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Abstract

In 2007, the first author gave an alternative proof of the refined alternating

sign matrix theorem by introducing a linear equation system that determines the

refined ASM numbers uniquely. Computer experiments suggest that the numbers

appearing in a conjecture concerning the number of vertically symmetric alternating

sign matrices with respect to the position of the first 1 in the second row of the

matrix establish the solution of a linear equation system similar to the one for

the ordinary refined ASM numbers. In this paper we show how our attempt to

prove this fact naturally leads to a more general conjectural multivariate Laurent

polynomial identity. Remarkably, in contrast to the ordinary refined ASM numbers,

we need to extend the combinatorial interpretation of the numbers to parameters

which are not contained in the combinatorial admissible domain. Some partial

results towards proving the conjectured multivariate Laurent polynomial identity

and additional motivation why to study it are presented as well.
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1 Introduction

An Alternating Sign Matrix (ASM) is a square matrix with entries in {0, 1,−1} where
in each row and column the non-zero entries alternate in sign and sum up to 1. Combi-
natorialists are especially fond of these objects since they discovered that ASMs belong
to the class of objects which possess a simple closed enumeration formula while at the
same time no easy proof of this formula is known. Mills, Robbins and Rumsey [MRR83]
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introduced ASMs in the course of generalizing the determinant and conjectured that the
number of n× n ASMs is given by

n−1∏

j=0

(3j + 1)!

(n+ j)!
. (1.1)

More than ten years later, Zeilberger [Zei96a] finally proved their conjecture. Soon after,
Kuperberg [Kup96] gave another, shorter proof which makes use of a connection to sta-
tistical physics where ASMs have appeared before in an equivalent form as a model for
plane square ice (six vertex model). Subsequently, it turned out that also many symmetry
classes of ASMs can be enumerated by a simple product formula; a majority of the cases
were dealt with in [Kup02]. A standard tool to prove these results are determinantal
expressions for the partition function of the six vertex model. A beautiful account on the
history of ASMs is provided by Bressoud [Bre99].

Since an ASM has precisely one 1 in its first row, it is natural to ask for the number of
ASMs where this 1 is in a prescribed column. Indeed, it turned out that also this refined
enumeration leads to a simple product formula [Zei96b]. Hence, it is also interesting to
explore refined enumerations of symmetry classes of ASMs. The task of this paper is to
present our attempt to prove the first author’s conjecture [Fis09] on a refined enumeration
of vertically symmetric alternating sign matrices. While we are not yet able to complete
our proof, we are able to show how it naturally leads to a conjecture on a much more
general multivariate Laurent polynomial identity. Moreover, we present some partial
results concerning this conjecture and additional motivation why it is interesting to study
the conjecture.

A Vertically Symmetric Alternating Sign Matrix (VSASM) is an ASM which is invari-
ant under reflection with respect to the vertical symmetry axis. For instance,




0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0




is a VSASM. Since the first row of an ASM contains a unique 1, it follows that VSASMs
can only exist for odd dimensions. Moreover, the alternating sign condition and symmetry
imply that no 0 can occur in the middle column. Thus, the middle column of a VSASM
has to be (1,−1, 1, . . . ,−1, 1)T . The fact that the unique 1 of the first row is always in
the middle column implies that the refined enumeration with respect to the first row is
trivial. However, it follows that the second row contains precisely two 1s and one −1.
Therefore, a possible refined enumeration of VSASMs is with respect to the unique 1 in
the second row that is situated left of the middle column. Let Bn,i denote the number of
(2n+1)× (2n+1)-VSASMs where the first 1 in the second row is in column i. In [Fis09],

the electronic journal of combinatorics 22(1) (2015), #P1.5 2



the first author conjectured that

Bn,i =

(
2n+i−2
2n−1

)(
4n−i−1
2n−1

)
(
4n−2
2n−1

)
n−1∏

j=1

(3j − 1)(2j − 1)!(6j − 3)!

(4j − 2)!(4j − 1)!
, i = 1, . . . , n. (1.2)

Let us remark that another possible refined enumeration is the one with respect to the
first column’s unique 1. Let B∗

n,i denote the number of VSASMs of size 2n + 1 where
the first column’s unique 1 is located in row i. In [RS04], A. Razumov and Y. Stroganov
showed that

B∗
n,i =

n−1∏

j=1

(3j − 1)(2j − 1)!(6j − 3)!

(4j − 2)!(4j − 1)!

i−1∑

r=1

(−1)i+r−1

(
2n+r−2
2n−1

)(
4n−r−1
2n−1

)
(
4n−2
2n−1

) , i = 1, . . . , 2n+ 1.

(1.3)
Interestingly, the conjectured formula (1.2) would also imply a particularly simple linear
relation between the two refined enumerations, namely

Bn,i = B∗
n,i + B∗

n,i+1, i = 1, . . . , n.

To give a bijective proof of this relation is an open problem. Such a proof would also
imply (1.2).

Our approach is similar to the one used in the proof of the Refined Alternating Sign
Matrix Theorem provided by the first author in [Fis07]. We summarize some relevant
facts from there: Let An,i denote the number of n × n ASMs where the unique 1 in the
first row is in column i. It was shown that (An,i)16i6n is a solution of the following linear
equation system (LES):

An,i =
n∑

j=i

(
2n− i− 1

j − i

)
(−1)j+nAn,j, i = 1, . . . , n,

An,i = An,n+1−i, i = 1, . . . , n.

(1.4)

Moreover it was proven that the solution space of this system is one-dimensional. The
LES together with the recursion

An,1 =
n−1∑

i=1

An−1,i (1.5)

enabled the first author to prove the formula for An,i by induction with respect to n.
The research presented in this paper started after observing that the numbers Bn,i

seem to be a solution of a similar LES:

Bn,n−i =
n−1∑

j=i

(
3n− i− 2

j − i

)
(−1)j+n+1Bn,n−j, i = −n,−n+ 1, . . . , n− 1,

Bn,n−i = Bn,n+i+1, i = −n,−n+ 1, . . . , n− 1.

(1.6)

the electronic journal of combinatorics 22(1) (2015), #P1.5 3



Here we have to be a bit more precise: Bn,i is not yet defined if i = n + 1, n + 2, . . . , 2n.
However, if we use for the moment (1.2) to define Bn,i for all i ∈ Z, basic hypergeometric
manipulations (in fact, only the Chu-Vandermonde summation is involved) imply that
(Bn,i)16i62n is a solution of (1.6); in Proposition 2.1 we show that the solution space of
this LES is also one-dimensional. Coming back to the combinatorial definition of Bn,i,
the goal of this paper is to show how to naturally extend the combinatorial interpretation
of Bn,i to i = n + 1, . . . , 2n and to present a conjecture of a completely different flavor
which, once it is proven, implies that the numbers are a solution of the LES. The identity
analogous to (1.5) is

Bn,1 =
n−1∑

i=1

Bn−1,i.

The Chu-Vandermonde summation implies that also the numbers on the right-hand side
of (1.2) fulfill this identity, and, once the conjecture presented next is proven, (1.2) also
follows by induction with respect to n.

In order to be able to formulate the conjecture, we recall that the unnormalized sym-
metrizer Sym is defined as Sym p(x1, . . . , xn) :=

∑
σ∈Sn

p(xσ(1), . . . , xσ(n)).

Conjectre 1.1. For integers s, t > 1, we consider the following rational function in
z1, . . . , zs+t−1

Ps,t(z1, . . . , zs+t−1) :=
s∏

i=1

z2s−2i−t+1
i (1− z−1

i )i−1

s+t−1∏

i=s+1

z2i−2s−t
i (1− z−1

i )s

×
∏

16p<q6s+t−1

1− zp + zpzq

zq − zp

and let Rs,t(z1, . . . , zs+t−1) := SymPs,t(z1, . . . , zs+t−1). If s 6 t, then

Rs,t(z1, . . . , zs+t−1) = Rs,t(z1, . . . , zi−1, z
−1
i , zi+1, . . . , zs+t−1)

for all i ∈ {1, 2, . . . , s+ t− 1}.

Note that in fact the following more general statement seems to be true: if s 6 t, then

Rs,t(z1, . . . , zs+t−1) is a linear combination of expressions of the form
s+t−1∏
j=1

[(zj − 1)(1 −

z−1
j )]ij , ij > 0, where the coefficients are non-negative integers. Moreover, it should be
mentioned that it is easy to see that Rs,t(z1, . . . , zs+t−1) is in fact a Laurent polynomial:
Observe that

Rs,t(z1, . . . , zs+t−1) =

ASym

(
Ps,t(z1, . . . , zs+t−1)

∏
16i<j6s+t−1

(zj − zi)

)

∏
16i<j6s+t−1

(zj − zi)
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with the unnormalized antisymmetrizer

ASym p(x1, . . . , xn) :=
∑

σ∈Sn

sgn σ p(xσ(1), . . . , xσ(n)).

The assertion follows since Ps,t(z1, . . . , zs+t−1)
∏

16i<j6s+t−1

(zj − zi) is a Laurent polynomial

and every antisymmetric Laurent polynomial is divisible by
∏

16i<j6s+t−1

(zj − zi).

We will prove the following two theorems.

Theorem 1.2. Let Rs,t(z1, . . . , zs+t−1) be as in Conjecture 1.1. If

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1)

for all 1 6 s 6 t, then (1.2) is fulfilled.

Theorem 1.3. Let Rs,t(z1, . . . , zs+t−1) be as in Conjecture 1.1. Suppose

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) (1.7)

if t = s and t = s+ 1, s > 1. Then (1.7) holds for all s, t with 1 6 s 6 t.

While we believe that (1.2) should probably be attacked with the six vertex model
approach (although we have not tried), we also think that the more general Conjecture 1.1
is interesting in its own right, given the fact that it only involves very elementary math-
ematical objects such as rational functions and the symmetric group.

The paper is organized as follows. We start by showing that the solution space of (1.6)
is one-dimensional. Then we provide a first expression for Bn,i and present linear equation
systems that generalize the system in the first line of (1.4) and the system in the first line
of (1.6) when restricting to non-negative i in the latter. Next we use the expression for
Bn,i to extend the combinatorial interpretation to i = n+1, n+2, . . . , 2n and also extend
the linear equation system to negative integers i accordingly. In Section 6, we justify the
choice of certain constants that are involved in this extension. Afterwards we present a
first conjecture implying (1.2). Finally, we are able to prove Theorem 1.2. The proof
of Theorem 1.3 is given in Section 9. It is independent of the rest of the paper and, at
least for our taste, quite elegant. We would love to see a proof of Conjecture 1.1 which is
possibly along these lines. We conclude with some remarks concerning the special s = 0
in Conjecture 1.1, also providing additional motivation why it is of interest to study these
symmetrized functions.

2 The solution space of (1.6) is one-dimensional

The goal of this section is the proof of the proposition below. Let us remark that we use
the following extension of the binomial coefficient in this paper

(
x

j

)
:=

{
x(x−1)···(x−j+1)

j!
if j > 0,

0 if j < 0,
(2.1)

where x ∈ C and j ∈ Z.
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Proposition 2.1. For fixed n > 1, the solution space of the following LES

Yn,i =
n−1∑

j=i

(
3n− i− 2

j − i

)
(−1)j+n+1Yn,j, i = −n,−n+ 1, . . . , n− 1,

Yn,i = Yn,−i−1, i = −n,−n+ 1 . . . , n− 1,

in the variables (Yn,i)−n6i6n−1 is one-dimensional.

Proof. As mentioned before, the numbers on the right-hand side of (1.2) are defined for
all i ∈ Z and establish a solution after replacing i by n− i. This implies that the solution
space is at least one-dimensional. Since

Yn,i =
n−1∑

j=−n

(
3n− i− 2

j − i

)
(−1)j+n+1Yn,−j−1 =

n−1∑

j=−n

(
3n− i− 2

−j − i− 1

)
(−1)j+nYn,j

it suffices to show that the 1-eigenspace of
((

3n− i− 2

−j − i− 1

)
(−1)j+n

)

−n6i,j6n−1

is 1-dimensional. So, we have to show that

rk

((
4n− i− 1

2n− i− j + 1

)
(−1)j+1 − δi,j

)

16i,j62n

= 2n− 1.

After removing the first row and column and multiplying each row with −1, we are done
as soon as we show that

det

((
4n− i− 1

2n− i− j + 1

)
(−1)j + δi,j

)

26i,j62n

6= 0.

If n = 1, this can be checked directly. Otherwise, it was shown in [Fis07, p.262] that

det

((
2m− i− 1

m− i− j + 1

)
(−1)j + δi,j

)

26i,j6m

= det

((
i+ j

j − 1

)
+ δi,j

)

16i,j6m−2

when m > 3, whereby the last determinant counts descending plane partitions with no
part greater than m − 1, see [And79]. However, this number is given by (1.1) if we set
n = m− 1 there.

3 Monotone triangles and an expression for Bn,i

A Monotone Triangle (MT) of size n is a triangular array of integers (ai,j)16j6i6n, often
arranged as follows

a1,1
a2,1 a2,2

. .
. . . .

an,1 · · · · · · an,n

,
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0 0 0 1 0 0 0 0 0
0 1 0 −1 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 1 0
1 −1 1 −1 1 −1 1 −1 1




⇔

4
2 6

2 6 7
2 4 6 8

Figure 1: Upper part of a rotated VSASM and its corresponding Monotone Triangle.

with strict increase along rows, i.e. ai,j < ai,j+1, and weak increase along North-East- and
South-East-diagonals, i.e. ai+1,j 6 ai,j 6 ai+1,j+1. It is well-known [MRR83] that MTs
with n rows and bottom row (1, 2 . . . , n) are in one-to-one correspondence with ASMs of
size n: the i-th row of the MT contains an entry j if the first i rows of the j-th column
in the corresponding ASM sum up to 1.

In order to see that (2n + 1) × (2n + 1) VSASMs correspond to MTs with bottom
row (2, 4, . . . , 2n), rotate the VSASM by 90 degrees. The (n + 1)-st row of the rotated
VSASM is (1,−1, 1, . . . ,−1, 1). From the definition of ASMs, it follows that the vector of
partial column sums of the first n rows is (0, 1, 0, . . . , 1, 0) in this case, i.e. the n-th row of
the corresponding MT is (2, 4, . . . , 2n). Since the rotated VSASM is uniquely determined
by its first n rows, this establishes a one-to-one correspondence between VSASMs of size
2n+1 and MTs with bottom row (2, 4, . . . , 2n). An example of the upper part of a rotated
VSASM and its corresponding MT is depicted in Figure 1.

The refined enumeration of VSASMs directly translates into a refined enumeration of
MTs with bottom row (2, 4, . . . , 2n): from the correspondence it follows that Bn,i counts
MTs with bottom row (2, 4, . . . , 2n) and exactly n+1−i entries equal to 2 in the left-most
North-East-diagonal (see Figure 1).

The problem of counting MTs with fixed bottom row (k1, . . . , kn) was considered in
[Fis06]. For each n > 1, an explicit polynomial α(n; k1, . . . , kn) of degree n − 1 in each
of the n variables k1, . . . , kn was provided such that the evaluation at strictly increasing
integers k1 < k2 < · · · < kn is equal to the number of MTs with fixed bottom row
(k1, . . . , kn) – for instance α(3; 1, 2, 3) = 7. In [Fis11], it was described how to use the
polynomial α(n; k1, . . . , kn) to compute the number of MTs with given bottom row and a
certain number of fixed entries in the left-most NE-diagonal: Let

Exf(x) := f(x+ 1),

∆xf(x) := (Ex − id)f(x) = f(x+ 1)− f(x),

δxf(x) := (id−E−1
x )f(x) = f(x)− f(x− 1)

denote the shift operator and the difference operators. Suppose k1 6 k2 < · · · < kn and
i > 0, then

(−1)i∆i
k1
α(n; k1, . . . , kn)

is the number of MTs with bottom row (k1− 1, k2, . . . , kn) where precisely i+1 entries in
the left-most NE-diagonal are equal to k1 − 1 (see Figure 2). There exists an analogous
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result for the right-most SE-diagonal: if k1 < · · · < kn−1 6 kn, then

δiknα(n; k1, . . . , kn)

is the number of MTs where precisely i+1 entries in the right-most SE-diagonal are equal
to kn + 1 (see Figure 3). This implies the following formula

i
+
1
ro
w
s{

k1−1

k1−1

· ·
·

k1−1

k2 k3 · · · kn−1 kn

Figure 2: (−1)i∆i
k1
α(n; k1, . . . , kn)

i
+
1
row

s{
kn+1

kn+1

· · ·

kn+1

kn−1kn−2· · ·k2k1

Figure 3: δiknα(n; k1, . . . , kn)

Bn,n−i = (−1)i∆i
k1
α(n; k1, 4, 6, . . . , 2n)|k1=3.

Let us generalize this by defining

C
(d)
n,i := (−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)|k1=d+1, d ∈ Z, i > 0,

which is for d > 1 the number of MTs with bottom row (d, 2d, 3d, . . . , nd) and exactly
i + 1 entries equal to d in the left-most NE-diagonal. If d = 2, we obtain Bn,n−i, and it
is also not hard to see that we obtain the ordinary refined enumeration numbers An,i+1 if

d = 1. Next we prove that the numbers C
(d)
n,i fulfill a certain LES. For d = 1, this proves

the first line of (1.4), while for d = 2 it proves the first line of (1.6) for non-negative i.

Proposition 3.1. For fixed n, d > 1 the numbers (C
(d)
n,i )06i6n−1 satisfy the following LES

C
(d)
n,i =

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1C

(d)
n,j , i = 0, . . . , n− 1. (3.1)

Proof. The main ingredients of the proof are the identities

α(n; k1, k2, . . . , kn) = (−1)n−1α(n; k2, k3, . . . , kn, k1 − n), (3.2)

α(n; k1, k2, . . . , kn) = α(n; k1 + c, k2 + c, . . . , kn + c), c ∈ Z. (3.3)

A proof of the first identity was given in [Fis07]. The second identity is obvious by
combinatorial arguments if k1 < k2 < · · · < kn and is therefore also true as identity
satisfied by the polynomial. Together with ∆x = Exδx, E

−1
x = (id−δx) and the Binomial

Theorem we obtain

C
(d)
n,i = (−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)|k1=d+1
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= (−1)i+n+1∆i
k1
α(n; 2d, 3d, . . . , nd, k1 − n)|k1=d+1

= (−1)i+n+1E−n−nd+i+2
k1

δik1α(n; 2d, 3d, . . . , nd, k1 + d)|k1=nd−1

= (−1)i+n+1(id−δk1)
n(d+1)−i−2δik1α(n; d, 2d, . . . , (n− 1)d, k1)|k1=nd−1

=
∑

j>0

(
n(d+ 1)− i− 2

j

)
(−1)i+j+n+1δ

i+j
k1

α(n; d, 2d, . . . , (n− 1)d, k1)|k1=nd−1

=
∑

j>i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1δ

j
k1
α(n; d, 2d, . . . , (n− 1)d, k1)|k1=nd−1.

Since applying the δ-operator to a polynomial decreases its degree, and α(n; k1, . . . , kn)
is a polynomial of degree n − 1 in each ki, it follows that the summands of the last sum
are zero whenever j > n. So, it remains to show that

C
(d)
n,j = δ

j
k1
α(n; d, 2d, . . . , (n− 1)d, k1)|k1=nd−1. (3.4)

From the discussion preceding the proposition we know that the right-hand side of (3.4)
is the number of MTs with bottom row (d, 2d, . . . , nd) and exactly j + 1 entries equal to
nd in the right-most SE-diagonal. Replacing each entry x of the MT by (n+1)d− x and
reflecting it along the vertical symmetry axis gives a one-to-one correspondence with the
objects counted by C

(d)
n,j .

4 The numbers C
(d)
n,i for i < 0

In order to prove (1.2), it remains to extend the definition of C
(2)
n,i to i = −n, . . . ,−1 in

such a way that both the symmetry C
(2)
n,i = C

(2)
n,−i−1 and the first line of (1.6) is satisfied

for negative i. Note that the definition of C
(2)
n,i contains the operator ∆i

k1
which is per se

only defined for i > 0. The difference operator is (in discrete analogy to differentiation)
only invertible up to an additive constant. This motivates the following definitions of
right inverse difference operators:

Given a polynomial p : Z → C, we define the right inverse difference operators as

z∆−1
x p(x) := −

z∑

x′=x

p(x′) and zδ−1
x p(x) :=

x∑

x′=z

p(x′) (4.1)

where x, z ∈ Z and the following extended definition of summation

b∑

i=a

f(i) :=




0, b = a− 1,

−
a−1∑

i=b+1

f(i), b+ 1 6 a− 1,
(4.2)

is used. The motivation for the extended definition is that it preserves polynomiality:

suppose p(i) is a polynomial in i then (a, b) 7→
b∑

i=a

p(i) is a polynomial function on Z
2.

The following identities can be easily checked.
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Proposition 4.1. Let z ∈ Z and p : Z → C a function. Then

1. ∆x
z∆−1

x = id and z∆−1
x ∆xp(x) = p(x)− p(z + 1),

2. δx
zδ−1

x = id and zδ−1
x δxp(x) = p(x)− p(z − 1),

3. ∆x = Exδx and z∆−1
x = E−1

x Ez
zδ−1

x ,

4. ∆y
z∆−1

x = z∆−1
x ∆y and δy

z∆−1
x = z∆−1

x δy for y 6= x, z.

Now we are in the position to define higher negative powers of the difference operators:
For i < 0 and z = (zi, zi+1, . . . , z−1) ∈ Z

−i we let

z∆i
x := zi∆−1

x
zi+1∆−1

x . . . z−1∆−1
x ,

zδix := ziδ−1
x

zi+1δ−1
x . . . z−1δ−1

x .

After observing that zδ−1
x E−1

x = E−1
x E−1

z
zδ−1

x we can deduce the following generalization
of Proposition 4.1 (3) inductively:

z∆i
x = Ei

xE
i+2
zi

Ei+3
zi+1

. . . E1
z−1

zδix. (4.3)

The right inverse difference operator allows us to naturally extend the definition of
C

(d)
n,i : First, let us fix a sequence of integers x = (xj)j<0 and set xi = (xi, xi+1, . . . , x−1)

for i < 0. We define

C
(d)
n,i :=

{
(−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

, i = 0, . . . , n− 1,

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

, i = −n, . . . ,−1.
(4.4)

We detail on the choice of x in Section 6.
If d > 1, it is possible to give a rather natural combinatorial interpretation of C

(d)
n,i also

for negative i which is based on previous work of the authors. It is of no importance for
the rest of the paper, however, it provides a nice intuition: One can show that for non-
negative i, the quantity C

(d)
n,i counts partial MT where we cut off the bottom i elements of

the left-most NE-diagonal, prescribe the entry d+ 1 in position i+ 1 of the NE-diagonal
and the entries 2d, 3d, . . . , nd in the bottom row of the remaining array (see Figure 4); in
fact, in the exceptional case of d = 1 we do not require that the bottom element 2 of the
truncated left-most NE-diagonal is strictly smaller than its right neighbor.

From (4.1) it follows that applying the inverse difference operator has the opposite

effect of prolonging the left-most NE-diagonal: if i < 0, the quantity C
(d)
n,i is the signed

enumeration of arrays of the shape as depicted in Figure 5 subject to the following con-
ditions:

• For the elements in the prolonged NE-diagonal including the entry left of the entry
2d, we require the following: Suppose e is such an element and l is its SW-neighbor
and r its SE-neighbor: if l 6 r, then l 6 e 6 r; otherwise r < e < l. In the latter
case, the element contributes a −1 sign.

• Inside the triangle, we follow the rules of Generalized Monotone Triangles as pre-
sented in [Rie12]. The total sign is the product of the sign of the Generalized
Monotone Triangle and the signs of the elements in the prolonged NE-diagonal.
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·
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·

Figure 4: C
(d)
n,i for i > 0.

d+1 xi

xi+1

·
·
·

·
·
·

x
−1

· · · nd2d 3d

· · ·

·
·
·

·
·
·

Figure 5: C
(d)
n,i for i < 0.

5 Extending the LES to negative i

The purpose of this section is the extension of the LES in Proposition 3.1 to negative
i. This is accomplished with the help of the following lemma which shows that certain
identities for ∆i

k1
α(n; k1, . . . , kn), i > 0, carry over into the world of inverse difference

operators.

Lemma 5.1. Let n, d > 1.

1. Suppose i > 0. Then

(−1)i ∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

= δiknα(n; d, 2d, . . . , (n− 1)d, kn)
∣∣
kn=nd−1

.

2. Suppose i < 0, and let xi = (xi, . . . , x−1) and yi = (yi, . . . , y−1) satisfy the relation
yj = (n+ 1)d− xj for all j. Then (see Figure 6)

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

= yiδiknα(n; d, 2d, . . . , (n− 1)d, kn)
∣∣
kn=nd−1

.

3. Suppose i > 0. Then

∆i
k1
α(n; k1, . . . , kn) = (−1)n−1Ei−n

k1
δik1α(n; k2, . . . , kn, k1).

4. Suppose i < 0, and let xi = (xi, . . . , x−1) and yi = (yi, . . . , y−1) satisfy the relation
yj = xj + j − n+ 2 for all j. Then

xi∆i
k1
α(n; k1, . . . , kn) = (−1)n−1Ei−n

k1

yiδik1α(n; k2, . . . , kn, k1).

Proof. For the first part we refer to (3.4). Concerning the second part, we actually show
the following more general statement: if r = (n+ 1)d− l and i 6 0, then

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=l

= yiδiknα(n; d, 2d, . . . , (n− 1)d, kn)
∣∣
kn=r

. (5.1)
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d+1 xi

xi+1

·
·
·

·
·
·

x
−1

· · · nd2d 3d

· · ·

nd−1yi

yi+1

·
·
·

·
·
·

y
−1

· · ·d (n−1)d2d

· · ·

Figure 6: Symmetry of inverse difference operators if yj = (n+ 1)d− xj.

We use induction with respect to i; the case i = 0 is covered by the first part (x0∆0
k1

=
id = y0δ0kn). If i < 0, then, by the definitions of the right inverse operators and the
induction hypothesis, we have

(−1)i xi∆i
k1
α(n; k1, 2d, 3d, . . . , nd) |k1=l

=

xi∑

k′1=l

(−1)i+1 xi+1∆i+1
k′1

α(n; k′
1, 2d, 3d, . . . , nd)

=

xi∑

k′1=l

yi+1δi+1
k′n

α(n; d, 2d, . . . , (n− 1)d, k′
n)
∣∣∣
k′n=(n+1)d−k′1

=

(n+1)d−l∑

k′n=(n+1)d−xi

yi+1δi+1
k′n

α(n; d, 2d, . . . , (n− 1)d, k′
n).

The last expression is equal to the right-hand side of the claimed identity.
The third part follows from (3.2) and Proposition 4.1 (3). The last part is shown

by induction with respect to i; in fact i = 0 can be chosen to be the initial case of the
induction. If i < 0, then the induction hypothesis and (4.2) imply

xi∆i
k1
α(n; k1, . . . , kn) = −

xi∑

l1=k1

xi+1∆i+1
l1

α(n; l1, k2, . . . , kn)

= −

xi∑

l1=k1

(−1)n−1Ei+1−n
l1

yi+1δi+1
l1

α(n; k2, . . . , kn, l1)

=

k1+i−n∑

l1=xi+i−n+2

(−1)n−1 yi+1δi+1
l1

α(n; k2, . . . , kn, l1).

The last expression is obviously equal to the right-hand side of the identity in the lemma.

Now we are in the position to generalize Proposition 3.1.
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Proposition 5.2. Let n, d > 1. For i < 0, let xi, zi ∈ Z
−i with zj = (n+2)(d+1)−xj −

j − 4 and define

D
(d)
n,i :=

{
(−1)i∆i

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

, i = 0, . . . , n− 1,

(−1)i zi∆i
k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

, i = −n, . . . ,−1.
(5.2)

Then

C
(d)
n,i =

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)j+n+1D

(d)
n,j.

holds for all i = −n, . . . , n− 1.

Proof. To simplify notation let us define xi∆i
k1

:= ∆i
k1

for i > 0. Since the definition of

C
(d)
n,i and D

(d)
n,i only differ in the choice of constants, the fact that the system of linear

equations is satisfied for i = 0, . . . , n− 1 is Proposition 3.1. For i = −n, . . . ,−1 first note
that, by Lemma 5.1, (3.3) and E−1

x
zδ−1

x = z+1δ−1
x E−1

x , we have

C
(d)
n,i = (−1)n−1+iEi−n

k1

yiδik1α(n; d, 2d, . . . , (n− 1)d, k1)
∣∣
k1=1

where yi = (yi, . . . , y−1) with yj = xj + j + 2− n− d. This is furthermore equal to

(−1)n−1+iE
i−n(d+1)+2
k1

yiδik1α(n; d, 2d, . . . , (n− 1)d, k1)
∣∣∣
k1=nd−1

.

Now we use

E
i−n(d+1)+2
k1

= (id−δk1)
n(d+1)−i−2 =

n(d+1)−i−2∑

j=0

(
n(d+ 1)− i− 2

j

)
(−1)jδjk1

and Proposition 4.1 (2) to obtain

n(d+1)−i−2∑

j=0

(
n(d+ 1)− i− 2

j

)
(−1)n−1+i+j yi+jδ

i+j
k1

α(n; d, 2d, . . . , (n− 1)d, k1)
∣∣
k1=nd−1

.

Since the (ordinary) difference operator applied to a polynomial decreases the degree,
the upper summation limit can be changed to n − 1 − i. Together with Lemma 5.1 this
transforms into

n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)n−1+j yjδ

j
k1
α(n; d, 2d, . . . , (n− 1)d, k1)

∣∣
k1=nd−1

=
n−1∑

j=i

(
n(d+ 1)− i− 2

j − i

)
(−1)n−1 zj∆j

k1
α(n; k1, 2d, 3d, . . . , nd)

∣∣
k1=d+1

.

Now it remains to find an integer sequence (xj)j<0 such that C
(2)
n,i = C

(2)
n,−i−1 and

C
(2)
n,i = D

(2)
n,i for negative i.
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6 How to choose the sequence x = (xj)j<0

In the section, it is shown that C
(2)
n,i = C

(2)
n,−i−1 if we choose x = (xj)j<0 with xj = −2j+1,

j < 0. This can be deduced from the following more general result.

Proposition 6.1. Let xj = −2j + 1, j < 0, and set xi = (xi, xi+1, . . . , x−1) for all i < 0.
Suppose p : Z → C and let

ci :=

{
(−1)i∆i

yp(y)
∣∣
y=3

, i > 0,

(−1)i xi∆i
yp(y)

∣∣
y=3

, i < 0,

for i ∈ Z. Then the numbers satisfy the symmetry ci = c−i−1.

Proof. We may assume i > 0. Then

ci = (−1)i(Ey − id)ip(y)
∣∣
y=3

=
i+3∑

d1=3

(
i

d1 − 3

)
(−1)d1+1p(d1),

and

c−i−1 = (−1)i+1 x−i−1∆−i−1
y p(y)|y=3 =

2i+3∑

di+1=3

2i+1∑

di=di+1

· · ·

5∑

d2=d3

3∑

d1=d2

p(d1). (6.1)

The situation is illustrated in Figure 7. According to (4.2), the iterated sum is the
signed summation of (d1, d2, . . . , di+1) ∈ Z

i+1 subject to the following restrictions: We
have 3 6 di+1 6 2i+ 3, and for 1 6 j 6 i the restrictions are

dj+1 6 dj 6 2j + 1 if dj+1 6 2j + 1,

dj+1 > dj > 2j + 1 if dj+1 > 2j + 1.
(6.2)

Note that there is no admissible (d1, d2, . . . , di+1) with dj+1 = 2j + 2. The sign of
(d1, d2, . . . , di+1) is computed as (−1)#{16j6i: dj>2j+1}.

3 2i+3

di+1 2i+1

di 2i−1

·
·
·

·
·
·

d2 3

d1 4 6 · · · 2n

Figure 7: Combinatorial interpretation of (6.1) if p(y) = α(n; y, 4, 6, . . . , 2n).

The proof now proceeds by showing that the signed enumeration of (d1, . . . , di+1)
with fixed d1 is just

(
i

d1−3

)
(−1)d1+1. The reversed sequence (di+1, di, . . . , d1) is weakly
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increasing as long as we are in the first case of (6.2). However, once we switch from
Case 1 to Case 2, the sequence is strictly decreasing afterwards, because dj+1 > 2j + 1
implies dj > 2j + 1 > 2j − 1. Thus, the sequence splits into two parts: there exists an l,
0 6 l 6 i, with

3 6 di+1 6 di 6 . . . 6 dl+1 > dl > . . . > d1.

Moreover, it is not hard to see that (6.2) implies dl+1 = 2l + 3 and dl = 2l + 2. The sign
of the sequence is (−1)l. Thus it suffices to count the following two types of sequences.

1. 3 6 di+1 6 di 6 · · · 6 dl+2 6 dl+1 = 2l + 3.

2. dl = 2l + 2 > dl−1 > · · · > d2 > d1 > 3 and dk > 2k + 1 for 1 < k 6 l − 1; d1 fixed.

For the first type, this is accomplished by the binomial coefficient
(
i+l

i−l

)
.

If l > 1, then the sequences in (2) are prefixes of Dyck paths in disguise: to see this,
consider prefixes of Dyck paths starting in (0, 0) with a steps of type (1, 1) and b steps
of type (1,−1). Such a partial Dyck path is uniquely determined by the x-coordinates
of its (1, 1)-steps. If pi denotes the position of the i-th (1, 1)-step, then the coordinates
correspond to such a partial Dyck path if and only if

0 = p1 < p2 < · · · < pa < a+ b and pk < 2k − 1.

In order to obtain (2) set a 7→ l − 1, b 7→ l + 3 − d1 and pk 7→ 2l + 2 − dl−k+1. By the
reflection principle, the number of prefixes of Dyck paths is

(
a+ b

b

)
a+ 1− b

a+ 1
=

(
2l + 2− d1

l + 3− d1

)
d1 − 3

l
.

If l = 0, then d1 = d2 = . . . = di+1 = 3 and this is the only case where d1 = 3. Put
together, we see that the coefficient of p(d1) in (6.1) is

i∑

l=1

(−1)l
(
i+ l

i− l

)(
2l + 2− d1

l + 3− d1

)
d1 − 3

l
(6.3)

if d1 > 4. Using standard tools to prove hypergeometric identities, it is not hard to see
that this is equal to

(
i

d1−3

)
(−1)d1+1 if d1 > 4 and i > 0. For instance, C. Krattenthaler’s

Mathematica package HYP [Kra95] can be applied as follows: After converting the sum
into hypergeometric notation, one applies contiguous relation C16. Next we use trans-
formation rule T4306, before it is possible to apply summation rule S2101 which is the
Chu-Vandermonde summation.

In the following, we let x = (xj)j<0 with xj = −2j + 1 and z = (zj)j<0 with zj =

(n+ 2)(d+ 1) + j − 5. Recall that x is crucial in the definition of C
(d)
n,i , see (4.4), while z

appears in the definition of D
(d)
n,i , see (5.2). To complete the proof of (1.2), it remains to

show
C

(2)
n,i = D

(2)
n,i (6.4)
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4 6 · · · 2n−2 2n
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3n+2+i

·
·
·

·
·
·

3n−1

3n

4 6 · · · 2n−2 2n

· · ·

Figure 8: Combinatorial interpretation of the open problem (6.4).

for i = −n,−n+1, . . . ,−1, since Proposition 5.2 and Proposition 6.1 then imply that the
numbers C

(2)
n,i , i = −n,−n + 1, . . . , n − 1, are a solution of the LES (1.6). The situation

is depicted in Figure 8. When trying to proceed as in the proof of Proposition 6.1 one
eventually ends up with having to show that the refined VSASM numbers Bn,i satisfy a
different system of linear equations:

n−1∑

j=0

((
3n− i− 2

i+ j + 1

)
−

(
3n− i− 2

i− j

))
(−1)jBn,n−j = 0, i = 0, 1, . . . , n− 1. (6.5)

While computer experiments indicate that this LES uniquely determines (Bn,1, . . . , Bn,n)
up to a multiplicative constant for all n > 1, it is not clear at all how to derive that the
refined VSASM numbers satisfy (6.5). We therefore try a different approach in tackling
(6.4).

The task of the rest of the paper is to show that (6.4) follows from a more general
multivariate Laurent polynomial identity and present partial results towards proving the
latter.

7 A first conjecture implying (6.4)

We start this section by showing that the application of the right inverse difference op-
erator z∆−1

k1
to α(n; k1, . . . , kn) can be replaced by the application of a bunch of ordinary

difference operators to α(n+1; k1, z, k2, . . . , kn). Some preparation that already appeared
in [Fis06] is needed: The definition of MTs implies (see Figure 9) that the polynomials
α(n; k1, . . . , kn) satisfy the recursion

α(n; k1, . . . , kn) =
∑

(l1,...,ln−1)∈Zn−1,
k16l16k26l26···6kn−16ln−16kn,

li<li+1

α(n− 1; l1, . . . , ln−1), (7.1)

whenever k1 < k2 < · · · < kn, ki ∈ Z. In fact, one can define a summation operator
(k1,...,kn)∑
(l1,...,ln−1)

such that

α(n; k1, . . . , kn) =

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1) (7.2)
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k3k1 k2 kn−1 kn

l2 ln−1

· · ·

· · ·l1

Figure 9: Bottom and penultimate row of a Monotone Triangle.

for all (k1, . . . , kn) ∈ Z
n. The postulation that the summation operator should extend

(7.1) motivates the recursive definition

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) :=

(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) (7.3)

+

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1), n > 2

with
(k1)∑
()

:= id. Recall the extended definition of the sum over intervals (4.2) to make

sense of this definition for all (k1, . . . , kn) ∈ Z
n. One can show that this definition ensures

that the summation operator preserves polynomiality, i.e.

(k1, . . . , kn) 7→

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1)

is a polynomial function on Z
n whenever A(l1, . . . , ln−1) is a polynomial. Since a polyno-

mial in (k1, . . . , kn) is uniquely determined by its evaluations at k1 < k2 < · · · < kn, we
may also use any other recursive description of the summation operator as long as it is
based on the extended definition of ordinary sums (4.2) and specializes to (7.1) whenever
k1 < k2 < · · · < kn. So, we can also use the recursive definition

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =

(k2,...,kn)∑

(l2,...,ln−1)

k2−1∑

l1=k1

A(l1, l2, . . . , ln−1) (7.4)

+

(k2+1,k3,...,kn)∑

(l2,...,ln−1)

A(k2, l2, . . . , ln−1), n > 2.

Lemma 7.1. Let i < 0 and xi ∈ Z
−i. Then

xi∆i
kj
α(n; k1, . . . , kn) = (−1)ij∆−i

k1
. . .∆−i

kj−1
δ0xi

δ1xi+1
. . . δ−i−1

x−1
δ−i
kj+1

. . . δ−i
kn

the electronic journal of combinatorics 22(1) (2015), #P1.5 17



α(n− i; k1, . . . , kj , xi, xi+1, . . . , x−1, kj+1, . . . , kn)

and

xiδikjα(n; k1, . . . , kn) = (−1)(j−1)i+(−i
2 )∆−i

k1
. . .∆−i

kj−1
∆−i−1

x−1
∆−i−2

x−2
. . .∆0

xi
δ−i
kj+1

. . . δ−i
kn

α(n− i; k1, . . . , kj−1, x−1, x−2, . . . , xi, kj , . . . , kn).

Proof. Informally, the lemma follows from the following two facts:

• The quantity xi∆i
kj
α(n; k1, . . . , kn) can be interpreted as the signed enumeration of

Monotone Triangle structures of the shape as depicted in Figure 10 where the j-
th NE-diagonal has been prolonged. Similarly, for xiδikjα(n; k1, . . . , kn), where the
shape is depicted in Figure 11 and the j-th SE-diagonal has been prolonged.

• The application of the (−∆)-operator truncates left NE-diagonals, while the δ-
operator truncates right SE-diagonals. This idea first appeared in [Fis11].

kj xi

xi+1

·
·
·

·
·
·

x
−2

x
−1

· · · knkj+1kj−1· · ·k1

· · · · · ·

·
·
·

Figure 10: xi∆i
kj
α(n; k1, . . . , kn)

kjxi

xi+1

·
·
·

·
·
·

x
−2

x
−1

· · ·k1 kj−1 kj+1 · · · kn

· · ·· · ·

·
·
·

Figure 11: xiδikjα(n; k1, . . . , kn)

Formally, let us prove the first identity by induction with respect to i. First note that
(7.3) and (7.4) imply

(−1)j∆k1 . . .∆kj−1
δkj+1

δkj+2
. . . δkn

(k1,...,kj−1,kj ,x,kj+1,...,kn)∑

(l1,...,ln)

A(l1, . . . , ln) (7.5)
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= −

(kj ,x)∑

(lj)

A(k1, . . . , kj−1, lj , kj+1, . . . , kn) =
x∆−1

kj
A(k1, k2, . . . , kn).

Together with (7.2) the base case i = −1 follows. For the inductive step i < −1, apply
the induction hypothesis, (7.5), (7.2) and Proposition 4.1 (4) to obtain

xi∆i
kj
α(n; k1, . . . , kn)

= xi∆−1
kj
(−1)(i+1)j∆−i−1

k1
. . .∆−i−1

kj−1
δ0xi+1

δ1xi+2
. . . δ−i−2

x−1
δ−i−1
kj+1

. . . δ−i−1
kn

α(n− i− 1; k1, . . . , kj , xi+1, xi+2, . . . , x−1, kj+1, . . . , kn)

= (−1)ij∆−i
k1

. . .∆−i
kj−1

δ1xi+1
δ2xi+2

. . . δ−i−1
x−1

δ−i
kj+1

. . . δ−i
kn

(k1,...,kj ,xi,xi+1,...,x−1,kj+1,...,kn)∑

(l1,...,lj ,yi+1,...,y−1,lj+1,...,ln)

α(n− i− 1; l1, . . . , lj , yi+1, yi+2, . . . , y−1, lj+1, . . . , ln)

= (−1)ij∆−i
k1

. . .∆−i
kj−1

δ1xi+1
. . . δ−i−1

x−1
δ−i
kj+1

. . . δ−i
kn

α(n− i; k1, . . . , kj , xi, xi+1, . . . , x−1, kj+1, . . . , kn).

The second identity can be shown analogously. The sign is again obtained by taking
the total number of applications of the ∆-operator into account.

In the following, we let Vx,y := E−1
x +Ey−E−1

x Ey and Sx,yf(x, y) := f(y, x). In [Fis06]
it was shown that

(id+Eki+1
E−1

ki
Ski,ki+1

)Vki,ki+1
α(n; k1, . . . , kn) = 0 (7.6)

for 1 6 i 6 n− 1. This property together with the fact that the degree of α(n; k1, . . . , kn)
in each ki is n − 1 determines the polynomial up to a constant. Next we present a
conjecture on general polynomials with property (7.6); the goal of the current section is
to show that this conjecture implies (6.4).

Conjectre 7.2. Let 1 6 s 6 t and a(k1, . . . , ks+t−1) be a polynomial in (k1, . . . , ks+t−1)
with

(id+Eki+1
E−1

ki
Ski,ki+1

)Vki,ki+1
a(k1, . . . , ks+t−1) = 0 (7.7)

for 1 6 i 6 s+ t− 2. Then

s∏

i=1

E2s+3−2i
yi

δi−1
yi

t∏

i=2

E2i
ki
δskia(y1, . . . , ys, k2, . . . , kt)

=
t∏

i=2

E2i
ki
(−∆ki)

s

s∏

i=1

E2t+3−2i
yi

(−∆yi)
s−ia(k2, . . . , kt, y1, . . . , ys)

if y1 = y2 = . . . = ys = k2 = k3 = . . . = kt.
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Proposition 7.3. Let x = (−2j + 1)j<0 and z = (3n+ j + 1)j<0. Under the assumption
that Conjecture 7.2 is true, it follows for all −n 6 i 6 −1 that

1. xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣
k1=3n+2+i

= 0,

2. xi∆i
k1
α(n; k1, 4, 6, . . . , 2n) =

zi∆i
k1
α(n; k1, 4, 6, . . . , 2n); in particular C

(2)
n,i = D

(2)
n,i .

Proof. According to Lemma 7.1 we have

xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

= (−1)i
−1∏

j=i

E−2j+1
yj

δj−i
yj

n∏

j=2

E
2j
kj
δ−i
kj
α(n− i; k1, yi, yi+1, . . . , y−1, k2, . . . , kn)

∣∣∣∣∣
(yi,...,y−1)=0,
(k2,...,kn)=0

.

We set yj = yi+j−1 and s = −i to obtain

(−1)s
s∏

j=1

E
2s+3−2j
yj

δ
j−1
yj

n∏

j=2

E
2j
kj
δskjα(n+ s; k1, y1, y2, . . . , ys, k2, . . . , kn)

∣∣∣∣∣
(y1,...,ys)=0,
(k2,...,kn)=0

.

By our assumption that Conjecture 7.2 is true, this is equal to

(−1)s
n∏

j=2

E
2j
kj
(−∆kj)

s

s∏

j=1

E
2n+3−2j
yj

(−∆yj
)s−jα(n+ s; k1, k2, . . . , kn, y1, . . . , ys)

∣∣∣∣∣
(y1,...,ys)=0,
(k2,...,kn)=0

.

Now we use (3.2) and (3.3) to obtain

(−1)n+1

n∏

j=2

E
2j+n+s
kj

(−∆kj)
s

s∏

j=1

E
3n+3−2j+s
yj

(−∆yj
)s−j

α(n+ s; k2, . . . , kn, y1, . . . , ys, k1)

∣∣∣∣∣
(y1,...,ys)=0,
(k2,...,kn)=0

.

According to Lemma 7.1, this is

(−1)n+1 wiδik1α(n; 4 + n− i, 6 + n− i, . . . , 3n− i, k1)

where wi = (3n + 3 + i, 3n + 5 + i, . . . , 3n + 1 − i). Setting k1 = 3n + 2 + i, the first
assertion now follows since x+1δ−1

x p(x) = 0.
For the second assertion we use induction with respect to i. In the base case i = −1

note that the two sides differ by 3n∆−1
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣
k1=4

. By (4.2) this is equal to

− 3∆−1
k1
α(n; k1, 4, 6, . . . , 2n)

∣∣
k1=3n+1

,
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which vanishes due to the first assertion. For i < −1 observe that

xi∆i
k1
α(n; k1, 4, 6, . . . , 2n)

= −2i+1∆−1
k1

xi+1∆i+1
k1

α(n; k1, 4, 6, . . . , 2n)

= −

−2i+1∑

l1=k1

xi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n)

= −

3n+1+i∑

l1=k1

zi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n) +
3n+1+i∑

l1=−2i+2

xi+1∆i+1
l1

α(n; l1, 4, 6, . . . , 2n),

where we have used the induction hypothesis in the first sum. Now the first sum is equal
to the right-hand side in the second assertion, while the second sum is by (4.2) just the
expression in the first assertion and thus vanishes.

8 Proof of Theorem 1.2

Let p(x1, . . . , xn) be a function in (x1, . . . , xn) and T ⊆ Sn a subset of the symmetric
group. We define

(Tp)(x1, . . . , xn) :=
∑

σ∈T

sgn σ p(xσ(1), . . . , xσ(n)).

If T = {σ}, then we write (Tp)(x1, . . . , xn) = (σp)(x1, . . . , xn). Observe that ASym as
defined in the introduction satisfies ASym p(x1, . . . , xn) = (Snp)(x1, . . . , xn). A function
is said to be antisymmetric if (σp)(x1, . . . , xn) = sgn σ · p(x1, . . . , xn) for all σ ∈ Sn. We
need a couple of auxiliary results.

Lemma 8.1. Let a(z1, . . . , zn) be a polynomial in (z1, . . . , zn) with

(id+Ezi+1
E−1

zi
Szi,zi+1

)Vzi,zi+1
a(z1, . . . , zn) = 0

for 1 6 i 6 n− 1. Then there exists an antisymmetric polynomial b(z1, . . . , zn) with

a(z1, . . . , zn) =
∏

16p<q6n

Wzq ,zpb(z1, . . . , zn)

where Wx,y := ExVx,y = id−Ey + ExEy.

Proof. By assumption, we have

Szi,zi+1
Wzi,zi+1

a(z) = Ezi+1
Szi,zi+1

Vzi,zi+1
a(z) = −EziVzi,zi+1

a(z) = −Wzi,zi+1
a(z).

This implies that

c(z1, . . . , zn) :=
∏

16p<q6n

Wzp,zqa(z1, . . . , zn)
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is an antisymmetric polynomial. Now observe that Wx,y = id+Ey∆x is invertible on

C[x, y], to be more concrete W−1
x,y =

∞∑
i=0

(−1)iEi
y∆

i
x. Hence,

b(z1, . . . , zn) :=
∏

16p 6=q6n

W−1
zp,zq

c(z1, . . . , zn)

is an antisymmetric polynomial with a(z1, . . . , zn) =
∏

16p<q6n

Wzq ,zpb(z1, . . . , zn).

Lemma 8.2. Suppose Op(x1, . . . , xn) is a Laurent polynomial and a(z1, . . . , zn) is an anti-
symmetric function. If there exists a non-empty subset T of Sn with (T Op)(x1, . . . , xn) =
0, then

(Op(Ez1 , . . . , Ezn)a(z1, . . . , zn))|z1=z2=...=zn
= 0.

Proof. First observe that the antisymmetry of a(z1, . . . , zn) implies

(T ′a)(z1, . . . , zn) =
∑

σ∈T ′

sgn σa(zσ(1), . . . , zσ(n)) = |T ′|a(z1, . . . , zn).

for any subset T ′ ⊆ Sn. Letting

Op(x1, . . . , xn) =
∑

(i1,...,in)∈Zn

ci1,...,inx
i1
1 x

i2
2 · · · xin

n ,

we observe that

(Op(Ez1 , . . . , Ezn)a(z1, . . . , zn))|(z1,...,zn)=(d,...,d)

=
∑

(i1,...,in)∈Zn

ci1,...,ina(i1 + d, . . . , in + d)

=
1

|T |

∑

(i1,...,in)∈Zn

ci1,...,in(T
−1a)(i1 + d, . . . , in + d)

with T−1 = {σ−1 | σ ∈ T}, since (i1, . . . , in) 7→ a(i1+d, . . . , in+d) is also an antisymmetric
function. This is equal to

1

|T |

∑

(i1,...,in)∈Zn

ci1,...,in

∑

σ∈T

sgn σ E
i
σ−1(1)
z1 . . . E

i
σ−1(n)
zn a(z1, . . . , zn)

∣∣∣
(z1,...,zn)=(d,...,d)

=
1

|T |

∑

(i1,...,in)∈Zn

ci1,...,in

∑

σ∈T

sgn σ Ei1
zσ(1)

. . . Ein
zσ(n)

a(z1, . . . , zn)
∣∣∣
(z1,...,zn)=(d,...,d)

=
1

|T |
[(T Op)(Ez1 , . . . , Ezn)] a(z1, . . . , zn)

∣∣∣∣
(z1,...,zn)=(d,...,d)

= 0.
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Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. In order to prove (1.2), it suffices to show that Conjecture 7.2 holds
under the theorem’s assumptions. We set

Op(z1, . . . , zs+t−1) :=
s∏

i=1

z2s+3−2i
i (1− z−1

i )i−1

s+t−1∏

i=s+1

z2i−2s+2
i (1− z−1

i )s

−
t−1∏

i=1

z2i+2
i (1− zi)

s

s+t−1∏

i=t

z4t+1−2i
i (1− zi)

s+t−1−i

and observe that the claim of Conjecture 7.2 is that Op(Ez1 , . . . , Ezs+t−1)a(z1, . . . , zs+t−1)
vanishes if z1 = . . . = zs+t−1. According to Lemma 8.1, there exists an antisymmetric
polynomial b(z1, . . . , zs+t−1) with

a(z1, . . . , zs+t−1) =
∏

16p<q6s+t−1

Wzq ,zpb(z1, . . . , zs+t−1).

Thus, let us deduce that Op(Ez1 , . . . , Ezs+t−1)b(z1, . . . , zs+t−1) = 0 if z1 = . . . = zs+t−1

where

Op(z1, . . . , zs+t−1) := Op(z1, . . . , zs+t−1)
∏

16p<q6s+t−1

(1− zp + zpzq)
s+t−1∏

i=1

z−2−t
i .

Now, Lemma 8.2 implies that it suffices to show ASymOp(z1, . . . , zs+t−1) = 0. Observe
that

Op(z1, . . . , zs+t−1) = P s,t(z1, . . . , zs+t−1)− P s,t(z
−1
s+t−1, . . . , z

−1
1 )

s+t−1∏

i=1

zs+t−2
i

where P s,t(z1, . . . , zs+t−1) = Ps,t(z1, . . . , zs+t−1)
∏

16i<j6s+t−1

(zj − zi) and Ps,t(z1, . . . , zs+t−1)

is as defined in Conjecture 1.1. Furthermore,

ASymOp(z1, . . . , zs+t−1) = Rs,t(z1, . . . , zs+t−1)
∏

16i<j6s+t−1

(zj − zi)

−Rs,t(z
−1
s+t−1, . . . , z

−1
1 )

∏

16i<j6s+t−1

(z−1
s+t−j − z−1

s+t−i)
s+t−1∏

i=1

zs+t−2
i

where Rs,t(z1, . . . , zs+t−1) is also defined in Conjecture 1.1. Since Rs,t(z1, . . . , zs+t−1) is
symmetric we have that ASymOp(z1, . . . , zs+t−1) = 0 follows once it is shown that
Rs,t(z1, . . . , zs+t−1) = Rs,t(z

−1
1 , . . . , z−1

s+t−1).
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9 Proof of Theorem 1.3

For integers s, t > 0, we define the following two rational functions:

Ss,t(z; z1, . . . , zs+t−2) := z2s−t−1

s+t−2∏

i=1

(1− z + ziz)(1− z−1
i )

(zi − z)
,

Ts,t(z; z1, . . . , zs+t−2) := (1− z−1)szt−2

s+t−2∏

i=1

1− zi + ziz

(z − zi)zi
.

Based on these two functions, we define two operators on functions f in s+ t−2 variables
that transform them into functions in (z1, . . . , zs+t−1):

PSs,t[f ] := Ss,t(z1; z2, . . . , zs+t−1) · f(z2, . . . , zs+t−1),

PTs,t[f ] := Ts,t(zs+t−1; z1, . . . , zs+t−2) · f(z1, . . . , zs+t−2).

The definitions are motivated by the fact that Ps,t(z1, . . . , zs+t−1) as defined in Conjec-
ture 1.1 satisfies the two recursions

Ps,t = PSs,t[Ps−1,t] and Ps,t = PTs,t[Ps,t−1].

We also need the following two related operators, which are again defined on functions f
in s+ t− 2 variables:

QSs,t[f ] := Ss,t(z
−1
s+t−1; z

−1
s+t−2, z

−1
s+t−3, . . . , z

−1
1 ) · f(z1, . . . , zs+t−2),

QTs,t[f ] := Ts,t(z
−1
1 ; z−1

s+t−1, z
−1
s+t−2, . . . , z

−1
2 ) · f(z2, . . . , zs+t−1).

Note that if we set Qs,t(z1, . . . , zs+t−1) := Ps,t(z
−1
s+t−1, . . . , z

−1
1 ), then

Qs,t = QSs,t[Qs−1,t] and Qs,t = QTs,t[Qs,t−1].

From the definitions, one can deduce the following commutation properties; the proof is
straightforward and left to the reader.

Lemma 9.1. Let s, t be positive integers.

1. If (s, t) 6= (1, 1), then

PSs,t ◦PTs−1,t = PTs,t ◦PSs,t−1 and QSs,t ◦QTs−1,t = QTs,t ◦QSs,t−1 .

2. If t > 2, then PTs,t ◦QTs,t−1 = QTs,t ◦PTs,t−1.

We need the following identities, which follow from the fact that Ss,t(z; z1, . . . , zs+t−2)
and Ts,t(z; z1, . . . , zs+t−2) are symmetric in z1, . . . , zs+t−2 (the symbol ẑi indicates that zi
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is missing from the argument):

SymPSs,t[f ] =
s+t−1∑

i=1

Ss,t(zi; z1, . . . , ẑi, . . . , zs+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymPTs,t[f ] =
s+t−1∑

i=1

Ts,t(zi; z1, . . . , ẑi, . . . , zs+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymQSs,t[f ] =
s+t−1∑

i=1

Ss,t(z
−1
i ; z−1

1 , . . . , ẑ−1
i , . . . , z−1

s+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1),

SymQTs,t[f ] =
s+t−1∑

i=1

Ts,t(z
−1
i ; z−1

1 , . . . , ẑ−1
i , . . . , z−1

s+t−1)Sym f(z1, . . . , ẑi, . . . , zs+t−1).

(9.1)
We consider words w over the alphabet A := {PS,PT,QS,QT} and let |w|S denote

the number of occurrences of PS and QS in the word and |w|T denote the number of
occurrences of PT and QT. It is instructive to interpret these words as labelled lattice
paths with starting point in the origin, step set {(1, 0), (0, 1)} and labels P,Q. The
letters PS and QS correspond to (1, 0)-steps labelled with P and Q, respectively, while
the letters PT and QT correspond to (0, 1)-steps. With this interpretation, (|w|S, |w|T )
is the endpoint of the path (see Figure 12).

s

t

P
P

Q

P
Q

Q

(0, 0)

(2, 4)

Figure 12: Labelled lattice path corresponding to w = (PT,PS,QT,PT,QS,QT).

To every word w of length n, we assign a rational function Fw(z1, . . . , zn+1) as follows:
If w is the empty word, then Fw(z1) := 1. Otherwise, if L ∈ A and w is a word over A,
we set

FwL := L|wL|S+1,|wL|T+1[Fw].

For example, the rational function assigned to w in Figure 12 is

Fw(z1, . . . , z7) = QT3,5 ◦QS3,4 ◦PT2,4 ◦QT2,3 ◦PS2,2 ◦PT1,2[1].

In this context, Lemma 9.1 has the following meaning: on the one hand, we may swap two
consecutive steps with the same label, and, one the other hand, we may swap two con-
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secutive (0, 1)-steps without changing the corresponding rational functions. For example,
the rational functions corresponding to the words in Figure 12 and Figure 13 coincide.

s

t

P
P

P

Q

Q
Q

(0, 0)

(2, 4)

Q

Q

Figure 13: Labelled lattice path corresponding to w̃ = (PT,PS,PT,QT,QT,QS).

Proof of Theorem 1.3. We assume

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) (9.2)

if t = s and t = s+1. We show the following more general statement: Suppose w1, w2 are
two words over A with |w1|S = |w2|S and |w1|T = |w2|T , and every prefix w′

i of wi fulfills
|w′

i|S 6 |w′
i|T , i = 1, 2. (In the lattice paths language this means that w1 and w2 are both

prefixes of Dyck paths sharing the same endpoint; there is no restriction on the labels P
and Q.) Then

SymFw1 = SymFw2 . (9.3)

The assertion of the theorem then follows since Fw = P|w|S+1,|w|T+1 if w is a word over
{PS,PT} and Fw = Q|w|S+1,|w|T+1 if w is a word over {QS,QT}, and therefore

Rs,t(z1, . . . , zs+t−1) = SymPs,t(z1, . . . , zs+t−1) = SymQs,t(z1, . . . , zs+t−1)

= SymPs,t(z
−1
s+t−1, . . . , z

−1
1 ) = Rs,t(z

−1
1 , . . . , z−1

s+t−1).

The proof is by induction with respect to the length of the words; there is nothing to
prove if the words are empty. Otherwise let w1, w2 be two words over A with |w1|S =
|w2|S =: s− 1 and |w1|T = |w2|T =: t− 1, and every prefix w′

i of wi fulfills |w
′
i|S 6 |w′

i|T ,
i = 1, 2. Note that the induction hypothesis and (9.1) imply that SymFwi

only depends
on the last letter of wi (and on s and t of course). Thus the assertion follows if the last
letters of w1 and w2 coincide; we assume that they differ in the following.

If s = t, then the assumption on the prefixes implies that the last letters of w1 and
w2 are in {PS,QS}. W.l.o.g. we assume w1 = w′

1 PS and w2 = w′
2 QS. By the induction

hypothesis and (9.1), we have SymFw1 = SymPs,s and SymFw2 = SymQs,s. The
assertion now follows from (9.2), since SymPs,s(z1, . . . , z2s−1) = Rs,s(z1, . . . , z2s−1) and
SymQs,s(z1, . . . , z2s−1) = Rs,s(z

−1
1 , . . . , z−1

2s−1).
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If s < t, we show that we may assume that the last letters of w1 and w2 are in
{PT,QT}: if this is not true for the last letter L1 of wi, we may at least assume by the
induction hypothesis and (9.1) that the penultimate letter L2 is in {PT,QT}; to be more
precise, we require L2 = PT if L1 = PS and L2 = QT if L1 = QS; now, according to
Lemma 9.1, we can interchange the last and the penultimate letter in this case.

If t = s+ 1, then (9.3) now follows from (9.2) in a similar fashion as in the case when
s = t.

If s + 1 < t, we may assume w.l.o.g. that the last letter of w1 is PT and the last
letter of w2 is QT. By the induction hypothesis and (9.1), we may assume that the
penultimate letter of w1 is QT. According to Lemma 9.1, we can interchange the last and
the penultimate letter of w1 and the assertion follows also in this case.

10 Remarks on the case s = 0 in Conjecture 1.1

If s = 0 and t > 1 in Conjecture 1.1, then the rational function simplifies to

∏

16i<j6n

z−1
i + zj − 1

1− ziz
−1
j

(10.1)

where n = t−1. This raises the question of whether there are also other rational functions
T (x, y) such that symmetrizing

∏
16i<j6n

T (zi, zj) leads to a Laurent polynomial that is

invariant under replacing zi by z−1
i . Computer experiments suggest that this is the case

for

T (x, y) =
[a(x−1 + y) + c][b(x+ y−1) + c]

1− xy−1
+ abx−1y + d (10.2)

where a, b, c, d ∈ C. (Since T (x, y) = T (y−1, x−1) it is obvious that the symmetrized
function is invariant under replacing all zi simultaneously by z−1

i .)
In case a = 0 it can be shown with a degree argument that symmetrizing leads

to a function that does not depend on z1, z2, . . . , zn. (In fact, this is also true for∏
16i<j6n

Azizj+Bzi+Czj+D

zj−zi
, and our case is obtained by specializing A = bc, B = −d, C =

c2 + d,D = bc.)

In case T (x, y) = x−1+y

1−xy−1 (which is obtained from the above function by setting b =

d = 0 then dividing by c and setting a = 1, c = 0 afterwards) this is also easy to see, since
the symmetrized function can be computed explicitly as follows:

Sym
∏

16i<j6n

z−1
i + zj

1− ziz
−1
j

= Sym
∏

16i<j6n

z−1
i zj(1 + zizj)

zj − zi

=
∏

16i<j6n

(1 + zizj)
n∏

i=1

z−n+1
i Sym

∏n

i=1 z
2i−2
i∏

16i<j6n(zj − zi)

=
∏

16i<j6n

(1 + zizj)
n∏

i=1

z−n+1
i

det16i,j6n((z
2
i )

j−1)∏
16i<j6n(zj − zi)
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=
∏

16i<j6n

(1 + zizj)
n∏

i=1

z−n+1
i

∏

16i<j6n

z2j − z2i

zj − zi
=

∏

16i<j6n

(1 + zizj)(zi + zj)
n∏

i=1

z−n+1
i .

We come back to (10.1). In our computer experiments we observed that if we specialize
z1 = z2 = . . . = zn = 1 in the symmetrized function then we obtain the number of
(2n+1)× (2n+1) Vertically Symmetric Alternating Sign Matrices. Next we aim to prove
a generalization of this.

For this purpose we consider the following slight generalization of α(n; k1, . . . , kn) for
non-negative integers m:

αm(n; k1, . . . , kn) =
∏

16p<q6n

(id+EkpEkq + (X − 2)Ekp) det
16i,j6n

((
ki

j − 1 +mδj,n

))

In [Fis06] it was shown that α0(n; k1, . . . , kn) = α(n; k1, . . . , kn) if X = 1. For k1 6 t 6 kn,
choose cm ∈ C, almost all of them zero, such that the polynomial

∑∞
m=0 cm

(
x

m

)
is 1 if x = t

and 0 if x ∈ {k1, k1 + 1, . . . , kn} \ {t}. In [Fis10] it was shown that

∞∑

m=0

cmαm(n; k1, k2, . . . , kn) (10.3)

is the generating function (X is the variable) of Monotone Triangles (ai,j)16j6i6n with
bottom row (k1, k2, . . . , kn) and top entry t with respect to the occurrences of the “local
pattern” ai+1,j < ai,j < ai+1,j+1. In fact, these patterns correspond to the −1s in the
corresponding Alternating Sign Matrix if (k1, . . . , kn) = (1, 2, . . . , n).

Proposition 10.1. Fix integers k1, k2, . . . , kn and a non-negative integer m, and define

Q(z1, . . . , zn) := Sym

(
n∏

i=1

zkii

∏

16i<j6n

1 + zizj + (X − 2)zi
zj − zi

)
.

Then

αm(n; k1, . . . , kn) = Q(1, 1, . . . , 1, El)

(
l

m

)∣∣∣∣
l=0

.

Proof. We set P (z1, . . . , zn) =
n∏

i=1

zkii
∏

16i<j6n

(1 + zizj + (X − 2)zi). Then

αm(n; k1, . . . , kn)

= Ek1
l1
· · ·Ekn

ln
αm(n; l1, . . . , ln)

∣∣
l1=...=ln=0

= P (El1 , . . . , Eln)
∑

σ∈Sn

sgn σ

(
lσ(1)

0

)
. . .

(
lσ(n−1)

n− 2

)(
lσ(n)

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

.

With P (z1, . . . , zn) =
∑

i1,i2,...,in
pi1,i2,...,inz

i1
1 z

i2
2 · · · zinn , this is equal to
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∑

σ∈Sn,i1,i2,...,in

sgn σ pi1,i2,...,in

(
iσ(1)

0

)
. . .

(
iσ(n−1)

n− 2

)(
iσ(n)

n− 1 +m

)

=
∑

σ∈Sn,i1,i2,...,in

sgn σ pi1,i2,...,inE
iσ(1)

l1
. . . E

iσ(n)

ln

(
l1

0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

=
∑

σ∈Sn,i1,i2,...,in

sgn σ pi1,i2,...,inE
i1
l
σ−1(1)

. . . Ein
l
σ−1(n)

(
l1

0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

= ASymP (El1 , . . . , Eln)

(
l1

0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣
l1=...=ln=0

.

By definition,

ASymP (z1, . . . , zn) = Q(z1, . . . , zn)
∏

16i<j6n

(zj − zi).

Now we can conclude that

αm(k1, . . . , kn)

= Q(El1 , El2 , . . . , Eln)
∏

16i<j6n

(Elj − Eli)

(
l1

0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

= Q(El1 , El2 , . . . , Eln)
∏

16i<j6n

(∆lj −∆li)

(
l1

0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

= Q(El1 , El2 , . . . , Eln) det
16i,j6n

(
∆j−1

li

)(l1
0

)
. . .

(
ln−1

n− 2

)(
ln

n− 1 +m

)∣∣∣∣
l1=...=ln=0

= Q(El1 , El2 , . . . , Eln)
∑

σ∈Sn

sgn σ∆
σ(1)−1
l1

. . .∆
σ(n)−1
ln

(
l1

0

)
. . .

(
ln

n− 1 +m

)∣∣∣∣∣
l1=...=ln=0

= Q(1, 1, . . . , 1, Eln)

(
ln

m

)∣∣∣∣
ln=0

,

since ∆
σ(1)−1
l1

. . .∆
σ(n)−1
ln

(
l1
0

)
. . .
(
ln−1

n−2

)(
ln

n−1+m

)
= 0 except when σ = id.

Corollary 10.2. Let k1, k2, . . . , kn,m and Q(z1, . . . , zn) be as in Proposition 10.1. The
coefficient of ztXk in Q(1, 1, . . . , 1, z) is the number of Monotone Triangles (ai,j)16j6i6n

with bottom row k1, k2, . . . , kn, top entry t and k occurrences of the local pattern ai+1,j <

ai,j < ai+1,j+1.

Proof. We fix t and observe that the combination of (10.3) and Proposition 10.1 implies
that ∑

m>0

cm Q(1, 1, . . . , 1, El)

(
l

m

)∣∣∣∣
l=0
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is the generating function described after (10.3). Now, if we suppose

Q(1, 1, . . . , 1, z) =
∑

s,k

bs,kz
sXk,

then we see that this generating function is equal to

∑

m>0

cm
∑

s,k

bs,kE
s
l X

k

(
l

m

)∣∣∣∣∣
l=0

=
∑

m>0

cm
∑

s,k

bs,kX
k

(
s

m

)
=
∑

s,k

bs,kX
k
∑

m>0

cm

(
s

m

)

=
∑

s,k

bs,kX
kδs,t =

∑

k

bt,kX
k,

where the third equality follows from the choice of the coefficients cm.

A short calculation shows that Sym applied to (10.1) is equal to
n∏

i=1

z−n+1
i Q(z1, . . . , zn)

if we set ki = 2(i − 1) and X = 1 in Q(z1, . . . , zn). If we also specialize z1 = · · · =
zn−1 = 1, then Conjecture 1.1 implies Q(1, . . . , 1, z) = z2n−2Q(1, . . . , 1, z−1). However,
by Corollary 10.2, this is just the trivial fact that the number of Monotone Triangles
with bottom row (0, 2, 4, . . . , 2n− 2) and top entry t is equal to the number of Monotone
Triangles with bottom row (0, 2, 4, . . . , 2n− 2) and top entry 2n− 2− t, or, equivalently,
that the number of (2n + 1) × (2n + 1) Vertically Symmetric Alternating Sign Matrices
with a 1 in position (t, 1) equals the number of (2n+ 1)× (2n+ 1) Vertically Symmetric
Alternating Sign Matrices with a 1 in position (2n+1− t, 1). So in the special case s = 0,
Conjecture 1.1 is a generalization of this obvious symmetry.

Finally, we want to remark that the symmetrized functions under consideration in
Proposition 10.1 can easily be computed recursively. For instance, considering the case
of Vertically Symmetric Alternating Sign Matrices, let

VSASM(X; z1, . . . , zn) = Sym
n∏

i=1

z2i−2
i

∏

16i<j6n

1 + zi(X − 2) + zizj

zj − zi
.

Then

VSASM(X; z1, . . . , zn) =
n∑

j=1

z2n−2
j

∏

16i6n,i 6=j

1 + zi(X − 2) + zizj

zj − zi

× VSASM(X; z1, . . . , ẑj , . . . , zn).

Similarly, in the case of ordinary Alternating Sign Matrices, let

ASM(X; z1, . . . , zn) = Sym
n∏

i=1

zi−1
i

∏

16i<j6n

1 + zi(X − 2) + zizj

zj − zi
.
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Then

ASM(X; z1, . . . , zn) =
n∑

j=1

zn−1
j

∏

16i6n,i 6=j

1 + zi(X − 2) + zizj

zj − zi
ASM(X; z1, . . . , ẑj , . . . , zn).

Let us conclude by mentioning that in order to reprove the formula for the number of
Vertically Symmetric Alternating Sign Matrices of given size, it would suffice to compute
VSASM(1; 1, 1, . . . , 1), while the ordinary Alternating Sign Matrix Theorem is equivalent
to computing ASM(1; 1, 1, . . . , 1).
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