A 64-dimensional counterexample to Borsuk's conjecture

Thomas Jenrich
thomas.jenrich@gmx.de

Andries E. Brouwer
aeb@cwi.nl

Submitted: Feb 3, 2014; Accepted: Oct 28, 2014; Published: Nov 6, 2014
Mathematics Subject Classifications: 51M25, 05E30

Abstract

Bondarenko's 65-dimensional counterexample to Borsuk's conjecture contains a 64 -dimensional counterexample. It is a two-distance set of 352 points.

1 Introduction

In 1933 Karol Borsuk [2] asked whether each bounded set in the n-dimensional Euclidean space (containing at least two points) can be divided into $n+1$ parts of smaller diameter. (The diameter of a set X is the least upper bound of the distances of pairs of points in X.) The hypothesis that the answer to that question is positive became famous under the name Borsuk's conjecture.

The first counterexamples were given by Jeff Kahn and Gil Kalai [7] who showed that Borsuk's conjecture is false for $n=1325$ and gave an exponential lower bound $c^{\sqrt{n}}$ with $c=1.2$ for the number of parts needed for large n. Subsequently, several authors found counterexamples in lower dimensions.

In 2013 Andriy V. Bondarenko [1] constructed a 65-dimensional two-distance set S of 416 vectors that cannot be divided into fewer than 84 parts of smaller diameter. That was not just the first known two-distance counterexample to Borsuk's conjecture but also a considerable reduction of the lowest known dimension the conjecture fails in in general.

This article presents a 64-dimensional subset of S of size 352 that cannot be divided into fewer than 71 parts of smaller diameter, thus producing a two-distance counterexample to Borsuk's conjecture in dimension 64.

2 Euclidean representation of strongly regular graphs

We very briefly repeat the basic facts. More details can be found in [1] and [3].
A finite graph Γ without loops or multiple edges is called a $\operatorname{srg}(v, k, \lambda, \mu)$, where srg abbreviates 'strongly regular graph', when it has v vertices, is regular of valency k, where
$0<k<v-1$, and any two distinct vertices x, y have λ common neighbours when x and y are adjacent (notation: $x \sim y$), and μ common neighbours otherwise (notation: $x \nsim y$).

The adjacency matrix A of Γ is the matrix of order v defined by $A_{x y}=1$ if $x \sim y$ and $A_{x y}=0$ otherwise. Let I be the identity matrix of order v, and let J be the matrix of order v with all entries equal to 1 . Then A is a symmetric matrix with zero diagonal such that $A J=J A=k J$ and $A^{2}=k I+\lambda A+\mu(J-I-A)$. It follows that the eigenvalues of A are k, r, s, with $k \geqslant r \geqslant 0>s$, where r, s are the two solutions of $x^{2}+(\mu-\lambda) x+\mu-k=0$, so that $(A-r I)(A-s I)=\mu J$. The multiplicities of k, r, s are $1, f, g$ (respectively), where $1+f+g=v$ and $k+f r+g s=0$.

The matrix $M=A-s I-\frac{k-s}{v} J$ has rank f, so that the map $x \mapsto \bar{x}$ that sends each vertex x to row x of M is a representation of Γ in \mathbb{R}^{f}, and the inner product (\bar{x}, \bar{y}) depends only on whether $x=y, x \sim y$ or $x \nsim y$.

3 The $G_{2}(4)$ graph

There exists a graph Γ that is a $\operatorname{srg}(416,100,36,20)$ with automorphism group $G_{2}(4): 2$ acting rank 3 , with point stabilizer $J_{2}: 2$, see, e.g., Hubaut [4], pp. 370, 372. Here $v=416$, $k=100, r=20, s=-4$ and $f=65, g=350$, so that $M=A+4 I-\frac{1}{4} J$ and we have $M^{2}=24 M=24 A+96 I-6 J$. This means that

$$
(\bar{x}, \bar{y})= \begin{cases}90 & \text { if } x=y \\ 18 & \text { if } x \sim y \\ -6 & \text { if } x \nsim y\end{cases}
$$

and $\|\bar{x}-\bar{y}\|^{2}=144$ when $x \sim y$, and $\|\bar{x}-\bar{y}\|^{2}=192$ when $x \nsim y$.
This graph Γ has maximal clique size 5 (because each point neighbourhood is a $\operatorname{srg}(100,36,14,12)$, that has point neighbourhoods $\operatorname{srg}(36,14,4,6)$, which has bipartite point neighbourhoods).

Bondarenko's example S is the image of Γ in \mathbb{R}^{65}. Any subset of smaller diameter corresponds to a clique and therefore has size at most 5 . Since $|S|=416$, at least 84 subsets of smaller diameter are needed to cover the set.

4 Structure of the $G_{2}(4)$ graph

The graph Γ occurs as point neighbourhood in the Suzuki graph Σ, which is a $\operatorname{srg}(1782$, $416,100,96$) (cf. [4]). For two nonadjacent vertices a, b of Σ, we can identify the set of 416 neighbours of a with the vertex set X of Γ, and then the 96 common neighbours of a and b form a 96 -subset B of X.

The graph Σ has a triple cover $3 \cdot \Sigma$ constructed by Leonard Soicher [8]. It is distancetransitive with intersection array $\{416,315,64,1 ; 1,32,315,416\}$ on 5346 vertices.

We see that the 96 -subset B is the union of three mutually nonadjacent subsets B_{1}, B_{2} and B_{3} of size 32 . Put $C=X \backslash B$ so that $|C|=320$. Since $3 \cdot \Sigma$ is tight (cf. [6]), the partition $\left\{B_{1}, B_{2}, B_{3}, C\right\}$ of X is regular (a.k.a. equitable) with diagram

(that is, each vertex in B_{1} has 20 neighbours in B_{1}, none in B_{2}, B_{3}, and 80 in C, etc.).
Now we define $T=\left\{\bar{x} \mid x \in B_{1} \cup C\right\} \subseteq \mathbb{R}^{65}$. Let u be the vector

$$
u=\sum_{y \in B_{2}} \bar{y}-\sum_{y \in B_{3}} \bar{y} .
$$

Then u is a vector in our \mathbb{R}^{65}, and for all $x \in T$ we have $(u, x)=0$. On the other hand, $(u, u)=64 \cdot 576 \neq 0$. It follows that T lies in the hyperplane u^{\perp}, a copy of \mathbb{R}^{64}. Because any subset of smaller diameter contains at most 5 vectors, we proved

Theorem 1 There is a 2-distance set T of size 352 in \mathbb{R}^{64} such that any partition of T into parts of smaller diameter has at least 71 parts.

Remark For more explicit constructions and a corresponding computer program, see [5].

References

[1] Andriy V. Bondarenko, On Borsuk's conjecture for two-distance sets, Discrete and Computational Geometry 51 (2014) 509-515.
[2] Karol Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933) 177-190.
[3] Andries E. Brouwer \& Willem H. Haemers, Spectra of graphs, Springer, 2012.
[4] Xavier L. Hubaut, Strongly regular graphs, Discr. Math. 13 (1975) 357-381.
[5] Thomas Jenrich, A 64-dimensional two-distance counterexample to Borsuk's conjecture, 2013-08-25, arXiv:1308.0206v5 .
[6] Aleksandar Jurišić, Jack Koolen \& Paul Terwilliger, Tight distance-regular graphs, J. Alg. Combin. 12 (2000) 163-197.
[7] Jeff Kahn \& Gil Kalai, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. (New Series) 29 (1993) 60-62.
[8] Leonard H. Soicher, Three new distance-regular graphs, Europ. J. Combin. 14 (1993) 501-505.

