On the subpartitions of the ordinary partitions, II

Byungchan Kim*
School of Liberal Arts
Seoul National University of Science and Technology
Seoul, Republic of Korea
bkim4@seoultech.ac.kr
\section*{Eunmi Kim}
Center for Applications of Mathematical Principles
National Institute for Mathematical Sciences
Daejeon, Republic of Korea
ekim@nims.re.kr

Submitted: Jun 30, 2013; Accepted: Oct 21, 2014; Published: Oct 30, 2014
Mathematics Subject Classifications (2010): 05A17, 11P82

Abstract

In this note, we provide a new proof for the number of partitions of n having subpartitions of length ℓ with gap d. Moreover, by generalizing the definition of a subpartition, we show what is counted by q-expansion

$$
\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \sum_{n=0}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}
$$

and how fast it grows. Moreover, we prove there is a special sign pattern for the coefficients of q-expansion

$$
\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}\left(1-2 \sum_{n=0}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}\right)
$$

Keywords: partition; subpartition; partial theta function.

[^0]
1 Introduction

Let $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{m}$ be an ordinary partition [1]. In a recent paper [9], the first author defines a subpartition of an ordinary partition as follows. Let us fix a positive integer d. Then, for a given partition, a subpartition with gap d is defined as the longest sequence satisfying $a_{1}>a_{2}>\cdots>a_{s}$ and $a_{s}>a_{s+1}$, where $a_{i}-a_{j} \geqslant d$ for all $i<j \leqslant s . a_{s+1}$ must be understood as a zero if it comes after the final part. This is a generalization of L. Kolitsch's Rogers-Ramanujan subpartition [10], which is the case $d=2$. We call the first condition involving d a gap condition and the second condition $a_{s}>a_{s+1}$ a tail condition. For convenience, we define the subpartition of the empty partition as the empty partition. We define the length of the subpartition with gap d as the number of parts in the subpartition. When the gap d is clear in the context, we will write "the subpartition" instead of "the subpartition with gap d ". In [9], the author uses subpartitions to find combinatorial proofs of entries in Ramanujan's lost notebook [11]. Moreover, these subpartitions play a crucial role in obtaining an asymptotic formula for certain q-series involving partial theta functions [8].

Define $p(n)$ to be the number of partitions of n and $p(n, \ell, d)$ to be the number of partitions of n having a subpartition of length ℓ with gap d. In [9], by finding a generating function via a case by case argument, the first author proved that

Theorem 1. For all nonnegative integers n and ℓ and a positive integer d,

$$
p(n, \ell, d)=p\left(n-S_{\ell, d}\right)-p\left(n-S_{\ell+1, d}\right)
$$

where, for each nonnegative integer k,

$$
S_{k, d}=\left\{\begin{array}{l}
1+(1+d)+(1+2 d)+\cdots+1+(k-1) d=\frac{d k^{2}-(d-2) k}{2}, \text { if } k \neq 0, \\
0, \text { if } k=0
\end{array}\right.
$$

Example 2. According to Theorem 1, there are 5 partitions of 8 having a subpartition of length 2 with gap 2 as $p(8,2,2)=p(8-4)-p(8-9)=p(4)-p(-1)=5-0=5$. Here are 5 such partitions and the parts consisting of the subpartition are underlined:

$$
\underline{7}+\underline{1}, \underline{6}+\underline{2}, \underline{5}+\underline{3}, \underline{5}+\underline{2}+1, \quad \text { and } \underline{4}+\underline{2}+1+1 .
$$

In this note, by employing a combinatorial argument, we give a simpler proof.
Now we further generalize the notion of subpartitions as follows. We introduce a new parameter t and replace the tail condition by $a_{s}-a_{s+1} \geqslant t$. The case $t=1$ is the original definition of a subpartition with gap d. Now we define $p(n, \ell, d, t)$ to be the number of partitions of n having a subpartition of length ℓ with gap d and tail condition t. Then, by employing essentially same argument, we can prove the following theorem.

Theorem 3. For all nonnegative integers n and ℓ, and positive integers d and t,

$$
p(n, \ell, d, t)=p\left(n-T_{\ell, d, t}\right)-p\left(n-T_{\ell+1, d, t}\right),
$$

where, for each nonnegative integer k,

$$
T_{k, d, t}=\left\{\begin{array}{l}
t+(t+d)+(t+2 d)+\cdots+t+(k-1) d=\frac{d k^{2}+(2 t-d) k}{2}, \text { if } k \neq 0 \\
0, \text { if } k=0
\end{array}\right.
$$

By summing even ℓ 's, we see that, for a positive integer a and an integer b with $a+b>0$ and $a \equiv b(\bmod 2)$, we find that

$$
\begin{equation*}
\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}=\sum_{n=0}^{\infty} p_{e}(n, a,(a+b) / 2) q^{n} \tag{1}
\end{equation*}
$$

where $(q ; q)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)$ and $p_{e}(n, d, t)$ is the number of partitions of n having subpartitions of even length with gap d and tail condition t. Here the assumption on a and b is for the positive integrality of $\left(a n^{2}+b n\right) / 2$ for all positive integers n. From the representation of the partial theta function on the left side of (1), it is not clear at all the positivity of its q-expansion and what it counts. Since n copies of 1 is always counted by $p_{e}(n, a,(a+b) / 2)$, the positivity of q-expansion is now clear from the combinatorial description. The case $a=b=1$ appears Andrews [2] as a generating function for the number of partitions of n in which the first non-occurrence number as a part is odd, which is a conjugation of partition with subpartition of even length with gap d as noted in [8]. When $a=1$ and $b=3$, we have

$$
\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} q^{\left(n^{2}+3 n\right) / 2}=1+q+q^{2}+2 q^{3}+3 q^{4}+5 q^{5}+\cdots
$$

Among 7 partitions of 5 , there are 5 partitions having subpartitions of even length with gap 1 with tail condition 2 as follows:

$$
4+1, \quad 3+2, \quad 2+2+1, \quad 2+1+1+1, \quad 1+1+1+1+1
$$

Moreover, by adopting the argument in [8], we can prove the following theorem.
Theorem 4. As n tends to infinity, for positive integers d and t,

$$
p_{e}(n, d, t) \sim \frac{1}{2} p(n) .
$$

This is a generalization of [8, Theorem 1] and says that asymptotically half of the partitions of n have subpartitions of even length. Much less obviously, there are inequalities between $p_{e}(n, a,(a+b) / 2)$ and $p_{o}(n, a,(a+b) / 2)$, where $p_{o}(n, a,(a+b) / 2)=$ $p(n)-p_{e}(n, a,(a+b) / 2)$, i.e. the number of partitions of n having subpartitions of odd length with gap a and tail condition $(a+b) / 2$. These inequalities are unexpected since both $p_{e}(n, a,(a+b) / 2)$ and $p_{o}(n, a,(a+b) / 2)$ are asymptotically $p(n) / 2$.

Theorem 5. For integers a and b satisfying $a>0, a+b>0$, and $a \equiv b(\bmod 2)$, we have

$$
\begin{array}{ll}
p_{e}(n, a,(a+b) / 2)>p_{o}(n, a,(a+b) / 2), & \text { if } b>0, \\
p_{e}(n, a,(a+b) / 2)<p_{o}(n, a,(a+b) / 2), & \text { if } b<0,
\end{array}
$$

for large enough integers n. Moreover, for $b=0$ and even integers $a>2$, we have

$$
p_{e}(n, a, a / 2)>p_{o}(n, a, a / 2),
$$

for all positive integers n except that the equality holds when $n=2$ and $a=4$.
Remark 6. The case $a=2$ and $b=0$ was discussed in [8, Theorem 2]. In this case, the sign of $p_{e}(n, 2,1)-p_{o}(n, 2,1)$ is alternating. This difference is due to that the generating function is essentially modular in this case. The more precise statement in the second part is also due to that $1-2 \sum_{n=0}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}$ becomes a theta function in these cases.
Remark 7. The conditions on a and b, i.e. $a>0, a+b>0$, and $a \equiv b(\bmod 2)$, are needed just for having non-negative integer exponents in the q-expansion.

This paper is organized as follows. In Section 2, we prove the combinatorial results. By adopting the circle method and elementary q-series manipulation, we will prove Theorem 5 in Section 3.

2 Proof of Combinatorial Results

For a given partition λ, we always write it in the form $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{m}$, and for convenience, we define $\lambda_{s}=0$ for all integer $s>m$. It is well known [1] that

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}} .
$$

Now we define $p(n, t, d)$ to be the number of partitions of n having subpartitions of length $\geqslant m$ with gap d. Then, the following lemma immediately implies Theorem 1 .

Lemma 8. For all nonnegative integers m,

$$
p(n, m, d)=p\left(n-S_{m, d}\right) .
$$

Proof. It is enough to show that

$$
\sum_{n=0}^{\infty} p(n, m, d) q^{n}=\frac{q^{S_{m, d}}}{(q ; q)_{\infty}}
$$

By definition, it is clear that the above holds when $t=0$, and thus we may assume that $t \geqslant$ 1. We first observe that $q^{S_{m, d}}$ generates the partition $\pi=(1+(t-1) d, 1+(t-2) d, \ldots, 1)$.

Let λ be a partition generated by $\frac{1}{(q)_{\infty}}$. We append each part of λ to π beginning with the largest part, and denote the resulting partition as μ, i.e., $\mu_{i}=\pi_{i}+\lambda_{i}$ for all positive integers i. For example, when $\pi=(5,3,1)$ and $\lambda=(4,4,3,2,1)$, we obtain $\mu=(9,7,4,2,1)$. Since the gap between two consecutive parts of π is larger than or equal to d and $\mu_{m}>\mu_{m+1}$, we see that μ has a subpartition of length at least t, which completes the proof.

By employing the same argument, we can easily see that $\frac{q^{T_{m, d, t}}}{\left(q ; q q_{\infty}\right.}$ is a generating function for the number of partitions of n having subpartitions of length $\geqslant m$ with gap d and tail condition t, which implies Theorem 3 .

Now we turn to the proof of Theorem 4. To this end, we are going to employ Ingham's Tauberian theorem ([7, Theorem 1] and [4, Theorem 5.3]). To apply the Tauberian theorem, we have to show that $p_{e}(n, d, t)$ is weakly increasing. To see this, suppose that λ is a partition of n with subpartition of even length. If there is no subpartition in λ, we add a part 1 to the partition λ. Then, the resulting partition is a partition of $n+1$, and since the size of the first two parts remains the same, the length of the subpartition is 0 . If λ contains the subpartition, we increase the largest part of λ by 1 . Then, the resulting partition is a partition of $n+1$ and this operation does not affect the length of the subpartition. It is clear that this map is an injection, thus we observe that $p_{e}(n, d, t) \leqslant p_{e}(n+1, d, t)$. Theorem 4 now immediately follows from [3, Theorem 1] and Ingham's Tauberian theorem.

3 Proof of Theorem 5

For a positive integer a and an integer b with $a+b>0$ and $a \equiv b(\bmod 2)$, define

$$
\begin{gathered}
S_{a, b}(q):=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}, \\
F_{a, b}(q)=\sum_{N=0}^{\infty} \alpha_{a, b}(N) q^{N}:=\frac{1}{(q ; q)_{\infty}} S_{a, b}(q) .
\end{gathered}
$$

Note that $\alpha_{a, b}(N)=p_{e}(N, a,(a+b) / 2)-p_{o}(N, a,(a+b) / 2)$. Therefore, to prove Theorem 5 , it suffices to see the sign of $\alpha_{a, b}(N)$. We are going to get an asymptotic formula for $\alpha_{a, b}(N)$ by similar argument of Bringmann and Mahlburg [4]. Main idea of the proof is that we can get an asymptotic formula by focusing on asymptotic behavior of $S_{a, b}(q)$ near $q=1$.

Set $q=e^{2 \pi i \tau}$ with $\tau=x+i y$. The following proposition describes an asymptotic behavior of $S_{a, b}(q)$ near $q=1$.

Proposition 9. Assume $|x| \leqslant y$. As $y \rightarrow 0+$,

$$
S_{a, b}(q)=\frac{b}{4}(-2 \pi i \tau)+\mathcal{O}\left(y^{2}\right)
$$

To prove this result, we need the following Zagier's result on asymptotic expansions for series (the first generalization of Proposition 3 in [12] with a correction on the sign),

Lemma 10. Suppose that h has the asymptotic expansion

$$
h(t)=\sum_{n=0}^{S} b_{n} t^{n}+\mathcal{O}\left(t^{S+1}\right)
$$

as $t \rightarrow 0+$ and that h and all of its derivatives are of rapid decay at infinity, i.e. $\int_{l}^{\infty}\left|h^{(k)}(x)\right| d x$ converges for some $l>0$. Then, for $a>0$, as $t \rightarrow 0+$,

$$
\sum_{m=0}^{\infty} h((m+a) t)=\frac{1}{t} \int_{0}^{\infty} h(x) d x-\sum_{n=0}^{S} b_{n} \frac{B_{n+1}(a)}{n+1} t^{n}+\mathcal{O}\left(t^{S+1}\right),
$$

where $B_{n}(x)$ is the n-th Bernoulli polynomial.
Proof of Proposition 9. Let $f_{a, b}(\tau)=\left(S_{a, b}(q)-1\right) / 2$, i.e.

$$
f_{a, b}(\tau)=\sum_{n=1}^{\infty}(-1)^{n} q^{\left(a n^{2}+b n\right) / 2}
$$

We can rewrite $f_{a, b}(\tau)$ as follows:

$$
f_{a, b}(\tau)=e^{-\frac{b^{2}}{4 a} \pi i \tau} g_{a, b}(\tau)
$$

where

$$
g_{a, b}(\tau)=\sum_{n=0}^{\infty}\left[e^{4 \pi a\left(n+1+\frac{b}{4 a}\right)^{2} i \tau}-e^{4 \pi a\left(n+\frac{1}{2}+\frac{b}{4 a}\right)^{2} i \tau}\right] .
$$

We will find asymptotic formulas for the real and imaginary parts of $g_{a, b}(\tau)$. The real part of $g_{a, b}(\tau)$ can be written as

$$
\operatorname{Re}\left(g_{a, b}(\tau)\right)=\sum_{n=0}^{\infty}\left[u_{\frac{x}{y}}\left(\left(n+1+\frac{b}{4 a}\right) \sqrt{y}\right)-u_{\frac{x}{y}}\left(\left(n+\frac{1}{2}+\frac{b}{4 a}\right) \sqrt{y}\right)\right],
$$

where

$$
u_{s}(t)=e^{-4 \pi a t^{2}} \cos \left(4 \pi a s t^{2}\right)=1-4 \pi a t^{2}+\mathcal{O}\left(t^{4}\right) \text { as } t \rightarrow 0+.
$$

By Lemma 10 , for $\frac{b}{4 a}+\frac{1}{2}>0$ (this is the case as $a>0, a+b>0$),

$$
\begin{aligned}
\operatorname{Re}\left(g_{a, b}(\tau)\right)= & {\left[\frac{I_{u}}{\sqrt{y}}-B_{1}\left(1+\frac{b}{4 a}\right)-(-4 \pi a) \frac{B_{3}\left(1+\frac{b}{4 a}\right)}{3} y+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)\right] } \\
& -\left[\frac{I_{u}}{\sqrt{y}}-B_{1}\left(\frac{1}{2}+\frac{b}{4 a}\right)-(-4 \pi a) \frac{B_{3}\left(\frac{1}{2}+\frac{b}{4 a}\right)}{3} y+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)\right] \\
= & -\frac{1}{2}+\frac{b(2 a+b)}{8} \pi y+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)
\end{aligned}
$$

with $\left|I_{u}\right|=\left|\int_{0}^{\infty} u_{s}(t) d t\right|<\infty$. The imaginary part can be treated similarly.

$$
\begin{aligned}
& \operatorname{Im}\left(g_{a, b}(\tau)\right) \\
& =\left[\frac{I_{v}}{\sqrt{y}}-(4 \pi a) \frac{B_{3}\left(1+\frac{b}{4 a}\right)}{3} x+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)\right]-\left[\frac{I_{v}}{\sqrt{y}}-(4 \pi a) \frac{B_{3}\left(\frac{1}{2}+\frac{b}{4 a}\right)}{3} x+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)\right] \\
& =-\frac{b(2 a+b)}{8} \pi x+\mathcal{O}_{\frac{x}{y}}\left(y^{2}\right)
\end{aligned}
$$

where $v_{s}(t)=e^{-4 \pi a t^{2}} \sin \left(4 \pi a s t^{2}\right)$ and $\left|I_{v}\right|=\left|\int_{0}^{\infty} v_{s}(t) d t\right|<\infty$. Together with the assumption $|x| \leqslant y$, we get

$$
g_{a, b}(\tau)=-\frac{1}{2}-\frac{b(2 a+b)}{8 a}(\pi i \tau)+\mathcal{O}\left(y^{2}\right) .
$$

Therefore, by considering the Taylor expansion of $e^{-\frac{b^{2}}{4 a} \pi i \tau}$,

$$
\begin{aligned}
f_{a, b}(\tau) & =\left(1-\frac{b^{2}}{4 a} \pi i \tau+\mathcal{O}\left(y^{2}\right)\right)\left(-\frac{1}{2}-\frac{b(2 a+b)}{8 a}(\pi i \tau)+\mathcal{O}\left(y^{2}\right)\right) \\
& =-\frac{1}{2}+\frac{b}{8}(-2 \pi i \tau)+\mathcal{O}\left(y^{2}\right)
\end{aligned}
$$

as $y \rightarrow 0+$ with $|x| \leqslant y$.
Next, we consider the behavior of $S_{a, b}(q)$ away from $q=1$.
Proposition 11. For $y=\frac{1}{2 \sqrt{6 N}}$ with $N>0$ and $y \leqslant|x| \leqslant \frac{1}{2}$, we have

$$
\left|S_{a, b}(q)\right| \ll N^{1 / 2}
$$

Proof. For $a>0$ and $a+b>0$, bounding each term in $S_{a, b}(q)$ gives

$$
\left|S_{a, b}(q)\right| \leqslant 1+2 \sum_{n=1}^{\infty}|q|^{n / 2} \ll N^{1 / 2}
$$

The following two corollaries describe the behavior of the generating function $F_{a, b}(q)$ near $q=1$ and away from $q=1$, respectively.
Corollary 12. Assume $y=\frac{1}{2 \sqrt{6 N}}$ and $|x| \leqslant y$. As $N \rightarrow \infty$,

$$
F_{a, b}(q)=\left(\frac{b}{4}\right) \frac{e^{\frac{\pi i}{12 \tau}}}{\sqrt{2 \pi}}(-2 \pi i \tau)^{3 / 2}+\mathcal{O}\left(N^{-5 / 4} e^{\pi \sqrt{\frac{N}{6}}}\right) .
$$

Proof. From the asymptotic expansion (3.8) in [4]

$$
\frac{1}{(q ; q)_{\infty}}=\sqrt{-i \tau} e^{\frac{\pi i}{\frac{1}{2 \tau}}}\left(1+\frac{2 \pi i \tau}{24}+\mathcal{O}\left(N^{-1}\right)\right)
$$

we derive

$$
\begin{aligned}
\frac{1}{(q ; q)_{\infty}} S_{a, b}(q) & \left.=\sqrt{-i \tau} e^{\frac{\pi i}{12 \tau}}\left(1+\frac{2 \pi i \tau}{24}+\mathcal{O}\left(N^{-1}\right)\right)\left(\frac{b}{4}(-2 \pi i \tau)+\mathcal{O}\left(N^{-1}\right)\right)\right) \\
& =\sqrt{-i \tau} e^{\frac{\pi i}{12 \tau}}\left(\frac{b}{4}(-2 \pi i \tau)+\mathcal{O}\left(N^{-1}\right)\right)
\end{aligned}
$$

by combining with Proposition 9.
Corollary 13. If $y=\frac{1}{2 \sqrt{6 N}}$ with $N>0$ and $y \leqslant|x| \leqslant \frac{1}{2}$,

$$
\left|F_{a, b}(q)\right| \ll e^{\pi \sqrt{\frac{N}{6}}-\frac{\sqrt{6 N}}{5 \pi}}
$$

Proof. Proposition 11 together with the bound from [5, Lemma 3.5]

$$
\frac{1}{\left|(q ; q)_{\infty}\right|} \ll \sqrt{y} \exp \left[\frac{1}{y}\left(\frac{\pi}{12}-\frac{1}{2 \pi}\left(1-\frac{1}{\sqrt{2}}\right)\right)\right]
$$

gives the corollary.
Now, we use the Circle Method with the results on $F_{a, b}(q)$ to see the sign pattern of $\alpha_{a, b}(N)$. By Cauchy's Theorem, we find

$$
\alpha_{a, b}(N)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{F_{a, b}(q)}{q^{N+1}} d q=\int_{-1 / 2}^{1 / 2} F_{a, b}\left(e^{-\frac{\pi}{\sqrt{6 N}}+2 \pi i x}\right) e^{\pi \sqrt{\frac{N}{6}}-2 \pi i N x} d x
$$

where $\mathcal{C}=\left\{|q|=e^{-\frac{\pi}{\sqrt{6 N}}}\right\}$. We separate this integral into two integrals,

$$
I^{\prime}=\int_{|x| \leqslant \frac{1}{2 \sqrt{6 N}}} F_{a, b}\left(e^{-\frac{\pi}{\sqrt{6 N}}+2 \pi i x}\right) e^{\pi \sqrt{\frac{N}{6}}-2 \pi i N x} d x
$$

and

$$
I^{\prime \prime}=\int_{\frac{1}{2 \sqrt{6 N}} \leqslant|x| \leqslant \frac{1}{2}} F_{a, b}\left(e^{-\frac{\pi}{\sqrt{6 N}}+2 \pi i x}\right) e^{\pi \sqrt{\frac{N}{6}}-2 \pi i N x} d x .
$$

The first integral I^{\prime} gives the main contribution to the coefficient $\alpha_{a, b}(N)$.
Proposition 14. As $N \rightarrow \infty$,

$$
I^{\prime}=b \frac{\pi^{2}}{24 \sqrt[4]{24}} N^{-5 / 4} I_{-5 / 2}\left(\pi \sqrt{\frac{2 N}{3}}\right)+\mathcal{O}\left(N^{-7 / 4} e^{\pi \sqrt{\frac{2 N}{3}}}\right),
$$

where $I_{s}(z)$ is the modified Bessel function of the first kind.

Proof. By Corollary 12 with the change of variable $u=2 \sqrt{6 N} x$, we deduce

$$
\begin{aligned}
I^{\prime} & =\frac{1}{2 \sqrt{6 N}} \int_{-1}^{1} F_{a, b}\left(e^{\frac{\pi}{\sqrt{6 N}}(-1+i u)}\right) e^{\pi \sqrt{\frac{N}{6}}(1-i u)} d u \\
& =\frac{1}{2 \sqrt{6 N}} \int_{-1}^{1}\left[\frac{b}{4 \sqrt{2 \pi}}\left(\frac{\pi(1-i u)}{\sqrt{6 N}}\right)^{3 / 2} e^{\pi \sqrt{\frac{N}{6}}\left(\frac{1}{1-i u}+(1-i u)\right)}+\mathcal{O}\left(N^{-5 / 4} e^{2 \pi \sqrt{\frac{N}{6}}}\right)\right] d u \\
& =\frac{b}{4 \sqrt{2 \pi}}\left(\frac{\pi}{\sqrt{6 N}}\right)^{5 / 2} P_{3 / 2}+\mathcal{O}\left(N^{-7 / 4} e^{\pi \sqrt{\frac{2 N}{3}}}\right),
\end{aligned}
$$

where

$$
P_{s}:=\frac{1}{2 \pi i} \int_{1-i}^{1+i} v^{s} e^{\pi \sqrt{\frac{N}{6}}\left(v+\frac{1}{v}\right)} d v .
$$

Lemma 4.2 in [4] shows that

$$
P_{s}=I_{-s-1}\left(\pi \sqrt{\frac{2 N}{3}}\right)+\mathcal{O}\left(e^{\frac{3 \pi}{2} \sqrt{\frac{N}{6}}}\right),
$$

which completes the proof.
The next proposition shows that the second integral $I^{\prime \prime}$ is smaller than the error term in the main asymptotic formula of I^{\prime}.

Proposition 15. As $N \rightarrow \infty$,

$$
\left|I^{\prime \prime}\right| \ll e^{2 \pi \sqrt{\frac{N}{6}}-\frac{\sqrt{6 N}}{5 \pi}}
$$

Proof. By Corollary 13,

$$
\left|I^{\prime \prime}\right| \leqslant \int_{\frac{1}{2 \sqrt{6 N}} \leqslant|x| \leqslant \frac{1}{2}}\left|F_{a, b}\left(e^{-\pi \sqrt{\frac{N}{6}}+2 \pi i x}\right) e^{\pi \sqrt{\frac{N}{6}}-2 \pi i N x}\right| d x \ll e^{\pi \sqrt{\frac{N}{6}}} e^{\pi \sqrt{\frac{N}{6}}-\frac{\sqrt{6 N}}{5 \pi}}
$$

In summary, we have obtained the following asymptotic formula for the coefficient $\alpha_{a, b}(N)$.

Corollary 16. For an positive integer a and an integer b with $a+b>0$ and $a \equiv b$ $(\bmod 2)$, as $N \rightarrow \infty$,

$$
\alpha_{a, b}(N)=b \frac{\pi^{2}}{24 \sqrt[4]{24}} N^{-5 / 4} I_{-5 / 2}\left(\pi \sqrt{\frac{2 N}{3}}\right)+\mathcal{O}\left(N^{-7 / 4} e^{\pi \sqrt{\frac{2 N}{3}}}\right) .
$$

Now, we are ready to prove Theorem 5. Since

$$
I_{s}(z) \sim \frac{e^{z}}{\sqrt{2 \pi z}}
$$

the first part of Theorem 5 follows immediately from Corollary 16 .
For the second part of Theorem 5, note that

$$
\sum_{n=0}^{\infty} \alpha_{2 k, 0}(n) q^{n}=\frac{\left(q^{k} ; q^{2 k}\right)_{\infty}^{2}\left(q^{2 k} ; q^{2 k}\right)_{\infty}}{(q ; q)_{\infty}}
$$

where we set $a=2 k>2$ and have applied Jacobi's triple product identity [1, Theorem 2.8]. From this, we deduce that

$$
\begin{align*}
\frac{\left(q^{k} ; q^{2 k}\right)_{\infty}^{2}\left(q^{2 k} ; q^{2 k}\right)_{\infty}}{(q ; q)_{\infty}} & =\frac{\left(q^{k} ; q^{2 k}\right)_{\infty}^{2}\left(q^{2 k} ; q^{2 k}\right)_{\infty}^{3}}{(q)_{\infty}\left(q^{2 k} ; q^{2 k}\right)_{\infty}^{2}} \\
& =\frac{\left(q^{k} ; q^{k}\right)_{\infty}^{2}}{(q ; q)_{\infty}\left(q^{2 k} ; q^{2 k}\right)_{\infty}} \\
& =\frac{\left(q^{k} ; q^{k}\right)_{\infty}^{k}}{(q ; q)_{\infty}\left(q^{k} ; q^{k}\right)_{\infty}^{k-2}\left(q^{2 k} ; q^{2 k}\right)_{\infty}} \tag{2}
\end{align*}
$$

Since $\frac{\left(q^{k} ; q^{k}\right)_{\infty}^{k}}{(q ; q)_{\infty}}$ is a generating function for the number of k-core partition, it is clear that q-expansion of the above infinite product is nonnegative. By the result of A. Granvile and K . Ono [6], we know that there is a k-core partition of n if $k \geqslant 4$. Thus, when $k \geqslant 4$, the q-expansion of (2) has positive coefficients. When $k=3$, since the partitions 1 and $1+1$ are 3 -core partitions and since $\frac{1}{\left(q^{3} ; q^{3}\right)_{\infty}}=\sum_{n=0}^{\infty} p(n) q^{3 n}$, the coefficients of q-expansion of (2) are always positive. Finally, when $k=2$, we see that (2) is

$$
\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}}
$$

Note that the partitions $1,1+2$, and $1+2+3$ are 2 -core partitions and $\frac{1}{\left(q^{4} ; q^{4}\right)_{\infty}}=$ $\sum_{n=0}^{\infty} p(n) q^{4 n}$. Therefore, the n-th coefficient of q-expansion has positive coefficient provided $n \equiv 0,1,3,6$. Hence, the q-expansion of (2) has positive coefficients except $n=2$. This completes the proof of the second part of Theorem 5.

Acknowledgments

The authors would like to thank Bruce Berndt, Jehanne Dousse, and the referee for their careful reading and comments on an earlier version of the paper.

References

[1] G.E. Andrews, The theory of partitions, Addison-Wesley, Reading, MA, 1976; reissued by Cambridge University Press, Cambridge, 1984.
[2] G. E. Andrews, Concave compositions. Electronic Journal of Combinatorics 18 (2011), P6.
[3] B. C. Berndt, B. Kim, Asymptotic expansions of certain partial theta function, Proc. Amer. Math. Soc. 139 (2011), 3779-3788.
[4] K. Bringmann, K. Mahlburg, Asymptotic inequalities for positive crank and rank moments, Trans. Amer. Math. Soc. 366 (2014), 1073-1094.
[5] K. Bringmann, J. Dousse, On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions, Trans. Amer. Math. Soc., to appear.
[6] A. Granville, K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 331-347.
[7] A. Ingham, A Tauberian theorem for partitions, Ann. of Math. 42 (1941), 1075-1090.
[8] S. Jo and B. Kim, On asymptotic formulas for certain q-series involving partial theta functions, Proc. Amer. Math. Soc., to appear.
[9] B. Kim, On the subpartitions of the ordinary partitions, Ramanujan J.(Special issue for G.E. Andrews' 70th birthday) 23 (2010), 159-167.
[10] L.W. Kolitsch, Rogers-Ramanujan subpartitions and their connections to other partition, Ramanujan J., 2008, 163-167.
[11] S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.
[12] D. Zagier, The Mellin transform and other useful analytic techniques, Appendix to E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists Springer-Verlag, Berlin-Heidelberg-New York (2006), 305-323.

[^0]: *This research has been supported by TJ Park Science Fellowship of POSCO TJ Park Foundation.

