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Abstract

The Hecke algebra of the pair (S2n,Bn), where Bn is the hyperoctahedral sub-
group of S2n, was introduced by James in 1961. It is a natural analogue of the center
of the symmetric group algebra. In this paper, we give a polynomiality property of its
structure coefficients. Our main tool is a combinatorial algebra which projects onto
the Hecke algebra of (S2n,Bn) for every n. To build it, by using partial bijections
we introduce and study a new class of finite dimensional algebras.
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1 Introduction
For a positive integer n, let Sn denote the symmetric group of permutations on the set
[n] := {1, 2, · · · , n}, and let C[Sn] denote the group-algebra of Sn over C1, the field of
complex numbers. The center of C[Sn], denoted by Z(C[Sn]) is a classical object in
combinatorics. It is linearly generated by elements Zλ, indexed by partitions of n, where
Zλ is the sum of permutations of [n] with cycle-type λ. The structure coefficients cρλδ
describe the product in this algebra, they are defined by the equation:

ZλZδ =
∑

ρ partition of n

cρλδZρ.

∗Partially supported by ANR grant PSYCO ANR-11-JS02-001.
1Though all our results remain true in the field Q of rational numbers, it is usual to consider group

algebras over C.

the electronic journal of combinatorics 21(4) (2014), #P4.35 1



In other words, cρλδ counts the number of pairs of permutations (x, y) with cycle-type λ
and δ such that x·y = z for a fixed permutation z with cycle-type ρ. It is known that these
coefficients count the number of embeddings of certain graphs into orientable surfaces (see
[Cor75]). One of the tools used to calculate these coefficients is the representation theory
of the symmetric group, see [JV90, Lemma 3.3]. In [GS98, Theorem 2.1], Goupil and
Schaeffer have a formula for cρλδ if one of the partitions λ, δ and ρ is equal to (n). There
are no formulas for cρλδ in general.

In 1958, Farahat and Higman proved the polynomiality of the coefficients cρλδ in n
when λ, δ and ρ are fixed partitions, completed with parts equal to 1 to get partitions
of n, [FH59, Theorem 2.2]. More recently, in [IK99], by using objects called partial
permutations, the same result is obtained by Ivanov and Kerov. This more recent proof
provides a combinatorial description of the coefficients of the relevant polynomials.

Here, we consider the Hecke algebra of the pair (S2n,Bn), denoted by C[Bn\S2n/Bn],
where Bn is the hyperoctahedral group. It was introduced by James in [Jam61] and
it also has a basis indexed by partitions of n. The algebra C[Bn\S2n/Bn] is a natural
analogue of Z(C[Sn]) for several reasons. Goulden and Jackson proved in [GJ96] that
its structure coefficients count graphs drawn on non-oriented surfaces. To get formulas
for these coefficients, zonal characters are used instead of irreducible characters of the
symmetric group, see [Mac95, Section VII, 2].

In this paper we establish a polynomiality property for the structure coefficients of the
Hecke algebra of (S2n,Bn). Namely, we prove that these coefficients can be written as the
product of the number 2nn! with a polynomial in n. In some specific basis, this polynomial
has non-negative coefficients that have a combinatorial interpretation. Moreover, we are
able to give an upper bound for its degree. Our proof is based on the construction of a
universal algebra which projects onto the Hecke algebra of (S2n,Bn) for every n2. This
method was already used by Ivanov and Kerov in [IK99]. What is original in our approach
is that the product in our universal algebra is computed as an average of combinatorial
objects called partial bijections of [2n]. Recently, P.-L. Méliot has used this same idea in
[Mél13] to give a polynomiality property for the structure coefficients of the center of the
group-algebra C[GL(n,Fq)], where GL(n,Fq) is the group of invertible n×n matrices with
coefficients in Fq. Because of the similarities between Meliot’s construction and ours, we
are convinced we should build a general framework in which such a result (polynomiality
of the structure coefficients) always holds. This is the subject of future work.

A weaker version of our polynomiality result (without non-negativity of the coeffi-
cients) for the structure coefficients of Hecke algebra of (S2n,Bn) has been established
by an indirect approach using Jack polynomials in [DF14, Proposition 5.3]. There is no
combinatorial description in that proof. By a different approach than ours, in [AC12],
Aker and Can study the Hecke ring C[Bn\S2n/Bn], however, it seems that there is a minor
issue in their proof of polynomiality of the structure coefficients ([Can13])3. A universal

2In this sense, we shall call it a universal algebra.
3Recently, Can and Özden published a paper, see [BÖ14], in which they suggested a correction to the

Can and Aker’s proof of polynomiality of the structure coefficients of the Hecke ring C[Bn\S2n/Bn] given
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algebra also appears in this paper, but it does not have a combinatorial realization as
ours.

As it is mentioned earlier, our proof goes through the construction of a universal
algebra which projects onto the Hecke algebra of (S2n,Bn) for every n. We are able to
give a link between this algebra, and the algebra of shifted symmetric functions. Shifted
symmetric functions have been introduced and studied by A. Okounkov and G. Olshansky
in 1996, see [OO97]. They are deformations of usual symmetric functions that display
remarkable properties.

The paper is organized as follows. In Section 2, we review all necessary definitions to
describe the Hecke algebra of (S2n,Bn). Then, we state our main result about its structure
coefficients. We start Section 3 by introducing partial bijections of [2n] then we build our
universal algebra. We use this algebra in Section 4 to prove our main result, Theorem
2.1. In Section 5, we show how the universal algebra is related with the algebra of shifted
symmetric functions and in Section 6 we exhibit some filtrations on this universal algebra,
which implies the above mentioned upper bounds for the degree of the polynomials.

2 Definitions and statement of the main result
As usual, we denote by N the set of non-negative integers and by N∗ the set of positive
integers.

2.1 Partitions

Since partitions index bases of the algebras studied in this paper, we recall the main
definitions. A partition λ is a list of integers (λ1, . . . , λl) where λ1 > λ2 > . . . λl > 1.
The λi are called the parts of λ; the size of λ, denoted by |λ|, is the sum of all of its
parts. If |λ| = n, we say that λ is a partition of n and we will write λ ` n. The
number of parts of λ is denoted by l(λ). We will also use the exponential notation
λ = (1m1(λ), 2m2(λ), 3m3(λ), . . .), where mi(λ) is the number of parts equal to i in the
partition λ. If λ and δ are two partitions we define the union λ ∪ δ as the following
partition:

λ ∪ δ = (1m1(λ)+m1(δ), 2m2(λ)+m2(δ), 3m3(λ)+m3(δ), . . .).

A partition is called proper if it does not have any part equal to 1. The proper partition
associated to a partition λ is the partition λ̄ := λ \ (1m1(λ)) = (2m2(λ), 3m3(λ), . . .).

2.2 Permutations and Coset type

For a permutation ω, we use the one-line notation ω1 ω2 · · · ωn, where ωi = ω(i). The set
Sn of all permutations of [n] is a group for the composition called the symmetric group of
size n.

in [AC12].
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To each permutation ω of 2n we associate a graph Γ(ω) with 2n vertices located on a
circle. Each vertex is labelled by two labels (exterior and interior). The exterior labels
run through natural numbers from 1 to 2n around the circle. The interior label of the
vertex with exterior label i is ω(i). We link the vertices with exterior (resp. interior)
labels 2i− 1 and 2i by an exterior (resp. interior) edge. As every vertex has degree 2, the
graph Γ(ω) is a disjoint union of cycles. Since exterior and interior edges alternate, all
cycles have even lengths 2λ1 > 2λ2 > 2λ3 > · · · . The coset-type of ω, denoted by ct(ω),
is the partition (λ1, λ2, λ3, . . .) of n.

Example 2.1. The graph Γ(ω) associated to the permutation ω = 2 4 9 3 1 10 5 8 6 7 ∈ S10

is drawn on Figure 1. It has two cycles of length 6 and 4, so ct(ω) = (3, 2).

•2

•4

•
9

•
3

•1

•10

•5

•8 •6
•7

1

2

34

5

6

7

8 9

10

Figure 1: The graph Γ(ω) from Example 2.1.

For every k > 1, we set ρ(k) := {2k − 1, 2k}. The hyperoctahedral group Bn is the
subgroup of S2n of permutations ω such that, for every 1 6 k 6 n, there exists 1 6 k′ 6 n
with ω(ρ(k)) = ρ(k′). In other words Bn = {ω ∈ S2n | ct(ω) = (1n)}. For example,
4 3 1 2 6 5 ∈ B3.

A Bn-double coset of S2n is the set BnxBn = {bxb′ ; b, b′ ∈ Bn} for some x ∈ S2n. It
is known, see [Mac95, page 401], that two permutations of S2n are in the same Bn-double
coset if and only if they have the same coset-type. Thus, if x ∈ S2n has coset-type λ, we
have:

BnxBn = {y ∈ S2n such that ct(y) = λ}.

2.3 The Hecke algebra of (S2n,Bn)

The symmetric group algebra of n, denoted by C[Sn], is the algebra over C linearly gen-
erated by all permutations of [n]. The group Bn × Bn acts on C[S2n] by the following
action: (b, b′) · x = bxb′−1, called the Bn × Bn-action. The Hecke algebra of (S2n,Bn),
denoted by C[Bn \ S2n/Bn], is the sub-algebra of C[S2n] of elements invariant under the
Bn × Bn-action. Recall that Bn-double cosets are indexed by partitions of n. Here, we
index the basis by proper partitions of size less or equal than n, which are in bijection
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with partitions of n. Therefore, the set

{Kλ(n) : λ is a proper partition with |λ| 6 n}

forms a basis for C[Bn \ S2n/Bn], where Kλ(n) is the sum of all permutations from S2n

with coset-type λ ∪ (1n−|λ|). So, for any two proper partitions λ and δ with size at most
n, there exist complex numbers αρλδ(n) such that:

Kλ(n) ·Kδ(n) =
∑

ρ proper partition
|ρ|6n

αρλδ(n)Kρ(n). (1)

2.4 Main result

In this paper, we obtain a polynomiality property for the structure coefficients αρλδ(n) of
the Hecke algebra of (S2n,Bn). More precisely, we prove the following theorem. We will
use the standard notation (n)k := n!

(n−k)!
= n(n− 1) · · · (n− k + 1) for 0 6 k 6 n.

Theorem 2.1. Let λ, δ and ρ be three proper partitions. Than we have:

αρλδ(n) =


2nn!fρλδ(n) if n > |ρ|,

0 if n < |ρ|,

where fρλδ(n) =

|λ|+|δ|−|ρ|∑
j=0

aj(n− |ρ|)j is a polynomial in n and the aj’s are non-negative

rational numbers.

Example 2.2. Let us compute the structure coefficient α∅(2)(2)(n). We have:

K(2)(n) =
∑
ω∈S2n

ct(ω)=(2)∪(1n−2)

ω.

To find the coefficient of K∅(n) in K(2)(n) ·K(2)(n), we fix a permutation with coset-type
(1n), for example Id2n, and we look in how many ways we can obtain Id2n as a product of
two elements σ · β where ct(σ) = ct(β) = (2, 1n−2). Thus we are looking for the number
of permutations σ ∈ S2n such that ct(σ) = ct(σ−1) = (2, 1n−2). But, for any σ ∈ S2n with
ct(σ) = (2, 1n−2), its inverse has the same coset-type. Therefore α∅(2)(2)(n) is the number
of permutations of coset-type (2, 1n−2), which is

(2nn!)2

2n−1(2 · (n− 2)!)
= n(n− 1)2nn!,

by [Mac95, page 402].
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2.5 Major steps of the proof

The idea of the proof is to build a universal algebra A∞ over C satisfying the following
properties:

1. For every n ∈ N∗, there exists a morphism of algebras θn : A∞ −→ C[Bn \ S2n/Bn].

2. Every element x in A∞ is written in a unique way as an infinite linear combination
of elements Tλ, indexed by partitions. This implies that, for any two partitions λ
and δ, there exist non-negative rational numbers bρλδ such that:

Tλ ∗ Tδ =
∑

ρ partition

bρλδTρ. (2)

3. The morphism θn sends Tλ to a multiple of Kλ̄(n).
To build A∞, we use combinatorial objects called “partial bijections”. For every n ∈ N∗,
we construct an algebra An using the set of partial bijections of [2n]. The algebra A∞ is
defined as the projective limit of this sequence (An).

The projection pn : A∞ → An involves coefficients which are polynomials in n. By
defining the extension of a partial bijection of [2n] to the set [2n], we construct a morphism
from An to C[Bn \S2n/Bn]. Its coefficients involve the number 2nn!. It turns out that the
morphism θn is a composition of morphisms as shown in Figure 2. The final step consists

A∞

θn

��

p
n

''
An

xx
C[Bn \ S2n/Bn]

Figure 2: Diagram of essential algebras and morphisms for our proof.

of applying the chain of morphisms in Figure 2 to equation (2).

3 The partial bijection algebra
In this section we define the set of partial bijections of [2n]. With this set, we build the
algebras and homomorphisms that appear in Figure 2.

3.1 Definition

We start by defining partial bijections of [2n] and the partial bijection algebra. Then,
we introduce the notion of trivial extension of a partial bijection of [2n] and we use it
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to build a homomorphism between the partial bijection algebra of n and the symmetric
group algebra of 2n.

For n ∈ N∗, we define Pn to be the following set:

Pn := {ρ(k1) ∪ · · · ∪ ρ(ki) | 1 6 i 6 n, 1 6 k1 < · · · < ki 6 n}.

Definition 3.1. A partial bijection of [2n] is a triple (σ, d, d
′
) where d, d′ ∈ Pn and σ :

d −→ d
′ is a bijection. The set d is the domain of (σ, d, d

′
) while d′ is its co-domain. We

denote by Qn the set of all partial bijections of [2n].

Remark 3.2. In semigroup theory, the term “partial bijection” refers to an arbitrary injec-
tion from a subset A of [n] to [n]. From this point of view, a partial bijection of [2n] is a
very special partial bijection in semigroup theory. However, we choose this notation as a
similar, in the case of the Hecke algebra of (S2n,Bn), to the notion of “partial permutation”
used by Ivanov and Kerov in [IK99]. This notation will not cause any confusion since the
notion of partial bijection in semigroup theory is not used at all in this paper.

Remark 3.3. For any positive integer n, let Rn be the set of all one-to-one maps f :
d(f) −→ c(f) where c(f), d(f) ⊆ [n]. The set Rn with the composition of maps is a
monoid – that is the composition is associative and Rn has an identity element – called
the symmetric inverse semigroup. With this composition, the set of partial bijections Qn

forms a submonoid of R2n. It is known, see [Sol90], that R2n is in bijection with the rook
monoid R2n. It is important to notice that this obvious structure on Qn does not enter
the picture in here. The useful product in this work will be defined later in this section.

It should be clear that

|Qn| =
n∑
k=0

(
n
k

)2

(2k)!.

A permutation σ of 2n can be written as (σ, [2n], [2n]), so the set S2n can be considered
as a subset of Qn.

Notation. For any partial bijection α, we will use the convention that σ (resp. d, d′) is
the first (resp. second, third) element of the triple defining α. The same convention holds
for α̃, αi, α̂ . . .

Observation 3.2. In the same way as in Section 2.2, we can associate to each partial
bijection α of [2n] a graph Γ(α) with |d| vertices placed on a circle. The exterior (resp.
interior) labels are the elements of the set d (resp. d′). Since the sets d and d′ are in Pn,
we can link 2i with 2i − 1 as in the case d = d

′
= [2n]. So, the definition of coset-type

extends naturally to partial bijections. We denote by ct(α) or ct(σ) the coset-type of a
partial bijection α.

Example 3.1. Let α = (σ, d, d′) be the partial bijection of [16] where

d = {3, 4, 5, 6, 9, 10, 11, 12, 13, 14}, d′ = {1, 2, 3, 4, 7, 8, 9, 10, 15, 16}
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and σ is given by the following two-lines notation:

σ =
3 4 5 6 9 10 11 12 13 14
9 16 1 15 10 2 4 8 3 7

,

which means that σ(3) = 9, σ(4) = 1 and so on. The graph Γ(α) is drawn on Figure 3.
It has two cycles of length 6 and 4, so ct(α) = (3, 2).

•9

•16

•
1

•
15

•10

• 2

•4

•8 •3
•7

3

4

56

9

10

11

12 13

14

Figure 3: The graph Γ(α).

Definition 3.4. Let (σ, d, d
′
) and (σ̃, d̃, d̃′) be two partial bijections of [2n]. We say that

(σ̃, d̃, d̃′) is a trivial extension of (σ, d, d
′
) if:

d ⊆ d̃, σ̃|d = σ and ct(σ̃) = ct(σ) ∪
(

1
|d̃\d|

2

)
.

We denote by Pα(n) the set of all trivial extensions of α in Qn.
Example 3.2. Let α be the partial bijection of [16] given in Example 3.1. Let d̃ = d ∪
{1, 2, 15, 16}, d̃′ = d′ ∪ {5, 6, 11, 12} and consider the following bijection:

σ̃ =
1 2 3 4 5 6 9 10 11 12 13 14 15 16
12 11 9 16 1 15 10 2 4 8 3 7 5 6

.

Then, α̃ = (σ̃, d̃, d̃′) is a trivial extension of α. In the same way α̂ = (σ̂, d̂, d̂′), where
d̂ = d̂′ = [16] and

σ̂ =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
13 14 9 16 1 15 12 11 10 2 4 8 3 7 6 5

,

is also a trivial extension of α.
Lemma 3.1. Let α be a partial bijection of [2n] and X an element of Pn such that d ⊆ X.
The number of trivial extensions α̃ of α such that d̃ = X is

(2n− |d|) · (2n− |d| − 2) · · · (2n− |d| − |X \ d|+ 2) = 2
|X\d|

2

(
n− |d|

2

)
|X\d|

2

.

We have the same formula for the number of trivial extensions α̃ such that d̃′ = X.
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Proof. Straightforward by induction.

Consider Dn = C[Qn] the vector space with basis Qn. We want to endow it with an
algebra structure. Let α1 and α2 be two partial bijections. If d1 = d′2, we can compose α1

and α2 and we define α1 ∗α2 = α1 ◦α2 = (σ1 ◦σ2, d2, d
′
1). Otherwise, we need to extend α1

and α2 to partial bijections α̃1 and α̃2 such that d̃1 = d̃′2. Since there exist several trivial
extensions of α1 and α2, a natural choice is to take the average of the composition of all
possible trivial extensions. Let Eα2

α1
(n) be the following set:

Eα2
α1

(n) := {(α̃1, α̃2) ∈ Pα1(n)× Pα2(n) such that d̃1 = d̃′2 = d1 ∪ d′2}.

Elements of Eα2
α1

(n) are schematically represented on Figure 4.

σ2

σ̃2 σ1

σ̃1
d2 d′2

d1 d′1

Figure 4: Schematic representation of elements of Eα2
α1

(n).

Convention for figures. Throughout the paper, we will use the following conventions
for figures that represent elements of some sets.

- The data defining the set (so fixed when we go from an element of the set to another)
is drawn using plain shapes.

- The data variable in the set (thus corresponding to the elements of the set) is drawn
using dashed shapes.

To simplify, we will identify a partial bijection α with its bijection σ using the two-lines
notation. The first line will represent the set d while the second will represent d′.

Example 3.3. Consider the two partial bijections α1 and α2 of [6] given below,

α1 =
1 2 5 6
3 2 1 4

and α2 =
3 4 5 6
5 6 3 4

.

Then, Eα2
α1

(3) is the set of the following four elements.(
1 2 3 4 5 6
3 2 5 6 1 4

,
1 2 3 4 5 6
1 2 5 6 3 4

)
,

(
1 2 3 4 5 6
3 2 6 5 1 4

,
1 2 3 4 5 6
1 2 5 6 3 4

)
,

(
1 2 3 4 5 6
3 2 5 6 1 4

,
1 2 3 4 5 6
2 1 5 6 3 4

)
,

(
1 2 3 4 5 6
3 2 6 5 1 4

,
1 2 3 4 5 6
2 1 5 6 3 4

)
.
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We define the product of α1 and α2 as follows:

α1 ∗ α2 :=
1

|Eα2
α1 (n)|

∑
(α̃1,α̃2)∈Eα2

α1
(n)

α̃1 ◦ α̃2. (3)

By Lemma 3.1, we have:

|Eα2
α1

(n)| = 2
|d′2\d1|

2
+
|d1\d

′
2|

2 .

(
n− |d

′
1|

2

)
(
|d′2\d1|

2

) .
(
n− |d2|

2

)
(
|d1\d′2|

2

) . (4)

The partial bijections of [2n] form a basis for Dn. We extend the product ∗ by linearity
to get a product on Dn.
Proposition 3.2. The product ∗ is associative. In other words, Dn is a (non-unital) algebra.

Proof. Postponed to the next section.

We will illustrate the associativity by a simple example given below.
Example 3.4. Let α1 and α2 be the two partial bijections of [6] given in Example 3.3,
using the set Eα2

α1
(3), we have:

α1 ∗ α2

=
1

4

[
1 2 3 4 5 6
3 2 1 4 5 6

+
1 2 3 4 5 6
3 2 1 4 6 5

+
1 2 3 4 5 6
2 3 1 4 5 6

+
1 2 3 4 5 6
2 3 1 4 6 5

]
.

Take the partial bijection α3 of [6] defined by:

α3 =
1 2 3 4
5 1 6 2

.

In the same way we can verify that:

α2 ∗ α3

=
1

4

[
1 2 3 4 5 6
3 1 4 2 5 6

+
1 2 3 4 5 6
3 1 4 2 6 5

+
1 2 3 4 5 6
3 2 4 1 5 6

+
1 2 3 4 5 6
3 2 4 1 6 5

]
,

and that:

α1 ∗ (α2 ∗ α3)

= (α1 ∗ α2) ∗ α3

=
1

8

[
1 2 3 4 5 6
5 3 6 2 1 4

+
1 2 3 4 5 6
5 3 6 2 4 1

+
1 2 3 4 5 6
6 3 5 2 1 4

]
+

1

8

[
1 2 3 4 5 6
6 3 5 2 4 1

+
1 2 3 4 5 6
5 2 6 3 1 4

+
1 2 3 4 5 6
5 2 6 3 4 1

]
+

1

8

[
1 2 3 4 5 6
6 2 5 3 1 4

+
1 2 3 4 5 6
6 2 5 3 4 1

]
.
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Proposition 3.3. The following function extends to an algebra homomorphism between
C[Qn] and C[S2n].

ψn : C[Qn] −→ C[S2n]

α 7→ 1

2n−
|d|
2 (n− |d|

2
)!

∑
α̂∈S2n∩Pα(n)

σ̂ .

Proof. Let α1 and α2 be two basis elements of C[Qn]. We refer to Figure 4 and denote
2b = |d2| = |d′2|, 2c = |d1| = |d′1| and 2e = |d′2 ∩ d1|. We first prove that:∑

α̂1∈S2n∩Pα1 (n)

∑
α̂2∈S2n∩Pα2 (n)

σ̂1 ◦ σ̂2

= 2n−(b+c−e)(n− (b+ c− e))!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑
̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2

(n)

̂̃σ1 ◦ σ̃2. (5)

We fix (α̃1, α̃2) ∈ Eα2
α1

(n) and ω ∈ S2n ∩ Pα̃1◦α̃2(n), i.e.:

ω|
d̃2

= σ̃1 ◦ σ̃2 and ct(ω) = ct(σ̃1 ◦ σ̃2) ∪ (1(n−(b+c−e))).

We look for the number of permutations σ̂1 and σ̂2 in S2n ∩Pα1(n) and S2n ∩Pα2(n) such
that σ̂1 ◦ σ̂2 = ω. In this equation, σ̂2 determines σ̂1. But the condition ω|

d̃2
= σ̃1 ◦ σ̃2

gives the values of σ̂2 on d̃2 (σ̂2(x) = σ2(x) if x ∈ d2 and σ̂2(x) = σ−1
1 (ω(x)) if x ∈ d̃2 \d2).

Thus, the number of ways to choose σ̂2 is the number of ways to extend trivially σ̃2 to
a permutation of 2n, which is 2n−(b+c−e)(n − (b + c − e))! by Lemma 3.1. This proves
equation (5).

Now we have:

ψn(α1)ψn(α2) =
1

22n−b−c(n− c)!(n− b)!
∑

α̂1∈S2n∩Pα1 (n)

∑
α̂2∈S2n∩Pα2 (n)

σ̂1 ◦ σ̂2

=
(n− b− c+ e)!

2n−e(n− c)!(n− b)!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑
̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2

(n)

̂̃σ1 ◦ σ̃2. (6)

On the other hand:

ψn(α1 ∗ α2) =
1

2b+c−2e(n− c)(b−e)(n− b)(c−e)

∑
(α̃1,α̃2)∈Eα1

α2
(n)

ψn
(
(σ̃1 ◦ σ̃2, d̃2, d̃′1)

)
.

But

ψn
(
(σ̃1 ◦ σ̃2, d̃2, d̃′1)

)
=

1

2n−(b+c−e)(n− (b+ c− e))!
∑

̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2
(n)

̂̃σ1 ◦ σ̃2.
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Thus,

ψn(α1 ∗ α2) =
(n− b− c+ e))!

2n−e(n− c)!(n− b)!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑
̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2

(n)

̂̃σ1 ◦ σ̃2. (7)

Comparing equations (6) and (7), we see that for any two partial bijections α1 and α2

of [2n], we have ψn(α1 ∗ α2) = ψn(α1)ψn(α2). In other words, ψn is a homomorphism of
algebras.

3.3 Proof of the associativity of ∗
Let α1, α2 and α3 be three elements of Qn. By definition of the product we have:

(α1 ∗ α2) ∗ α3 =
1

|Eα2
α1 (n)|

∑
(α̃1,α̃2)∈Eα2

α1
(n)

1

|Eα3

α̃1◦α̃2
(n)|

∑
( ˜̃α1◦α̃2,α̃3)∈Eα3

α̃1◦α̃2
(n)

( ˜̃σ1 ◦ σ̃2 ◦ σ̃3, d̃3,
˜̃
d
′
1),

α1 ∗ (α2 ∗ α3) =
1

|Eα3
α2 (n)|

∑
(α̃2,α̃3)∈Eα3

α2
(n)

1

|Eα̃2◦α̃3
α1 (n)|

∑
(α̃1, ˜̃α2◦α̃3)∈Eα̃2◦α̃3

α1
(n)

(σ̃1 ◦ ˜̃σ2 ◦ σ̃3,
˜̃
d3, d̃

′
1).

We consider now the following sets, indexing the double sums in the equations above:

X1 = {
(
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

)
such that (α̃1, α̃2) ∈ Eα2

α1
(n)

and ( ˜̃α1 ◦ α̃2, α̃3) ∈ Eα3

α̃1◦α̃2
(n)},

and

X2 = {
(
(α̃2, α̃3), (α̃1, ˜̃α2 ◦ α̃3)

)
such that (α̃2, α̃3) ∈ Eα3

α2
(n)

and (α̃1, ˜̃α2 ◦ α̃3) ∈ Eα̃2◦α̃3
α1

(n)}.

With the notation X1, the product (α1 ∗ α2) ∗ α3 can be written as follows:

(α1 ∗ α2) ∗ α3 =
∑(

(α̃1,α̃2),( ˜̃α1◦α̃2,α̃3)
)
∈X1

1

|Eα2
α1 (n)| · |Eα3

α̃1◦α̃2
(n)|

( ˜̃σ1 ◦ σ̃2 ◦ σ̃3, d̃3,
˜̃
d
′
1). (8)

Schematically, the elements in X1 are represented on Figure 5.
In the same way, with the notation X2, the product α1 ∗ (α2 ∗ α3) can be written in

the following way:

α1 ∗ (α2 ∗ α3) =
∑(

(α̃2,α̃3),(α̃1, ˜̃α2◦α̃3)
)
∈X2

1

|Eα3
α2 (n)| · |Eα̃2◦α̃3

α1 (n)|
(σ̃1 ◦ ˜̃σ2 ◦ σ̃3,

˜̃
d3, d̃

′
1). (9)

Schematically, the elements in X2 are represented on Figure 6.
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σ3

σ2

σ1

σ̃3

σ̃2

σ̃1

d̃
′
1

˜̃σ1 ◦ σ̃2

d̃′3

d̃3
˜̃
d
′
1

d3 d
′
3

d2 d
′
2

d1 d
′
1

Figure 5: Schematic representation of elements in X1.

σ3

σ2

σ1

σ̃3

σ̃2

σ̃1

˜̃σ2 ◦ σ̃3

d̃
′
1

d̃1

d̃3˜̃
d3

d3 d
′
3

d2 d
′
2

d1 d
′
1

Figure 6: Schematic representation of elements of X2.

To prove the associativity of the product, we build a set X and two surjective functions
φ1 : X −→ X1 and φ2 : X −→ X2 in order to write both sums (equations (8) and (9)) as
sums over the same set X. Let X be the set of elements(

ε1 = (τ1, δ0, δ1), ε2 = (τ2, δ1, δ2), ε3 = (τ3, δ2, δ3)
)
∈ Pα1(n)× Pα2(n)× Pα3(n),

satisfying the following properties:

i) d′3 ∪ d2 ⊆ δ2.

ii) d′2 ∪ d1 ⊆ δ1.

iii) δ2 = d′3 ∪ τ−1
2 (d1 ∪ d′2).
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The elements of this set are schematically represented on Figure 7. Note that (iii)) is a
minimality condition. We will see in the proof of Lemma 3.4 below why it is useful.

τ3|d3
=σ3

τ2|d2
=σ2

τ1|d1
=σ1

δ0δ3 δ2 δ1τ3 τ2 τ1

d3 d′3

d2 d′2

d1 d′1

Figure 7: Schematic representation of elements of X.

We define the maps φ1 : X −→ X1 and φ2 : X −→ X2 as follows:

φ1(ε1, ε2, ε3) =
(
(ε1|

d1∪d′2
, ε2|

τ−1
2 (d1∪d′2)

), (ε1 ◦ ε2, ε3)
)
,

φ2(ε1, ε2, ε3) =
(
(ε2|

d2∪d′3
, ε3|

τ−1
3 (d2∪d′3)

), (ε2 ◦ ε3, ε1)
)
.

Informally, the map φ1 (resp. φ2) forgets the dashed ellipse shape at the top (resp.
bottom) of the third (resp. second) column of Figure 7. We denote by 2a = |d3| =
|d′3|, 2b = |d2| = |d′2|, 2c = |d1| = |d′1|, 2d = |d′3 ∩ d2| and 2e = |d′2 ∩ d1|. We prove the
following lemma:

Lemma 3.4. The map φ1 is well defined and surjective. For any element(
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

)
∈ X1,

we have:

|φ−1
1

((
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

))
| = 2a−d−f · (n− b− c+ e)(a−d−f),

where 2f = |(d̃2 \ d2) ∩ d′3|.
Note that f , unlike a, b, c, d, e, depends on the element of X1 that we consider.

Proof. For any (ε1, ε2, ε3) ∈ X, we must check that φ1

(
(ε1, ε2, ε3)

)
is in X1. Set

(α̃1, α̃2) = (ε1|
d1∪d′2

, ε2|
τ−1
2 (d1∪d′2)

).
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First (α̃1, α̃2) is in Pα1(n) × Pα2(n) since (ε1, ε2) is in Pα1(n) × Pα2(n). Then, the
codomain of α̃2 and the domain of α̃1 are d1 ∪ d′2. Thus, (α̃1, α̃2) is in Eα2

α1
(n).

Second, it is easy to check that (ε1 ◦ ε2, ε3) is in Pα̃1◦α̃2(n) × Pα3(n). Then, to be in
Eα3

α̃1◦α̃2
(n), (ε1 ◦ ε2, ε3) must verify the condition that δ2 = d′3∪ τ−1

2 (d1∪d′2), which is given
by condition (iii)).

Thus, φ1 is well defined.

Now, fix
(
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

)
∈ X1. We will count the number of its pre-images by

φ1. To construct an element of φ−1
1

((
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

))
, we have only to build ε1, ε2

and δ1 since the other elements ε3, δ0, δ2 and δ3 are determined by α̃1, α̃2, α̃3 and ˜̃α1 ◦ α̃2.
First, to build δ1, we must extend d1 ∪ d

′
2 by adding pairs of form ρ(k) to obtain a set

which has the same cardinality as δ2 = d̃2 ∪ d
′
3 which is 2a+ 2b+ 2c− 2e− 2d− 2f . We

have |d1 ∪ d
′
2| = 2b + 2c − 2e, so the number of possible ways to extend d1 ∪ d

′
2 is the

number of choices of 2a+ 2b+ 2c− 2e− 2d− 2f − (2b+ 2c− 2e) = 2a− 2d− 2f elements
among 2n− (2b+ 2c− 2e). Since our choice must respect the condition that the extended
set is in Pn, this number is: (

n− (b+ c− e)
a− d− f

)
.

Once the set d1∪d
′
2 is extended, we should extend σ̃1 to τ1 (we have the definition domain

δ0 and the arrival domain δ1) by sending the pairs of form ρ(k) to pairs with same form.
The number of ways to do so is:

2a−d−f · (a− d− f)!.

After extending σ̃1 to τ1, we get immediately τ2 because τ1 ◦ τ2 = ˜̃σ1 ◦ σ̃2 is given. Thus,
the cardinality of the set φ−1

1

((
(α̃1, α̃2), ( ˜̃α1 ◦ α̃2, α̃3)

))
is equal to:(

n− (b+ c− e)
a− d− f

)
· 2a−d−f · (a− d− f)! = 2a−d−f · (n− b− c+ e)(a−d−f).

In the same way, we can prove the following lemma.

Lemma 3.5. The map φ2 is well defined and surjective. For any element(
(α̃2, α̃3), (α̃1, ˜̃α2 ◦ α̃3)

)
∈ X2, we have:

|φ−1
2

((
(α̃2, α̃3), (α̃1, ˜̃α2 ◦ α̃3)

))
| = 2c−e−g · (n− a− b+ d)(c−e−g),

where, 2g = |(d̃′2 \ d
′
2) ∩ d1|.

We can also verify using the notations above that:

|Eα2
α1

(n)| = 2b+c−2e · (n− c)(b−e) · (n− b)(c−e),
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|Eα3
α2

(n)| = 2a+b−2d · (n− b)(a−d) · (n− a)(b−d),

and
|Eα3

α̃1◦α̃2
(n)| = 2a+b+c−2d−e−2f · (n− b− c+ e)(a−d−f) · (n− a)(b+c−d−e−f),

|Eα̃2◦α̃3
α1

(n)| = 2a+b+c−d−2e−2g · (n− a− b+ d)(c−e−g) · (n− c)(a+b−d−e−g).

The products (α1 ∗α2) ∗α3 and α1 ∗ (α2 ∗α3) given in equations (8) and (9) as sums over
X1 and X2 can be written as sums over the set X as follows:

(α1 ∗ α2) ∗ α3 =
∑

(ε1,ε2,ε3)∈X

1

22a+2b+2c−3d−3e−3f
· ((n− b− c+ e)(a−d−f))

2

·(n− a)(b+c−d−e−f) · (n− c)(b−e) · (n− b)(c−e)

ε1 ◦ ε2 ◦ ε3,

and

α1 ∗ (α2 ∗ α3) =
∑

(ε1,ε2,ε3)∈X

1

22a+2b+2c−3d−3e−3g
· ((n− a− b+ d)(c−e−g))

2 (10)

·(n− c)(a+b−d−e−g) · (n− a)(b−d) · (n− b)(a−d)

ε1 ◦ ε2 ◦ ε3.

For any positive integer n, we have the following easy identities:

(n− b− c+ e)(a−d−f).(n− c)(b−e) = (n− c)(a+b−d−e−f)

(n− a)(b−d).(n− a− b+ d)(c−e−f) = (n− a)(b+c−d−e−f)

(n− b)(c−e).(n− b− c+ e)(a−d−f) = (n− b)(a−d).(n− a− b+ d)(c−e−f).

Thus, the product (α1 ∗ α2) ∗ α3 can be written as follows:

(α1 ∗ α2) ∗ α3 =
∑

(ε1,ε2,ε3)∈X

1

22a+2b+2c−3d−3e−3f
· ((n− a− b+ d)(c−e−f))

2 (11)

·(n− c)(a+b−d−e−f) · (n− a)(b−d) · (n− b)(a−d)

ε1 ◦ ε2 ◦ ε3.

For any element of X, the equality |δ2| = |δ1| can be written 2c+ 2b−2e+ 2a−2d−2f =
2a + 2b − 2d + 2c − 2e − 2g, so we have f = g. Comparing (10) and (11), we see that
products (α1 ∗ α2) ∗ α3 and α1 ∗ (α2 ∗ α3) are equal, therefore we get the associativity.

3.4 Action of Bn × Bn on Dn

In this section, we build the algebra An as the algebra of invariant elements by an action
of Bn × Bn on Dn.
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Definition 3.5. The group Bn × Bn acts on Qn by:

(a, b) • (σ, d, d′) = (aσb−1, b(d), a(d′)),

for any (a, b) ∈ Bn × Bn and (σ, d, d′) ∈ Qn.
Observation 3.5. Two partial bijections are in the same orbit if and only if they have the
same coset-type.

We extend this action by linearity to get an action of Bn × Bn on Dn.
Lemma 3.6. For any three permutations a, b and c of Bn and for any partial bijections
α1, α2 of [2n], the set Eα2

α1
(n) is in bijection with E(b,c)•α2

(a,b)•α1
(n).

Proof. We check easily that the two following functions:

Θ : Eα2
α1

(n) → E
(b,c)•α2

(a,b)•α1
(n)

(α̃1, α̃2) 7→ ((a, b) • α̃1, (b, c) • α̃2)
,

and
Ψ : E

(b,c)•α2

(a,b)•α1
(n) → Eα2

α1
(n)

(β1, β2) 7→ ((a−1, b−1) • β1, (b
−1, c−1) • β2)

,

are well defined. Moreover, they are inverse from each other:

Ψ
(

Θ
(
(α̃1, α̃2)

))
= Ψ

((
(a, b) • α̃1, (b, c) • α̃2

))
=

(
(a−1, b−1) • (a, b) • α̃1, (b

−1, c−1) • (b, c) • α̃2

)
= (α̃1, α̃2),

and, similarly,

Θ
(

Ψ
(
β1, β2

))
= (β1, β2).

Thus Θ defines a bijection between Eα2
α1

(n) and E(b,c)•α2

(a,b)•α1
(n) with inverse Ψ.

It follows from this lemma that the action • is compatible with the product of Qn.
Namely, we can prove the following corollary.
Corollary 3.7. For any (a, b, c) ∈ B3

n and for any partial bijections α1, α2 of [2n], we have:

(a, c) • (α1 ∗ α2) = ((a, b) • α1) ∗ ((b, c) • α2).

Proof. If (α̃1, α̃2) ∈ Eα2
α1

(n), we have:

(
(a, b) • α̃1) ◦ ((b, c) • α̃2

)
=

(
aσ̃1b

−1, b(d̃1), a(d̃′1)
)
◦
(
bσ̃2c

−1, c(d̃2), b(d̃′2)
)

= (aσ̃1σ̃2c
−1, c(d̃2), a(d̃′1))

= (a, c) • (α̃1 ◦ α̃2).
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Then, we can write:

(a, c) • (α1 ∗ α2) =
1

|Eα2
α1 (n)|

∑
(α̃1,α̃2)∈Eα2

α1
(n)

(a, c) • (α̃1 ◦ α̃2)

=
1

|Eα2
α1 (n)|

∑
(α̃1,α̃2)∈Eα2

α1
(n)

(
(a, b) • α̃1

)
◦
(
(b, c) • α̃2

)
=

1

|E(b,c)•α2

(a,b)•α1
(n)|

∑
( ˜(a,b)•α1, ˜(b,c)•α2)∈E(b,c)•α2

(a,b)•α1
(n)

˜(a, b) • α1 ◦ ˜(b, c) • α2

= ((a, b) • α1) ∗ ((b, c) • α2)).

We consider the set An of invariant elements by the action of Bn × Bn on Dn:

An = DBn×Bnn = {x ∈ Dn | (a, b) • x = x for any (a, b) ∈ Bn × Bn}.

For every partition λ such that |λ| 6 n, we define the set Aλ,n to be the set of all partial
bijections α of [2n] such that ct(α) = λ. The sum of all elements in Aλ,n is denoted by
Sλ,n.
Proposition 3.8. The set An is an algebra with basis the elements (Sλ,n)|λ|6n.

Proof. For every (a, b) ∈ Bn × Bn, and for every x, y ∈ An, we have by linearity:

(a, b) • (x ∗ y) = ((a, id) • x) ∗ ((id, b) • y) = x ∗ y.

So An is an algebra.

Any element x ∈ Dn writes x =
n∑
k=1

∑
d,d
′∈Pn

|d|=|d′ |=2k

∑
σ:d→d′
bijection

c(σ,d,d′ )(σ, d, d
′
). If, furthermore x is in

An, then for every (a, b) ∈ Bn × Bn we have:
n∑
k=1

∑
d,d
′∈Pn

|d|=|d′ |=2k

∑
σ:d→d′
bijection

c(σ,d,d′ )(aσb
−1, b(d), a(d

′
)) =

n∑
k=1

∑
d,d
′∈Pn

|d|=|d′ |=2k

∑
σ:d→d′
bijection

c(σ,d,d′ )(σ, d, d
′
).

Thus, for any (a, b) ∈ Bn × Bn, we have c(aσb−1,b(d),a(d′ )) = c(σ,d,d′ ). This means that if
x ∈ An, all partial permutations in the same orbit – that is with the same coset-type –
have the same coefficients. Therefore, the elements (Sλ,n)|λ|6n form a basis of An.

Corollary 3.9. If λ and δ are two partitions such that |λ|, |δ| 6 n, there exist unique
constants cρλδ(n) ∈ C such that:

Sλ,n ∗ Sδ,n =
∑

ρ partition
max (|λ|,|δ|)6|ρ|6min (|λ|+|δ|,n)

cρλδ(n)Sρ,n.
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Proof. We only have to prove the inequalities on the size of ρ. Let α1 and α2 be two
partial bijections of [2n] with coset-type λ and δ. By definition (see Figure 4), every
partial bijection of [2n] that appears in the sum of the product α1 ∗ α2 has some coset-
type ρ with |ρ| = |d1∪d′2|

2
. But

max
( |d1|

2
,
|d′2|
2

)
= max(|λ|, |δ|) 6 |ρ| = |d1 ∪ d′2|

2
6
|d1|+ |d′2|

2
= |λ|+ |δ|.

Lemma 3.10. Let λ be a partition such that |λ| = r 6 n, we have:

ψn(Sλ,n) =
1

2n−|λ|(n− |λ|)!

(
n− |λ̄|
m1(λ)

)
Kλ̄(n).

Proof. We first prove the following equation:∑
α∈Aλ,n

∑
α̂∈S2n∩Pα(n)

σ̂ =

(
n− |λ̄|
m1(λ)

)
Kλ̄(n). (12)

Fix a permutation ω ∈ Kλ̄(n), that is ω ∈ S2n and ct(ω) = λ̄ ∪ 1n−|λ̄|. We are looking
for the number of partial bijections α ∈ Aλ,n such that ω is one of its trivial extensions.
There is a unique set S such that ct(ω|S) = λ̄. We call this set the support of ω and
denote it supp(ω). The following condition is necessary so that ω is a trivial extension of
α: supp(ω) ⊆ d and α|supp(ω)

must be equal to ω|supp(ω)
. Thus the partial bijections α we

are looking for are the restrictions of ω to sets supp(ω) t x, with | supp(ω) t x| = 2|λ|.
Since | supp(ω)| = 2|λ̄|, one has the necessarily |x| = 2(|λ| − |λ̄|). So the number of such

α is
(
n− |λ̄|
|λ| − |λ̄|

)
=

(
n− |λ̄|
m1(λ)

)
. This ends the proof of equation (12).

By applying ψn to Sλ,n, we get:

ψn(Sλ,n) = ψn
( ∑
α∈Aλ,n

α
)

=
1

2n−|λ|(n− |λ|)!
∑

α∈Aλ,n

∑
α̂∈S2n∩Pα(n)

σ̂

=
1

2n−|λ|(n− |λ|)!

(
n− |λ̄|
m1(λ)

)
Kλ̄(n).

Lemma 3.10 implies that ψn(An) ⊆ C[Bn/S2n \ Bn]. The homomorphism An →
C[Bn/S2n \ Bn] mentioned in Section 2.5 is the restriction ψn|An , which is surjective but
not injective.
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3.6 Homomorphism from An+1 to An

This subsection is dedicated to the proof of the following proposition:

Proposition 3.11. The function ϕn defined as follows:

ϕn : An+1 → An

Sλ,n+1 7→
{ n+1

(n+1−|λ|)Sλ,n if |λ| < n+ 1,

0 if |λ| = n+ 1,

is a homomorphism of algebras.

Let Sλ,n+1 and Sδ,n+1 where |λ| 6 n+ 1 and |δ| 6 n+ 1 be two basis elements of An+1.
If λ (resp. δ) is a partition of n + 1, then ϕn(Sλ,n+1) (resp. ϕn(Sδ,n+1)) is equal to

zero, and by Corollary 3.9 we have:

Sλ,n+1 ∗ Sδ,n+1 =
∑

ρ partition
|ρ|=n+1

cρλδ(n+ 1)Sρ,n+1.

Note that the size of all partitions ρ in the sum index of this equation is n+1. By applying
ϕn, we get:

ϕn(Sλ,n+1 ∗ Sδ,n+1) =
∑

ρ partition
|ρ|=n+1

cρλδ(n+ 1)ϕn(Sρ,n+1) = 0.

Thus in this case we have ϕn(Sλ,n+1 ∗ Sδ,n+1) = ϕn(Sλ,n+1) ∗ ϕn(Sδ,n+1).
In the other case (|λ| 6 n and |δ| 6 n) we have by Corollary 3.9:

Sλ,n+1 ∗ Sδ,n+1 =
∑
r6n+1
ρ`r

cρλδ(n+ 1)Sρ,n+1.

This gives us the following equation after applying ϕn:

ϕn(Sλ,n+1 ∗ Sδ,n+1) = ϕn

∑
r6n+1
ρ`r

cρλδ(n+ 1)Sρ,n+1


=

∑
r6n
ρ`r

cρλδ(n+ 1)
n+ 1

(n+ 1− |ρ|)
Sρ,n.

In the other hand, we have:

ϕn(Sλ,n+1) ∗ ϕn(Sδ,n+1) =
n+ 1

(n+ 1− |λ|)
Sλ,n ∗

n+ 1

(n+ 1− |δ|)
Sδ,n

=
n+ 1

(n+ 1− |λ|)
n+ 1

(n+ 1− |δ|)
∑
r6n
ρ`r

cρλδ(n)Sρ,n.
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Thus, ϕn is a homomorphism if we have the following equality for any partition ρ with
size at most n:

cρλδ(n+ 1)

cρλδ(n)
=

n+1
(n+1−|λ|)

n+1
(n+1−|δ|)

n+1
(n+1−|ρ|)

.

Let ρ be a partition with size at most n and α an element of Aρ,n. We define Hρ
λδ(n) to

be the following set:

{
(
α1, α2

)
∈ Aλ,n × Aδ,n such that there exists (α̃1, α̃2) ∈ Eα2

α1
(n) with α = α̃1 ◦ α̃2}.

This set depends on α by definition. However, α does not appear in our notation. This
should not be an issue, since α is fixed in the whole proof.

The coefficient cρλδ(n) can be written as follows:

cρλδ(n) =
∑

(α1,α2)∈Hρ
λδ(n)

1

|Eα2
α1 (n)|

.

Similarly, we have:

cρλδ(n+ 1) =
∑

(α1,α2)∈Hρ
λδ(n+1)

1

|Eα2
α1 (n+ 1)|

.

By equation (4), if (α1, α2) ∈ Hρ
λδ(n), we have:

|Eα2
α1

(n)| = 22|ρ|−|λ|−|δ|(n− |λ|)(|ρ|−|λ|)(n− |δ|)(|ρ|−|δ|).

Similarly, if (α1, α2) ∈ Hρ
λδ(n+ 1), we have:

|Eα2
α1

(n+ 1)| = 22|ρ|−|λ|−|δ|(n+ 1− |λ|)(|ρ|−|λ|)(n+ 1− |δ|)(|ρ|−|δ|).

Thus, we get:

cρλδ(n) =
|Hρ

λδ(n)|
22|ρ|−|λ|−|δ|(n− |λ|)(|ρ|−|λ|)(n− |δ|)(|ρ|−|δ|)

,

and
cρλδ(n+ 1) =

|Hρ
λδ(n+ 1)|

22|ρ|−|λ|−|δ|(n+ 1− |λ|)(|ρ|−|λ|)(n+ 1− |δ|)(|ρ|−|δ|)
.

This gives us after simplification:

cρλδ(n+ 1)

cρλδ(n)
=
|Hρ

λδ(n+ 1)|
|Hρ

λδ(n)|
· n+ 1− |ρ|
n+ 1− |λ|

· n+ 1− |ρ|
n+ 1− |δ|

We will now evaluate the quotient |H
ρ
λδ(n+1)|
|Hρ
λδ(n)| . Let u = (u1, u

′
1, u2, u

′
2) be an element of P4

n

such that:

u2 ⊆ d, (13)
u′1 ⊆ d′, (14)
|u1| = |u′1| = 2|λ|, (15)
|u2| = |u′2| = 2|δ|, (16)
|u′2 ∪ u1| = 2|ρ|. (17)
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We introduce

Nu = {
(
h1 = (f1, u1, u

′
1), h2 = (f2, u2, u

′
2)
)
∈ Aλ,n × Aδ,n

such that there exists (h̃1, h̃2) ∈ Eh2
h1

(n) with α = h̃1 ◦ h̃2}.

Its elements are represented on Figure 8. The set Hρ
λδ(n) is the disjoint union of all Nu

with u satisfying the above conditions.

d d′σ

u2 u′1

u′2

u1
f2

f1

Figure 8: Schematic representation of elements of Nu

Lemma 3.12. Let v = (v1, v
′
1, v2, v

′
2) be an element of P4

n satisfying conditions above. If
v′1 = u′1 and v2 = u2, then there exists a bijection between Nu and Nv.

Proof. We take any permutation b ∈ Bn, such that b(u1) = v1 and b(u′2) = v′2. Such a
permutation exists because |u1| = |v1|, |u′2| = |v′2| and |u′2 ∪ u1| = |v′2 ∪ v1|. We associate
to a pair (h1, h2) in Nu the pair ((id, b) • h1, (b, id) • h2). We check that the image lies in
Nv: (

(id, b) • h1, (b, id) • h2

)
=

(
(f1b

−1, b(u1), u′1), (bf2, u2, b(u
′
2))
)

=
(
(f1b

−1, v1, u
′

1), (bf2, u2, v
′
2)
)
∈ Aλ,n × Aδ,n.

We can check easily that
(
(id, b) • h̃1, (b, id) • h̃2

)
∈ E(b,id)•h2

(id,b)•h1
(n), and we have:

(id, b) • h̃1 ◦ (b, id) • h̃2 = (f̃1b
−1, b(ũ1), ũ′1) ◦ (bf̃2, ũ2, b(ũ′2))

= (f̃1b
−1bf̃2, ũ2, ũ′1)

= h̃1 ◦ h̃2

= α.

It is then easy to check that this defines a bijection between Nu and Nv. Details are the
same as in Lemma 3.6.
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Lemma 3.12 implies that the cardinality of Nu depends only on u′1 and u2. We denote it
by f(u′1, u2). If we denote by U the set of vectors u ∈ P4

n satisfying conditions (13) to
(17), the set Hρ

λδ(n) can be written as follows:

Hρ
λδ(n) =

⊔
u∈U

Nu.

Using Lemma 3.12, we obtain:

|Hρ
λδ(n)| =

∑
u∈U

|Nu| =
∑
u′1,u2

∑
u1,u′2

f(u′1, u2).

The first (resp. second) summation indexes are vectors u′1 and u2 (resp. u1 and u′2)
satisfying conditions (13) to (16) (resp. (15) to (17)). Since Nu depends only on u′1 and
u2, we get:

|Hρ
λδ(n)| =

∑
u′1,u2

f(u′1, u2)kn,

where kn is the number of possible choices of vectors u1 and u′2 satisfying conditions (15)

to (17). There are
(
n
|λ|

)
sets u1 ∈ Pn that fulfill (15). Once u1 is chosen, it remains(

|λ|
|λ|+ |δ| − |ρ|

)
·
(
n− |λ|
|ρ| − |λ|

)
ways to choose u′2 with conditions (16) and (17). The first

binomial is the number of possible choices of u1 ∩ u′2 and the second one is the number of
possible choices of u′2 \ u1. Then, we have:

kn =

(
n
|λ|

)
·
(
n− |λ|
|ρ| − |λ|

)
·
(

|λ|
|λ|+ |δ| − |ρ|

)
.

Thus, the cardinality of Hρ
λδ(n) is:

|Hρ
λδ(n)| =

(
n
|λ|

)
·
(
n− |λ|
|ρ| − |λ|

)
·
(

|λ|
|λ|+ |δ| − |ρ|

)∑
u′1,u2

f(u′1, u2).

The summation index does not depend on n because u′1 and u2 fulfil conditions (13) and
(14). Similarly, we obtain:

|Hρ
λδ(n+ 1)| =

(
n+ 1
|λ|

)
·
(
n+ 1− |λ|
|ρ| − |λ|

)
·
(

|λ|
|λ|+ |δ| − |ρ|

)∑
u′1,u2

f(u′1, u2),

which gives us:

|Hρ
λδ(n+ 1)|
|Hρ

λδ(n)|
=

(
n+ 1
|δ|

)(
n+ 1− |δ|
|ρ| − |δ|

)
(
n
|δ|

)(
n− |δ|
|ρ| − |δ|

) =
n+ 1

n+ 1− |ρ|
.
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Thus, we have:

cρλδ(n+ 1)

cρλδ(n)
=

n+ 1

n+ 1− |ρ|
· n+ 1− |ρ|
n+ 1− |λ|

· n+ 1− |ρ|
n+ 1− |δ|

(18)

=

n+1
(n+1−|λ|)

n+1
(n+1−|δ|)

n+1
(n+1−|ρ|)

.

This proves that ϕn is a homomorphism of algebras.

3.7 Projective limits

In this subsection, we consider the projective limit A∞ of the sequence (An). We prove
in Proposition 3.15 that every element of A∞ is written in a unique way as infinite linear
combination of elements indexed by partitions.

From equation (18), we get the following corollary.
Corollary 3.13. Let λ, δ and ρ be three partitions such that

max (|λ|, |δ|) 6 |ρ| 6 |λ|+ |δ|.

For every n > |ρ|, we have:

cρλδ(n) =
cρλδ(|ρ|)(
|ρ|
|λ|

)(
|ρ|
|δ|

) ·
(
n
|λ|

)(
n
|δ|

)
(
n
|ρ|

) .

Proof. We proceed by induction on n. For n = |ρ|, we have the equality. Assume we have
the equality for some n > |ρ| and let us prove it for n+ 1. By equation (18), we have:

cρλδ(n+ 1)

cρλδ(n)
=

n+1
(n+1−|λ|)

n+1
(n+1−|δ|)

n+1
(n+1−|ρ|)

.

This gives us the following equality, using the induction hypothesis :

cρλδ(n+ 1) =
cρλδ(|ρ|)(
|ρ|
|λ|

)(
|ρ|
|δ|

) ·
(
n
|λ|

)(
n
|δ|

)
(
n
|ρ|

) ·
n+1

(n+1−|λ|)
n+1

(n+1−|δ|)
n+1

(n+1−|ρ|)

=
cρλδ(|ρ|)(
|ρ|
|λ|

)(
|ρ|
|δ|

) ·
(
n+ 1
|λ|

)(
n+ 1
|δ|

)
(
n+ 1
|ρ|

) .
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Let A∞ be the projective limit of (An, ϕn):

A∞ = {(an)n>1 | for every n > 1, an ∈ An and ϕn(an+1) = an}.

Lemma 3.14. Elements of A∞ are of the form a = (an)n>1, where

an =
∑

λ partition
|λ|6n

xaλ(
n
|λ|

)Sλ,n,
for some sequence x = (xaλ)λ partition of scalars uniquely determined by a.

Proof. Let a = (an)n>1 be a sequence in A∞, an ∈ An for every n > 1. By Proposition
3.8, the elements (Sλ,n)λ`r6n form a basis of An, thus for every n > 1 and every partition
λ such as |λ| 6 n, there exists a scalar aλ(n) ∈ C such that

an =
∑

λ partition
|λ|6n

aλ(n)Sλ,n.

The condition ϕn(an+1) = an can be written as follows:

ϕn

 ∑
λ partition
|λ|6n+1

aλ(n+ 1)Sλ,n+1

 =
∑

λ partition
|λ|6n

aλ(n)Sλ,n.

Using the definition of ϕn, we simplify this equality to obtain:∑
λ partition
|λ|6n

aλ(n+ 1)
n+ 1

n+ 1− |λ|
Sλ,n =

∑
λ partition
|λ|6n

aλ(n)Sλ,n.

By comparing the coefficients of Sλ,n we get that for every partition λ such that |λ| 6 n,
we have:

aλ(n+ 1)

aλ(n)
=
n+ 1− |λ|
n+ 1

.

By induction, we get :

aλ(n) =
aλ(|λ|)(
n
|λ|

) .
We set xaλ = aλ(|λ|). This proves Lemma 3.14.

For every partition λ, we define the sequence Tλ := (Tλ,n)n>1 where :

Tλ,n =


0 if n < |λ|,

1 n
|λ|

Sλ,n if n > |λ|.

From Lemma 3.14, we obtain directly the following proposition:
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Proposition 3.15. Every element a ∈ A∞ is written in a unique way as infinite linear
combination of elements Tλ.

This proposition shows that the algebra A∞ satisfies the second property required in
Section 2.5. In particular, Tλ ∗ Tδ writes as linear combination of elements Tρ. We can be
more precise.

Corollary 3.16. Let λ and δ be two partitions, there exist unique constants bρλδ such that:

Tλ ∗ Tδ =
∑

ρ partition
max (|λ|,|δ|)6|ρ|6|λ|+|δ|

bρλδTρ.

Moreover bρλδ =
cρλδ(|ρ|)|ρ|
|λ|

|ρ|
|δ|

 . In particular, it is a non-negative rational number.

Proof. By Proposition 3.15, Tλ ∗ Tδ may be written as a linear combination of elements
Tρ :

Tλ ∗ Tδ =
∑

ρ partition

bρλδTρ.

It remains to prove the conditions about the size of partitions ρ that appear in the sum
index and the formula for bρλδ.
If n < max (|λ|, |δ|), we have:

(Tλ ∗ Tδ)n = 0.

Let n > max (|λ|, |δ|), we use Corollary 3.9 and Corollary 3.13 to get:

(Tλ ∗ Tδ)n =
1(
n
|λ|

)Sλ,n ∗ 1(
n
|δ|

)Sδ,n
=

∑
ρ partition

max (|λ|,|δ|)6|ρ|6min (|λ|+|δ|,n)

cρλδ(|ρ|)(
|ρ|
|λ|

)(
|ρ|
|δ|

)(
n
|ρ|

)Sρ,n

=

 ∑
ρ partition

max (|λ|,|δ|)6|ρ|6|λ|+|δ|

cρλδ(|ρ|)(
|ρ|
|λ|

)(
|ρ|
|δ|

)Tρ

n

Comparing both expressions for Tλ ∗ Tδ, this proves our proposition.
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Example 3.5. We compute in this example the product T(2) ∗ T(2). Using Corollary 3.16,
we can write T(2) ∗ T(2) =

∑
ρ partition

26|ρ|64

bρ(2)(2)Tρ, which gives us:

T(2) ∗ T(2) = b
(12)
(2)(2)T(12) + b

(13)
(2)(2)T(13) + b

(14)
(2)(2)T(14)

+b
(2)
(2)(2)T(2) + b

(2,1)
(2)(2)T(2,1) + b

(2,12)
(2)(2)T(2,12) + b

(22)
(2)(2)T(22)

+b
(3)
(2)(2)T(3) + b

(3,1)
(2)(2)T(3,1)

+b
(4)
(2)(2)T(4).

The formula for bρλδ given in Corollary 3.16 shows that these elements can be computed
using the product of S(2),|λ|+|δ| ∗ S(2),|λ|+|δ| in A|λ|+|δ|, which is A4 in our case.
We have implemented the algebra An in [Sag] and got the following equation for the
product S(2),4 ∗ S(2),4 in A4:

S(2),4 ∗ S(2),4 = 96S(12),4 + 48S(2),4 + 36S(3),4 + 12S(22),4.

Using the formulas for cρλδ(|ρ|) and bρλδ given in Corollary 3.13 and 3.16, we obtain:

T(2) ∗ T(2) = 16T(12) + 8T(2) + 4T(3) +
1

3
T(22).

Corollary 3.17. The set of all finite linear combinations of (Tλ), denoted by Ã∞, forms a
sub-algebra of A∞. The family (Tλ)λ partition is a basis of Ã∞.

Proof. This comes from the fact that the partitions ρ indexing the sum in the product
Tλ ∗ Tδ satisfy :

|ρ| 6 |λ|+ |δ|.

The algebra Ã∞ will be of interest in Section 5.

4 Proof of Theorem 2.1
In the previous section, we built all algebras and homomorphisms that we need in order
to prove Theorem 2.1.

Let λ and δ be two proper partitions, by Corollary 3.16, we have:

Tλ ∗ Tδ =
∑

ρ partition
max (|λ|,|δ|)6|ρ|6|λ|+|δ|

bρλδTρ.

Recall that this is an equality of sequences. Taking the n-th term, we have:

1(
n
|λ|

)Sλ,n ∗ 1(
n
|δ|

)Sδ,n =
∑

ρ partition
max (|λ|,|δ|)6|ρ|6min (|λ|+|δ|,n)

bρλδ
1(
n
|ρ|

)Sρ,n.
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By applying ψn we obtain (see Lemma 3.10):

1

2n−|λ|(n− |λ|)!
Kλ(n) · 1

2n−|δ|(n− |δ|)!
Kδ(n) =

∑
ρ partition

max (|λ|,|δ|)6|ρ|6min (|λ|+|δ|,n)

bρλδ

(
n
|λ|

)(
n
|δ|

)
(
n
|ρ|

)
2n−|ρ|(n− |ρ|)!

(
n− |ρ̄|
m1(ρ)

)
Kρ̄(n).

After simplification, we get:

Kλ(n) · Kδ(n) =
∑

ρ partition
max (|λ|,|δ|)6|ρ|6min (|λ|+|δ|,n)

bρλδ
(|ρ|)|ρ̄|
|λ|!|δ|!

2n+|ρ|−|λ|−|δ|n!(n − |ρ̄|)m1(ρ)Kρ̄(n).

Fact. Any partition ρ such that |ρ| 6 min (|λ|+ |δ|, n) can be written in a unique way as
ρ = τ ∪ (1j), where τ is a proper partition and j 6 min (|λ|+ |δ|, n)− |τ |.

Using this fact, the product can be written as follows:

Kλ(n) ·Kδ(n) =
∑

τ proper partition
|τ |6min (|λ|+|δ|,n)

ατλδ(n)Kτ (n),

where

ατλδ(n) =
1

|λ|!|δ|!

min (|λ|+|δ|,n)−|τ |∑
j=0

b
τ∪(1j)
λδ n!(n− |τ |)j(|τ |+ j)|τ |2

n+|τ |+j−|λ|−|δ| (19)

=
2nn!

|λ|!|δ|!

|λ|+|δ|−|τ |∑
j=0

b
τ∪(1j)
λδ (n− |τ |)j(|τ |+ j)|τ |2

|τ |+j−|λ|−|δ|.

The change of sum index in the last equality comes from the fact that if n < |λ|+ |δ|, we
have:

(n− |τ |)j = 0 for any j with n− |τ | < j 6 |λ|+ |δ| − |τ |.

This ends the proof of Theorem 2.1.

Corollary 4.1. If λ, δ and ρ are three proper partitions such that |ρ| = |λ|+ |δ|, then:

αρλδ(n) = bρλδ
|ρ|!
|λ|!|δ|!

2nn! = cρλδ(|ρ|)
|λ|!|δ|!

(|λ|+ |δ|)!
2nn!.

Example 4.1. We recall that the product T(2) ∗ T(2) has been computed in Example 3.5.
We deduce from it the complete formula for the product K(2)(n) ·K(2)(n) for every n > 4.
Using formula (19), we have:

K(2)(n) ·K(2)(n) = 2nn!n(n− 1)K∅(n) + 2nn!K(2)(n) + 2nn!3K(3)(n) + 2nn!2K(22)(n).
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5 A link with shifted symmetric functions
In [IK99, Section 9], Ivanov and Kerov have given an isomorphism between the algebra
of 1-shifted symmetric functions and the algebra A∞, which is the universal algebra that
projects on the center of the symmetric group algebra Z(C[Sn]), for each n. In this section,
using the zonal spherical functions of the Gelfand pair (S2n,Bn), we prove that there is an
isomorphism between the algebra of 2-shifted symmetric functions and the algebra Ã∞.

We start with the definition of the algebra of shifted symmetric functions with coeffi-
cients in C(α), denoted by Λ∗(α). An α-shifted symmetric function f in infinitely many
variables (x1, x2, · · · ) is a family (fi)i>1 with the two following properties:

1. fi is a symmetric polynomial in (x1 − 1
α
, x2 − 2

α
, · · · , xi − i

α
).

2. fi+1(x1, x2, · · · , xi, 0) = fi(x1, x2, · · · , xi).

The set of all shifted symmetric functions is an algebra denoted Λ∗(α). In [Las08], Lassalle
gives an isomorphism between the algebra of symmetric functions with coefficients in C[α],
denoted by Λ(α), and Λ∗(α). We will denote this isomorphism by shα instead of (#), as
used by Lassalle. We prefer this notation as it makes the dependence in the parameter α
explicit.

Let f be an element of Λ∗(α). For any partition λ = (λ1, λ2, · · · , λl), we denote by
f(λ) the value fl(λ1, λ2, · · · , λl). The shifted symmetric function f is determined by its
values on partitions, see [OO97, Section 2].

5.1 Gelfand pairs and zonal spherical functions

Let G be a finite group and K a subgroup of G. We denote by C(G,K) the set of all
complex-valued functions on G that are constant on each K-double coset in G. Namely,

C(G,K) = {f : G −→ C such that f(kxk′) = f(x) for all x in G and k, k′ in K}.

The set C(G,K) is an algebra with product defined as follows (usually called convolution
product):

(fg)(x) =
∑
y∈G

f(y)g(y−1x) for all f, g in C(G,K).

The pair (G,K) is said to be a Gelfand pair if the algebra C(G,K) is commutative. More
details about Gelfand pairs are given in [Mac95, Chapter VII, 1]. In particular, when
(G,K) is a Gelfand pair, the algebra C(G,K) admit a relevant canonical basis (ωi). The
ωi are called zonal spherical functions.

Proposition 5.1. Every zonal spherical function ω of a Gelfand pair (G,K) defines a
homomorphism of C[K \ G/K] to C∗, where C[K \ G/K] is the sub-algebra of C[G] of
elements invariant under the K-double action.
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Proof. A zonal spherical function ω has the following property given in [Mac95, page 392]:

ω(x)ω(y) =
1

|K|
∑
k∈K

ω(xky),

for all x, y ∈ G. This property can be extended by linearity to the group algebra C[G]. If
x and y are two elements of C[K \G/K], then we have:

ω(x)ω(y) =
1

|K|
∑
k∈K

ω(xky) =
1

|K|
∑
k∈K

ω(xy) = ω(xy),

which ends the proof of the proposition.

The pair (S2n,Bn) is a Gelfand pair (see [Mac95, Chapter VII, 2]) and its zonal spher-
ical functions are indexed by partitions of n. They are denoted by ωρ and defined by:

ωρ(x) =
1

|Bn|
∑
k∈Bn

χ2ρ(xk),

for x ∈ S2n, where χ2ρ is the character of the irreducible S2n-module corresponding to
2ρ := (2ρ1, 2ρ2, · · · ). Two permutations x and y in the same Bn-double coset Kλ(n) have
the same image by ωρ denoted by ωρλ.

5.2 Jack polynomials

The family of Jack polynomials Jρ(α), indexed by partitions, forms a basis of Λ(α). In
the basis of power sums pλ, Jρ(α) may be developed as follows:

Jρ(α) =
∑
|λ|=|ρ|

θρλ(α)pλ. (20)

Let λ and ρ be partitions with |ρ| > |λ|. Then the shifted symmetric function shα(pλ)
is related to θρ

λ∪(1n−|λ|)
(α) by the following equation given in [Las08, Proposition 2]:

α|λ|−l(λ)shα(pλ)(ρ) =

(
|ρ| − |λ|+m1(λ)

m1(λ)

)
zλθ

ρ

λ∪(1n−|λ|)
(α), (21)

where zλ =
∏
i>1

imi(λ)mi(λ)!. Directly from the definition of shα(f) for any symmetric

function f , given in [Las08, Eq. (3.1)], one has shα(pλ)(ρ) = 0 if |ρ| < |λ|.

5.3 Isomorphism between Ã∞ and Λ∗(2)

When α = 2, Jack polynomials are related to zonal spherical functions of (S2n,Bn) by the
following equation (cf. [Mac95, page 408]):

Jρ(2) = |Bn|
∑
|λ|=n

z−1
2λ ω

ρ
λpλ, (22)
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for every partition ρ of n. This formula can be viewed as an analogue for α = 2 of the
following formula known as Frobenius formula, see [Mac95, page 114]:

sρ =
∑
|λ|=|ρ|

z−1
λ χρλpλ,

where sρ is the Schur function. Equations (20) and (22) give us the following equality
when α = 2:

θρλ(2) = |B|ρ||z−1
2λ ω

ρ
λ.

Theorem 5.1. The linear mapping F : Ã∞ −→ Λ∗(2) defined by:

F (Tλ) = 22|λ|−l(λ)|λ|!sh2(pλ)

zλ
, (23)

is an isomorphism of algebras.

Proof. Let λ be a partition and Tλ the corresponding element in Ã∞. Let n be an integer,
n > |λ|. By definition, Tλ is a sequence and its n-th term (Tλ)n = 1 n

|λ|

Sλ,n lies in An.

We project onto C[Bn \ S2n/Bn] by applying ψn. By Lemma 3.10, we get:

ψn((Tλ)n) =
1(
n
|λ|

) 1

2n−|λ|(n− |λ|)!

(
n− |λ̄|
m1(λ)

)
Kλ̄(n)

=
2|λ||λ|!
2nn!

(
n− |λ̄|
m1(λ)

)
Kλ̄(n).

For any partition ρ with size equal to n, by applying ωρ to ψn((Tλ)n), we obtain:

ωρ(ψn((Tλ)n)) =
2|λ||λ|!
2nn!

(
n− |λ̄|
m1(λ)

)
|Kλ̄(n)|ωρ

λ̄∪(1n−|λ̄|)

=
2|λ||λ|!
2nn!

(
n− |λ̄|
m1(λ)

)
|Kλ̄(n)|θρ

λ̄∪(1n−|λ̄|)
(2)

1

|Bn|z−1

2(λ̄∪(1n−|λ̄|)

.

We denote by |Kλ̄(n)| the number of permutations of 2n with coset-type λ̄∪(1n−|λ̄|). This
number is equal to |Bn|2

z
2(λ̄∪(1n−|λ̄|)

(see [Mac95, page 402]). Thus, after simplification, we get:

ωρ(ψn((Tλ)n)) = 2|λ||λ|!
(
n− |λ̄|
m1(λ)

)
θρ
λ̄∪(1n−|λ̄|)

(2),

which together with (21) gives us the following equation:

ωρ(ψn((Tλ)n)) = 22|λ|−l(λ)|λ|!sh2(pλ)(ρ)

zλ
.
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This formula is valid for any partition ρ such that |ρ| > |λ|. We can check that it is also
valid for any partition ρ with size less than |λ|, since in this case (Tλ)|ρ| and sh2(pλ)(ρ)
are both equal to zero.
Finally, for any partition ρ, its image by F (Tλ) as defined in the statement of Theorem
5.1, can also be written as follows:

F (Tλ)(ρ) = ωρ(ψ|ρ|((Tλ)|ρ|)).

Let δ be a partition, for any partition ρ, we have:

F (Tλ ∗ Tδ)(ρ) = ωρ(ψ|ρ|((Tλ ∗ Tδ)|ρ|))
= ωρ(ψ|ρ|((Tλ)|ρ| ∗ (Tδ)|ρ|))

= ωρ(ψ|ρ|(Tλ)|ρ| ∗ ψ|ρ|(Tδ)|ρ|) (Proposition 3.3)
= ωρ(ψ|ρ|(Tλ)|ρ|) · ωρ(ψ|ρ|(Tδ)|ρ|).

The last equality comes from the fact that ωρ defines a homomorphism of C[Bn \ S2n/Bn]
to C∗ (Proposition 5.1). Hence,

F (Tλ ∗ Tδ)(ρ) = (F (Tλ) · F (Tδ))(ρ),

for any two partitions λ and δ. That means that F is a homomorphism of algebras from
Ã∞ to Λ∗(2). Since (Tλ)λ partition and (sh2(pλ))λ partition are respectively bases of Ã∞ and
Λ∗(2), F is actually an isomorphism of algebras.

Remark 5.2. The reader should remark while reading the proof that F (Tλ) could be defined
by F (Tλ)(ρ) = ωρ(ψ|ρ|((Tλ)|ρ|)), which would show directly that F (Tλ) is a homomorphism
since it is the composition of homomorphisms. However, we prefer to use the definition
given by the equation (23) because it gives us explicitly the action of F on the elements
of basis of Ã∞.

5.4 Structure constants

As said in the beginning of this section, shα is an isomorphism between Λ(α) and Λ∗(α).
Thus, the family (shα(pλ))λ partition forms a linear basis of Λ∗(α). This allows us to write
the following equation:

shα(pλ)shα(pδ) =
∑
ρ

gρλ,δ(α)shα(pρ).

It is proven in [DF14] that the coefficients gρλ,δ(α) are polynomial in α−1√
α
. This struc-

ture constants are also related to the Matching-Jack conjecture of Goulden and Jackson,
see[DF14, Appendix B].

We are interested in the case α = 2. We proved in 3.16 that the coefficients bρλδ
that appear in the product Tλ ∗ Tδ are non-negative rational numbers. By applying the
isomorphism F given in 5.1 to the product Tλ∗Tδ, we get directly the following proposition.
Proposition 5.2. The coefficients gρλ,δ(2) are non-negative rational numbers.
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6 Filtrations of the algebra A∞
We gave in Theorem 2.1 a polynomiality property of the structure coefficients of the Hecke
algebra of the pair (S2n,Bn). The aim of this section is to give upper bounds for the degree
of these polynomials. To do this, we study in this section some filtrations of the algebra
A∞. An analogous work was made in [IK99] for the case of Z(C[Sn]).

From the formula of the product of basis elements in A∞, given in Corollary 3.16, we
see that the function

deg1(Tλ) = |λ|
defines a filtration on A∞.

In order to obtain other filtrations on A∞, we give a decomposition of any partial
bijection into partial bijections with coset-type equal to (1) or (2). We call cycle of length
r+ 1 a partial bijection with coset-type equal to (r+ 1), where r is a positive integer. We
write a cycle C of length r + 1 as follows (see [AC12, page 2480]):

C = (c1, c2 : c3, c4 : · · · : c4r+1, c4r+2 : c4r+3, c4r+4). (24)

This means that:

{c2i+1, c2i+2} = ρ(ki) for some ki i = 0, · · · , 2r + 1

C(c1) = c4r+4

C(c4l+1) = c4l l = 1, · · · , r
C(c4l+2) = c4l+3 l = 0, · · · , r

Example 6.1. With this notation, the longest cycle in Figure 1, which we draw here again
for convenience,

•2

•4

•
9

•
3

•1

•10 1

2

34

5

6

may be written as:
(1, 2 : 4, 3 : 4, 3 : 9, 10 : 6, 5 : 1, 2)

Notation. For a partial bijection α and x ∈ Dn, we write α ∈ x to say that the coefficient
of α in x is non-zero.
Observation 6.1. Let α, β and γ be three partial bijections such that γ ∈ α ∗ β. If α ∈ x
and β ∈ y where x and y are two elements of Dn with non-negative coefficients, then
γ ∈ x ∗ y.
Lemma 6.1. For any cycle C of length r+ 1, there exist r partial bijections τ1, · · · , τr with
coset-type (2), such that C ∈ τ1 ∗ · · · ∗ τr.
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Proof. Let C be a cycle of length r + 1 written in generic form as in (24). We can check
that C can be written as follows:

C = K ◦ J ,

where

K = (c3, c4 : c4, c3) · · ·(c4r−5, c4r−4 : c4r−4, c4r−5)

(c4r−1, c4r : c4r+4, c4r+3 : c4r+3, c4r+4 : c4r, c4r−1)

and
J = (c1, c2 : c3, c4 : · · · : c4r−3, c4r−2 : c4r−1, c4r)(c4r+1, c4r+2 : c4r+3, c4r+4).

Then, if we denote by τ1 the cycle of length 2 of K and by C1 the cycle of length r of J ,
we have:

C ∈ τ1 ∗ C1, ct(τ1) = (2) and ct(C1) = (r).

In the same way we can write:

C1 ∈ τ2 ∗ C2 with ct(τ2) = (2) and ct(C2) = (r − 1).

Using the observation above, we get:

C ∈ τ1 ∗ τ2 ∗ C2.

Thus, by iteration we obtain:

C ∈ τ1 ∗ τ2 ∗ · · · ∗ τr with ct(τi) = (2) for all i = 1, · · · , r.

This proves the lemma.

Lemma 6.2. For any partial bijection τ with coset-type ρ = (ρ1, · · · , ρl), there exist r
partial bijections τ1, · · · , τr with coset-type (2) and m1(ρ) partial bijections β1, · · · , βm1(ρ)

with coset-type (1) such that:

τ ∈ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ),

where r = |ρ| −m1(ρ).

Proof. Every cycle in the graph Γ(τ) associated to τ can be seen as a partial bijection
on its own. Let β1, · · · , βm1(ρ) the m1(ρ) partial bijections corresponding to the cycles
of length 1 of τ . The other m(ρ) = l(ρ) −m1(ρ) partial bijections corresponding to the
cycles of τ with length greater than 1 are denoted by α1, · · · , αm(ρ). The length of αi is
ρi. By Lemma 6.1, for every αi we can write:

αi ∈ τ i1 ∗ · · · ∗ τ iρi−1 with ct(τ ij) = (2) for j = 1, · · · , ρi − 1.
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Then, since

τ ∈ α1 ∗ · · · ∗ αm(ρ) ∗ β1 ∗ · · · ∗ βm1(ρ),

we can write:

τ ∈ τ 1
1 ∗ · · · ∗ τ 1

ρ1−1 ∗ · · · ∗ τ
m(ρ)
1 ∗ · · · ∗ τm(ρ)

ρm(ρ)−1 ∗ β1 ∗ · · · ∗ βm1(ρ).

The number of τ ’s that appear in this decomposition is equal to (ρ1−1)+· · ·+(ρm(ρ)−1) =
|ρ| −m1(ρ)− l(ρ) +m1(ρ) = |ρ| − l(ρ), which proves the lemma.

For a partial bijection τ with coset-type ρ, we define the following functions:

deg2(τ) = |ρ| − l(ρ)

deg3(τ) = |ρ| − l(ρ) +m1(ρ).

Consider the decomposition of τ given in Proposition 6.2. We have:

deg2(τi) = 1,

deg2(βi) = 0,

deg3(τi) = 1,

deg3(βi) = 1.

Thus

deg2(τ) = |ρ| − l(ρ) = deg2(τ1) + · · ·+ deg2(τr) + deg2(β1) + · · ·+ deg2(βm1(ρ)),

and

deg3(τ) = |ρ| − l(ρ) +m1(ρ) = deg3(τ1) + · · ·+ deg3(τr) + deg3(β1) + · · ·+ deg3(βm1(ρ)).

Proposition 6.3. The functions

deg2(Tρ) = |ρ| − l(ρ),

deg3(Tρ) = |ρ| − l(ρ) +m1(ρ),

define two filtrations on A∞.

Proof. Let σ and τ be two partial bijections with coset-type λ and ρ. We want to show
that:

degi(σ ∗ τ) 6 degi(σ) + degi(τ), for i = 1, 2,

where degi(σ ∗ τ) = max
α∈σ∗τ

degi(α).
Because of Proposition 6.2, τ can be decomposed into cycles of lengths 2 and 1. In other
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words, there exist r = |ρ| − m1(ρ) partial bijections τ1, · · · , τr with coset-type (2) and
m1(ρ) partial bijections β1, · · · , βm1(ρ) with coset-type (1) such that:

τ ∈ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ).

For any partial bijection α such that α ∈ σ ∗τ , we have α ∈ σ ∗τ1 ∗ · · · ∗τr ∗β1 ∗ · · · ∗βm1(ρ)

by Observation 6.1 since τ ∈ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ). Thus,

degi(σ ∗ τ) 6 degi(σ ∗ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ)) for i = 1, 2.

If for any cycle C with length 2 or 1 and for any partial bijection θ we have,

degi(θ ∗ C) 6 degi(θ) + degi(C), for i = 2, 3, (25)

then we can write:

degi(σ ∗ τ) 6 degi(σ ∗ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ))

6 degi(σ ∗ τ1 ∗ · · · ∗ τr ∗ β1 ∗ · · · ∗ βm1(ρ)−1) + degi(βm1(ρ))

...
6 degi(σ) + degi(τ1) + · · ·+ degi(τr) + degi(β1) + · · ·+ degi(βm1(ρ))

6 degi(σ) + degi(τ).

Therefore it is enough to prove the formula (25). Let θ be a partial bijection with coset-
type δ. If

C = (c1, c2 : c3, c4)

is a cycle of length 1, we have two cases:

1. If {c3, c4} is in the domain of θ: In this case the partial bijections that appear in
the expansion of the product θ ∗ C have the same coset-type as θ and we have

degi(θ ∗ C) 6 degi(θ) + degi(C), for i = 2, 3.

2. If not, then all the partial bijections that appear in the expansion of the product
θ ∗ C have the coset-type δ ∪ (1). Then, we can check easily that degi(θ ∗ C) 6
degi(θ) + degi(C), for i = 2, 3.

Now, if C = (c1, c2 : c3, c4 : c5, c6 : c7, c8) is a cycle of length 2, the figure of C is represented
on Figure 9. We have 4 cases. We give for each case the general result without the details
of the proofs. They simply consist in computing compositions of permutations.

1. {c3, c4} and {c7, c8} do not appear in the domain of θ:

In this case, the partial bijections that appear in the expansion of the product θ ∗ C
have coset-type δ ∪ (2).

the electronic journal of combinatorics 21(4) (2014), #P4.35 36



•c4

•
c7

•
c8

•c3
c5

c6 c1

c2

Figure 9: The cycle C.

2. One of the sets {c3, c4} and {c7, c8} (for example {c3, c4}) appears in the domain of
a cycle ω of θ and the other does not.

Suppose that ω is as represented on the left side of Figure 10. Then, a cycle with the
form drawn on the right side of Figure 10 appears in the expansion of the product
θ ∗ C. Note that some exterior labels are missing in this figure. To explain this, let
us recall that the product α1 ∗α2 of two partial bijections α1 and α2 is defined using
an average of some partial bijections α. When the extremity on an edge have no
exterior labels, that means that the elements of any pair ρ(k) different from {c1, c2}
and {c5, c6} can be used as labels and that we shall average over all possibilities. We
will also use this convention in the last two cases. Thus, in this case, the coset-type
of each partial bijection that appears in the expansion of the product θ ∗ C has the
same number of parts as δ and its size is equal to |δ|+ 1.

•ω20

•ω3

•
ω4

•
ω7

•ω8

•ω11

•ω12

•
ω15

•
ω16

•ω19

ω1

ω2

ω5 = c3ω6 = c4

ω9

ω10

ω13

ω14 ω17

ω18

•ω20

•ω3

•
ω4

•
•

•ω7

•ω8

•ω11

•
ω12

•
ω15 •

ω16

•ω19

c2

c1
c6

c5

Figure 10: The cycle ω of θ and the form of the cycle that appears in θ ∗ C.

3. Both sets {c3, c4} and {c7, c8} appear in the domain of the same cycle ω of θ.

Consider the exterior labels of this cycle ω. Among them there are c3, c4, c7 and c8

and we know that c3 and c4 (resp. c7 and c8) appear consecutively. Then there are
two cases that shall be considered separately. Either labels appear in cyclic order
c3, c4, · · · , c7, c8 or c3, c4, · · · , c8, c7. These two cases are represented on Figure 11.

Note that, on the right side of Figure 11, labels c7 and c8 are switched. The forms
of cycles that appear in the expansion of the product θ ∗ C in each case are given on
Figure 12.
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•ω20

•ω3

•
ω4

•
ω7

•ω8

•ω11

•ω12

•
ω15

•
ω16

•ω19

ω1

ω2

ω5 = c3ω6 = c4

ω9

ω10

ω13

ω14 ω17 = c7

ω18 = c8

•ω20

•ω3

•
ω4

•
ω7

•ω8

•ω11

•ω12

•
ω15

•
ω16

•ω19

ω1

ω2

ω5 = c3ω6 = c4

ω9

ω10

ω13

ω14 ω17 = c8

ω18 = c7

Figure 11: The first possible form of ω (left side) and the second one.

Thus, in the first case the cycle is cut into two cycles, then the coset-type of each
partial bijection that appears in the expansion of the product θ ∗ C has the same
size as δ and l(δ) + 1 parts. While in the second nothing changes and the coset-type
of each partial bijection that appears in the expansion of the product θ ∗ C has the
same size as δ and the same number of parts.

•ω20

•ω3

•
ω4

•
ω19

•ω8

•ω11

•ω12

•
ω15

•
ω16

•ω7

c2c1

c6

c5

•ω20

•ω3

•
ω4

•
ω16

•ω15

•ω11

•ω12

•
ω8

•
ω7

•ω19

c2c1

c5

c6

Figure 12: Cycles in θ ∗ C corresponding to first and second forms of ω.

4. The two sets {c3, c4} and {c7, c8} appear in the domain of two different cycles of θ.

For example we take the two cycles represented on Figure 13. Then a cycle with
the form drawn on Figure 14 appears in the expansion of the product θ ∗ C. In this
case the two cycles are joined to form a cycle, thus the coset-type of each partial
bijection that appears in the expansion of the product θ ∗ C has the same size as δ
and l(δ)− 1 parts.
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•ω12

•ω3

•
ω4

•
ω7

•ω8

•ω11

•t8

•
t3 •

t4
•t7

ω1

ω2

ω5 = c3ω6 = c4

ω9

ω10

t1 = c7

t2 = c8 t5

t6

Figure 13: The two cycles.

•ω12

•ω3

•
ω4

•
t3

•t4

• t7

•t8

•
ω7

•
ω8

•ω11

c2c1

c6

c5

Figure 14: The two cycles are joined.

In these four cases, we can check that we have degi(θ ∗ C) 6 degi(θ) + degi(C), for
i = 2, 3 and this ends the proof of Proposition 6.3.

These filtrations allow us to get upper bounds for the degree of the polynomials fρλδ(n)
that appear in Theorem 2.1.

Proposition 6.4. Let λ, δ and ρ be three proper partitions, the degree of fρλδ(n) satisfies:

deg(fρλδ(n)) 6 |λ|+ |δ| − |ρ|,
deg(fρλδ(n)) 6 |λ|+ |δ| − |ρ| − l(λ)− l(δ) + l(ρ).

Proof. From the proof of Theorem 2.1, the degree of fρλδ(n) is as follows:

deg(fρλδ(n)) = max
b
ρ∪(1j)
λδ 6=0

j.
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On the other hand, since degi is a filtration for i = 1, 2, 3, we obtain the following
inequality:

degi(Tλ ∗ Tδ) = max
τ proper,j>0

b
τ∪(1j)
λδ

6=0

degi(Tτ∪(1j)) 6 degi(Tλ) + degi(Tδ).

Then we get the three following inequalities corresponding to the three filtrations deg1,
deg2 and deg3:

max
τ proper,j>0

b
τ∪(1j)
λδ

6=0

|τ |+ j 6 |λ|+ |δ|,

max
τ proper,j>0

b
τ∪(1j)
λδ

6=0

|τ |+ j − l(τ)− j 6 |λ| − l(λ) + |δ| − l(δ),

max
τ proper,j>0

b
τ∪(1j)
λδ

6=0

|τ |+ j − l(τ)− j + j 6 |λ| − l(λ) + |δ| − l(δ).

The second inequality does not give any information about the degree of fρλδ(n), while
using the first and the third inequality with the fact that:

deg(fρλδ(n)) = max
b
ρ∪(1j)
λδ 6=0

j 6 max
τ proper,j>0

b
τ∪(1j)
λδ

6=0

j,

we get directly the result.
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