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Abstract

In this note, we provide a new proof for the number of partitions of n having
subpartitions of length ` with gap d. Moreover, by generalizing the definition of a
subpartition, we show what is counted by q-expansion

∞∏
n=1

1

1− qn

∞∑
n=0

(−1)nq(an
2+bn)/2

and how fast it grows. Moreover, we prove there is a special sign pattern for the
coefficients of q-expansion

∞∏
n=1

1

1− qn

(
1− 2

∞∑
n=0

(−1)nq(an
2+bn)/2

)
.
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1 Introduction

Let a1 > a2 > · · · > am be an ordinary partition [1]. In a recent paper [9], the first author
defines a subpartition of an ordinary partition as follows. Let us fix a positive integer d.
Then, for a given partition, a subpartition with gap d is defined as the longest sequence
satisfying a1 > a2 > · · · > as and as > as+1, where ai − aj > d for all i < j 6 s. as+1

must be understood as a zero if it comes after the final part. This is a generalization
of L. Kolitsch’s Rogers-Ramanujan subpartition [10], which is the case d = 2. We call
the first condition involving d a gap condition and the second condition as > as+1 a
tail condition. For convenience, we define the subpartition of the empty partition as the
empty partition. We define the length of the subpartition with gap d as the number
of parts in the subpartition. When the gap d is clear in the context, we will write
“the subpartition” instead of “the subpartition with gap d”. In [9], the author uses
subpartitions to find combinatorial proofs of entries in Ramanujan’s lost notebook [11].
Moreover, these subpartitions play a crucial role in obtaining an asymptotic formula for
certain q-series involving partial theta functions [8].

Define p(n) to be the number of partitions of n and p(n, `, d) to be the number of
partitions of n having a subpartition of length ` with gap d. In [9], by finding a generating
function via a case by case argument, the first author proved that

Theorem 1. For all nonnegative integers n and ` and a positive integer d,

p(n, `, d) = p(n− S`,d)− p (n− S`+1,d)

where, for each nonnegative integer k,

Sk,d =

{
1 + (1 + d) + (1 + 2d) + · · ·+ 1 + (k − 1)d = dk2−(d−2)k

2
, if k 6= 0,

0, if k = 0.

Example 2. According to Theorem 1, there are 5 partitions of 8 having a subpartition
of length 2 with gap 2 as p(8, 2, 2) = p(8− 4)− p(8− 9) = p(4)− p(−1) = 5− 0 = 5. Here
are 5 such partitions and the parts consisting of the subpartition are underlined:

7 + 1, 6 + 2, 5 + 3, 5 + 2 + 1, and 4 + 2 + 1 + 1.

In this note, by employing a combinatorial argument, we give a simpler proof.
Now we further generalize the notion of subpartitions as follows. We introduce a new

parameter t and replace the tail condition by as− as+1 > t. The case t = 1 is the original
definition of a subpartition with gap d. Now we define p(n, `, d, t) to be the number of
partitions of n having a subpartition of length ` with gap d and tail condition t. Then,
by employing essentially same argument, we can prove the following theorem.

Theorem 3. For all nonnegative integers n and `, and positive integers d and t,

p(n, `, d, t) = p(n− T`,d,t)− p(n− T`+1,d,t),
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where, for each nonnegative integer k,

Tk,d,t =

{
t+ (t+ d) + (t+ 2d) + · · ·+ t+ (k − 1)d = dk2+(2t−d)k

2
, if k 6= 0,

0, if k = 0.

By summing even `’s, we see that, for a positive integer a and an integer b with
a+ b > 0 and a ≡ b (mod 2), we find that

1

(q; q)∞

∞∑
n=0

(−1)nq(an
2+bn)/2 =

∞∑
n=0

pe(n, a, (a+ b)/2)qn, (1)

where (q; q)∞ =
∏∞

n=1(1 − qn) and pe(n, d, t) is the number of partitions of n having
subpartitions of even length with gap d and tail condition t. Here the assumption on a
and b is for the positive integrality of (an2 + bn)/2 for all positive integers n. From the
representation of the partial theta function on the left side of (1), it is not clear at all
the positivity of its q-expansion and what it counts. Since n copies of 1 is always counted
by pe(n, a, (a + b)/2), the positivity of q-expansion is now clear from the combinatorial
description. The case a = b = 1 appears Andrews [2] as a generating function for the
number of partitions of n in which the first non-occurrence number as a part is odd, which
is a conjugation of partition with subpartition of even length with gap d as noted in [8].
When a = 1 and b = 3, we have

1

(q; q)∞

∞∑
n=0

(−1)nq(n
2+3n)/2 = 1 + q + q2 + 2q3 + 3q4 + 5q5 + · · · .

Among 7 partitions of 5, there are 5 partitions having subpartitions of even length with
gap 1 with tail condition 2 as follows:

4 + 1, 3 + 2, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Moreover, by adopting the argument in [8], we can prove the following theorem.

Theorem 4. As n tends to infinity, for positive integers d and t,

pe(n, d, t) ∼
1

2
p(n).

This is a generalization of [8, Theorem 1] and says that asymptotically half of the
partitions of n have subpartitions of even length. Much less obviously, there are in-
equalities between pe(n, a, (a + b)/2) and po(n, a, (a + b)/2), where po(n, a, (a + b)/2) =
p(n) − pe(n, a, (a + b)/2), i.e. the number of partitions of n having subpartitions of odd
length with gap a and tail condition (a + b)/2. These inequalities are unexpected since
both pe(n, a, (a+ b)/2) and po(n, a, (a+ b)/2) are asymptotically p(n)/2.
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Theorem 5. For integers a and b satisfying a > 0, a + b > 0, and a ≡ b (mod 2), we
have

pe(n, a, (a+ b)/2) > po(n, a, (a+ b)/2), if b > 0,

pe(n, a, (a+ b)/2) < po(n, a, (a+ b)/2), if b < 0,

for large enough integers n. Moreover, for b = 0 and even integers a > 2, we have

pe(n, a, a/2) > po(n, a, a/2),

for all positive integers n except that the equality holds when n = 2 and a = 4.

Remark 6. The case a = 2 and b = 0 was discussed in [8, Theorem 2]. In this case, the
sign of pe(n, 2, 1)− po(n, 2, 1) is alternating. This difference is due to that the generating
function is essentially modular in this case. The more precise statement in the second part
is also due to that 1− 2

∑∞
n=0(−1)nq(an

2+bn)/2 becomes a theta function in these cases.

Remark 7. The conditions on a and b, i.e. a > 0, a + b > 0, and a ≡ b (mod 2), are
needed just for having non-negative integer exponents in the q-expansion.

This paper is organized as follows. In Section 2, we prove the combinatorial results. By
adopting the circle method and elementary q-series manipulation, we will prove Theorem
5 in Section 3.

2 Proof of Combinatorial Results

For a given partition λ, we always write it in the form λ1 > λ2 > · · · > λm, and for
convenience, we define λs = 0 for all integer s > m. It is well known [1] that

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Now we define p(n, t, d) to be the number of partitions of n having subpartitions of length
> m with gap d. Then, the following lemma immediately implies Theorem 1.

Lemma 8. For all nonnegative integers m,

p(n,m, d) = p(n− Sm,d).

Proof. It is enough to show that

∞∑
n=0

p(n,m, d)qn =
qSm,d

(q; q)∞
.

By definition, it is clear that the above holds when t = 0, and thus we may assume that t >
1. We first observe that qSm,d generates the partition π = (1+(t−1)d, 1+(t−2)d, . . . , 1).
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Let λ be a partition generated by 1
(q)∞

. We append each part of λ to π beginning with the
largest part, and denote the resulting partition as µ, i.e., µi = πi+λi for all positive integers
i. For example, when π = (5, 3, 1) and λ = (4, 4, 3, 2, 1), we obtain µ = (9, 7, 4, 2, 1). Since
the gap between two consecutive parts of π is larger than or equal to d and µm > µm+1,
we see that µ has a subpartition of length at least t, which completes the proof.

By employing the same argument, we can easily see that q
Tm,d,t

(q;q)∞
is a generating function

for the number of partitions of n having subpartitions of length > m with gap d and tail
condition t, which implies Theorem 3.

Now we turn to the proof of Theorem 4. To this end, we are going to employ Ingham’s
Tauberian theorem ([7, Theorem 1] and [4, Theorem 5.3]). To apply the Tauberian
theorem, we have to show that pe(n, d, t) is weakly increasing. To see this, suppose
that λ is a partition of n with subpartition of even length. If there is no subpartition
in λ, we add a part 1 to the partition λ. Then, the resulting partition is a partition
of n + 1, and since the size of the first two parts remains the same, the length of the
subpartition is 0. If λ contains the subpartition, we increase the largest part of λ by 1.
Then, the resulting partition is a partition of n+ 1 and this operation does not affect the
length of the subpartition. It is clear that this map is an injection, thus we observe that
pe(n, d, t) 6 pe(n+ 1, d, t). Theorem 4 now immediately follows from [3, Theorem 1] and
Ingham’s Tauberian theorem.

3 Proof of Theorem 5

For a positive integer a and an integer b with a+ b > 0 and a ≡ b (mod 2), define

Sa,b(q) := 1 + 2
∞∑
n=1

(−1)nq(an
2+bn)/2,

Fa,b(q) =
∞∑
N=0

αa,b(N)qN :=
1

(q; q)∞
Sa,b(q).

Note that αa,b(N) = pe(N, a, (a+ b)/2)−po(N, a, (a+ b)/2). Therefore, to prove Theorem
5, it suffices to see the sign of αa,b(N). We are going to get an asymptotic formula for
αa,b(N) by similar argument of Bringmann and Mahlburg [4]. Main idea of the proof is
that we can get an asymptotic formula by focusing on asymptotic behavior of Sa,b(q) near
q = 1.

Set q = e2πiτ with τ = x + iy. The following proposition describes an asymptotic
behavior of Sa,b(q) near q = 1.

Proposition 9. Assume |x| 6 y. As y → 0+,

Sa,b(q) =
b

4
(−2πiτ) +O(y2).
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To prove this result, we need the following Zagier’s result on asymptotic expansions
for series (the first generalization of Proposition 3 in [12] with a correction on the sign),

Lemma 10. Suppose that h has the asymptotic expansion

h(t) =
S∑
n=0

bnt
n +O

(
tS+1

)
as t → 0+ and that h and all of its derivatives are of rapid decay at infinity, i.e.∫∞
l
|h(k)(x)| dx converges for some l > 0. Then, for a > 0, as t→ 0+,

∞∑
m=0

h((m+ a)t) =
1

t

∫ ∞
0

h(x) dx−
S∑
n=0

bn
Bn+1(a)

n+ 1
tn +O

(
tS+1

)
,

where Bn(x) is the n-th Bernoulli polynomial.

Proof of Proposition 9. Let fa,b(τ) = (Sa,b(q)− 1)/2, i.e.

fa,b(τ) =
∞∑
n=1

(−1)nq(an
2+bn)/2.

We can rewrite fa,b(τ) as follows:

fa,b(τ) = e−
b2

4a
πiτga,b(τ),

where

ga,b(τ) =
∞∑
n=0

[
e4πa(n+1+ b

4a)
2
iτ − e4πa(n+

1
2
+ b

4a)
2
iτ
]
.

We will find asymptotic formulas for the real and imaginary parts of ga,b(τ). The real
part of ga,b(τ) can be written as

Re (ga,b(τ)) =
∞∑
n=0

[
ux
y

((
n+ 1 +

b

4a

)
√
y

)
− ux

y

((
n+

1

2
+

b

4a

)
√
y

)]
,

where
us(t) = e−4πat

2

cos(4πast2) = 1− 4πat2 +O(t4) as t→ 0 + .

By Lemma 10, for
b

4a
+

1

2
> 0 (this is the case as a > 0, a+ b > 0),

Re (ga,b(τ)) =

[
Iu√
y
−B1

(
1 +

b

4a

)
− (−4πa)

B3

(
1 + b

4a

)
3

y +Ox
y
(y2)

]

−

[
Iu√
y
−B1

(
1

2
+

b

4a

)
− (−4πa)

B3

(
1
2

+ b
4a

)
3

y +Ox
y
(y2)

]

=− 1

2
+
b(2a+ b)

8
πy +Ox

y
(y2)
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with |Iu| =
∣∣∫∞

0
us(t) dt

∣∣ <∞. The imaginary part can be treated similarly.

Im (ga,b(τ))

=

[
Iv√
y
− (4πa)

B3

(
1 + b

4a

)
3

x+Ox
y
(y2)

]
−

[
Iv√
y
− (4πa)

B3

(
1
2

+ b
4a

)
3

x+Ox
y
(y2)

]

= −b(2a+ b)

8
πx+Ox

y
(y2)

where vs(t) = e−4πat
2

sin(4πast2) and |Iv| =
∣∣∫∞

0
vs(t) dt

∣∣ < ∞. Together with the as-
sumption |x| 6 y, we get

ga,b(τ) = −1

2
− b(2a+ b)

8a
(πiτ) +O(y2).

Therefore, by considering the Taylor expansion of e−
b2

4a
πiτ ,

fa,b(τ) =

(
1− b2

4a
πiτ +O(y2)

)(
−1

2
− b(2a+ b)

8a
(πiτ) +O(y2)

)
= −1

2
+
b

8
(−2πiτ) +O(y2),

as y → 0+ with |x| 6 y.

Next, we consider the behavior of Sa,b(q) away from q = 1.

Proposition 11. For y =
1

2
√

6N
with N > 0 and y 6 |x| 6 1

2
, we have

|Sa,b(q)| � N1/2.

Proof. For a > 0 and a+ b > 0, bounding each term in Sa,b(q) gives

|Sa,b(q)| 6 1 + 2
∞∑
n=1

|q|n/2 � N1/2.

The following two corollaries describe the behavior of the generating function Fa,b(q)
near q = 1 and away from q = 1, respectively.

Corollary 12. Assume y =
1

2
√

6N
and |x| 6 y. As N →∞,

Fa,b(q) =

(
b

4

)
e
πi
12τ

√
2π

(−2πiτ)3/2 +O
(
N−5/4eπ

√
N
6

)
.
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Proof. From the asymptotic expansion (3.8) in [4]

1

(q; q)∞
=
√
−iτe

πi
12τ

(
1 +

2πiτ

24
+O(N−1)

)
,

we derive

1

(q; q)∞
Sa,b(q) =

√
−iτe

πi
12τ

(
1 +

2πiτ

24
+O(N−1)

)(
b

4
(−2πiτ) +O(N−1))

)
=
√
−iτe

πi
12τ

(
b

4
(−2πiτ) +O(N−1)

)
by combining with Proposition 9.

Corollary 13. If y =
1

2
√

6N
with N > 0 and y 6 |x| 6 1

2
,

|Fa,b(q)| � eπ
√

N
6
−
√
6N
5π .

Proof. Proposition 11 together with the bound from [5, Lemma 3.5]

1

|(q; q)∞|
� √y exp

[
1

y

(
π

12
− 1

2π

(
1− 1√

2

))]
gives the corollary.

Now, we use the Circle Method with the results on Fa,b(q) to see the sign pattern of
αa,b(N). By Cauchy’s Theorem, we find

αa,b(N) =
1

2πi

∫
C

Fa,b(q)

qN+1
dq =

∫ 1/2

−1/2
Fa,b

(
e
− π√

6N
+2πix

)
eπ
√

N
6
−2πiNx dx,

where C = {|q| = e
− π√

6N }. We separate this integral into two integrals,

I ′ =

∫
|x|6 1

2
√
6N

Fa,b

(
e
− π√

6N
+2πix

)
eπ
√

N
6
−2πiNx dx

and

I ′′ =

∫
1

2
√

6N
6|x|6 1

2

Fa,b

(
e
− π√

6N
+2πix

)
eπ
√

N
6
−2πiNx dx.

The first integral I ′ gives the main contribution to the coefficient αa,b(N).

Proposition 14. As N →∞,

I ′ = b
π2

24 4
√

24
N−5/4I−5/2

(
π

√
2N

3

)
+O

(
N−7/4eπ

√
2N
3

)
,

where Is(z) is the modified Bessel function of the first kind.
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Proof. By Corollary 12 with the change of variable u = 2
√

6Nx, we deduce

I ′ =
1

2
√

6N

∫ 1

−1
Fa,b

(
e

π√
6N

(−1+iu)
)
eπ
√

N
6
(1−iu) du

=
1

2
√

6N

∫ 1

−1

[
b

4
√

2π

(
π(1− iu)√

6N

)3/2

eπ
√

N
6 ( 1

1−iu+(1−iu)) +O
(
N−5/4e2π

√
N
6

)]
du

=
b

4
√

2π

(
π√
6N

)5/2

P3/2 +O
(
N−7/4eπ

√
2N
3

)
,

where

Ps :=
1

2πi

∫ 1+i

1−i
vseπ
√

N
6 (v+ 1

v ) dv.

Lemma 4.2 in [4] shows that

Ps = I−s−1

(
π

√
2N

3

)
+O

(
e

3π
2

√
N
6

)
,

which completes the proof.

The next proposition shows that the second integral I ′′ is smaller than the error term
in the main asymptotic formula of I ′.

Proposition 15. As N →∞,

|I ′′| � e2π
√

N
6
−
√
6N
5π

Proof. By Corollary 13,

|I ′′| 6
∫

1

2
√
6N

6|x|6 1
2

∣∣∣Fa,b (e−π√N
6
+2πix

)
eπ
√

N
6
−2πiNx

∣∣∣ dx� eπ
√

N
6 eπ
√

N
6
−
√
6N
5π .

In summary, we have obtained the following asymptotic formula for the coefficient
αa,b(N).

Corollary 16. For an positive integer a and an integer b with a + b > 0 and a ≡ b
(mod 2), as N →∞,

αa,b(N) = b
π2

24 4
√

24
N−5/4I−5/2

(
π

√
2N

3

)
+O

(
N−7/4eπ

√
2N
3

)
.

Now, we are ready to prove Theorem 5. Since

Is(z) ∼ ez√
2πz

,
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the first part of Theorem 5 follows immediately from Corollary 16.
For the second part of Theorem 5, note that

∞∑
n=0

α2k,0(n)qn =
(qk; q2k)2∞(q2k; q2k)∞

(q; q)∞
,

where we set a = 2k > 2 and have applied Jacobi’s triple product identity [1, Theorem
2.8]. From this, we deduce that

(qk; q2k)2∞(q2k; q2k)∞
(q; q)∞

=
(qk; q2k)2∞(q2k; q2k)3∞

(q)∞(q2k; q2k)2∞

=
(qk; qk)2∞

(q; q)∞(q2k; q2k)∞

=
(qk; qk)k∞

(q; q)∞(qk; qk)k−2∞ (q2k; q2k)∞
. (2)

Since (qk;qk)k∞
(q;q)∞

is a generating function for the number of k-core partition, it is clear that
q-expansion of the above infinite product is nonnegative. By the result of A. Granvile and
K. Ono [6], we know that there is a k-core partition of n if k > 4. Thus, when k > 4, the
q-expansion of (2) has positive coefficients. When k = 3, since the partitions 1 and 1 + 1
are 3-core partitions and since 1

(q3;q3)∞
=
∑∞

n=0 p(n)q3n, the coefficients of q-expansion of

(2) are always positive. Finally, when k = 2, we see that (2) is

(q2; q2)2∞
(q; q)∞(q4; q4)∞

.

Note that the partitions 1, 1 + 2, and 1 + 2 + 3 are 2-core partitions and 1
(q4;q4)∞

=∑∞
n=0 p(n)q4n. Therefore, the n-th coefficient of q-expansion has positive coefficient pro-

vided n ≡ 0, 1, 3, 6. Hence, the q-expansion of (2) has positive coefficients except n = 2.
This completes the proof of the second part of Theorem 5.
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