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Abstract

We determine the maximum number of edges of an n-vertex graph G with the
property that none of its r-cliques intersects a fixed set M ⊆ V (G). For (r−1)|M | >
n, the (r − 1)-partite Turán graph turns out to be the unique extremal graph. For
(r − 1)|M | < n, there is a whole family of extremal graphs, which we describe
explicitly. In addition we provide corresponding stability results.
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1 Introduction

Turán’s Theorem [9], whose proof marks the beginning of Extremal Graph Theory, deter-
mines the maximum number of edges of n-vertex graph without a copy of the r-clique Kr.
It turns out that the unique extremal graph for this problem is the Turán graph Tr−1(n),
that is, the complete balanced (r − 1)-partite graph on n-vertices. We write tr−1(n) to
denote the number of edges of Tr−1(n).

Turán’s Theorem is a primal example of a stable result: The Erdős-Simonovits stability
theorem [4, 8] asserts that any n-vertexKr-free graph with almost tr−1(n) edges looks very
similar to Tr−1(n). In order to make this more precise we need the following definition.
We say that an n-vertex graph G is ε-close to a graph H on the same vertex set if H can
be obtained from G by editing (deleting/inserting) at most εn2 edges and relabelling the
vertices. In this case we also say that G is (εn2)-near to H .

Theorem 1 (Erdős [4] & Simonovits [8]). Suppose that r > 3 and ε∗ > 0 are given. Then
there exists γ∗ > 0 such that each ℓ-vertex graph G with no Kr and e(G) > tr−1(ℓ)− γ∗ℓ2

is ε∗-close to Tr−1(ℓ).

In fact, Erdős and Simonovits both proved more general statements, allowing any fixed
r-partite graph H in place of Kr. Moreover, in more recent years strengthenings have
been proved, for example that most vertices of any G as in Theorem 1 are in an induced
(r − 1)-partite graph [6]. There are also further generalisations, such as obtaining the
same conclusion as in Theorem 1 while allowing the size of the forbidden subgraph H to
depend on v(G) [7].

A main motivation for proving stability results for extremal statements is that they
are often useful in applications where the original extremal statement would not suffice.
This is for example the case when the Szemerédi Regularity Lemma (see, e.g., the sur-
vey [5]) is used. A prominent example of such an application is the enumeration result of
Balogh, Bollobás and Simonovits [3] giving a precise count of H-free graphs. It is worth
observing that in most applications the ‘basic’ stability theorem of Erdős and Simonovits,
Theorem 1, suffices.

Our goal is to extend Turán’s Theorem, by determining the maximum number of edges
in an n-vertex graph G such that no copy of Kr in G touches a fixed vertex set M ⊆ V (G)
of size m. It turns out that for (r − 1)m > n the unique extremal graph is Tr−1(n). The
case (r− 1)m < n is more complicated. In particular, there is a whole family of extremal
graphs, which we describe in Section 1.1 below. In both cases we shall denote the (family
of) extremal graphs by Tr−1(n,m), and their number of edges by

tr−1(n,m) :=

{

tr−1(n) , if n 6 (r − 1)m,
(

n
2

)

− nm+ (r − 1)
(

m+1
2

)

, otherwise .
(1)

Our main result is as follows.

Theorem 2. Given r > 3 and m 6 n, let G be any n-vertex graph and M ⊆ V (G)
contain m vertices, such that no copy of Kr in G intersects M . Then
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(a ) e(G) 6 tr−1(n,m), and

(b ) if e(G) = tr−1(n,m) then G ∈ Tr−1(n,m).

Moreover, given ε > 0, there exists γ > 0 such that the following holds.

(c ) If e(G) > tr−1(n,m) − γn2, then G is ε-close to a graph from Tr−1(n,m) in which
no copies of Kr intersect M .

Theorem 2(b ) states that the graphs Tr−1(n,m) we construct below are the only
extremal graphs, while (c ) asserts stability. We remark that Theorem 2(a ) is also included
in our previous paper [2], but we did not determine the family of extremal graphs there.
Hence our main contribution here is to determine the extremal graphs and prove stability.
This, however, turns out to be an important tool for [1], where we determine the maximum
number of edges in an n-vertex graph without a given number of vertex-disjoint triangles.
Note that the statement of Theorem 2(c ) gives a slighly stronger version of stability than
the usual one, namely that the set M is not changed in transforming G to a member of
Tr−1(n,m). We require this in [1].

We note that the proof of Theorem 2(a ) as given in [2] hints the main arguments
involved in our proof of Theorem 2. However, several additional tweaks and tricks are
needed, in particular in the case n > (r − 1)m.

The (r − 1)m > n case of Theorem 2 shows that the assumption in Turán’s Theorem
(or in that of Theorem 1) can be substantially weakened from forbidding Kr-copies on
all possible r-subsets of the vertex set V (G), to just forbidding Kr-copies on a particular
family S of r-subsets—the family S which contains all r-subsets of V (G) which inter-
sect M . In [2] we investigated such weakenings of the assumption in Turán’s theorem also
from a probabilistic perspective. In particular, we proved that forbidding Kr-copies on a
random family of r-sets S ⊆

(

n
r

)

of size only |S| = O(n3) suffices.

1.1 Extremal graphs

The family Tr−1(n,m) is defined as follows. As previously stated, if n 6 (r − 1)m then
Tr−1(n,m) =

{

Tr−1(n)
}

. So assume from now on that n > (r − 1)m. We explicitly
describe the construction of the graphs in Tr−1(n,m).

We start with the Turán graph Tr−1((r − 1)m), with colour classes V1, . . . , Vr−1, and
an arbitrary set M of m vertices in V1∪ · · ·∪Vr−1. We add r−1 new vertices v1, . . . , vr−1

to this graph with the following property. For each i ∈ [r − 1], the vertex vi is adjacent
to all old and new vertices except those in Vi (and itself). Finally, we add a set Y of
n − (r − 1)m new vertices each of which is adjacent to all old and new vertices except
those in M (and itself). In this way we obtain an (n+ r− 1)-vertex graph, which we call
Gr(n,M). Note that the graph Gr(n,M) depends on the placement ofM in V1∪· · ·∪Vr−1.
We let Tr−1(n,m) be the family of n-vertex graphs which can be obtained from some graph
Gr(n,M) by deleting any r− 1 vertices from {v1, . . . , vr−1}∪ Y (see also Figure 1.1). We
call the vertices v1, . . . , vr−1 sporadic.
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Figure 1: Examples of graphs from T2(n,m) for n > 2m, with no, one, and two sporadic
vertices. Grey depicts complete (bipartite) graphs, the set M is hatched.

Observe that there is no copy of Kr in Gr(n,M) which uses vertices of M . Further-
more, the vertices {v1, . . . , vr−1}∪Y form a clique in Gr(n,M), and each of these vertices
has degree n+ r − 2−m. It follows that indeed every graph in Tr−1(n,m) has the same
number of edges, and that number is

(

n− (r − 1)m

2

)

+
(

n− (r − 1)m
)

(r − 2)m+ tr−1((r − 1)m) = tr−1(n,m) ,

as desired.

2 Proof of Theorem 2

We refer to the cases n 6 (r − 1)m and n > (r− 1)m as Cases I and II, respectively. We
prove Case I first, and then prove Case II using Case I.

2.1 Case I

The following lemma will be the key tool for proving uniqueness and stability when
n 6 (r − 1)m.

Lemma 3. Given m and n 6 (r − 1)m, let G be an n-vertex graph and M a subset of
V (G) with |M | = m such that no copy of Kr in G uses vertices of M . Suppose that there
are sets P1, . . . , Pk of sizes p1, . . . , pk in G such that the following holds for all i ∈ [k].

(i ) |Pi| > r.

(ii ) Pi is the vertex set of a maximum clique in G
[

V (G) \ ∪i−1
j=1Pj

]

.

(iii ) G
[

V (G) \ ∪k
j=1Pj

]

contains no Kr.

Let p :=
∑k

ℓ=1 pℓ. Then we have

e(G) 6 tr−1(n)−

k
∑

i=1

pi−r
∑

j=0

(

m−
⌊n−

(

p− j −
∑k

ℓ=i+1 pℓ
)

r − 1

⌋

− 1
)

.
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Proof. We first establish some simple bounds on the number of edges in G. Each Pi

contains
(

pi
2

)

edges. By the maximality of P1, . . . , Pk we have deg(v, Pi) 6 pi − 1 for

any v ∈ V (G) \
⋃i

j=1 V (Pi). Because no copy of Kr in G intersects M , we have M ⊆

V (G) \
⋃k

i=1 V (Pi) and the stronger bound deg(v, Pi) 6 r − 2 for each v ∈ M . Finally,
since the graph G− ∪k

i=1Pi is Kr-free, by Turán’s theorem we have

e
(

G−

k
⋃

i=1

V (Pi)
)

6 tr−1(n− p) . (2)

Putting these estimates together we obtain

e(G) 6
k

∑

i=1

(

pi
2

)

+
∑

16i<j6k

(pi − 1)pj + (p− k)(n−m− p)

+mk(r − 2) + tr−1(n− p) .

(3)

Observe that the right hand side of (3) defines a function, which we denote gn(p1, . . . , pk),
whose domain is the set of tuples (of any length k) of nonnegative integers. In particular
we allow k = 0, when (3) gives gn() = tr−1(n).

We now give two equalities relating values of gn. As a preparatory step, observe that
for any n′ we have

tr−1(n
′ + 1)− tr−1(n

′) = n′ −
⌊ n′

r − 1

⌋

, and (4)

tr−1(n
′ + r)− tr−1(n

′) = (r − 1)n′ +

(

r

2

)

−
⌊n′ + r − 1

r − 1

⌋

. (5)

Now suppose that k > 1. If pk > r then plugging (4) (with n′ = n − p = n −
∑k

ℓ=1 pℓ)
into the definition of gn in (3) we obtain

gn(p1, . . . , pk−1, pk − 1)− gn(p1, . . . , pk−1, pk) = m−
⌊n−

∑k
ℓ=1 pℓ

r − 1

⌋

− 1 . (6)

Similarly, if pk = r then (5) implies

gn(p1, . . . , pk−1)− gn(p1, . . . , pk−1, pk) = m−
⌊n−

∑k
ℓ=1 pℓ

r − 1

⌋

− 1 . (7)

We note that our condition n 6 (r − 1)m implies that m−
⌊

n−p
r−1

⌋

− 1 > 0.
Applying repeatedly both (6) and (7) we obtain

gn()− gn(p1, . . . , pk) =

k
∑

i=1

pi−r
∑

j=0

(

m−
⌊n−

(

p− j −
∑k

ℓ=i+1 pℓ
)

r − 1

⌋

− 1
)

,

which together with e(G) 6 gn(p1, . . . , pk) and gn() = tr−1(n) yields the desired bound on
e(G).
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We are now ready to prove Theorem 2 in Case I.

Proof of Theorem 2, Case I. Let G be an n-vertex graph and M a subset of V (G) of size
m, where n 6 (r − 1)m, such that no Kr of G intersects M . We iteratively find vertex
disjoint cliques P1, . . . , Pk of sizes p1, . . . , pk with at least r vertices as follows. Suppose
that for some i, the cliques P1, . . . , Pi−1 have already been defined. Let Pi be an arbitrary
maximum clique on at least r vertices in the graph G −

⋃

j<i Pj . We set k := i − 1 and

terminate if no such clique exists. Let p :=
∑k

ℓ=1 pℓ. Now G, M and P1, . . . , Pk satisfy
the conditions of Lemma 3, so we have

e(G) 6 tr−1(n)−
k

∑

i=1

pi−r
∑

j=0

(

m−
⌊n−

(

p− j −
∑k

ℓ=i+1 pℓ
)

r − 1

⌋

− 1
)

. (8)

We first prove the claimed bound (a ) and uniqueness (b ). We distinguish two cases.
First, G contains no copy of Kr. In this case Turán’s theorem guarantees that e(G) 6

tr−1(n) with equality if and only if G = Tr−1(n).
Second, G contains at least one copy of Kr. In this case, there is at least one term

in the double sum in (8) (since P1 exists) and the smallest of the summands is that with
i = 1 and j = p1 − r, i.e.,

m−

⌊

n−
(

p− (p1 − r)−
∑k

ℓ=2 pℓ
)

r − 1

⌋

− 1 = m−
⌊

n−r
r−1

⌋

− 1 = m−
⌊

n−1
r−1

⌋

.

Since n 6 (r − 1)m, we have m >
⌈

n
r−1

⌉

and hence the smallest summand is at least 1.
It follows that e(G) < tr−1(n) and so G is not extremal. This proves (a ) and (b ).

It remains to prove part (c ). Given ε > 0, we let γ∗ be the constant given by Theorem 1
for the input ε∗ := ε/2. We let

γ1 := min
(

γ∗, 1
4
, ε
)

and γ :=
γ2
1

64r2
. (9)

Suppose that e(G) > tr−1(n,m) − γn2. We may assume that γn2 > 1, as otherwise
our uniqueness result gives G = Tr−1(n). It follows in particular by (9) that γ1n > 8r,
which in turn gives

p− 2r > p− γ1n/4 . (10)

Observe that the p − (k − 1)r values j +
∑k

ℓ=i+1 pℓ in (8) form a sequence of distinct
integers, with, if ordered, consecutive values separated by either 1 or r, and the smallest
is 0. Thus at least p/(2r) of these values satisfy j +

∑k
ℓ=i+1 pℓ 6 p/2, or equivalently,

p − j −
∑k

ℓ=i+1 pℓ > p/2. In addition, as before all summands of the double sum in (8)
are non-negative. It follows that

e(G) 6 tr−1(n)−
p

2r

(

m−
⌊n− p/2

r − 1

⌋

− 1
)

6 tr−1(n)−
p

2r

(

m−
n

r − 1
+

p− 2r

2r − 2

)

6 tr−1(n)−
p(p− 2r)

4r2
,
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where we used n 6 (r − 1)m in the last inequality. Since e(G) > tr−1(n) − γn2, we can
use (9) and (10) to conclude p 6 γ1n/2.

Let G′ be the subgraph of G induced by V (G) \ ∪k
i=1Pi. We have

e(G′) > tr−1(n)− γn2 − 1
2
γ1n

2
(9)

> tr−1(n)−
3
4
γ1n

2 ,

and since v(G′) > (1−γ1/2)n
(9)

>
7
8
n, we have e(G′) > tr−1(v(G

′))−γ1v(G
′)2. By definition

of the sets Pi the graph G′ is Kr-free. Therefore, by Theorem 1 the graph G′ is ε∗-close
to Tr−1(v(G

′)). It follows that G is
(

ε∗v(G′)2 + γ1n
2/2

)

-near to Tr−1(n), and thus by (9)
that G is ε-close to Tr−1(n) as required.

2.2 Case II

We first state three lemmas which we will use to prove Theorem 2 in Case II. Note that
the first two of these lemmas do not require the condition n > (r− 1)m. The first lemma
asserts that every graph G with no Kr intersecting M can easily be modified such that
each vertex outside M has high degree.

Lemma 4. Let G be an n-vertex graph and M ⊆ V (G) have size m. Assume that no
copy of Kr in G intersects M . Given µ ∈ [0, 1), there is a graph G′ on V (G) with the
following properties.

(a ) G′ has no copy of Kr intersecting M .

(b ) e(G′) > e(G), with equality if and only if G = G′.

(c ) Either e(G′) > e(G) + µ2n2, or G′ is µn2-near to G (without relabelling vertices).

(d ) Every vertex v ∈ V (G) \M has degG′(v) > n−m− µn− 1.

Proof. We obtain G′ from G by repeating the following procedure until conclusion (d ) is
satisfied. If there exists a vertex v ∈ V (G) \M with degree smaller than n−m−µn− 1,
delete all edges containing v and insert all edges from v to V (G) \

(

M ∪ {v}
)

.
Observe that at each step, we add at least µn edges to the graph, and edit at most

n edges. It follows that the algorithm terminates, and thus conclusions (b ) and (d ) get
satisfied. Clearly, the resulting graph G also satisfies (a ). Furthermore, if the procedure
is repeated more than µn times, then e(G′) − e(G) > µ2n2, while otherwise the number
of edits is at most µn2, so conclusion (c ) is satisfied.

The next lemma states that there are few vertices which have big degree in G and
many neighbours in M .

Lemma 5. Let G be an n-vertex graph and M ⊆ V (G) have size m. Assume that no
copy of Kr in G intersects M . Given ν ∈ [0, 1), let X be the set of vertices in G outside
M with at least max(1, νn) neighbours in M . Suppose that every vertex of X has degree
at least n−m− ν2n. Then we have |X| 6 (1 + ν)(r − 2)m.
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Proof. Let x1, . . . , xk be the vertices of a maximum clique in G[X ]. For each i ∈ [k], let
si be the number of non-neighbours of xi in X (including xi itself). Because x1, . . . , xk is
a maximum clique, every vertex of X is a non-neighbour of at least one xi, and therefore
we have s1 + . . .+ sk > |X|.

Observe that xi has at most n −m − si neighbours outside M . Hence, by definition
of X and since deg(xi) > n − m − ν2n the vertex xi has at least max

(

νn, si − ν2n
)

neighbours in M . On the other hand, no vertex of M is adjacent to more than r − 2 of
the vertices x1, . . . , xk, or there would be a copy of Kr intersecting M . It follows that
(r − 2)|M | > kνn and

(r − 2)|M | >
k

∑

i=1

(

si − ν2n
)

> |X| − kν2n > |X| − ν(r − 2)|M | ,

from which we have |X| 6 (1 + ν)(r − 2)|M |.

The final preparatory lemma asserts that Tr−1(n,m) is closed under certain local
modifications.

Lemma 6. Suppose that n > (r − 1)m. Let G1 ∈ Tr−1(n,m) be a graph in which no Kr

intersects the m-set M ⊆ V (G1), and let v ∈ V (G1) \M be a vertex whose neighbourhood
in G1 is V (G1) \

(

M ∪ {v}
)

. Delete all edges incident to v and insert n −m − 1 edges,
of which at least one goes to M . If there is no copy of Kr intersecting M in the modified
graph G2, then G2 ∈ Tr−1(n,m).

Proof. Recall that since G1 is in Tr−1(n,m), it contains a copy of Tr−1((r − 1)m) with
colour classes V1, . . . , Vr−1 which covers M , but which does not cover v because each of its
vertices is either in or adjacent to M in G1. The same sets V1, . . . , Vr−1 continue to induce
a copy of Tr−1((r − 1)m) in G2. Since v has at least one G2-neighbour in M , we can let
wi be a neighbour of v in M ∩Vi for some i. If v is adjacent to at least one vertex of each
set V1, . . . , Vr−1, then letting wj be a neighbour of v in Vj for each j 6= i, we obtain a copy
of Kr in G2 intersecting M , which is a contradiction. Thus there is j such that v has
no neighbours in Vj , and since v has degree n−m− 1 it follows that the neighbourhood
of v is precisely V (G1) \

(

Vj ∪ {v}
)

. In other words, v has the same neighbourhood as
a sporadic vertex in our construction, and we need only to show that there is no second
vertex v′ 6= v with neighbourhood V (G1) \

(

Vj ∪ {v′}
)

. If such a vertex existed, then v, v′

and wi together with one vertex in each set Vℓ with ℓ 6∈ {i, j} would form a copy of Kr

intersecting M in G2.

We can now prove Case II of Theorem 2.

Proof of Theorem 2, Case II. Let G = (V,E) and M satisfy the conditions of the theo-
rem. First we show that e(G) 6 tr−1(n,m), with equality only for graphs in Tr−1(n,m),
which proves (a ) and (b ).

We apply Lemma 4 to G with µ := 0 to obtain a graph G′ on V which also has no Kr

intersecting M , which has e(G′) > e(G) with equality only if G = G′, and which is such
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that every vertex v ∈ V \ M has degG′(v) > n − m − 1. We now apply repeatedly the
following further transformation to G′ to obtain G′′. If there exists a vertex v in V \M
whose degree is n−m− 1 and which has a neighbour in M , we delete all edges incident
to v, and insert all edges from v to V \

(

M ∪ {v}
)

. Observe that e(G′′) = e(G′), and G′′

satisfies the conditions of Lemma 5 with ν := 0. It follows that the set X of G′′-neighbours
of M in V \M has size |X| 6 (r − 2)m. Let X ′ be a subset of V \M containing X of
size exactly (r − 2)m.

Since |X ′ ∪ M | = (r − 1)m, we can now apply assertions (a ) and (b ) in Case I to
conclude that

e
(

G′′[X ′ ∪M ]
)

6 tr−1((r − 1)m,m) = tr−1((r − 1)m)

with equality only if G′′[X ′ ∪ M ] = Tr−1((r − 1)m). Observe that the vertices in V \
(X ′ ∪ M) are all of degree n − m − 1 and have no neighbours in M . It follows that
e(G′′) 6 tr−1(n,m), with equality only if G′′ ∈ Tr−1(n,m). Since e(G) 6 e(G′) = e(G′′),
we have e(G) 6 tr−1(m,n), with equality only if G = G′ and G′′ ∈ Tr−1(n,m). It remains
only to show that if e(G) = tr−1(n,m), then the transformation from G = G′ to G′′ cannot
take a graph outside Tr−1(n,m) to a graph in Tr−1(n,m). Observe that the reverse of this
transformation consists exactly of steps satisfying Lemma 6, which therefore asserts that
since G′′ ∈ Tr−1(n,m), so G = G′ ∈ Tr−1(n,m). This proves assertions (a ) and (b ).

Finally, we prove stability, that is, assertion (c ). Given ε > 0, set ε′ := ε/2. Let γ′ be
the constant returned by the previously proved stability result for input ε′ and define

ν := γ′ε′2/4 , µ := ν2/2 and γ := µ2/2 . (11)

Suppose that e(G) > tr−1(n,m) − γn2. If γn2 < 1, then e(G) = tr−1(n,m) and so
G ∈ Tr−1(n,m) (and in particular G is ε-close to a graph in Tr−1(n,m)). It follows that
we may assume n > γ−1/2, and so by (11) that µn > 1.

We apply Lemma 4 to G to obtain a graph G′ in which no copy of Kr intersects M ,
with e(G′) > e(G), and in which every vertex v ∈ V \M has degG′(v) > n−m− µn− 1.
In particular, we have e(G′) 6 tr−1(n,m). Since µ2 > γ by (11), we must have e(G′) 6
e(G)+µ2n2, so by conclusion (c ) of Lemma 4 the graph G′ is obtained from G by editing
at most µn2 edges.

Now since µn > 1 and by (11), we have degG′(v) > n −m − 2µn = n −m − ν2n for
each v ∈ V \M . Letting X be the vertices in V \M with at least νn neighbours in M ,
we obtain by Lemma 5 that |X| 6 (1 + ν)(r − 2)m.

Let X ′ be a subset of V \ M of size (r − 2)m which is either contained in X (if
|X| > (r − 2)m) or contains X (if |X| 6 (r − 2)m). We obtain a graph G′′ by deleting
all edges from V \ (M ∪ X ′) to M . Observe that, since (r − 2)m < n, the graph G′′ is
obtained from G′ by deleting at most (n−m − |X|)νn + ν(r − 2)m2 6 2νn2 edges, and
therefore has e(G′′) > e(G′) − 2νn2 > tr−1(n,m) − γn2 − 2νn2 edges. Furthermore, no
copy of Kr in G′′ intersects M .

Let H = G′′[X ′ ∪M ]. Since there are no edges in G′′ between V \ (X ′ ∪M) and M ,
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we have

e(G′′) = e
(

G′′[V \ (X ′ ∪M)]
)

+ e
(

G′′
[

V \ (X ′ ∪M), X ′ ∪M
])

+ e(H)

6

(

n− (r − 1)m

2

)

+
(

n− (r − 1)m
)

(r − 2)m+ e(H) .

Thus e(H) > tr−1((r − 1)m) − γn2 − 2νn2. Furthermore, by (a ) of Case I, e(H) 6

tr−1((r − 1)m).
We distinguish two cases. First, (r − 1)m > ε′n. In this case, we have

e(H) > tr−1((r − 1)m)−
γ + 2ν

ε′2
(r − 1)2m2

(11)

> tr−1((r − 1)m)− γ′(r − 1)2m2 .

We apply (c ) of Case I to H with γ′ and ε′, to obtain that H is ε′-close to Tr−1((r − 1)m).
Second, (r − 1)m < ε′n. In this case, we have

(

(r−1)m
2

)

< ε′n2.
We can thus, in either case, edit at most ε′n2 edges of G′′ to obtain a graph G′′′ in

which G′′′[X ′ ∪M ] is a copy of Tr−1((r − 1)m). Clearly, G′′′ is a subgraph of a graph in
Tr−1(n,m) (without sporadic vertices), and e(G′′′) > e(G′′) > tr−1(n,m)− γn2 − 2νn2. It
follows that we can add at most γn2+2νn2 edges to G′′′ to obtain a graph T in Tr−1(n,m).
In total, we have made

µn2 + 2νn2 + ε′n2 + γn2 + 2νn2
(11)

6 εn2

edits from G to T , and have preserved the property that no copy of Kr intersects M .

3 Concluding remarks

Theorem 2 forbids Kr-copies which intersect M . An obvious extension would be to forbid
Kr-copies which intersect M in at least s vertices. We suspect that, at least for small s,
similar methods to those used here might give corresponding results also for this setting.

Another possible direction of extending Theorem 2 is to forbid a general fixed r-partite
graph H , instead of Kr, to touch the set M . The standard regularity method allows one
to deduce that the upper bound from Theorem 2(a ) holds even in this case, up to an
additive o(n2) term. The Turán graph provides an almost matching lower bound in Case I,
and the regularity method proves the corresponding stability statement in this case. In
Case II, however, the graphs in Tr−1(n,m) do not necessarily provide a lower bound. For
example, each of the graphs in T2(n,m) contains a copy of C5 touching the set M . It
would be interesting to determine the true extremal results in such cases.

Finally, one could ask for a stronger stability result in the spirit of [6]. This can be
obtained easily from Theorem 2(c ) as follows. We take the graph G′ in Tr−1(n,m) close
in edit distance to G, and delete all vertices whose neighbourhoods in G′ and G have a
large enough symmetric difference. There can only be few such vertices by definition, and
it is now easy to check that any remaining edge between M and Y , or within a part Vi,
can be extended to a copy of Kr in G touching M .
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