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Abstract

Suppose d+ 1 absolutely continuous probability measures m0, . . . ,md on Rd are
given. In this paper, we prove that there exists a point of Rd that belongs to the
convex hull of d+1 points v0, . . . , vd with probability at least 2d

(d+1)!(d+1) , where each
point vi is sampled independently according to probability measure mi.

1 Introduction

Let P ⊂ Rd be a set of n points. Every d+ 1 of them span a simplex, for a total of
(
n
d+1

)
simplices. The point selection problem asks for a point contained in as many simplices as
possible. Boros and Füredi [BF84] showed for d = 2 that there always exists a point in
R2 contained in at least 2

9

(
n
3

)
− O(n2) simplices. A short and clever proof of this result

was given by Bukh [Buk06]. Bárány [Bár82] generalized this result to higher dimensions:

Theorem 1 (Bárány [Bár82]). There exists a point in Rd that is contained in at least
cd
(
n
d+1

)
−O(nd) simplices, where cd > 0 is a constant depending only on the dimension d.

This general result, the Bárány’s theorem, is also known as the first selection lemma.
We will henceforth denote by cd the largest possible constant for which the Bárány’s
theorem holds true. Bukh, Matoušek and Nivasch [BMN10] used a specific construction
called the stretched grid to prove that the constant c2 = 2

9
in the planar case found by

Boros and Füredi [BF84] is the best possible. In fact, they proved that cd 6 d!
(d+1)d

. On the

other hand, Bárány’s proof in [Bár82] implies that cd > (d + 1)−d, and Wagner [Wag03]
improved it to cd > d2+1

(d+1)d+1 .
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Figure 1: 3 red points, 3 green points and 3 blue points are placed in the plane. The
point marked by a square is contained in 6 (= 2

9
· 33) colorful triangles.

Gromov [Gro10] further improved the lower bound on cd by topological means. His
method gives cd > 2d

(d+1)(d+1)!
. Matoušek and Wagner [MW11] provided an exposition of

the combinatorial component of Gromov’s approach in a combinatorial language, while
Karasev [Kar12] found a very elegant proof of Gromov’s bound, which he described as a
“decoded and refined” version of Gromov’s proof.

The exact value of cd has been the subject of ongoing research and is unknown, except
for the planar case. Basit, Mustafa, Ray and Raza [BMRR10] and successively Matoušek
and Wagner [MW11] improved the Bárány’s theorem in R3. Král’, Mach and Sereni
[KMS12] used flag algebras from extremal combinatorics and managed to further improve
the lower bound on c3 to more than 0.07480, whereas the best upper bound known is
0.09375.

However, in this paper, we are concerned with a colored variant of the point selection
problem. Let P0, . . . , Pd be d + 1 disjoint finite sets in Rd. A colorful simplex is the
convex hull of d + 1 points each of which comes from a distinct Pi. For the colored
point selection problem, we are concerned with the point(s) contained in many colorful
simplices. Karasev proved:

Theorem 2 (Karasev [Kar12]). Given a family of d+ 1 absolutely continuous probability
measures m = (m0, . . . ,md) on Rd, an m-simplex1 is the convex hull of d + 1 points
v0, . . . , vd with each point vi sampled independently according to probability measure mi.
There exists a point of Rd that is contained in an m-simplex with probability pd > 1

(d+1)!
.

In addition, if two probability measures coincide, then the probability can be improved to
pd > 2d

(d+1)(d+1)!
.

By a standard argument which we will provide immediately, a result on the colored
point selection problem follows:

Corollary 3. If P0, . . . , Pd each contains n points, then there exists a point that is con-
tained in at least 1

(d+1)!
· nd+1 colorful simplices.

1An m-simplex is actually a simplex-valued random variable.
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Our result drops the additional assumption in theorem 2, hence improves corollary 3:

Main Theorem. There is a point in Rd that belongs to an m-simplex with probability
pd > 2d

(d+1)(d+1)!
.

Corollary 4. There exists a point that is contained in at least 2d
(d+1)(d+1)!

· nd+1 colorful
simplices.

Proof of corollary 4 from the main theorem. Given d + 1 sets P0, . . . , Pd in Rd each of
which contains n points. Let Ψ: Rd → R be the bump function defined by Ψ(x1, . . . , xd) =∏d

i=1 ψ(xi), where ψ(x) = e−1/(1−x
2)1|x|<1, and set Ψn(x1, . . . , xd) = ndΨ(nx1, . . . , nxd) for

n ∈ N. It is a standard fact that Ψ and Ψn are absolutely continuous probability measures
supported on [−1, 1]d and [−1/n, 1/n]d respectively.

For each n ∈ N and 0 6 k 6 d, define m
(n)
k (x) := 1

n

∑
p∈Pk

Ψn(x − p) for x ∈
Rd. Note that m

(n)
k is an absolutely continuous probability measure supported on the

Minkowski sum of Pk and [−1/n, 1/n]d. Let m(n) be the family of d + 1 probability

measures m
(n)
0 , . . . ,m

(n)
d . By the main theorem, there is a point p(n) of Rd that belongs to

an m(n)-simplex with probability at least 2d
(d+1)(d+1)!

.

Because no point in a certain neighborhood of infinity is contained in any m(n)-simplex,
the set {p(n) : n ∈ N} is bounded, and consequently the set has a limit point p. Suppose
p is contained in N colorful simplices. Let ε > 0 be the distance from p to all the colorful
simplices that do not contain p. Choose n large enough such that 1/n� ε and

∣∣p(n) − p∣∣�
ε. By the choice of n, if p is not contained in a colorful simplex spanned by v0, . . . , vd,
then p(n) is not contained the convex hull of v′0, . . . , v

′
d for all v′i ∈ vi + [−1/n, 1/n]d. This

implies that the probability that p(n) is contained in an m(n)-simplex is at most N
nd+1 .

Hence p is the desired point contained in N > 2d
(d+1)(d+1)!

· nd+1 colorful simplices.

Readers who are familiar with Karasev’s work [Kar12] would notice that our proof of
the main theorem heavily relies on his arguments. The author is deeply in debt to him.

2 Proof of the Main Theorem

In this section, we provide the proof of the main theorem. The topological terms in the
proof are standard, and can be found in [Mat03]. In addition to the notion of an m-
simplex, in the proof, we will often refer to an (mk, . . . ,md)-face which means the convex
hull of d − k + 1 points vk, . . . , vd with each point vi sampled independently according
to probability measure mi. An m-simplex and an (mk, . . . ,md)-face are both set-valued
random variables.

Proof of the main theorem. To obtain a contradiction, we suppose that for any point v in
Rd, the probability that v belongs to an m-simplex is less than pd := 2d

(d+1)(d+1)!
. Since

this probability, as a function of point v, is continuous and uniformly tends to 0 as v goes
to infinity, there is an ε > 0 such that v is contained in an m-simples with probability at
most pd − ε for all v in Rd.
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Figure 2: The bird’s-eye view of a triangulation of S2 with a 2-simplex containing∞ and
the cone over part of the triangulation.

Let Sd := Rd∪{∞} be the one-point compactification of the Euclidean space Rd. Take
δ = ε/d. Choose a finite triangulation2 T of Sd with one of the d-simplices containing ∞
such that for 0 < k 6 d, any k-face of T intersects an (mk, . . . ,md)-face with probability
less than δ and that the measure of any d-face of T under (md−1 +md) /2 is less than
δ. This can be done by taking a sufficiently fine triangulation of S2 with one d-simplex
having ∞ in its relative interior.

We use cone(·) as the cone functor3 with apex O. A triangulation T of Sd naturally
extends to a triangulation cone(T ) of cone(Sd). We denote the k-skeleton4 of T and
cone(T ) by T 6k and cone(T )6k respectively.

We are going to define a continuous map f : cone(T )6d → Sd. Put f(x) = x for all
x ∈ Sd = ||T || ⊂

∣∣∣∣cone(T )6d
∣∣∣∣, and set f(O) = ∞. We proceed to define f on cone(σ)

for all the k-faces σ of T inductively on dimension k of σ while we maintain the property
that the image of the boundary of cone(σ) under f , that is f(∂cone(σ)), intersects an
(mk, . . . ,md)-face with probability at most (k + 1)!(pd − ε+ kδ). We say f is economical
over a k-face σ of T 6d−1 if f and σ satisfy the above property. Unlike Karasev [Kar12],
our inductive construction of f follows the same pattern until k = d− 2 instead of d− 1.
The main innovation of this proof is a different construction for k = d− 1, which enables
us to remove the additional assumption in theorem 2.

Note that for any 0-face σ in T , f(∂cone(σ)) = f({σ,O}) = {σ,∞}. According to the
assumption at the beginning of the proof, f(∂cone(σ)) intersects an (m0, . . . ,md)-face,

2A triangulation T of a topological space X is a simplicial complex K, homeomorphic to X, together
with a homeomorphism h : ||K|| → X. Since the finite triangulation of interest is an extension of the
triangulation of a d-simplex X in Rd and h is an identity map, we will freely use topological notions such
as “a k-face (as a subset of Sd)” instead of “the image of a k-face in K under h”. With such abuse of
language, we can avoid going back and forth between the simplicial complex and the topological space.

3The cone over a space X is the quotient space cone(X) := (X × [0, 1]) / (X × {1}). The apex is the
equivalence class {(x, 1) : x ∈ X}.

4The k-skeleton of a simplicial complex ∆ consists of all simplices of ∆ of dimension at most k.
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that is, an m-simplex, with probability at most pd − ε. Therefore f is economical over
0-faces of T . This finishes the first step.

Suppose f is already defined on cone(T )6k and it is economical over k-faces of T . We
are going to extend the domain of f to cone(T )6k+1. Indeed, we only need to define f on
cone(σ) for every k-face σ of T .

Take any k-face σ of T . Suppose convex hull of vk, . . . , vd, denoted by conv(vk, . . . , vd),
is an (mk, . . . ,md)-face. Notice that the following statements are equivalent:

• f(∂cone(σ)) intersects conv(vk, . . . , vd);

• for some v ∈ f(∂cone(σ)), the ray with initial point v in the direction #   »vkv intersects
conv(vk+1, . . . , vd).

We call the union of such rays the shadow of f(∂cone(σ)) centered at vk. Since f is
economical over σ, the probability for an (mk, . . . ,md)-face to meet f(∂cone(σ)) is at
most (k+1)!(pd−ε+kδ), and so there exists vσk ∈ Rd such that the shadow of f(∂cone(σ))
centered at vσk intersects conv(vk+1, . . . , vd) with probability at most (k+ 1)!(pd− ε+ kδ).

Now, we define f on cone(σ). First, let g be the homeomorphism from cone(σ) onto
the cone over ∂cone(σ) with apex c such that g is an identity on ∂cone(σ). This can be
done because cone(σ) is homeomorphic to a (k + 1)-simplex ∆ and it is easy to find a
homeomorphism from ∆ to cone(∂∆) that keeps ∂∆ fixed.

e0

e1

e0

e1

e0

e1

c
e0

e1

c

Figure 3: An illustration of an 1-simplex ∆, ∂∆, cone(∂∆) and a homeomorphism from
∆ to cone(∂∆).

vc
w

∂cone(σ)

vσ1
f(v) h(w)w′

f(∂cone(σ))

Figure 4: The illustration shows a cone over part of ∂cone(σ) with apex c and a point v
on the boundary, and how a point w on the line segment [v, c) are mapped under h.

Next, note that every point w in cone(σ) except c is on a line segment [v, c) for a

unique point v on ∂cone(σ). If t = vw/wc ∈ [0,∞), then put h(w) =
#      »

f(v) + t ·
#            »

vσkf(v). In
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addition, set h(c) =∞. The function h maps [v, c) onto [f(v), vσk ) linearly and then takes

the inversion centered at vσk with radius vσkf(v) so that [f(v), vσk ) gets mapped onto the

ray with the initial point f(v) in the direction
#            »

vσkf(v). Evidently, h is a continuous map
from cone(∂cone(σ)) onto the shadow of f(∂cone) centered at vσk that coincides with f
on ∂cone(σ).

Define f on cone(σ) to be the composition of g and h:

∂cone(σ)� _

��

= // ∂cone(σ)� _

��

f // f(∂cone(σ))� _

��
cone(σ)

g // cone (∂cone(σ)) h // the shadow of f(∂cone(σ)) centered at vσk .

According to the commutative diagram above, f is well-defined on cone(σ) in the sense
that it is compatible with its definition on cone(T )6k. We use the phrase “fill in the
boundary of cone(σ) against the center vσk” to represent the above process that extends
the domain of f from ∂cone(σ) to cone(σ).

To complete the inductive step, we must demonstrate that f is economical over (k+1)-
faces of T . Pick any (k+1)-face τ of T . Let σ0, . . . , σk+1 be the k-faces of τ . Observing that
f(∂cone(τ)) = f(τ∪cone(∂τ)) = τ∪f(cone(σ0))∪. . .∪f(cone(σk+1)) and that f(cone(σi))
is the shadow of f(∂cone(σi)) centered at vσik which intersects an (mk+1, . . . ,md)-face
with probability at most (k + 1)!(pd − ε + kδ), we obtain that the probability for an
(mk+1, . . . ,md)-face to intersect f(∂cone(τ)) is dominated by δ + (k+ 2)(k+ 1)!(pd− ε+
kδ) 6 (k + 2)!(pd − ε+ (k + 1)δ).

We have so far defined a continuous map f on cone(T )6d−1 such that for any (d− 1)-
face σ of T the probability for an (md−1md)-face to intersect D := f(∂cone(σ)) is at most
d!(pd − ε + (d − 1)δ). We write f(X)mod2 := {y ∈ f(X) : |f−1(y) ∩X| = 1 (mod 2)}
for the set of points in f(X) whose fibers in X have an odd number of points. Set
m̄ := (md−1 +md)/2. We are going to define f on cone(σ) such that m̄ (f(cone(σ))mod2)
is less than 1−δ

d+1
.

Fix a point s in Rd\D. For any point t in Rd\D, if a generic piecewise linear path from s
to t intersects with D an odd number of times, then put t in B, otherwise put it in A. Here
the number of intersections of a piecewise linear path L and D might not be the cardinality
of L ∩ D. Instead, the number of intersections is precisely

∑
x∈L∩D |f−1(x) ∩ ∂cone(σ)|,

that is, it takes the multiplicity into account. Thus we have partitioned Rd\D into A and
B such that any generic piecewise linear path from a point in A to a point in B meets D an
odd number of times. Suppose a := md−1(A), b := md(A) and x := m̄(A) = (a+b)/2. The
probability that an (md−1md)-face intersects with D is at least a(1− b) + (1− a)b. Hence
a(1−b)+(1−a)b < d!(pd−ε+(d−1)δ) < 2

(
1−δ
d+1

) (
1− 1−δ

d+1

)
. Because a(1−b)+(1−a)b =

(a + b) − 2ab > (a + b) − (a + b)2/2 = 2x(1 − x), either x or 1 − x is less than 1−δ
d+1

. In

other words, one of m̄(A) and m̄(B) is less than 1−δ
d+1

. We may assume that m̄(B) < 1−δ
d+1

.
Fix a point c ∈ A. Again, we fill in the boundary of cone(σ) against the center c.

For any generic point x ∈ A, the line segment [c, x] intersects with D an even number of

times. For every v on ∂cone(σ), the ray with the initial point f(v) in the direction
#        »

cf(v)
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Figure 5: An illustration of the partition, the result of filling in against c, and
f(cone(σ))mod2.

covers x once if and only if the line segment [c, x] intersects with D at f(v). Because
f(cone(σ)) is the union of such rays, the number of times that x is covered by f(cone(σ))
is exactly the number of intersections between [c, x] and D. This implies that x is not in
f(cone(σ))mod2. Therefore f(cone(σ))mod2 is a subset of B ∪D almost surely. Noticing
that m̄(D) = 0, the extension of f has the desired property m̄ (f(cone(σ))mod2) < 1−δ

d+1
.

Pick any d-face τ of T . Suppose the (d − 1)-faces of τ are σ0, . . . , σd. By a parity
argument, we have

f(∂cone(τ))mod2 = [τ ∪ f(cone(σ0)) ∪ . . . ∪ f(cone(σd))] mod2

⊂ τ ∪ f(cone(σ0))mod2 ∪ . . . ∪ f(cone(σd))mod2.

Therefore m̄ (f(∂cone(τ))mod2) is less than δ+ (d+ 1) 1−δ
d+1

= 1, and so the degree of f on
∂cone(τ), denoted by deg (f, ∂cone(τ)), is even. Because∑

τ

deg (f, ∂cone(τ)) = 2
∑
σ

deg (f, cone(σ)) + deg (f, T ) = deg (f, T ) (mod 2),

where the first sum and the second sum are over all d-faces and all (d − 1)-faces of T
respectively, we know that deg (f, T ) is even, which contradicts with the fact that f is
identity on T .
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