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Abstract

Motivated by the ‘subgraphs world’ view of the ferromagnetic Ising model, we
analyse the mixing times of Glauber dynamics based on subset expansion expressions
for classes of graph, hypergraph and matroid polynomials. With a canonical paths
argument, we demonstrate that the chains defined within this framework mix rapidly
upon graphs, hypergraphs and matroids of bounded tree-width.

This extends known results on rapid mixing for the Tutte polynomial, adjacency-
rank (R2-)polynomial and interlace polynomial. In particular Glauber dynamics for
the R2-polynomial was known to mix rapidly on trees, which led to hope of rapid
mixing on a wider class of graphs. We show that Glauber dynamics for a very
wide class of polynomials mixes rapidly on graphs of bounded tree-width, including
many cases in which the Glauber dynamics does not mix rapidly for all graphs.
This demonstrates that rapid mixing on trees or bounded tree-width graphs does
not offer strong evidence towards rapid mixing on all graphs.
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1 Introduction

We analyse a subset-sampling Markov chain on graphs (and later hypergraphs and ma-
troids) that is derived from subset expansion1 graph functions, which include many well-
known graph polynomials. We show that this chain mixes rapidly on graphs of constant
tree-width.

An edge subset expansion formula for a graph function P is written as follows: for any
graph G = (V,E),

P(G) =
∑
S⊆E

w((V, S)) (1)

for some graph function w, where (V, S) denotes the graph with vertex set V and edge
set S. If the function w is non-negative, that is, w(G) > 0 for all graphs G, we refer
to (1) as an edge subset weighting for P and to w as its weight function. In fact, we
shall need the weight function to be positive — from a statistical physics viewpoint, this
results in a so-called ‘soft-core model’. One example of such a function that is prominent
in statistical physics, theoretical computer science, and discrete probability is the random
cluster model partition function, which can be defined for any G = (V,E) and parameters
q, µ as

ZRC(G; q, µ) :=
∑
S⊆E

qκ(S)µ|S|, (2)

where κ(S) is the number of components in (V, S). For more on the random cluster model,
see an extensive treatise by Grimmett [33]. Notice that, if q, µ > 0, then w((V, S)) :=
qκ(S)µ|S| provides an edge subset weighting for ZRC(G; q, µ).

A common approach to approximating graph functions expressed by subset expansion
formulae is through Markov chain Monte Carlo sampling (MCMC). A Markov chain with
state space Ω = {S : S ⊆ E}(= 2E) and stationary distribution π(·) ∝ w((V, ·)) can
be used to sample subsets of the edges. In this approach, an efficient approximation
scheme relies on rapid convergence of the Markov chain to its stationary distribution —
so-called rapid mixing. In our setting, a natural Markov chain is Glauber dynamics [28],
the single bond flip chain, in which possible transitions are the addition or removal of one
edge from the current subset (state), with transition probabilities designed to produce
the desired stationary distribution. In addition to being a principal tool in the design of
efficient approximation schemes for counting problems, MCMC has seen widespread use
in computational physics, computational biology, machine learning, and statistics. There
have been steady advances in our understanding of such random processes and in showing
how quickly they generate good approximations of useful probability distributions in huge,
complex data sets. See the lecture notes of Jerrum [40] or a survey by Randall [56] for an
overview of the application of these techniques in theoretical computer science.

1The term ‘subset expansion’ was coined by Gordon and Traldi [32], though it is a special type of
‘states model expansion’ which is commonly applied in statistical physics.
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We postpone the precise statement of our main result, Theorem 1, as it requires a host
of definitions, but here we give a cursory description. We show that when the weight func-
tion w of some subset expansion formula is strictly positive and λ-multiplicative (as defined
in Subsection 2.1), then Glauber dynamics is rapidly mixing on graphs of bounded tree-
width. Roughly speaking, the condition of λ-multiplicativity is that the weight function
is multiplicative with respect to the operation of disjoint graph union as well as “nearly
multiplicative” with respect to the operation of composition via small vertex cuts. For
now, we remark that many important graph polynomials (e.g. ZRC(G; q, µ)) obey it. The
results may be extended to cover hypergraphs and matroids, and polynomials expressed
by vertex subset expansion rather than edge subset expansion. Our general approach is
an extension of work by Ge and Štefankovič [26] (see also an earlier version [27]), which
showed that the Markov chain for the (soft-core) random cluster model — i.e. weighted
according to (2) — mixes rapidly upon graphs of bounded tree-width.

Our work started with the R2-polynomial; Ge and Štefankovič introduced both this
polynomial and its associated Glauber dynamics in an attempt to devise an approximation
scheme for #BIS, the problem of counting the number of independent sets in a bipartite
graph. Their adjacency-rank polynomial is defined for any G = (V,E) and parameters
q, µ as

R2(G; q, µ) :=
∑
S⊆E

qrk2(S)µ|S|, (3)

where rk2(S) is the F2-rank of the adjacency matrix for (V, S). Using a combinatorial in-
terpretation of rk2 applicable only to bipartite graphs, they showed that the edge subset
Glauber dynamics (using the weighting in (3)) mixes rapidly on trees. They conjec-
tured that the chain mixes rapidly on all bipartite graphs, cf. Conjecture 1 in [27]. Our
initial objective was to show that the chain mixes rapidly not only on trees, but also
on all bipartite graphs of bounded tree-width. We achieved this and more: indeed, we
have shown that the R2-polynomial fits in our framework without recourse to the com-
binatorial interpretation for bipartite graphs, and hence that the Markov chain for the
R2-polynomial mixes rapidly upon all graphs of bounded tree-width. However, in ex-
tending the approach of Ge and Štefankovič even further to all λ-multiplicative weight
functions, we have highlighted its generality with regard to polynomials and its depen-
dence on bounded tree-width. Since the proof approach works for such a great range of
chains that do not mix rapidly in general, it seems that the approach will not extend to
larger graph classes without significant alteration. Thus the fact that Glauber dynamics
associated with the R2-polynomial mixes rapidly on trees cannot be taken as support for
the conjecture that it mixes rapidly on all graphs. Indeed, the conjectured rapid mixing of
their chain on all bipartite graphs has since been disproved by Goldberg and Jerrum [30].

The structure of this paper is as follows. In Subections 1.1 and 1.2, we present further
background to the work, to graph polynomials and their computation, as well as exten-
sions. In Section 2, we give the definitions that are necessary for a detailed description
of the main theorem. We give the main theorem in Section 3 and then indicate some
of its consequences. We present the proofs in Section 4. In Section 5, we extend our
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results to Glauber dynamics on vertex subsets, that is, on induced subgraphs. For edge
subset Glauber dynamics, we outline an extension to hypergraphs in Section 6. We give
an indication of how to extend the approach to matroids in Section 7.

1.1 Context

The random cluster model has been widely studied both as given in (2), and as the Tutte
polynomial of a graph [61]. Under a suitable transformation, ZRC(G; q, µ) is equivalent
to the Tutte polynomial, defined for any G = (V,E) and parameters x, y as

T (G;x, y) :=
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S), (4)

where r(S) is the F2-rank of the incidence matrix for (V, S). A wealth of combinatorial
and structural information can be obtained from evaluations of this function. Indeed, this
polynomial has a remarkable universality property, which informally speaking says that
it subsumes any graph invariant that can be computed by deletion and contraction of
edges [54], cf. [64]. In addition, the Tutte polynomial specialises to several key univariate
graph polynomials, including the chromatic polynomial of Birkhoff [6]. It specialises to
the Jones polynomial in knot theory [42]. By its connection with the random cluster
model, it also generalises the partition functions of the Ising [38] and Potts [55] models2.
Consult the monograph of Welsh [63] for more on these crucial connections. In addition
to ZRC(G; q, µ) and T (G;x, y), we shall highlight a few other specific polynomials from
the literature, but for a broad account of the development of graph polynomials, consult
the recent surveys by Makowsky [47] and by Ellis-Monaghan and Merino [23, 24].

It was shown in 1990 by Jaeger, Vertigan and Welsh [39] that, in general, for fixed
(rational) values of x and y, the evaluation of T (G;x, y) is #P-hard, except on a few
special points and curves in the (x, y)-plane. As a result, there have been substantial
efforts since then to pin down the approximation complexity of computing T (G;x, y). For
large swaths of the (x, y)-plane, it is now known that the computation of T (G;x, y) ei-
ther does not admit a fully polynomial-time randomised approximation scheme (FPRAS)
unless RP = NP, or is at least as hard as #BIS (the problem of counting independent
sets in bipartite graphs) under approximation-preserving reductions, cf. Goldberg and
Jerrum [29]. The sole positive approximation result applicable to general graphs is the
breakthrough FPRAS, using MCMC, by Jerrum and Sinclair [41] for the partition func-
tion of the ferromagnetic Ising model — this corresponds to computation of T (G;x, y)
along the portion of the parabola (x− 1)(y− 1) = 2 with y > 1. Various approaches have
led to efficient approximations in some regions of the Tutte plane for specific classes of
graphs — cf. e.g. Alon, Frieze and Welsh [2], Karger [43], and Bordewich [12].

The polynomials and Markov chains that we capture in our framework are defined for
all graphs; however, we obtain rapid mixing results only on classes of graphs of bounded
(constant) tree-width. For brevity, we do not define tree-width here, but merely say

2If x, y > 1 or q, µ > 0, then, respectively, T (G;x, y) or ZRC(G; q, µ) generalise the partition functions
of the ferromagnetic Ising and Potts models.
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that it is an essential concept in structural graph theory and parameterised complexity
— see modern surveys on the topic by Bodlaender [11] and Hliněný et al. [35]. The
restriction of tree-width is commonly used in graph algorithms to reduce the complexity
of a computationally difficult problem, usually by way of dynamic programming. For
example, it is already known that many of the polynomials covered here can be exactly
evaluated efficiently for graphs of bounded tree-width. Independently, Andrzejak [3] and
Noble [50] exhibited polynomial-time algorithms to compute the Tutte polynomial of
graphs with bounded tree-width. Works of Makowsky and Mariño [48] and Noble [51]
have significantly generalised this, in the former case, to a wide array of polynomials
under the framework of monadic second order logic (MSOL), and, in the latter case, to
the so-called U -polynomial [52], a polynomial that includes not only the Tutte polynomial
but also a powerful type of knot invariant as special cases.

Even though many of the polynomials we refer to can be computed exactly in poly-
nomial time for graphs of bounded tree-width, it remains of interest to show that their
associated Glauber dynamics are rapidly mixing. There have been significant and con-
certed endeavours by researchers spanning physics, computer science and probability to
determine the mixing characteristics of Glauber dynamics on many related Markov chains.
Spin systems have been of particular interest; indeed, the main thrust of the work of Jer-
rum and Sinclair [41] was to tackle the partition function for the ‘spins world’ of the
ferromagnetic Ising model (using a translation to the rapidly mixing ‘subgraphs world’).
For more on the connections among the ‘spins world’, the ‘subgraphs world’ and the ‘ran-
dom cluster world’, see the recent work of Huber [37]. Much illuminating recent work
on the mixing times of Glauber dynamics has been restricted to trees or tree-like graphs,
cf. e.g. [5, 19, 21, 31, 49, 59].

1.2 Extensions

The primary focus in our paper is to establish results for graph polynomials defined
according to edge subset expansion; however, we can also adapt our methodology to
polynomials defined according to vertex subset expansion, which may be viewed as the
‘induced subgraphs world’. To our knowledge, this form of Markov chain has not been
greatly examined. One of our motivations to consider vertex subset expansion is to
cover the graph polynomial introduced by Arratia, Bollobás and Sorkin [4]: the bivariate
interlace polynomial, defined for any graph G = (V,E) and parameters x, y as

q(G;x, y) :=
∑
S⊆V

(x− 1)rk2(S)(y − 1)|S|−rk2(S), (5)

where rk2(S) is the F2-rank of the adjacency matrix for G[S], the subgraph of G induced
by the vertices in S. This polynomial specialises to the independence polynomial and
is intimately related to Martin polynomials [1]. Just as for the Tutte polynomial, com-
putation of the bivariate interlace polynomial is #P-hard in almost the entire plane, as
was shown by Bläser and Hoffmann [7]. The multivariate interlace polynomial, a gener-
alisation of the interlace polynomial, can be evaluated efficiently for graphs of bounded
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tree-width, cf. Courcelle [18] and Bläser and Hoffmann [8]. Subject to a condition on the
vertex subset weightings, which we have called vertex λ-multiplicativity, we can establish
rapid mixing for vertex subset Glauber dynamics on graphs of constant tree-width.

We also observe that our framework can be extended in a natural way to hypergraphs.
Though hypergraph polynomials and their corresponding Markov chains have not been
studied nearly as widely as their graph counterparts, we point out some important exam-
ples. Goldberg and Jerrum [29] used a multivariate hypergraph Tutte polynomial to prove
approximate counting hardness of the ferromagnetic (bivariate graph) Tutte polynomial.
There is a significant body of research into Glauber dynamics for counting colourings and
independent sets in hypergraphs [13, 14, 16, 22]. Hypergraph variants of the multivari-
ate chromatic polynomial and the edge elimination polynomial have been introduced by
White [65]. The study of (counting) complexity for hypergraph parameters continues to
grow in importance in relation to constraint satisfaction problems (CSPs). Much of this
study involves a restriction of the input hypergraph’s width. Unfortunately, there is no
unique standard hypergraph analogue of tree-width: consult Hliněný et al. [35] for an
overview of several competing notions of width for hypergraphs and the relationship with
CSPs. We have made a choice of width parameter that gives the most straightforward
extension from our graph framework.

Another possible extension is to matroids, a setting with close connections to the Tutte
polynomial, cf. Welsh [62]. As an indication of this possibility, we show that (edge) subset
Glauber dynamics associated with the Tutte polynomial for matroids mixes rapidly on
matroids of bounded branch-width. The difficulty in dealing with matroids is that the
definition of λ-multiplicativity we have used for graphs and hypergraphs involves vertex
cuts, which are indefinable in a matroid. So although we have not formed a general
condition akin to λ-multiplicativity for matroids, we show that the matroid rank function
has suitable properties in matroids of bounded branch-width. We note that Hliněný [34]
has shown the existence of a polynomial-time algorithm for the computation of the Tutte
polynomial for matroids of bounded branch-width representable over a finite field.

2 Definitions

2.1 λ-multiplicative weight functions

In this subsection, we describe the condition we require on our graph functions P . This
condition prescribes that the weight function is multiplicative with respect to the opera-
tion of disjoint graph union as well as “nearly multiplicative” with respect to the operation
of composition via small vertex cuts.

We use the notation λ̂ := max{λ, 1/λ}. For a graph G = (V,E), a vertex cut K is
said to separate sets V1 and V2 if (V1, K, V2) is a partition of V and there is no edge of
E that is incident to both a vertex of V1 and a vertex of V2. A partition (E1, E2) of E
is appropriate (for K) if E1 has no edge adjacent to a vertex in V2 and E2 has no edge
adjacent to a vertex in V1.

For fixed λ > 0, we say that the weight function w is λ-multiplicative, if for any
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G = (V,E), any vertex cut K that separates sets V1 and V2, and any appropriate partition
(E1, E2), we have

λ̂−|K| 6
w((V1 ∪K,E1))w((V2 ∪K,E2))

w(G)
6 λ̂|K|. (6)

As mentioned above, if w is λ-multiplicative, then it follows that w is multiplicative with
respect to disjoint union (by taking K = ∅); furthermore, taking V2 = ∅ implies that the
addition or deletion of a few edges in the graph does not change w wildly.

2.2 Examples of valid polynomials

In this subsection, we emphasise specific examples of edge subset weightings and justify
that their weight functions are λ-multiplicative.

Let G = (V,E) be any graph, K be any vertex cut that separates vertex subsets V1

and V2, and (E1, E2) be any appropriate partition. We define G′ to be the disjoint union
of graphs (V1∪K,E1) and (V2∪K,E2). We could imagine forming G′ from G by splitting
each vertex in K, taking incident edges in E1 with one copy of the vertex and those in
E2 with the other. It is trivial to verify multiplicativity with respect to disjoint union for
each of the weight functions considered below. Therefore, to establish λ-multiplicativity
for these weight functions, it will suffice to verify that λ̂−|K| 6 w(G′)/w(G) 6 λ̂|K|.

First, we observe that the partition function of the random cluster model for q, µ > 0
satisfies the condition. Recalling (2), the relevant weight function is w((V, S)) := qκ(S)µ|S|.
To handle the µ|S| factor, note that the graphs G and G′ have the same number of edges.
For the qκ(S) factor, the number of components in G′ can be at most κ(G) + |K| since
G′ can be obtained by splitting |K| vertices of G. Thus, w is λ-multiplicative if we take
λ := q.

This can also be seen in the context of the Tutte polynomial when x, y > 1. Re-
calling (4), the relevant weight function is w((V, S)) := (x − 1)r(E)−r(S)(y − 1)|S|−r(S).
As before, it is easy to take care of the (x − 1)r(E)(y − 1)|S| factor. For the remaining
((x− 1)(y− 1))−r(S) factor, it is enough to observe that the incidence matrix of G may be
obtained from the incidence matrix of G′ as follows. The matrix for G′ has two rows for
each of the vertices in K, one from (V1 ∪K,E1) and one from (V2 ∪K,E2). If we replace
one of these two rows with the sum of the two rows, we do not alter the rank; if we then
delete the other of the two rows, we change the rank by at most 1. Repeating this for each
vertex in K, we obtain the incidence matrix for G, at a total change in the rank r of the
incidence matrix of at most |K|. Thus, w is λ-multiplicative if we take λ := (x−1)(y−1).

Next, we see that the adjacency-rank polynomial of Ge and Štefankovič [27] satisfies the
condition if q, µ > 0. Recalling (3), the relevant weight function is w((V, S)) := qrk2(S)µ|S|.
As before, it is simple to handle the µ|S| factor. For the qrk2(S) factor, we note that the
adjacency matrix of G may be formed from the adjacency matrix of G′ by |K| row
additions, followed by |K| column additions and finally the deletion of |K| rows and |K|
columns. Since we must delete both rows and columns, the rank rk2 of the adjacency
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matrix may change by up to 2|K|. Thus, in this case, w is λ-multiplicative when taking
λ := q2.

Now, consider the multivariate Tutte polynomial as formulated by Sokal [58], defined
for any graph G = (V,E) and parameters q, ~v = {ve}e∈E by

ZTutte(G; q, ~v) :=
∑
S⊆E

qκ(S)
∏
e∈S

ve. (7)

Under this expansion, w := qκ(S)
∏

e∈S ve is an edge subset weight function if q > 0 and
ve > 0 for any e ∈ E are fixed. We can handle the qκ(S) factor as we did for the random
cluster model partition function. For the

∏
e∈S ve factor, observe that G and G′ have the

same set of edges. Thus, w is λ-multiplicative when taking λ := q.
Last, we discuss the U-polynomial of Noble and Welsh [52], defined for any graph

G = (V,E) and parameters y, ~x = {xi}|V |i=1 by

U(G; ~x, y) :=
∑
S⊆E

(y − 1)|S|−r(S)

|V |∏
i=1

xi
κ(i,S), (8)

where κ(i, S) denotes the number of components of order i in (V, S). If y > 1 and xi > 0

for all i, then w((V, S)) := (y− 1)|S|−r(S)
∏|V |

i=1 xi
κ(i,S) gives an edge subset weighting. The

(y − 1)|S|−r(S) factor can be handled as above. For the
∏|V |

i=1 xi
κ(i,S) factor, observe that∑

i |κ(i, G) − κ(i, G′)| is at most 3|K|, since, if we obtain G′ by splitting the vertices in
K, each time we split a vertex we either change the size of a single component or split
a single component into two smaller components. Thus, taking x′ := maxi max{xi, x−1

i }
and y′ := max{y− 1, (y− 1)−1}, we see that w is λ-multiplicative when taking λ := y′x′3.

2.3 Glauber dynamics for edge subsets

In this subsection, we define the Markov chain associated with the edge subset expansion
formula for P . From the formulation in (1), the single bond flip chain M on a given
graph G = (V,E) is defined as follows. We start with an arbitrary subset X0 ⊆ E and
repeatedly generate Xt+1 from Xt by running the following experiment.

1. Pick an edge e ∈ E uniformly at random and let S = Xt ⊕ {e}.

2. Set Xt+1 = S with probability 1
2

min {1, w((V, S))/w((V,Xt))} and with the remain-
ing probability set Xt+1 = Xt.

By convention, we denote the state space of M by Ω (i.e. Ω = 2E) and its transition
probability matrix by P. With standard arguments, it can be shown thatM is a reversible
Markov chain that has a unique stationary distribution π satisfying π(S) ∝ w((V, S)).
Hence, we may use M as a Markov chain in MCMC sampling for the following problem.

PWE(P): P-weighted Edge Subsets
Input: a graph G = (V,E).
Output: a subset S ⊆ E with probability w((V, S))/P(G).
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The term rapidly mixing applies to a Markov chain that quickly converges to its
stationary distribution. We make this precise here. The total variation distance ‖ν−ν ′‖TV
between two probability distributions ν and ν ′ is defined by ‖ν−ν ′‖TV = 1

2

∑
H∈Ω |ν(H)−

ν ′(H)|. For ε > 0, the mixing time of a Markov chain M (with state space Ω, transition
matrix P and stationary distribution π) is defined as

τ(ε) := max
H∈Ω
{min{t | ‖P t(H, ·)− π(·)‖TV 6 ε}}.

In this paper, we shall say that a chainM mixes rapidly if, for any fixed ε, τ(ε) is (upper)
bounded by a polynomial in the number of vertices of the input graph. This definition
for rapid mixing is the one more commonly used in theoretical computer science, whereas
often in statistical physics or discrete probability a stricter O(n log n) bound is mandated.

3 Results

We are now prepared to state the main theorem.

Theorem 1. Let G = (V,E) where |V | = n. If w is λ-multiplicative for some λ > 0,
then the mixing time of M on G satisfies

τ(ε) = O

(
n4+4(tw(G)+1)| log λ|

(
max
S⊆E

{
log

P(G)

w((V, S))

}
+ log

1

ε

))
(where tw(G) denotes the tree-width of G).

In later sections, we describe extensions of this theorem to induced subgraphs (Theo-
rem 6), to hypergraphs (Theorem 11), and to matroids (Theorem 13).

In Subsection 2.2, we noted some examples of polynomials that have λ-multiplicative
weight functions. Thus, Theorem 1 implies that each of their associated Glauber dynamics
on edge subsets is rapidly mixing upon graphs of bounded tree-width.

Corollary 2. Let G = (V,E) where |V | = n. In the following list, we state conditions on
the parameters which guarantee rapid mixing of the single bond flip chain on G associated
with the stated polynomial and weighting. We also state the mixing time bound.

1. For fixed q, µ > 0 and the weighting w of ZRC(G; q, µ) given by (2), the mixing time
satisfies

τ(ε) = O

(
n4+4(tw(G)+1)| log q|

(
n2 + log

1

ε

))
.

Equivalently, for fixed x, y > 1 and the weighting w of T (G;x, y) given by (4), the
mixing time satisfies

τ(ε) = O

(
n4+4(tw(G)+1)| log((x−1)(y−1))|

(
n2 + log

1

ε

))
.

the electronic journal of combinatorics 21(4) (2014), #P4.19 9



2. For fixed q, µ > 0 and the weighting w of R2(G; q, µ) given by (3), the mixing time
satisfies

τ(ε) = O

(
n4+8(tw(G)+1)| log q|

(
n2 + log

1

ε

))
.

3. For fixed q > 0 and ve > 0 for all e and the weighting w of Z(G; q, ~v) given by (7),
the mixing time satisfies

τ(ε) = O

(
n4+4(tw(G)+1)| log q|

(
n2 + log

1

ε

))
.

4. For fixed y > 1 and xi > 0 for all i and the weighting w of U(G; ~x, µ) given by (8),
the mixing time satisfies

τ(ε) = O

(
n4+4(tw(G)+1)|log(y′x′3)|

(
n2 + log

1

ε

))
,

where x′ = maxi max{xi, x−1
i } and y′ = max{y − 1, (y − 1)−1}.

Here, we point out that Ge and Štefankovič obtained part 1 above and showed part 2
above in the special case of trees. Parts 2–4 directly extend these findings, and our
main theorem considerably broadens the scope of mixing time bounds for subset Glauber
dynamics on graphs of bounded tree-width.

4 Proofs

Let us first give an outline of our arguments.
Although our main result is stated in terms of tree-width, we do not treat tree-width

directly but instead use linear-width, a more restrictive width parameter introduced by
Thomas [60]. This strategy was also employed by Ge and Štefankovič in the two specific
cases mentioned above. For any graph G = (V,E), an ordering (e1, . . . , em) of E has
linear-width at most `, if, for each i ∈ {2, . . . ,m}, there are at most ` vertices that
are incident to both an edge in {e1, . . . , ei−1} and an edge in {ei, . . . , em}. The linear-
width lw(G) of G = (V,E) is the smallest integer ` such that there is an ordering of E
with linear-width at most `. The motivation for using linear-width is that it implies an
ordering of the edges which we can then use to define canonical paths between pairs of
edge subsets. Then we show that λ-multiplicativity is the general condition under which
we can bound the congestion of these canonical paths. The use of canonical paths is a
standard technique for obtaining a bound on the mixing time of MCMC methods — see
the lecture notes of Jerrum [40] for an expository account of this approach.

The key property we require that relates the linear-width of G to the more well-
studied parameters path-width pw(G) and tree-width tw(G) of G is the following set of
inequalities, details of which can be found in Bodlaender [9], Chung and Seymour [17],

the electronic journal of combinatorics 21(4) (2014), #P4.19 10



Fomin and Thilikos [25], Ge and Štefankovič [26], and Korach and Solel [46]. For any
graph G on n vertices,

pw(G) 6 lw(G) 6 pw(G) + 1 6 (tw(G) + 1)(log2 n+ 1) + 1. (9)

We follow a canonical paths strategy to bound the mixing time of M. Given G =
(V,E), let σ = (e1, . . . , em) be an ordering of E. Given I, F ∈ Ω, let I ⊕ F denote the
symmetric difference of I and F , let σ[I ⊕ F ] := (ei1 , . . . , eik) denote the restriction of σ
to I ⊕ F (that is, {ei1 , . . . , eik} = I ⊕ F and i1 < · · · < ik), and let γσ,I→F denote the
canonical path from I to F , defined as

γσ,I→F := (H0, . . . , Hk),

where H0 = I, Hj = Hj−1 ⊕ {eij} for all j ∈ {1, . . . , k} (and hence Hk = F ). Let
Γσ = {γσ,I→F | I, F ∈ Ω}.

To bound the mixing time ofM, we will, for some appropriately chosen σ, bound the
congestion %(Γσ) of the canonical paths, which is defined by

%(Γσ) := max
(H,H′):

P (H,H′)>0


1

π(H)P (H,H ′)

∑
I,F :

(H,H′)∈γσ,I→F

π(I)π(F )|γσ,I→F |

 , (10)

where |γσ,I→F | denotes the length of the path γσ,I→F . The mixing time can then be
bounded using the following inequality of Sinclair [57], see also Diaconis and Stroock [20]:
for any set Γ of canonical paths,

τ(ε) 6 max
H∈Ω

{
%(Γ) ·

(
log

1

π(H)
+ log

1

ε

)}
. (11)

The remainder of the section is devoted to showing the following.

Theorem 3. Suppose G = (V,E) has linear-width ` and let σ = (e1, . . . , em) be an
ordering of E with linear-width at most `. If w is λ-multiplicative for some λ > 0, then
%(Γσ) 6 2m2λ̂4`.

Theorem 3 immediately implies a good mixing time bound for the Markov chain M and
hence Theorem 1 follows.

Corollary 4. Let G = (V,E) where |E| = m. If w is λ-multiplicative for some λ > 0,
then the mixing time of M on G satisfies

τ(ε) = O

(
m2λ̂4 lw(G)

(
max
S⊆E

{
log

P(G)

w((V, S))

}
+ log

1

ε

))
.

Proof. Substitute the congestion bound of Theorem 3 into inequality (11).

the electronic journal of combinatorics 21(4) (2014), #P4.19 11



Proof of Theorem 1. Substitute the upper bound on lw(G) in (9) into Corollary 4.

In the proof of Theorem 3, we will need the following lemma.

Lemma 5. Suppose G = (V,E) has linear-width ` and let σ = (e1, . . . , em) be an ordering
of E with linear-width at most `. Suppose I, F ∈ Ω and H is on γσ,I→F . If w is λ-
multiplicative for some λ > 0, then

w((V, I))w((V, F ))

w((V,H))w((V,C))
6 λ̂4`,

where C = I ⊕ F ⊕H.

Proof. Since H is on γσ,I→F , we may assume that H = Hj for some j ∈ {0, . . . , k}. Let
Q = {e1, e2, . . . , eij−1, eij} and Q = E \Q. Then

H = (F ∩Q) ∪ (I ∩Q) and C = (I ∩Q) ∪ (F ∩Q). (12)

We can partition V into three sets as follows. Let V1 denote the set of vertices that are
incident only to edges in Q; let V2 denote the set of vertices that are incident only to
edges in Q; let K denote the set of remaining vertices, that is, the set of vertices incident
to edges in Q and Q. Note that |K| is at most the linear-width `.

No vertex v1 of V1 is adjacent to a vertex v2 of V2, as otherwise the edge between them
would simultaneously be in Q and Q. This implies that K is a vertex cut separating V1

and V2 with respect to G, and also with respect to the graphs (V, I), (V, F ), (V,H), (V,C).
Furthermore, (I ∩ Q, I ∩ Q), (F ∩ Q,F ∩ Q), (H ∩ Q,H ∩ Q), (C ∩ Q,C ∩ Q) are edge
partitions that are appropriate for K. Therefore, by the fact that w is λ-muliplicative
and |K| 6 `,

λ̂−` 6
w((V1 ∪K, J ∩Q))w((V2 ∪K, J ∩Q))

w((V, J))
6 λ̂` for J ∈ {I, F,H,C}.

By (12), it follows that

(V1 ∪K,H ∩Q) = (V1 ∪K,F ∩Q),

(V2 ∪K,H ∩Q) = (V2 ∪K, I ∩Q),

(V1 ∪K,C ∩Q) = (V1 ∪K, I ∩Q) and

(V2 ∪K,C ∩Q) = (V2 ∪K,F ∩Q).

Now, letting r be

w((V1 ∪K, I ∩Q))w((V2 ∪K, I ∩Q))w((V1 ∪K,F ∩Q))w((V2 ∪K,F ∩Q)),

we obtain

w((V, I))w((V, F ))

r
6 λ̂2` and

r

w((V,H))w((V,C))
6 λ̂2`,

whereby the lemma easily follows.
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Proof of Theorem 3. Let (H,H ′) ∈ Ω × Ω such that P(H,H ′) > 0. We will bound the
expression within the max of the definition for %(Γσ). We let Ĥ = H if π(H) 6 π(H ′) and
Ĥ = H ′ otherwise. Denote by cp(H,H ′) the set of pairs (I, F ) such that (H,H ′) ∈ γσ,I→F .

We define the function inj : cp(H,H ′) → Ω by (I, F ) → I ⊕ F ⊕ Ĥ. Observe that inj is
an injection, for, given J ∈ Ω, we can determine the unique (I, F ) such that inj(I, F ) = J
by first computing J ⊕ Ĥ = I ⊕ F and then using the ordering σ to recover I and F .
Since w is λ-multiplicative, we have by Lemma 5 that

w((V, I))w((V, F ))

w((V, Ĥ))w((V, inj(I, F )))
6 λ̂4`. (13)

Regardless of whether π(H) 6 π(H ′) or π(H) > π(H ′), a brief calculation yields that
π(H)P(H,H ′) = π(Ĥ)/(2m). Thus,

1

π(H)P(H,H ′)

∑
(I,F )∈cp(H,H′)

π(I)π(F )|γσ,I→F |

=
2m

π(Ĥ)

∑
(I,F )∈cp(H,H′)

π(I)π(F )|γσ,I→F |

6
2m2

P(G)

∑
(I,F )∈cp(H,H′)

w((V, I))w((V, F ))

w((V, Ĥ))
(14)

6
2m2

P(G)

∑
(I,F )∈cp(H,H′)

w((V, inj(I, F )))λ̂4` (15)

6 2m2λ̂4`, (16)

where (14) follows from the facts |γσ,I→F | 6 m and π(S) = w((V, S))/P(G), (15) follows
from (13), and (16) follows from the fact that inj is an injection. Then, substituting the
bound (16) into (10), we obtain %(Γσ) 6 2m2λ̂4`, as claimed.

5 Glauber dynamics for vertex subsets

Until now, we have considered edge subsets (subgraphs) and Glauber transitions which
change one edge at a time. In this section, we modify our methods to treat vertex
subsets (induced subgraphs) and transitions that involve one vertex at a time — each
such transition can affect many edges, up to the maximum degree of G. We sketch how
to obtain rapid mixing for this process upon graphs of bounded tree-width still with only
a modest condition on the base graph polynomials.

A vertex subset expansion formula for P is written as follows: for any simple graph
G = (V,E),

P(G) =
∑
S⊆V

w(G[S]) (17)
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for some graph function w, where G[S] denotes the subgraph of G induced by S. If the
function w is non-negative, we refer to (17) as a vertex subset weighting for P and to w
as its weight function. Again, for our results to hold, aside from some other constraints,
we need the weight function to be positive on all induced subgraphs.

From the formulation in (17), we define the single site flip chainM′ on a given graph
G = (V,E) as follows. We start with an arbitrary subset X0 ⊆ V and repeatedly generate
Xt+1 from Xt by running the following experiment.

1. Pick a vertex v ∈ V uniformly at random and let S = Xt ⊕ {v}.

2. Set Xt+1 = S with probability 1
2

min {1, w(G[S])/w(G[Xt])} and with the remaining
probability set Xt+1 = Xt.

We denote the state space ofM′ by Ω′ (i.e. Ω′ = 2V ) and its transition probability matrix
by P ′. It can be shown thatM′ is a reversible Markov chain that has a unique stationary
distribution π′ satisfying π′(S) ∝ w(G[S]). Hence, we may use M′ as a Markov chain in
MCMC sampling for the following problem.

PWV(P): P-weighted Vertex Subsets
Input: a graph G = (V,E).
Output: a subset S ⊆ V with probability w(G[S])/P(G).

We now describe the condition required of the weight function w in (17). For fixed
λ > 0, we say that the weight function w is vertex λ-multiplicative, if for any G = (V,E)
and K a vertex cut that separates sets V1 and V2 with respect to G, we have

λ̂−|K| 6
w(G[V1])w(G[V2 ∪K])

w(G)
6 λ̂|K|. (18)

Note that, if w is vertex λ-multiplicative, then it follows that w is multiplicative with
respect to disjoint union by taking K = ∅; furthermore, taking V2 = ∅ gives that the
addition of a few vertices does not change w wildly.

The main result of this section is the following.

Theorem 6. Let G = (V,E) where |V | = n. If w is vertex λ-multiplicative for some
λ > 0, then the mixing time of M′ on G satisfies

τ(ε) = O

(
n2+4(tw(G)+1)| log λ|

(
max
S⊆V

{
log

P(G)

w(G[S])

}
+ log

1

ε

))
.

5.1 A sketch of the proof

As before, we do not treat tree-width directly, but instead work with a different width
parameter. For any graph G = (V,E), an ordering (v1, . . . , vn) of V has vertex-separation
at most `, if, for each i ∈ {2, . . . , n}, there are at most ` vertices in {v1, . . . , vi−1} that
are adjacent to a vertex in {vi, . . . , vn}. The vertex-separation vs(G) of G = (V,E) is the
smallest integer ` such that there is an ordering of V with vertex-separation at most `.
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It was shown by Kinnersley [45] that the vertex-separation of G satisfies vs(G) = pw(G),
and so the inequalities in (9) remain relevant.

To bound the mixing time ofM′, we again follow a canonical paths argument. Given
G = (V,E), let σ = (v1, . . . , vn) be an ordering of V . Given I, F ∈ Ω′, let I ⊕ F denote
the symmetric difference of I and F , let σ[I ⊕ F ] := (vi1 , . . . , vik) denote the restriction
of σ to I ⊕F (that is, {vi1 , . . . , vik} = I ⊕F and i1 < · · · < ik), and let γσ,I→F denote the
canonical path from I to F , defined as

γσ,I→F := (H0, . . . , Hk),

where H0 = I, Hj = Hj−1 ⊕ {vij} for all j ∈ {1, . . . , k} (and hence Hk = F ). Let
Γσ = {γσ,I→F | I, F ∈ Ω}. Using inequality (11), our bound on the mixing time again
follows from a bound on the congestion %(Γσ), which is defined analogously to (10).

Theorem 7. Suppose G = (V,E) has vertex-separation `. Let σ = (v1, . . . , vn) be an
ordering of V with vertex-separation at most `. If, for some λ > 0, w is vertex λ-
multiplicative, then %(Γσ) 6 2n2λ̂4`.

Theorem 7 immediately implies a good mixing time bound for the Markov chainM′ and
hence Theorem 6 also.

Corollary 8. Let G = (V,E) where |V | = n. If w is vertex λ-multiplicative for some
λ > 0, then the mixing time of M′ on G satisfies

τ(ε) = O

(
n2λ̂4 vs(G)

(
max
S⊆V

{
log

P(G)

w(G[S])

}
+ log

1

ε

))
.

Proof. Substitute the congestion bound of (11) into Theorem 7.

Proof of Theorem 6. Substitute the upper bound on vs(G) = pw(G) of (9) into Corol-
lary 8.

We omit the proof of Theorem 7 as it is similar to that of Theorem 3, but give the
details for the analogue of Lemma 5.

Lemma 9. Suppose G = (V,E) has vertex-separation ` and let σ = (v1, . . . , vn) be an
ordering of V with vertex-separation at most `. Suppose I, F ∈ Ω′ and H is on γσ,I→F . If
w is vertex λ-multiplicative for some λ > 0, then

w(G[I])w(G[F ])

w(G[H])w(G[C])
6 λ̂4`,

where C = I ⊕ F ⊕H.

Proof. Since H is on γσ,I→F , we may assume that H = Hj for some j ∈ {0, . . . , k}. Let
Q = {v1, . . . , vij}, and Q = V \Q. Then

H = (F ∩Q) ∪ (I ∩Q) and C = (I ∩Q) ∪ (F ∩Q). (19)
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We can partition V into three sets as follows. Let V1 denote the set of vertices Q; let V2

denote the subset of Q containing vertices adjacent only to other vertices of Q; and let K
denote the set of remaining vertices, that is, the set of vertices of Q incident to vertices
of V1. Note that |K| is at most the vertex-separation `.

Clearly, K is a vertex cut separating V1 and V2 with respect to G and also with
respect to the graphs G[I], G[F ], G[H], G[C]. Therefore, by the fact that w is vertex
λ-multiplicative, and noting that V2 ∪K = Q,

λ̂−` 6
w(G[Q ∩ J ])w(G[Q ∩ J ])

w(G[J ])
6 λ̂` for J ∈ {I, F,H,C}.

By (19), it follows that H∩Q = F ∩Q, H∩Q = I∩Q, C∩Q = I∩Q and C∩Q = F ∩Q.
Now, letting r = w(G[Q ∩ I])w(G[Q ∩ I])w(G[Q ∩ F ])w(G[Q ∩ F ]), we obtain that

w(G[I])w(G[F ])

r
6 λ̂2` and

r

w(G[H])w(G[C])
6 λ̂2`,

whereby the lemma easily follows.

5.2 An example of a vertex subset chain

Recalling the bivariate interlace polynomial q(G;x, y) in (5), which, for fixed x, y > 1, is
given by the vertex subset weighting

w(G[S]) := (x− 1)rk2(S)(y − 1)|S|−rk2(S).

With arguments very similar to those given in Subsection 2.2, it is not difficult to verify
that this weight function is vertex λ-multiplicative, as follows. For any graph G = (V,E)
and any vertex cut K that separates sets V1 and V2, consider the graph G′ consisting
of the disjoint union of G[V1] and G[V2 ∪ K]. We note that the adjacency matrix of G
may be formed from the adjacency matrix of G′ by altering at most |K| rows and |K|
columns, changing the rank rk2 of the adjacency matrix by up to 2|K|. Thus, w is vertex
λ-multiplicative by taking λ := (x − 1)2/(y − 1)2. So, by Theorem 6, it follows that a
natural Markov chain derived from the bivariate interlace polynomial — a chain which
has not been studied extensively, as far as we are aware — mixes rapidly on tree-width-
bounded graphs.

Corollary 10. Let G = (V,E) where |V | = n. If x, y > 1 are fixed, then for the single
site flip chain on G associated with the weighting w of q(G;x, y) given by (5), the mixing
time satisfies

τ(ε) = O

(
n2+8(tw(G)+1)| log((x−1)/(y−1))|

(
n+ log

1

ε

))
.

We believe that it would be of wider interest to study further properties of this single
site flip chain on general graphs, in particular to compare it with known results on the
random cluster, Potts and Ising models.
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6 Subset Glauber dynamics for hypergraphs

In this section, we outline an extension of our results to hypergraphs. Recall that a hyper-
graph H is a pair (V,E) where V is the vertex set and E is a hyperedge set that consists
of (arbitrary) vertex subsets. We let η(H) denote the maximum size of a hyperedge in
H. To each hypergraph H = (V,E), we associate a graph Gp(H) called the primal graph
or Gaifman graph defined by V (Gp(H)) = V and E(Gp(H)) = {{u, v} ⊆ V | {u, v} ⊆
e for some e ∈ E}.

We remark at the outset of this section that the generalisation to hypergraphs we give
here could be seen as routine. We do not include any details of the proof. Nonetheless, we
include the necessary elements for the statement of the hypergraph version of Theorem 1,
even if these are straightforward generalisations of the graph versions. We also provide
some justification for the hypergraph analogue of (9). It is important to observe that
the running time of the hypergraph Markov chain includes an adjustment to take into
account the maximum hyperedge size η(H).

For a hypergraph polynomial P , a hyperedge subset expansion formula is written as
follows: for any hypergraph H = (V,E),

P(H) =
∑
S⊆E

w((V, S)) (20)

for some graph function w, where (V, S) denotes the hypergraph with vertex set V and
hyperedge set S. Notice that if every hyperedge has order two, then this formula is the
same as in (1). If the function w is non-negative, that is, w(H) > 0 for all hypergraphs
H, we refer to (20) as a hyperedge subset weighting for P and to w as its weight function.
For our purposes, we require the weight function to be positive.

For any hypergraph H = (V,E), an ordering (e1, . . . , em) of E has linear-width at
most `, if, for each i ∈ {2, . . . ,m}, there are at most ` vertices that are contained in both
a hyperedge in {e1, . . . , ei−1} and a hyperedge in {ei, . . . , em}. The linear-width lw(H) of
H = (V,E) is the smallest integer ` such that there is an ordering of E with linear-width
at most `.

The tree-width tw(H) and path-width pw(H) of a given a hypergraph H are defined
similarly to the tree- and path-width of graphs, cf. Hliněný et al. [35]. Since all the vertices
in a clique appear in the same bag of any tree decomposition, it follows that tw(H) is
equal to the tree-width tw(Gp(H)) of the primal graph associated with H and, similarly,
pw(H) = pw(Gp(H)). Noting that, just as for graphs, lw(H) 6 pw(H), we obtain

lw(H) 6 pw(H) 6 (tw(H) + 1)(blog2 nc+ 1) + 1. (21)

For a hypergraph H = (V,E), a vertex cut K is said to separate sets V1 and V2 if
(V1, K, V2) is a partition of V and there is no hyperedge of E that contains both a vertex
of V1 and a vertex of V2. A partition (E1, E2) of E is appropriate (for K) if E1 has no
hyperedge containing a vertex in V2 and E2 has no hyperedge containing a vertex in V1.

For fixed λ > 0, we say that the weight function w is λ-multiplicative, if for any
H = (V,E), any vertex cut K that separates sets V1 and V2, and any appropriate partition
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(E1, E2), we have

λ̂−|K| 6
w((V1 ∪K,E1))w((V2 ∪K,E2))

w(H)
6 λ̂|K|.

From the formulation in (20), the single bond flip chain M on a given hypergraph
H = (V,E) is defined as follows. We start with an arbitrary subset X0 ⊆ E and repeatedly
generate Xt+1 from Xt by running the following experiment.

1. Pick a hyperedge e ∈ E uniformly at random and let S = Xt ⊕ {e}.

2. Set Xt+1 = S with probability 1
2

min {1, w((V, S))/w((V,Xt))} and with the remain-
ing probability set Xt+1 = Xt.

We denote the state space ofM by Ω (i.e. Ω = 2E) and its transition probability matrix
by P. It can be shown thatM is a reversible Markov chain that has a unique stationary
distribution π satisfying π(S) ∝ w((V, S)).

We have obtained the following hypergraph generalisation of Theorem 1.

Theorem 11. Let H = (V,E) be a hypergraph with |V | = n. If w is λ-multiplicative for
some λ > 0, then the mixing time of M on H satisfies

τ(ε) = O

(
n2η(H)+4(tw(H)+1)| log λ|

(
max
S⊆E

{
log
P(H)

w(S)

}
+ log

1

ε

))
.

The proof of this theorem closely follows the pattern set in the case of edge subset
Glauber dynamics for graphs. We follow a canonical paths argument that uses an edge
ordering by linear-width, to obtain a mixing time bound in terms of linear-width, imme-
diately combined with (21) and the fact that |E| = O(nη(H)) to obtain Theorem 11. For
brevity, we omit the full details; however a rereading of Section 4 with the hypergraph
definitions in mind will confirm that the same proof is valid.

7 Subset Glauber dynamics for matroids

In this section, we outline how to apply our methodology to the Tutte polynomial for
matroids. We do not attempt to give the fullest framework for matroids, though it could
be distilled from the proof sketches below. A significant difference in treating matroids
compared to graphs or hypergraphs is that they are not defined with vertices. Since there
are then no direct analogues of a vertex cut, this affects the choice of width parameter and
the potential definition for matroidal λ-multiplicativity. Fortunately, there is an existing,
well-studied notion of connectivity in matroids, which leads to a notion of matroidal
path-width, which we have found useful here.

Recall that a matroid M is a pair (E, I), where E is a ground set of edges and I
is a collection of subsets of E (referred to as the independent sets of M) satisfying the
following properties:
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• ∅ ∈ I;

• for any A′ ⊆ A ⊆ E, we have A ∈ I =⇒ A′ ∈ I; and

• for any A ⊆ E, all maximal members of I contained in A have the same cardinality.

For any A ⊆ E, the rank r(A) of A is the cardinality of a maximal member of I contained
in A, and the connectivity λ(A) of A is equal to r(A) + r(E \ A) − r(E). Both r and λ
are non-negative, submodular functions. For further reading on matroid theory, consult
a standard reference, by e.g. Oxley [53] or Welsh [62].

The Tutte polynomial naturally extends from graphs to matroids as follows: for any
matroid M = (E, I) and parameters x, y, it is defined by

T (M ;x, y) :=
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S). (22)

For our purposes, we shall assume x, y > 1. Note that if M is a graphic matroid and hence
M is the cycle matroid M(G) for some graph G, then the expressions in (4) and (22) are
equal.

For any matroid M = (E, I), an ordering (e1, . . . , em) of E has path-width at most `,
if, for each i ∈ {2, . . . ,m}, λ({e1, . . . , ei−1}) 6 `. The path-width pw(M) of M = (E, I)
is the smallest integer ` such that there is an ordering of E with path-width at most `.
For more on this width parameter, consult Kashyap [44].

The path-width of a matroid provides an upper bound on a more closely-studied
matroidal width parameter, branch-width. For any matroid M = (E, I), a branch-
decomposition of M is a cubic tree T with exactly |E| leaves, labelled in one-to-one
correspondence with the elements of E; such a branch-decomposition has width at most
`, if, for any e ∈ T , letting Xe denote a subset of E corresponding to the set of labels
contained in one of the two components of T \ e, then λ(Xe) 6 `. The branch-width
bw(M) of M = (E, I) is the smallest integer ` such that there is a branch-decomposition
of M with width at most `. The branch-width of M can be used to upper bound the
path-width of M in the following way.

Proposition 12. For any matroid M = (E, I), pw(M) 6 bw(M) log2 |E|.

Proof. Let M = (E, I) be a matroid. We would like to exhibit an ordering of E with
path-width at most bw(M) log2 |E|. Let T = (VT , ET ) be a branch-decomposition of
M with width at most bw(M). For any vertex v ∈ VT , let Tv be the subtree rooted
at v and let Ev denote the subset of E corresponding to the set of labels contained in
Tv. (Note that Tv has (|Tv| + 1)/2 leaves and hence the same quantity of labels.) To
obtain an edge ordering, we perform a stack-based depth-first search (DFS) of T , such
that smaller subtrees are explored first. Let σ be the ordering of E induced by the order
in which their corresponding leaves in T are explored by the DFS3. We now show that

3In other words, the DFS algorithm proceeds as follows. Put the root of T onto the stack. While
the stack is non-empty, pop an element v off of the stack and, if v is a leaf of T , add the edge of E
corresponding to v at the end of σ; otherwise, first push the child of v with the bigger subtree onto the
stack, then push the other child of v onto the stack.
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σ := (e1, . . . , em) has path-width at most bw(M) log2m. Let i ∈ {1, . . . ,m} and suppose
that (v1, . . . , vk) are the vertices of T (ordered from bottom to top) on the stack just
after the leaf corresponding to ei was explored. Note that the region of T unexplored
by the DFS up to this point is precisely

⋃k
j=1 Tvj . The exploration order used by DFS

(prioritising smaller subtrees) implies for j ∈ {1, . . . , k − 1} that |Tvj+1
| < |Tvj |/2 and

hence |Evj+1
| < |Evj |/2. Since there are m labels in T , we see that k 6 log2m. It then

follows, using submodularity of λ and the fact that the width of the branch-decomposition
T is at most bw(M), that

λ({e1, . . . , ei}) = λ

(
k⋃
j=1

Evj

)
6

k∑
j=1

λ(Evj) 6 k bw(M) 6 bw(M) log2m,

as required.

It is worth noting here that matroidal path-width corresponds more closely to graphic
linear-width than graphic path-width. Although tree-width can be defined for matroids,
it is not a straightforward extension; furthermore, the parameter has not gained as much
traction in matroid theory as has branch-width, cf. Hliněný and Whittle [36]. On the
other hand, Hliněný and Whittle showed that a matroid’s tree-width is bounded if and
only if its branch-width is bounded.

From the formulation in (22), the single bond flip chainMTutte for the Tutte polynomial
on a given matroid M = (E, I) is defined as follows. For any A ⊆ E, let wTutte(A) :=
(x−1)r(E)−r(A)(y−1)|A|−r(A); in other words, wTutte is the weight function associated with
T (M ;x, y). We start with an arbitrary subset X0 ⊆ E and repeatedly generate Xt+1 from
Xt by running the following experiment.

1. Pick an element e ∈ E uniformly at random and let S = Xt ⊕ {e}.

2. Set Xt+1 = S with probability 1
2

min {1, wTutte(S)/wTutte(Xt)} and with the remain-
ing probability set Xt+1 = Xt.

We denote the state space of MTutte by ΩTutte (i.e. ΩTutte = 2E) and its transition
probability matrix by PTutte. It can be shown that MTutte is a reversible Markov chain
that has a unique stationary distribution πTutte satisfying πTutte(S) ∝ wTutte(S).

For any matroid M = (E, I), note that pw(M) 6 ` gives an ordering (e1, . . . , em) of
E such that, for each i ∈ {2, . . . ,m},

0 6 r({e1, . . . , ei−1}) + r({ei, . . . , em})− r(E) 6 `,

and so, letting c(x, y) = max{(x− 1)(y − 1), ((x− 1)(y − 1))−1},

c(x, y)−` 6
wTutte({e1, . . . , ei−1})wTutte({ei, . . . , em})

wTutte(E)
6 c(x, y)`.

Combining the above inequalities with an adaptation of the canonical paths proof given
in Section 4 — using appropriate substitutions, such as pw(M) in the place of lw(G) and

the electronic journal of combinatorics 21(4) (2014), #P4.19 20



Proposition 12 in the place of (9), together with the well-known fact that the connectiv-
ity function of a matroid is closed under the minor relation — we obtain the following
matroidal analogue of Theorem 1. The full details of the proof are left to the reader.

Theorem 13. Let M = (E, I) where |E| = m. The mixing time ofMTutte on M satisfies

τ(ε) = O

(
m2+4 bw(G) log c(x,y)

(
max
S⊆E

{
log

T (M ;x, y)

wTutte(S)

}
+ log

1

ε

))
.

8 Conclusion

In this work, we have studied a general framework of graph polynomials and Markov chains
defined via subset expansion formulae for these polynomials. We have demonstrated that
the system mixes rapidly for graphs of bounded tree-width. On a graph G with n vertices,
we have shown a mixing time of order nO(1)eO(pw(G)) = nO(tw(G)). Our results apply to
many of the most prominent and well-known polynomials in the field. The mixing times
of our processes have, respectively, exponential and super-exponential dependencies upon
path-width and tree-width. It would be interesting to investigate if this could be improved,
in particular, to achieve something akin to fixed-parameter tractability in terms of tree-
width. We consider it unlikely that this could be accomplished using only the approaches
from this paper.

For all of our results, we need that the weight function is strictly positive for all (in-
duced) subgraphs. Many of the classical enumeration polynomials such as the matching,
independence, clique and chromatic polynomials are captured by the general polynomi-
als that we mention as examples throughout this work. However, these are ‘hard-core
models’ — in which some (induced) subgraphs have a zero weighting — and hence are
not included in our approach. Many of these are evaluations that fall at the boundary
of the regions that we can handle. For example, the Tutte polynomial evaluated at the
point (2, 1) counts the number of forests of the graph. We have shown rapid mixing at
all fixed points (2, 1 + δ), for δ > 0, with a mixing time that depends on δ. It would
be interesting to consider whether the chains associated with these boundary points mix
rapidly for graphs of bounded tree-width.

After a presentation of these results in Zürich, Thore Husfeldt suggested that our
approximation schemes may be of practical use for computing partition functions. The
aforementioned dynamic programming algorithms for exact computation all require an
explicit tree-width decomposition. Although a decomposition can theoretically be com-
puted in linear time [10], the existing decomposition-generation algorithms have running
times hindered by large constants and thus are impractical. On the other hand, an ex-
plicit decomposition is not a prerequisite for rapid mixing in our framework, so an efficient
randomised approximation may turn out to be more practical than an exact deterministic
algorithm.

Lastly, we have demonstrated, with appropriate modifications, several extensions of
our results to other settings. We have adapted our framework to include induced sub-
graphs, hypergraphs and matroids, all using an appropriate choice of width parameter
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and “λ-multiplicativity”. These results are indicative; this aspect of our work has not
been fully explored and we hope that further generalisations of Theorem 1 are available.
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