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Abstract

In this paper we give a complete classification of the infinite Schreier graphs of
an automaton group generated by an extended version of the binary adding machine.
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1 Introduction

The motivation for this article is the paper [10] where R. Grigorchuk and V. Nekra-
shevych provide amenable actions of nonamenable groups by extending the action of a
nonamenable group acting by automorphisms on a rooted tree (for example the Bellaterra
group) to a larger tree in a suitable way. In this paper we consider a similar construction:
we take the adding machine, isomorphic to Z, which is the simplest finitely generated
automaton group acting transitively on each level of the rooted binary tree. If a is the
generator of the binary adding machine we extend its action on a ternary tree in such
a way that whenever a reads the new symbol “2” then its action becomes trivial on the
remaining word. In order to have transitivity we also add a new automorphism which gen-
erates the adding machine acting on the rooted ternary tree. The group G obtained by this
construction is generated by the automorphisms a = (id, a, id)(01) and b = (id, id, b)(012).
In our case, since the binary adding machine is generated by a bounded automaton then
G is also generated by a bounded automaton [16], in particular G is amenable [1]. This
way it is possible to define a new class of groups that can be regarded as extended ver-
sions of groups acting on a smaller tree and investigate the structure of the corresponding
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Schreier graphs, that represent the action on any level of the rooted tree, or can be defined
through the vertex stabilizers. Passing to the boundary, G gives rise to uncountably many
infinite Schreier graphs: the problem is to classify them. In this paper we give a complete
(topological and isometric) classification of the infinite Schreier graphs of G, showing, in
particular, that they are typically one ended (Theorem 3.6) and there are infinitely many
isomorphism classes, each containing either one or two orbital graphs (Theorem 3.12).
We think that most of the strategies used for the Schreier graphs of G can be exploited,
at least for the topological classification, to study more sophisticated examples of such
a construction, i.e. replacing the binary adding machine by another more complicated
group (see, for instance Remark 3.13). On the other hand, the isomorphism problem
can be directly treated in the case here discussed, because of the special structure of the
two kinds of Schreier graphs involved in the construction. For more general examples
the problem looks much more difficult. By the way it would be even interesting to ap-
ply our construction to examples of groups generated by non-bounded automata, such as
Aleshyn free automaton or Bellaterra automaton. In this context one might discuss some
questions related to Schreier graphs such as the existence of orbital graphs with different
growth rate, the possibility of getting graphs of polynomial growth through the action of
groups containing free subgroups, the construction of totally non-free boundary actions
for groups which are not weakly regular branch [5, 9, 11].

It is worth mentioning here that the notion of Schreier graph is classical in group
theory, and it corresponds to the action of a finitely generated group G on the set of
cosets G/H with respect to a subgroup H. In our context H represents the stabilizer of
a vertex of the tree (finite Schreier graphs) or a vertex of the boundary of the (infinite
Schreier graphs). From this description it is clear that, if a boundary point admits a
trivial stabilizer the corresponding Schreier graph coincides with the Cayley graph of the
group. In our case we can prove that no infinite Schreier graph equals the Cayley graph
of G and moreover almost all stabilizers of boundary points are different. Connections
between the structure of the Schreier graphs and properties of the generating group can
be found in [8], where among other results the authors provide finiteness results in terms
of boundary Schreier graphs by using the dual approach. In [15] V. Nekrashevych shows
that if a group acting faithfully on a rooted tree has a free subgroup, then either there
exists a point x of the boundary and a free subgroup with trivial stabilizer (and so the
Schreier graph of x contains a subtree), or there exists a free subgroup fixing x and acting
faithfully on arbitrarily small neighborhoods of x.

Our paper follows the results obtained for the Basilica group [6], for groups generated
by bounded automata [4] and for a group generated by a linear automaton [3]. The study
of Schreier graphs of some examples of automata groups was initiated by L. Bartholdi
and R. Grigorchuk [2] in connection with the problem of determining the spectrum of
the associated Laplace operator. Particularly interesting examples come from the class of
self-similar groups, which are connected to self-similar sets via the notion of limit space,
which is a compact space that can be associated with any contracting self-similar group
[14]. A new interesting study of Schreier graphs appears in connection with colorings and
subgroup dynamics [7, 9, 17].
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2 Preliminaries: Automata groups

Let X = {0, 1, . . . , q − 1} denote an alphabet of q elements. We denote by Xn the set of
words of length n in X and X∗ = ∪nXn. The set of right (resp. left) infinite words is
denoted by Xω (resp. X−ω). The set X∗ encodes the vertices of a rooted tree in a natural
way and Xω the relative boundary. An automorphism of X∗ is a bijection preserving
the adjacency relation in the corresponding tree. The action of an automorphism g on a
vertex v ∈ X∗ is denoted by g(v). The orbit of v under g is g · v := {gn(v) : n ∈ Z}.

An automaton is a quadruple A = (S, X, µ, λ), where: S is a set, called set of states,
X is an alphabet as before, µ : S×X → S is the transition map and λ : S×X → X is the
output map. The automaton A is said to be finite if S is finite and it is said invertible if,
for all s ∈ S, the transformation λ(s, ·) : X → X is a permutation of X. An automaton
A can be represented by its Moore diagram: a directed labelled graph whose vertices are
identified with the states of A. For every state s ∈ S and every letter x ∈ X, the diagram
has an arrow from s to µ(s, x) labelled by x|λ(s, x). A natural action on the words over
X is induced, so that the maps µ and λ can be extended to S ×X∗ as:

µ(s, xw) = µ(µ(s, x), w) (1)

λ(s, xw) = λ(s, x)λ(µ(s, x), w), (2)

by setting µ(s, ∅) = s and λ(s, ∅) = ∅, for all s ∈ S, x ∈ X and w ∈ X∗. Moreover, (2)
uniquely defines a map λ : S ×Xω → Xω.

Fixed an initial state s in A, the transformation As on the set X∗ ∪ Xω is induced
by the recursion (2). More generally, given an invertible automaton A = (S, X, µ, λ), one
can consider the group generated by the transformations As, for s ∈ S: this group is
called the automaton group generated by A and is denoted by G(A). A state s in A with
the property that µ(s, w) = s and λ(s, w) = w, for all w ∈ X∗ is said to be trivial and
it is usually denoted by id. Clearly Aid represents in this case, the identity element in
G(A). The post-critical (resp. critical) set P of the automaton A is the set of left(resp.
right)-infinite words . . . x2x1 ∈ X−ω (resp. x1x2 . . . ∈ Xω) such that there exists a path
. . . e2e1 (resp. e1e2 . . .) in the Moore diagram of A, ending in a non-trivial state (resp.
avoiding the trivial state) such that the word . . . x2x1 (resp. x1x2 . . .) can be read on
the left (resp. the right) labels of the path . . . e2e1 (resp. e1e2 . . .). A finite invertible
automaton is bounded if |P| <∞.

Groups generated by automata are also known as self-similar groups [14], when one
wants to emphasize the action on the rooted tree. We can represent any element s ∈ S
in its self-similar form s = (s0, s1, . . . , sq−1)σ where si = µ(s, i) and σ is the permutation
induced by s and λ on X. This representation extends to all elements of G = G(A) after
embedding into the wreath product G oX Sq = (Gq)oSq, where Sq is the symmetric group
on q elements.
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3 Constructions

The adding machine G is the automaton group isomorphic to Z generated by the automa-
ton in the left side of Figure 1 or, equivalently by a = (id, a)(01). This group acts on
the binary tree and it is, in some sense, the simplest example of a self-similar spherically
transitive infinite group. Let us introduce a new symbol “2”, so that the new alphabet
is X = {0, 1, 2}. We denote by b the new automorphism guaranteeing the transitivity: it
acts as the adding machine b = (id, id, b)(012) on the ternary tree. The automorphism
a keeps its action on the set {0, 1}ω and is such that λ(a, 2) = 2 and µ(a, 2) = id. In
self-similar form we get a = (id, a, id)(01). Consider the automorphisms a = (id, a, id)(01)
and b = (id, id, b)(012). Let G be the automaton group generated by a and b, see the
right picture in Figure 1.
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a��
��

� 0|1, 1|2
�

0|1,2|2 }
1|0

}
2|0

~
0|0, 1|1, 2|2
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}
0|0, 1|1

~
1|0

Figure 1. The automata generating the Adding machine and G

3.1 Schreier graphs: definitions

In this section we introduce some basic facts about Schreier graphs. LetG be a finitely gen-
erated group generated by a finite set S and suppose that id 6∈ S and S = S−1. Let G act
faithfully on a set M . The Schreier graph Γ = Γ(G,S,M) is the graph with vertices and
edges given by V (Γ) = M and E(Γ) = {(m,m′) : there exists s ∈ S such that s(m) = m′}.
In this case the edge (m,m′) is labeled by s. In our classification we remove any label
from the edges.

In our setting the group G acts on the set Xn, since G is transitive the corresponding
Schreier graph Γn = Γ(G,S,Xn) is connected, and it represents the orbital graph of (any)
point v in Xn under the action of the generators.

Consider now the action of G on Xω and the orbital Schreier graphs Γξ = Γ(G,S,G·ξ),
for ξ = ξ1ξ2 . . . ∈ Xω. Put ξ

n
= ξ1ξ2 . . . ξn. We recall that a marked graph (Γ, v) is a

graph in which a vertex v is distinguished. It turns out that the graphs (Γξ, ξ) are limits
of the Schreier graphs (Γn, ξn) in the sense of the topology induced by the metric Dist on
the space of marked graphs defined as follows [12]:

Dist((Γ1, v1), (Γ2, v2)) := inf

{
1

n+ 1
;BΓ1(v1, n) ' BΓ2(v2, n)

}
where BΓ(v, n) is the ball of radius n in Γ centered at v [13]
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Remark 3.1. One can show that if there exists K > 0 such that the distance in Γn
between ξ

n
and η

n
is smaller than K for each n ∈ N, then Γξ = Γη (as non-marked

graphs) [6].

3.2 Schreier graphs of G

The Schreier graphs of the adding machine G are easily described. These can be rep-
resented by “polygons” (we will use this word) of prescribed length. One can identify
{0, 1, . . . , q − 1}n with the elements of the abelian group Z/qnZ. The vertex x1x2 · · ·xn,
xi ∈ {0, 1, . . . , q − 1} corresponds to the element

∑n
i=1 xiq

i−1 (mod qn). The generating
element of the adding machine G acts on a vertex by adding +1 to the corresponding
element in the group. In our case we are combining two graphs of this type: the n−th
Schreier graphs Υn of the group generated by a = (id, a)(01) and Σn of the group gen-
erated by b = (id, id, b)(012). As we remarked Υn is a polygon of length 2n and Σn a
polygon of length 3n.

Denote by Γn the n−th Schreier graph of the group G. Let xm represent a word of
length m in the alphabet X and introduce the partition given by the sets

Xn
k (xn−k−1) = {x1 · · ·xk2xk+2 · · ·xn : xi ∈ {0, 1}

∀i = 1, . . . , k, xn−k−1 = xk+2 · · ·xn},

for any k = 1, . . . , n−1. Fixed k we have 3n−k−1 disjoint copies of such subsets. Moreover
define

Xn
n := Xn

n (∅) = {x1 · · ·xn : xi ∈ {0, 1} ∀i = 1, . . . , n}.

Each of the sets Xn
k (xn−k−1), for k = 1, . . . , n− 1 and Xn

n is invariant under the action of
the subgroup 〈a〉 of G. Moreover the action of 〈a〉 on Xn

k (xn−k−1) and on Xn
n is clearly

transitive. In Γn the set Xn
k (xn−k−1) together with the edges given by the a-action, is

a copy of the Schreier graph Υk, so that in Γn we have 3n−1 loops corresponding to the
words starting by 2, 3n−k−1 copies of Υk, for any k = 1, . . . , n− 1 and one copy of Υn.

A suitable way for describing the structure of the graph Γn is the following: an “ex-
ternal” polygon of size 3n isomorphic to Σn and labeled by b (containing all vertices and
corresponding to the action of the generator b). Inside this polygon other polygons iso-
morphic to the Υk’s (in number established above) corresponding to the action of a. In
Figure 2 there are the first two Schreier graphs of G.

From this we get the following result.

Proposition 3.2. For every n, the graph Γn is planar.

Proof. Suppose, by contradiction, that there are four vertices ui ∈ Γn, i = 1, 2, 3, 4, and
positive numbers ti such that bti(ui) = ui+1, for i = 1, 2, 3, a(ui) = ui+1, for i = 1, 2. We
can assume u1, u3 ∈ Xn

k (xn−k−1) and u2, u4 ∈ Xn
h (x′n−h−1), for some k, h, xn−k−1, x

′
n−h−1

in such a way that Xn
k (xn−k−1) 6= Xn

h (x′n−h−1). By the assumption we have that u1 =
u′12p, u3 = u′32p, u2 = u′22q and u4 = u′42q, for some subwords u′i, p, q, p 6= q and we
can suppose, without loss of generality, that |p| 6 |q|. This implies that, for every
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i = 1, . . . , t1 + t2 one has bi|u′12 = id and this is in contradiction with the fact that
p 6= q.
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Figure 2. The Schreier graphs Γ1 and Γ2 of G

3.3 Orderings in Γn

Any vertex x = x1 · · ·xn in Γn represents the number (that we improperly denote by)
x =

∑n
i=1 3i−1xi, so that there exists a natural order in Γn, coherent with the action of b.

Given x, v, w ∈ Γn, we write x ∈ [v, w] if v 6 x 6 w, so that for any x we have x ∈ [0n, 2n].

Remark 3.3. For every n, consider the sets of pairs {(αk, βk) : αk = bk(0n), βk =
b−k(1n)), k = 0, 1, . . . , 3n+1

2
} and {(ςk, θk) : ςk = bk(1n), θk = b−k(2n)), k = 1, . . . , 3n+1

2
}.

It follows by induction that only for such couples one has αk + βk =
∑n−1

i=0 3i (for k =
0, 1, . . . , 3n+1

2
) and θk + ςk =

∑n
i=0 3i (for k = 1, . . . , 3n+1

2
), where the sum of the strings is

considered in base 3.

Definition 3.4. Let v be a vertex in Γn, we say that v is under Υn (we write v ↑ Υn) if
v ∈ [0n, 1n] and v 6∈ Xn

n .

Remark 3.5. It is clear that if v 6∈ Xn
n and vn = 0 then v ↑ Υn. Moreover if v 6∈ Xn

n ,
vn = 1 and vk = 0, with k the largest index such that vk 6= 1, vk+1 = 1, then v ↑ Υn.

Now we can describe what is the position (in the graph Γn+1) of a vertex v ∈ Γn, after
adding the final letter 0, 1, 2. We distinguish the following cases.

• If v ∈ Xn
n , then v0, v1 ∈ Xn+1

n+1 and v2 ∈ [0n2, 1n2].

• If v 6∈ Xn
n and v ↑ Υn, then v0, v1 ↑ Υn+1 and v2 ∈ [0n2, 1n2].

• If v 6∈ Xn
n and v is not under Υn, then v0 ↑ Υn+1, and v1, v2 are not under Υn and

Υn+1, and v1 ∈ [1n+1, 0n2], v2 ∈ [1n2, 2n+1].
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3.4 Infinite Schreier graphs of G: the number of ends

In this section we describe the infinite Schreier graphs associated with the group G. We
already defined in Section 3.1 the infinite Schreier graphs of the action of the group G on
the boundary of the tree.

G is generated by a bounded automaton, it is easy to check that the post-critical set
consists of three elements P = {0−ω, 1−ω, 2−ω}. For the group G we will provide a topo-
logical classification of the infinite Schreier graphs (in terms of ends) and a classification
up to isomorphism.

We recall that two (right) infinite words ξ = ξ1ξ2 · · · and η = η1η2 · · · are cofinal (an
we shall write ξ ∼ η) if there exists n ∈ N such that ξk = ηk for all k > n. Given ξ ∈ Xω,
as before ξ

n
denotes the prefix ξ1 · · · ξn of length n of ξ. The set of all words cofinal to ξ

is denoted by Cof(ξ).
It is easy to prove that if ξ ∼ η then the corresponding infinite Schreier graphs are

isomorphic (as non-marked graphs) Γξ ' Γη. In fact ξ ∼ η implies that the elements ξ
and η belong to the same orbital graph (see [6]). More precisely if ξ is not critical the
vertex set of Γξ coincides with Cof(ξ). In our case the vertex set of Γ0ω (= Γ1ω ,Γ2ω) is
given by Cof(0ω) t Cof(1ω) t Cof(2ω).

Let Γ = (V,E) be an infinite graph, a ray is an infinite sequence of distinct vertices
such that any two consecutive vertices of this sequence are adjacent in Γ. Consider an
equivalence relation on the set of rays: two rays R and R′ are equivalent if for any finite
set S ⊆ V both R and R′ have a tail in the same component of Γ \ S. An end is an
equivalence class of rays. Note that every infinite, locally finite graph must have at least
one end.

In what follows we generalize some notions introduced before to the case of infinite
Schreier graphs. Given ξ, v, w ∈ Xω, we write v < w if there exist k > 0 such that
bk(v) = w and we write ξ ∈ [v, w] if there exist k, h ∈ N such that bh(v) = ξ and
bk(ξ) = w. Moreover ξ ↑ Υn if ξ ∈ [0n2ξn+2 · · · , 1n2ξn+2 · · · ].

Let Ei be the set of right-infinite words whose infinite Schreier graph is i−ended. More
precisely

Ei = {ξ ∈ Xω : Γξ is i-ended}

The uniform measure on the boundary, generated by the cones wXω of the tree is
denoted by m.

Theorem 3.6. Let G be the group defined above, then:

• E4 = Cof(0ω) t Cof(1ω) t Cof(2ω), and consists of one orbit, so that m(E4) = 0.

• E2 = (A(2) t A(0)) \ E4 consists of uncountably many orbits where

A(2) = {ξ ∈ Xω : ξ ∼ ϑ, ϑi 6= 2 ∀i},

A(0) = {ξ ∈ Xω : ξ ∼ θ, θi 6= 0 ∀i}.

Moreover m(E2) = 0.
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• E1 = Xω \ (E4 t E2) consists of uncountably many orbits and m(E1) = 1.

Proof. The vertices 0ω, 1ω, 2ω are in the same orbit since b(2ω) = 0ω and a(1ω) = 0ω.
These three elements give rise to the only non-cofinal words which belong to the same
graph. The b−orbit of 2ω contains Cof(0ω) and Cof(2ω). The a−action on 1ω contains
Cof(0ω) and Cof(1ω). The generator b sends vertices in Cof(2ω)\2ωtCof(1ω)tCof(0ω)
to vertices in Cof(2ω) \ 2ω t Cof(1ω) t Cof(0ω). On the other hand a sends vertices in
Cof(1ω) \ 1ω t Cof(2ω) t Cof(0ω) to vertices in Cof(1ω) \ 1ω t Cof(2ω) t Cof(0ω). If
we consider Cof(0ω)tCof(2ω), it consists of one line isomorphic to the Cayley graph of
Z with generators ±1 (the b−orbit) with some extra edges (the a−orbit) which do not
join vertices of type {bk(2ω)} to vertices in {b−k(0ω)} (for k > 0), since these are not
cofinal. This gives two ends. The vertex 0ω is connected to 1ω. The b−orbit on 1ω is
another copy of the Cayley graph of Z disjoint from the b−orbit on 2ω. For any k > 0 the
elements in {bk(1ω)} are not joined to the elements in {b−k(1ω)} by a, since all elements
in {bk(1ω)} are of type w21ω, for some w and {b−k(1ω)} contains elements of type v201ω,
with |v| = |w|. So that we get two ends, and the graph Γ0ω is 4-ended.

Let ξ be an element in A(2). We can suppose that ξn ∈ {0, 1} for all n and ξ � 0ω, 1ω.
The a−orbit a · ξ is a subset of b · ξ, since it corresponds to the elements of b · ξ which do
not contain 2. Moreover a · ξ consists of infinite elements (this is the only infinite a−orbit
in the graph) and since the order induced by a is coherent with the order given by b (i.e.
v < w implies a(v) < a(w)) and the vertex set of Γξ is Cof(ξ), we have that the graph
Γξ is 2-ended.

Let ξ be an element in A(0). We can suppose that for every n, ξn ∈ {1, 2} and
ξ � 1ω, 2ω. From Section 3.4 we know that ξ is not under a polygon Υn. For any
n we have that ξ

n
∈ [1n, 0n−12] t [1n−12, 2n], with the distances d(ξ

n
, 1n) and d(ξ

n
, 2n)

growing with n from Remark 3.1. Observe that a(1n) = b(2n) = 0n. For n large we have
ξ ∈ [1nξn+1 · · · , 2nξn+1 · · · ], with ξn+1 ∈ {1, 2}. We have b(2nξn+1 · · · ) = 0nb(ξn+1 · · · ), so
that a(1nξn+1 · · · ) 6= 0nb(ξn+1 · · · ). Hence there is no edge connecting two non equivalent
rays in Γξ. Clearly m(A(0)) = m(A(2)) = 0 and so m(E2) = 0. Moreover both A(0) and
A(2) are uncountable sets.

If ξ ∈ E1, then ξ contains infinitely many 0 and 2. This implies ξ ↑ Υn for infinitely
many n. The b−orbit b · ξ of ξ consists of a copy of the Cayley graph of Z and a · ξ is a
subset of b · ξ. Two non-equivalent rays in b · ξ contain infinitely many vertices of type
0nξn+1 · · · and 1nξn+1 · · · respectively, since ξ ∈ [0nξn+1 · · · , 1nξn+1 · · · ]. We can suppose
that ξn+1 = 2 for infinitely many indices. The rays are joint by the a−edges of type
(0nξn+1 · · · , 1nξn+1 · · · ). Moreover m(E1) = m(Xω) = 1 and E1 is clearly an uncountable
set.

Figure 3 shows the shape of the (unique) orbit which is a 4-ended graph, Figure 4 an
example of a 2-ended infinite Schreier graph, Figure 5 an example of a 1-ended infinite
Schreier graph.

Remark 3.7. The previous result agrees with the results obtained in [4], where the
authors show that if G is a group generated by a bounded automaton whose post-critical
set contains more than 2 elements then m(E1) = 1.
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3.5 Isomorphisms

Now we pass to the problem of describing the isomorphism classes of the infinite Schreier
graphs of G. As we said in Section 3.1 the limit of infinite Schreier graphs is defined in
the space of marked graphs. If we forget the special vertex, we can compare the structure
of infinite graphs and establish if they are isomorphic.

b

b

a

a

• • • • • • • •

• • • • • • • •
a2ω

0ω

1ω . . .

. . .

. . .

. . .

Figure 3. A finite portion of the 4-ended infinite Schreier graph

Observe that if ξ ∈ Ei and η ∈ Ej, with i 6= j, then Γξ and Γη are not isomorphic.
Let us introduce some notation: let ξ be an infinite word such that ξn ∈ {0, 1}, ξ �

0ω, 1ω. Notice that ξ ∈ A(2), therefore ξ ∈ E2. From Theorem 3.6, for any k 6= 0
one has bk(ξ) 6= ξ and ak(ξ) 6= ξ so that the Schreier graph Γξ consist of two copies of
the Cayley graph of Z which intersect infinitely many times, together with some finite
a-labeled subgraphs isomorphic to the finite polygons Υn. It may happen that v, w ∈ Γξ
and there is k > 0, such that bk(v) = w and a(v) = w. Given ξ ∈ {0, 1}ω we can associate
with it a (two-infinite) sequence {ξ(z)}z∈Z of natural numbers in the following way:

1. Take a copy of the graph of the Cayley graph of Z with generators ±1 and label the
vertex 0 by 0 (corresponding to the vertex ξ).

2. Label the vertex m > 0 by k > 0 if am(ξ) = bk(am−1(ξ)).

3. Label the vertex m < 0 by k > 0 if am(ξ) = b−k(am+1(ξ)).

We identify ξ(z) with the label of z. Roughly speaking, the elements of the sequence
{ξ(z)}z∈Z represent the steps made by b−action to join consecutive a−connected elements.
Since ξ ∈ {0, 1}ω the sequence is well defined. For example, for ξ = (01)ω (see Figure 4)
one can easily verify that ξ(1) = 1, ξ(−1) = 2, ξ(2) = 5, ξ(−2) = 1 etc.

Lemma 3.8. Let ξ be an infinite word in {0, 1}ω such that ξ � 0ω, 1ω.

1. If ξ starts by 0 then ξ(2s + 1) = 1 and ξ(−2s) = 1 for any s ∈ N. If ξ starts by 1
then ξ(2s) = 1 and ξ(−2s+ 1) = 1 for any s ∈ N.

2. If as(ξ) = 1p0ξp+2 · · · , s > 0 then ξ(s+ 1) = 3p+1
2

.

3. If as(ξ) = 0p1ξp+2 · · · , s < 0 then ξ(s− 1) = 3p−1
2

.

Proof. Part 1 follows from the fact that a(0w) = 1w = b(0w) and a−1(1w) = 0w =

b−1(1w). Part 2 follows from the fact that a(1p0ξp+2 · · · ) = b
3p+1

2 (1p0ξp+2 · · · ) = 0p1ξp+2 · · · .
Part 3 is analogous to Part 2 for negative indices.
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Proposition 3.9. Let ξ, η be infinite words in {0, 1}ω such that ξ, η � 0ω, 1ω. Then
Γξ ' Γη if and only if there exists γ ∈ Γη with either ξ(z) = γ(z) z ∈ Z, or ξ(z) = γ(−z)
for any z ∈ Z.

Proof. Identify b · ξ and b ·γ with the graph of Z in such a way that ξ and γ coincide with
0. Suppose that ξ(z) = γ(z) (resp. ξ(z) = γ(−z)) for every z and define ϕ : Γξ → Γη
such that ϕ(ξ) = γ and ϕ(v) = v (resp. −v), v ∈ Z. From Lemma 3.8 it is easy to check
that ϕ is an isomorphism since the subgraph containing the vertices v ∈ [at(ξ), at+1(ξ)],
for any t, is uniquely determined.

On the other hand let ϕ be an isomorphism between Γξ and Γη such that ϕ(ξ) = γ.
Suppose that there exists z′ ∈ Z, such that |z′| is minimal and ξ(z′) 6= ±γ(z′). Assume
that z′ > 0. By definition we have az

′
(ξ) = bξ(z

′)az
′−1(ξ). This implies ϕ(bξ(z

′)az
′−1(ξ)) =

ϕ(az
′
(ξ)) = az

′
(γ) 6= bγ(z′)az

′−1(γ). A contradiction.

• • • • • • • •
(01)ω

·· a
. . . b. . .

Figure 4. A finite portion of a 2-ended infinite Schreier graph

Let ξ be an infinite word containing infinitely many 0 and 2 such that ξ � 0ω, 2ω, i.e.
ξ ∈ E1. In Section 3.2 we remarked that ξ ↑ Υn for infinitely many n. More precisely, if
ξk = 2 and h is the first index greater than k such that ξh = 0, then ξ ↑ Υh. Suppose that
ξ1 = 2 then we can associate with ξ an infinite sequence of polygons {℘i}i>1 ⊆ {Υi}i>1

such that ξ ↑ ℘i for any i and the number of edges, or length, of ℘i is less than the
length of ℘i+1. Moreover we can associate with ξ a sequence {lξ(n)}n>1 where lξ(k) = t if
℘k = Υt. More precisely, any subword or block of ξ of type 2w0, w ∈ {1, 2}n, 0 = ξt (i.e.
ξ
t

= 2w0, w ∈ {1, 2}t−2), gives rise to a new element equal to t in {lξ(n)}n>1,. Any block
of type 0w2, w ∈ {0, 1}n gives rise to n + 1 elements (t, t + 1, . . . , t + n) in {lξ(n)}n>1 if
0 = ξt.

Lemma 3.10. Let ξ, η be infinite words containing infinitely many 0 and 2 such that
ξ, η � 0ω, 2ω. If for any h there exists infinitely many indices n such that lξ(n) 6= lη(n+h),
then the graphs Γξ and Γη are not isomorphic.

Proof. Any vertex γ ∈ Γη is such that the distance between η and γ is finite. This implies
the sequences {lη(k)}k>1 and {lγ(k)}k>1 coincide up to a finite shifting of the elements,
since there exists a polygon Υn such that η, γ ↑ Υn and η ∼ γ.

If Γξ ' Γη and ϕ is an isomorphism such that ϕ(ξ) = γ then the finite subgraph
of Γξ induced by the vertices v ∈ [0lξ(n)γlγ(n)+1 · · · , 1lξ(n)γlγ(n)+1 · · · ] has an isomorphic
image in Γγ. Hence the distances of ξ and γ from {0lξ(n)ξlξ(n)+1 · ·, 1lξ(n)ξlξ(n)+1 · ·} and

{0lγ(n)γlγ(n)+1 · ·, 1lγ(n)γlγ(n)+1 · ·}, respectively, coincide for every n. This implies that
lξ(n) = lγ(n) for every n.
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Let ξ be an infinite word as before. If ℘n is a polygon of length 2t (i.e. lξ(n) = t), it
contains 0tξt+1 · · · and 1tξt+1 · · · (as vertices), and such vertices are (among the vertices
of the polygon) at maximal distance with respect to the b−action. Looking at the graph
Γξ, this means that ξ ∈ [0tξt+1 · · · , 1tξt+1 · · · ] for the infinitely many indices t’s such that
lγ(n) = t.

We introduce the following sequence of binary vectors associated with ξ: let db denote
the distance between two vertices in the graph Γ〈b〉, where Γ〈b〉 is the subgraph of Γξ with
only b−labelled edges. Let {dn(ξ)}n>1 be a sequence where dn(ξ) = (d0

n(ξ), d1
n(ξ)) and

din(ξ) = db(ξ, i
lξ(n)ξlξ(n)+1 · · · ), for i = 0, 1. Roughly speaking, the sequence {dn(ξ)}n>1

measures the b−distances of ξ
t

from 0t and 1t in Γt whenever ξ
t

is under the polygon ℘n
of length 2t. The sequence {dn(ξ)}n>1 characterizes the one ended graphs.

• • • • • • • •
(220)ω

··
. . .

··
. . .

a

...

b

Figure 5. A finite portion of a 1-ended infinite Schreier graph

Lemma 3.11. Let ξ, η be infinite words containing infinitely many 0 and 2 such that
ξ, η � 0ω, 2ω. Then Γξ ' Γη if and only if there exists γ ∈ Γη such that for every n > 1
either din(ξ) = din(γ) or din(ξ) = d1−i

n (γ), for i = 0, 1.

Proof. Let Γξ ' Γη and suppose there are infinitely many n such that din(ξ) 6= din(γ) and
din(ξ) 6= d1−i

n (γ). If ϕ(ξ) = γ then there exists n large enough such that the balls of radius
min{d0

n(ξ), d1
n(ξ)} centered at ξ and γ are not isomorphic. A contradiction.

On the other hand if either din(ξ) = din(γ) or din(ξ) = d1−i
n (γ), then ξ

t
and γ

t
represent

either the same vertex in [0t, 1t] or vertices of type (αk, βk) equal to bk(0t) and b−k(0t),
for some k > 0 (see Remark 3.3). This implies that taking the sequence of (increasing in
size) balls of radius min{d0

n(ξ), d1
n(ξ)} (that goes to ∞ with n), these are isomorphic.

Given an infinite word θ such that θi 6= 2 for every i, we denote by θ the word with
θi = 1− θi for every i.

Given an infinite word η such that ηi 6= 0 for every i, we denote by η the word with
ηi = 3− ηi for every i.

Theorem 3.12. Let G be the group defined above, then

• E4 consists of one orbit so there is only one 4-ended graph which coincides with a
class of isomorphism.

• Let ξ, η ∈ A(2), then there are uncountable many non isomorphic classes, each
containing two orbital graphs: Γξ ' Γη if and only if ξ ∼ η or ξ ∼ η.

Let ξ, η ∈ A(0), then there are uncountable many non isomorphic classes, each
containing two orbital graphs: Γξ ' Γη if and only if ξ ∼ η or ξ ∼ η.
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• Let ξ, η ∈ E1, then there are uncountable many non isomorphic classes, each con-
taining one or two orbital graph: Γξ ' Γη if and only if

ξ ∼ 2x1
1x

2
1 · · ·x

n1
1 0y1

1y
2
1 · · · y

m1
1 2x1

2x
2
2 · · ·x

n2
2 0y1

2 · · · y
m2
2 2x1

3 · · ·

with xji ∈ {1, 2}, ykh ∈ {0, 1} and ni,mh > 0;

η ∼ 2z1
1z

2
1 · · · z

p1
1 0w1

1w
2
1 · · ·w

q1
1 2z1

2z
2
2 · · · z

p2
2 0w1

2 · · ·w
q2
2 2z1

3 · · ·

with zji ∈ {1, 2} and wkh ∈ {0, 1}, pi, qh > 0; such that:

1. ni = pi and mh = qh for every i, h;

2. either zji = xji and wkh = ykh or zji = x
j
i and wkh = ykh for every i, j, h, k.

Proof. Since E4 consists of one graph there is nothing to prove.
Let ξ ∈ E2. First we observe that if η ∈ A(0) and ζ ∈ A(2) then Γη and Γζ are not

isomorphic because Γη does not contain any a−infinite orbit.
Let us study the case of A(2). It is easy to prove from Lemma 3.8 that ξ and ξ give

rise to sequences such that ξ(z) = ξ(−z) for any Z. In fact, if bs(ak−1(ξ)) = ak(ξ) then
b−s(a−(k−1)(ξ)) = a−k(ξ), so that ξ(k) = ξ(−k). From Proposition 3.9 it follows that
Γξ ' Γξ. If η � ξ or η � ξ then there exists infinitely many indices i such that ξi = ηi
and ξi+1 6= ηi+1. Without loss of generality assume, for example, that ξi = 1 and ξi+1 = 1.
Suppose there exists an isomorphism ϕ between Γξ and Γη. Take i large enough and let
k be such that ak−1(ξ) = 1i−1ξi · · · and ak−1(η) = 1i−1ηi · · · . Hence from Lemma 3.8 one

has ξ(k) > 3i+1+1
2

and ϕ(ξ)(k) = 3i+1
2

. This is a contradiction.
Now suppose ξ, η ∈ E1. Observe that, if the assumption (1) of the theorem is not

valid, then Lemma 3.10 applies and Γξ and Γη are not isomorphic. Let us show that given
condition (1), Γξ ' Γη if and only if condition (2) is satisfied. It is enough to consider

ξ = 2x1
1x

2
1 · · ·x

n1
1 0y1

1y
2
1 · · · y

m1
1 2x1

2x
2
2 · · · x

n2
2 0y1

2 · · · y
m2
2 2x1

3 · · · and

η = 2z1
1z

2
1 · · · z

p1
1 0w1

1w
2
1 · · ·w

q1
1 2z1

2z
2
2 · · · z

p2
2 0w1

2 · · ·w
q2
2 2z1

3 · · · .

A letter 0 after a sequence of 1, 2 gives rise to a new polygon Υi such that ξ ↑ Υi and
η ↑ Υi. In what follows we use Lemma 3.11 and Remark 3.3. Notice that lξ(i) = lη(i) for
every i, and so dji (ξ) = dji (η) (j ∈ {0, 1}) if and only if ξ

lξ(i)
= η

lη(i)
and dji (ξ) = d1−j

i (η)

(j ∈ {0, 1}) if and only if
lξ(i)∑
j=1

(ξj + ηj)3
j−1 =

lξ(i)∑
j=1

3j−1.

Fixed ξ the only two words satisfying the previous conditions are those which satisfy
condition (2) of the theorem.

The proof about elements in A(0) is analogous by considering vectors of b−distances
from 1tξt+1 · · · and 2tξt+1 · · · .
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Remark 3.13. We want to stress the fact that to establish the number of ends (and the
isomorphism classes) of the vertices in A(0), we have not used the properties of the group
G, but only the structure of the graphs given by the construction. This means that, for
such vertices, the same results hold independently of the choice of the base group acting
on the binary tree (the binary adding machine in our case).
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