin{equation*}
\frac{(-q ; q)_{\infty}^{2}\left(-q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}}=\sum_{n=0}^{\infty} \bar{b}(n) q^{n} \tag{4}
\end{equation*}
$$

Similarly, Kim named $\bar{b}(n)$ as the number of overcubic partition pairs of n. Using arithmetic properties of quadratic forms and modular forms, Kim [12] derived the following two congruences

$$
\begin{align*}
\bar{b}(8 n+7) & \equiv 0(\bmod 64), \tag{5}\\
\bar{b}(9 n+3) & \equiv 0(\bmod 3) . \tag{6}
\end{align*}
$$

The paper is organized as follows. In Section 2 we introduce necessary notation and some preliminary results. In Section 3 we aim to establish two Ramanujan type congruences and several infinite families of congruences modulo 3 satisfied by $\bar{b}(n)$. We obtain some unexpected congruence results for $\bar{b}(n)$ with modulus 5 in Section 4.

2 Preliminaries

We first recall that Ramanujan's general theta function $f(a, b)$ is defined by

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n-1) / 2} b^{n(n+1) / 2}, \quad|a b|<1 . \tag{7}
\end{equation*}
$$

In Ramanujan's notation, the Jacobi triple product identity takes the shape

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} \tag{8}
\end{equation*}
$$

Three special cases of $f(a, b)$ are defined by

$$
\begin{align*}
\varphi(q) & :=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}^{2}}, \tag{9}\\
\psi(q) & :=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}}, \tag{10}\\
f(-q) & :=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty}, \tag{11}
\end{align*}
$$

where the above three product representations follows from (8).
We now list the necessary preliminary results in the following lemmas, which will be used in our later proofs.

Lemma 1.

$$
\begin{align*}
\varphi(-q) & =\frac{(q ; q)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{12}\\
\varphi^{2}\left(-q^{2}\right) & =\varphi(q) \varphi(-q) \tag{13}
\end{align*}
$$

Proof. Applying (8), we have

$$
\begin{aligned}
\varphi(-q) & =\left(q ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty} \\
& =\frac{(q ; q)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

Multiplying (9) by (12), we immediately get (13).

Lemma 2.

$$
\begin{align*}
\varphi(q) & =\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right) \tag{14}\\
\varphi(q) & =\varphi\left(q^{4}\right)+2 q \psi\left(q^{8}\right) \tag{15}\\
\varphi^{2}(q) & =\varphi^{2}\left(q^{2}\right)+4 q \psi^{2}\left(q^{4}\right) \tag{16}
\end{align*}
$$

Proof. The detailed proofs can be found in [2, p. 49] and [2, p. 40] respectively.
In Section 4, we will involve Ramanujan's congruence modulo 5 for partition function $p(n)$. It is well known that the generating function of $p(n)$ satisfies

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

The congruence modulo 5 for $p(n)$ which we require is stated as follows.

Lemma 3. For all $n \geqslant 0$,

$$
\begin{equation*}
p(5 n+4) \equiv 0(\bmod 5) \tag{17}
\end{equation*}
$$

Proof. See [3, p. 31] for a proof.
An overpartition of n is a partition of n for which the first occurrence of a number may be overlined. Let $\bar{p}(n)$ denote the number of overpartitions of n. For convenience, define $\bar{p}(0)=1$. Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, the generating function for overpartitions satisfies

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}}=\frac{1}{\varphi(-q)} \tag{18}
\end{equation*}
$$

Recently, Chen and Xia [7] confirmed the following congruence first conjectured by Hirschhorn and Sellers [9]

$$
\begin{equation*}
\bar{p}(40 n+35) \equiv 0(\bmod 5) \tag{19}
\end{equation*}
$$

In [13], the author presented an alternative proof of (19) by firstly establishing the following congruence relation.

Lemma 4.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}(5 n) q^{n} \equiv \varphi(-q) \varphi^{2}\left(-q^{5}\right)+q \frac{\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \psi\left(q^{2}\right) \varphi(q)(\bmod 5) . \tag{20}
\end{equation*}
$$

At the end of this section, we introduce the following congruence relations which will be frequently adopted throughout the paper without explicitly mentioning it.

Lemma 5. For any prime p, we have

$$
\begin{aligned}
(q ; q)_{\infty}^{p} & \equiv\left(q^{p} ; q^{p}\right)_{\infty}(\bmod p), \\
\varphi(-q)^{p} & \equiv \varphi\left(-q^{p}\right)(\bmod p)
\end{aligned}
$$

Proof. By the binomial theorem, we have

$$
(1-q)^{p} \equiv 1-q^{p}(\bmod p),
$$

which yields the first congruence relation. The second congruence relation follows from the first congruence relation and the product representation for $\varphi(-q)$.

3 Congruences modulo 3 for $\bar{b}(n)$

In this section, we aim to establish two Ramanujan type congruences and several infinite families of congruences modulo 3 for $\bar{b}(n)$. We begin by rewriting the generating function
for $\bar{b}(n)$ in the following form

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{b}(n) q^{n} & =\frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{4}\left(q^{2} ; q^{2}\right)_{\infty}^{2}} \\
& =\varphi^{2}(q) \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{6}}{\left(q^{2} ; q^{2}\right)_{\infty}^{12}} \tag{21}
\end{align*}
$$

First we introduce two Ramanujan type congruences modulo 3 for $\bar{b}(n)$.
Theorem 6. For all $n \geqslant 0$,

$$
\begin{align*}
\bar{b}(12 n+10) & \equiv 0(\bmod 3) \tag{22}\\
\bar{b}(24 n+16) & \equiv 0(\bmod 3) \tag{23}
\end{align*}
$$

Proof. Invoking (16), we can reformulate (21) as

$$
\sum_{n=0}^{\infty} \bar{b}(n) q^{n}=\left(\varphi^{2}\left(q^{2}\right)+4 q \psi^{2}\left(q^{4}\right)\right) \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{6}}{\left(q^{2} ; q^{2}\right)_{\infty}^{12}}
$$

Choosing the terms for which the power of q is a multiple of 2 , replacing q^{2} by q yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(2 n) q^{n}=\varphi^{2}(q) \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{6}}{(q ; q)_{\infty}^{12}} \tag{24}
\end{equation*}
$$

and

$$
\sum_{n=0}^{\infty} \bar{b}(2 n) q^{n} \equiv\left(\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right)\right)^{2} \frac{\left(q^{6} ; q^{6}\right)_{\infty}^{2}}{\left(q^{3} ; q^{3}\right)_{\infty}^{4}}(\bmod 3)
$$

If we extract those terms whose power of q is congruent to 2 modulo 3 , divide by q^{2}, and replace q^{3} by q, we obtain

$$
\sum_{n=0}^{\infty} \bar{b}(6 n+4) q^{n} \equiv f^{2}\left(q, q^{5}\right) \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{4}}(\bmod 3)
$$

It is straightforward to check that

$$
f\left(q, q^{5}\right) \equiv \frac{(q ; q)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}(\bmod 3)
$$

Combining the above two identities together, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(6 n+4) q^{n} \equiv\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{12} ; q^{12}\right)_{\infty}(\bmod 3) \tag{25}
\end{equation*}
$$

Equating the coefficients of $q^{2 n+1}$ and $q^{4 n+2}$ respectively, we deduce that for all $n \geqslant 0$,

$$
\bar{b}(12 n+10) \equiv \bar{b}(24 n+16) \equiv 0(\bmod 3) .
$$

This completes the proof.

As a consequence of (25), we obtain the following corollary.
Corollary 7. We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(24 n+4) q^{n} \equiv(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}(\bmod 3) \tag{26}
\end{equation*}
$$

With the aid of (26), we get the following result.
Theorem 8. For any prime $p \geqslant 5,\left(\frac{-3}{p}\right)=-1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}\left(24 p n+4 p^{2}\right) q^{n} \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{3 p} ; q^{3 p}\right)_{\infty}(\bmod 3) \tag{27}
\end{equation*}
$$

Proof. Substituting (11) into (26), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(24 n+4) q^{n} \equiv \sum_{m, n=-\infty}^{\infty}(-1)^{m+n} q^{m(3 m+1) / 2+3 n(3 n+1) / 2}(\bmod 3) \tag{28}
\end{equation*}
$$

We claim that if

$$
\begin{equation*}
\frac{m(3 m+1)}{2}+\frac{3 n(3 n+1)}{2} \equiv \frac{p^{2}-1}{6}(\bmod p), \tag{29}
\end{equation*}
$$

there exist some k and l such that

$$
\frac{m(3 m+1)}{2}+\frac{3 n(3 n+1)}{2}=\frac{p^{2}-1}{6}+\frac{p^{2}\left(3 k^{2}+k\right)}{2}+\frac{3 p^{2}\left(3 l^{2}+l\right)}{2}
$$

and $(-1)^{m+n}=(-1)^{k+l}$.
First it follows from (29) that

$$
(6 m+1)^{2}+3(6 n+1)^{2} \equiv 0(\bmod p),
$$

which implies that $6 m+1 \equiv 6 n+1 \equiv 0(\bmod p)$ since $\left(\frac{-3}{p}\right)=-1$.
Case 1. If $p \equiv 1(\bmod 6)$, then

$$
m \equiv n \equiv \frac{p-1}{6}(\bmod p) .
$$

Let $m=k p+(p-1) / 6$ and $n=l p+(p-1) / 6$, we have

$$
\frac{m(3 m+1)}{2}+\frac{3 n(3 n+1)}{2}=\frac{p^{2}-1}{6}+\frac{p^{2}\left(3 k^{2}+k\right)}{2}+\frac{3 p^{2}\left(3 l^{2}+l\right)}{2}
$$

and

$$
(-1)^{m+n}=(-1)^{(k+l) p+(p-1) / 3}=(-1)^{(k+l) p}=(-1)^{k+l} .
$$

Case 2. If $p \equiv-1(\bmod 6)$, then

$$
m \equiv n \equiv \frac{-p-1}{6}(\bmod p) .
$$

Let $m=-k p-\frac{p+1}{6}$ and $n=-l p-(p+1) / 6$, we also have

$$
\frac{m(3 m+1)}{2}+\frac{3 n(3 n+1)}{2}=\frac{p^{2}-1}{6}+\frac{p^{2}\left(3 k^{2}+k\right)}{2}+\frac{3 p^{2}\left(3 l^{2}+l\right)}{2}
$$

and

$$
(-1)^{m+n}=(-1)^{-(k+l) p-(p+1) / 3}=(-1)^{(k+l) p}=(-1)^{k+l} .
$$

Hence our claim holds.
If we extract those terms whose power of q is congruent to $\left(p^{2}-1\right) / 6$ modulo p from (28), and employ the above analysis, we obtain

$$
\sum_{n=0}^{\infty} \bar{b}\left(24\left(p n+\left(p^{2}-1\right) / 6\right)+4\right) q^{p n+\frac{p^{2}-1}{6}} \equiv \sum_{k, l=-\infty}^{\infty}(-1)^{k+l} q^{\frac{p^{2}-1}{6}+\frac{p^{2}\left(3 k^{2}+k\right)}{2}+\frac{3 p^{2}\left(3 l^{2}+l\right)}{2}}(\bmod 3),
$$

which can be simplified as

$$
\sum_{n=0}^{\infty} \bar{b}\left(24 p n+4 p^{2}\right) q^{n} \equiv \sum_{k, l=-\infty}^{\infty}(-1)^{k+l} q^{p\left(3 k^{2}+k\right) / 2+3 p\left(3 l^{2}+l\right) / 2}(\bmod 3) .
$$

Applying (11), we have

$$
\sum_{n=0}^{\infty} \bar{b}\left(24 p n+4 p^{2}\right) q^{n} \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{3 p} ; q^{3 p}\right)_{\infty}(\bmod 3),
$$

which finishes the proof.
From Theorem 8 and by induction, we obtain the following theorem.
Theorem 9. For any prime $p \geqslant 5,\left(\frac{-3}{p}\right)=-1, \alpha \geqslant 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}\left(24 p^{2 \alpha-1} n+4 p^{2 \alpha}\right) q^{n} \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{3 p} ; q^{3 p}\right)_{\infty}(\bmod 3) \tag{30}
\end{equation*}
$$

Note that the right-hand side of (30), when expanded as a power series, contains only terms of the form $q^{p m}$ for some m. Based on this fact, we deduce the following corollary.
Corollary 10. For any prime $p \geqslant 5,\left(\frac{-3}{p}\right)=-1, \alpha \geqslant 1$, and all $n \geqslant 0$, we have

$$
\begin{equation*}
\bar{b}\left(24 p^{2 \alpha} n+24 p^{2 \alpha-1} i+4 p^{2 \alpha}\right) \equiv 0(\bmod 3), \tag{31}
\end{equation*}
$$

where $i=1,2, \ldots, p-1$.

To conclude this section, we present another two infinite families of congruences modulo 3 for $\bar{b}(n)$.
Theorem 11. For $\alpha \geqslant 2$ and all $n \geqslant 0$,

$$
\begin{align*}
\bar{b}\left(3^{\alpha}(3 n+2)\right) & \equiv 0(\bmod 3), \tag{32}\\
\bar{b}\left(3^{\alpha}(4 n+2)\right) & \equiv 0(\bmod 3) . \tag{33}
\end{align*}
$$

Proof. Putting (14) into (21), we find that

$$
\sum_{n=0}^{\infty} \bar{b}(n) q^{n} \equiv\left(\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right)\right)^{2} \frac{\left(q^{12} ; q^{12}\right)_{\infty}^{2}}{\left(q^{6} ; q^{6}\right)_{\infty}^{4}}(\bmod 3) .
$$

Collecting the terms whose power of q is a multiple of 3 , replacing q^{3} by q, we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{b}(3 n) q^{n} & \equiv \varphi^{2}\left(q^{3}\right) \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}^{4}} \\
& \equiv \varphi^{2}\left(q^{3}\right) \frac{1}{\varphi\left(-q^{2}\right)^{2}} \\
& \equiv \varphi^{2}\left(q^{3}\right) \frac{\varphi\left(-q^{2}\right)}{\varphi\left(-q^{6}\right)} \\
& \equiv \varphi^{2}\left(q^{3}\right) \frac{\varphi\left(-q^{18}\right)-2 q^{2} f\left(-q^{6},-q^{30}\right)}{\varphi\left(-q^{6}\right)}(\bmod 3) \tag{34}
\end{align*}
$$

It can be readily seen that no terms on the right-hand of (34) can have its power of q to be congruent to 1 modulo 3 . Thus, equating the coefficients of $q^{3 n+1}$ yields

$$
\bar{b}(9 n+3) \equiv 0(\bmod 3),
$$

which is due to Kim [12].
Extracting those terms with power of q being a multiple of 3 from (34), then replacing q^{3} by q, we conclude that

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{b}(9 n) q^{n} & \equiv \frac{\varphi^{2}(q) \varphi\left(-q^{6}\right)}{\varphi\left(-q^{2}\right)} \\
& \equiv \varphi^{2}(q) \varphi^{2}\left(-q^{2}\right) \\
& \equiv \varphi\left(q^{3}\right) \varphi(-q) \tag{35}\\
& \equiv \varphi\left(q^{3}\right)\left(\varphi\left(-q^{9}\right)-2 q f\left(-q^{3},-q^{15}\right)\right)(\bmod 3) \tag{36}
\end{align*}
$$

Furthermore, if we choose those terms in which the power of q is a multiple of 3 from (36), and replace q^{3} by q, we obtain

$$
\sum_{n=0}^{\infty} \bar{b}(27 n) q^{n} \equiv \varphi(q) \varphi\left(-q^{3}\right)(\bmod 3) .
$$

Combing together (35) with the above congruence relation, we find that

$$
\sum_{n=0}^{\infty} \bar{b}(9 n) q^{n} \equiv \sum_{n=0}^{\infty} \bar{b}(27 n)(-q)^{n}(\bmod 3),
$$

from which we deduce that for $n \geqslant 0$,

$$
\begin{equation*}
\bar{b}(9 n) \equiv(-1)^{n} \bar{b}(27 n)(\bmod 3) \tag{37}
\end{equation*}
$$

For each term on the right-hand of (36), the power of q can not be congruent to 2 modulo 3 , thus we immediately derive that for $n \geqslant 0$,

$$
\begin{equation*}
\bar{b}(27 n+18) \equiv 0(\bmod 3) \tag{38}
\end{equation*}
$$

On the other hand, substituting (15) into (35), we see that

$$
\sum_{n=0}^{\infty} \bar{b}(9 n) q^{n} \equiv\left(\varphi\left(q^{12}\right)+2 q^{3} \psi\left(q^{24}\right)\right) \times\left(\varphi\left(q^{4}\right)-2 q \psi\left(q^{8}\right)\right)(\bmod 3)
$$

It follows from the fact there exist no terms of the form $q^{4 n+2}$ in the above identity that

$$
\begin{equation*}
\bar{b}(36 n+18) \equiv 0(\bmod 3) \tag{39}
\end{equation*}
$$

Based on (37), (38) and (39), and proceeding by induction on α, the desired results (32) and (33) follows immediately.

4 Congruences modulo 5 for $\bar{b}(n)$

The goal of this section is devoted to proving the following unexpected results, from which we obtain some strange congruences modulo 5 for $\bar{b}(n)$.

Theorem 12. For all $n \geqslant 0$, we have $\bar{b}(20 n+10) \equiv 0(\bmod 5)$ and

$$
\begin{align*}
\bar{b}(40 n) & \equiv \bar{b}(80 n)(\bmod 5) \tag{40}\\
\bar{b}(20 n) & \equiv \bar{b}(100 n)(\bmod 5) \tag{41}
\end{align*}
$$

Proof. From (24), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \bar{b}(2 n) q^{n} & =\frac{\varphi^{2}(q)}{\varphi^{6}(-q)} \\
& \equiv \frac{\varphi^{2}(q) \varphi^{4}(-q)}{\varphi^{2}\left(-q^{5}\right)}(\bmod 5)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(2 n)(-q)^{n} \equiv \frac{\varphi^{2}(-q) \varphi^{4}(q)}{\varphi^{2}\left(q^{5}\right)}(\bmod 5) \tag{42}
\end{equation*}
$$

Recall Ramanujan's identity [1, p. 28, Entry 1.6.2]

$$
16 q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2}=\left(\varphi^{2}(q)-\varphi^{2}\left(q^{5}\right)\right)\left(5 \varphi^{2}\left(q^{5}\right)-\varphi^{2}(q)\right)
$$

It follows that

$$
\begin{equation*}
-q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \equiv \varphi^{4}(q)-\varphi^{2}(q) \varphi^{2}\left(q^{5}\right)(\bmod 5), \tag{43}
\end{equation*}
$$

and

$$
\begin{aligned}
\varphi^{2}(-q) \varphi^{4}(q) & \equiv \varphi^{2}(-q)\left(\varphi^{2}(q) \varphi^{2}\left(q^{5}\right)-q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2}\right) \\
& =\varphi^{4}\left(-q^{2}\right) \varphi^{2}\left(q^{5}\right)-q(q ; q)_{\infty}^{4}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \\
& \equiv \frac{\varphi^{2}\left(q^{5}\right) \varphi\left(-q^{10}\right)}{\varphi\left(-q^{2}\right)}-q \frac{\left(q^{5} ; q^{5}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{(q ; q)_{\infty}}(\bmod 5)
\end{aligned}
$$

Invoking the above identity, we can rewrite (42) in the following form

$$
\sum_{n=0}^{\infty} \bar{b}(2 n)(-q)^{n} \equiv \frac{\varphi\left(-q^{10}\right)}{\varphi\left(-q^{2}\right)}-\frac{\left(q^{5} ; q^{5}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\varphi^{2}\left(q^{5}\right)} \sum_{n=0}^{\infty} p(n) q^{n+1}(\bmod 5)
$$

If we extract the terms whose power of q is divisible by 5 , replace q^{5} by q, we find that

$$
\sum_{n=0}^{\infty} \bar{b}(10 n)(-q)^{n} \equiv \varphi\left(-q^{2}\right) \sum_{n=0}^{\infty} \bar{p}(5 n) q^{2 n}-\frac{(q ; q)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{\varphi^{2}(q)} \sum_{n=0}^{\infty} p(5 n+4) q^{n}
$$

Applying (17), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(10 n)(-q)^{n} \equiv \varphi\left(-q^{2}\right) \sum_{n=0}^{\infty} \bar{p}(5 n) q^{2 n}(\bmod 5) \tag{44}
\end{equation*}
$$

Note that the right-hand side of (44), when expanded as a power series, only contains terms of the form $q^{2 m}$ for some m. Thus, we get

$$
\bar{b}(20 n+10) \equiv 0(\bmod 5)
$$

Selecting the terms for which the power of q is even from (44), replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(20 n) q^{n} \equiv \varphi(-q) \sum_{n=0}^{\infty} \bar{p}(5 n) q^{n}(\bmod 5) . \tag{45}
\end{equation*}
$$

Employing (20) and (43), we deduce that

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{b}(20 n) q^{n} & \equiv \varphi^{2}(-q) \varphi^{2}\left(-q^{5}\right)+q \frac{\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \psi\left(q^{2}\right) \varphi^{2}\left(-q^{2}\right) \tag{46}\\
& \equiv \varphi^{4}(-q)-q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2}+q \frac{\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \cdot \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \cdot \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{4}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}} \\
& \equiv \varphi\left(-q^{5}\right) \sum_{n=0}^{\infty} \bar{p}(n) q^{n}(\bmod 5) \tag{47}
\end{align*}
$$

Applying (16) to (46), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \bar{b}(20 n) q^{n} & \equiv\left(\varphi^{2}\left(q^{2}\right)-4 q \psi^{2}\left(q^{4}\right)\right) \times\left(\varphi^{2}\left(q^{10}\right)-4 q^{5} \psi^{2}\left(q^{20}\right)\right) \\
& +q \frac{\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}} \psi\left(q^{2}\right) \varphi^{2}\left(-q^{2}\right)(\bmod 5)
\end{aligned}
$$

If we extract the terms with even power of q from the above identity and then replace q^{2} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(40 n) q^{n} \equiv \varphi^{2}(q) \varphi^{2}\left(q^{5}\right)+q^{3} \psi^{2}\left(q^{2}\right) \psi^{2}\left(q^{10}\right)(\bmod 5) \tag{48}
\end{equation*}
$$

Using the same argument to (48) yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(80 n) q^{n} \equiv \varphi^{2}(q) \varphi^{2}\left(q^{5}\right)+q^{3} \psi^{2}\left(q^{2}\right) \psi^{2}\left(q^{10}\right)(\bmod 5) \tag{49}
\end{equation*}
$$

Combining (48) with (49) and equating the coefficients of q^{n}, we obtain

$$
\bar{b}(40 n) \equiv \bar{b}(80 n)(\bmod 5)
$$

It follows from (47) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{b}(100 n) q^{n} \equiv \varphi(-q) \sum_{n=0}^{\infty} \bar{p}(5 n) q^{n}(\bmod 5) . \tag{50}
\end{equation*}
$$

Combining the above identity and (45) together, we conclude that

$$
\bar{b}(20 n) \equiv \bar{b}(100 n)(\bmod 5)
$$

This completes the proof.
Employing (40) and (41), and by induction, we have the following corollary.
Corollary 13. For all $k \geqslant 0$ and $n \geqslant 0$,

$$
\begin{align*}
\bar{b}\left(40 \times 2^{k} n\right) & \equiv \bar{b}(40 n)(\bmod 5) \tag{51}\\
\bar{b}\left(20 \times 5^{k} n\right) & \equiv \bar{b}(20 n)(\bmod 5) \tag{52}
\end{align*}
$$

Utilizing the above result and the known fact that

$$
\bar{b}(20) \equiv 2(\bmod 5), \bar{b}(40) \equiv 4(\bmod 5), \bar{b}(380) \equiv 0(\bmod 5),
$$

we obtain the following strange congruences modulo 5 for $\bar{b}(n)$.
Corollary 14. For all $k \geqslant 0$,

$$
\begin{align*}
\bar{b}\left(20 \cdot 5^{k}\right) & \equiv 2(\bmod 5), \tag{53}\\
\bar{b}\left(40 \cdot 2^{k}\right) & \equiv 4(\bmod 5), \tag{54}\\
\bar{b}\left(380 \cdot 5^{k}\right) & \equiv 0(\bmod 5) . \tag{55}
\end{align*}
$$

Acknowledgements

The author would like to thank the referee for helpful suggestions.

References

[1] G. E. Andrews and B. C. Berndt. Ramanujan's Lost Notebook, Part I. Springer, 2000.
[2] B. C. Berndt. Ramanujan's Notebooks, Part III. Springer, 1991.
[3] B. C. Berndt. Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, 2006.
[4] H. -C. Chan. Ramanujan's cubic continued fraction and a generalization of his "most beautiful identity". Int. J. Number Theory, 6:673-680, 2010.
[5] H. -C. Chan. Ramanujan's cubic continued fraction and Ramanujan type congruences for a ceratin partition function. Int. J. Number Theory, 6:819-834, 2010.
[6] H. -C. Chan. Distribution of a certain partition function modulo powers of primes. Acta Math. Sin., 27:625-634, 2011.
[7] W. Y. C. Chen and E. X. W. Xia. Proof of a conjecture of Hirschhorn and Sellers on overpartition. Acta Arith., 163:59-69, 2014.
[8] M. D. Hirschhorn. A note on overcubic partitions. New Zealand J. Math., 42:229-234, 2012.
[9] M. D. Hirschhorn and J. A. Sellers. Arithmetic relations for overpartitions. J. Combin. Math. Combin. Comp., 53:65-73, 2005.
[10] B. Kim. The overcubic partition function mod 3. Proceedings of Ramanujan Rediscovered 2009: A Conference in Memory of K. Venkatachaliengar on the Centenary of His Birth, Lecture Note Series of the Ramanujan Mathematical Society, 14:157-163, 2010.
[11] B. Kim. Partition statistics for cubic partition pairs. Electron. J. Combin., 18:\#P128, 2011.
[12] B. Kim. On partition congruences for overcubic partition pairs. Commun. Korean Math. Soc., 27:477-482, 2012.
[13] B. L. S. Lin. A new proof of a conjecture of Hirschhorn and Sellers on overpartitions. Ramanujan J., doi:10.1007/s11139-014-9598-z, to appear.
[14] H. Zhao and Z. Zhong. Ramanujan type congruences for a partition function. Electron. J. Combin., 18:\#P58, 2011.
[15] R. R. Zhou. Multiranks for partitions into Multi-Colors. Electron. J. Combin., 19:\#P8, 2012.

[^0]: *Supported by the Training Program Foundation for Distinguished Young Scholars and Research Talents of Fujian Higher Education, and the Natural Science Foundation of Fujian Province of China (No. 2013J05011).

