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Abstract

This paper studies the on-line choice number of complete multipartite graphs
with independence number m. We give a unified strategy for every prescribed m.
Our main result leads to several interesting consequences comparable to known re-

sults. (1) If k1−
m∑
p=2

(
p2

2
− 3p

2
+ 1

)
kp > 0, where kp denotes the number of parts of

cardinality p, then G is on-line chromatic-choosable. (2) If |V (G)| 6 m2−m+2
m2−3m+4

χ(G),
then G is on-line chromatic-choosable. (3) The on-line choice number of regular
complete multipartite graphs Km?k is at most

(
m+ 1

2 −
√

2m− 2
)
k for m > 3.

Keywords: on-line list coloring; Ohba’s conjecture

1 Introduction

On-line list coloring was introduced by Schauz [13] in the context of the Paint-Correct
game played on a graph. Here we adapt the on-line list coloring version introduced by
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Zhu [15] as follows.

Definition 1. Given a graph G and an integer-valued function f on V (G), the on-line
f -list coloring of G is a two-players game, say Alice and Bob, played on G. In the very
beginning, all vertices are uncolored. In the ith round, Alice marks a nonempty subset Vi
of remaining uncolored vertices and assigns color i as a permissible color to each vertex of
Vi. Then Bob chooses an independent set Xi contained in Vi and colors all vertices of Xi

the color i. The game goes round by round. If at the end of some round there is a vertex
v which has been assigned f(v) permissible colors, i.e., has been marked f(v) times, but
is not yet colored by Bob, then Alice wins the game. Otherwise, Bob wins, i.e., in the
end each vertex v is colored by Bob before running out of f(v) permissible colors.

Given an integer-valued function f defined on V (G), we say that G is on-line f -
choosable if Bob has a winning strategy for the on-line f -list coloring game on G no
matter how Alice plays; particularly, if f(v) is a constant k for all v ∈ V (G), then we say
that G is on-line k-choosable. Denoted by χp(G), the on-line choice number of G is the
minimum number k such that G is on-line k-choosable.

The conventional list coloring, introduced by Vizing [14] and independently by Erdős,
Rubin and Taylor [3], is a special case that Alice shows Bob the full lists in the very
beginning of the on-line list coloring game. So Bob has a winning strategy for the list
coloring if he has one for the on-line list coloring game. Let χ(G) and χ`(G) denote the
chromatic number and choice number of a graph G, respectively. In general, we have
χ(G) 6 χ`(G) 6 χp(G) for any G.

It is known that χ`(G) − χ(G) can be arbitrarily large; see [5] for an example that
demonstrates complete bipartite graphs G having χ`(G) arbitrarily large but χ(G) = 2.
An interesting question is whether χp(G) − χ`(G) can be arbitrarily large. To the best
of our knowledge, the problem is still open. Although there exist a few graphs G with
χp(G) > χ`(G), the largest gap known up to now is 1 as shown in [15].

Another interesting question raises naturally: for which graphs G does χ(G) = χ`(G)
= χp(G)? There have been many studies on graphs satisfying χ`(G) = χ(G) (see [4, 7,
9, 12] and references therein); such a graph is called chromatic-choosable. Likewise, a
graph G is called on-line chromatic-choosable if χp(G) = χ(G). Ohba [12] conjectured
that for all graphs G with |V (G)| 6 2χ(G) + 1, G is chromatic-choosable; recently, this
has been proved by Noel, Reed and Wu [11]. Let Kn1?k1,n2?k2,...,ns?ks denote the complete
multipartite graph where ki partite sets are of size ni for i = 1, 2, . . . , s. For short, we
shall simplify ni ?1 as ni (for example K3?2,4 = K3?2,4?1). In view of the fact that K2?k,3 is
not on-line chromatic-choosable for k > 2 [8], Huang, Wong and Zhu [6] slightly modified
the Ohba’s conjecture to its on-line version.

Conjecture 2. [6] Every graph G with |V (G)| 6 2χ(G) is on-line chromatic-
choosable.

We remark that to prove the on-line Ohba’s conjecture, it suffices to prove it for
complete χ(G)-partite graphs G since adding edges does not reduce the on-line choice
number. Conjecture 2 has been verified for complete multipartite graphs with a small
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independence number. Using the Combinatorial Nullstellensatz, the authors [6] proved
that K2?k is on-line chromatic-choosable. Recently, Kim et al [8] gave an algorithmic proof
for K2?k and later Kozik, Micek and Zhu [10] extended the case to complete multipartite
graphs with independence number at most 3.

This paper focuses on complete multipartite graphs with independence number m. In
Section 2, we generalize the algorithmic methods in [8, 10] and give a unified strategy for
the on-line choice number of graphs with any prescribed m. Our main result provides
a sufficient condition on f for graphs being on-line f -choosable by partitioning vertices
into independent sets in a systematic way. It is a broadly applicable tool which leads to
several interesting consequences comparable to known results. Section 3 presents some
immediate consequences.

2 Main Result

This section starts with some notations and definitions. Throughout the rest of this paper,
we shall use “part” instead of “partite set” for short, and let m be a fixed positive integer.
Consider a complete multipartite graph G with part size at most m, i.e. independent
number at most m. Let Π = {Xm−1, Xm−2, . . . , X1, X2, . . . , Xm} be a partition of parts
of G, where Xp is a family consisting of parts of size exact p for 2 6 p 6 m and Xp a
family consisting of parts of size at most p for 1 6 p 6 m− 1. Particularly, X1 contains
only parts of size 1. Notably, the partition is not unique since a part of size p can belong
to either Xp or Xj for some j 6 p. Let up and `p denote the number of parts of Xp and

Xp, respectively, i.e., |Xp| = up and |Xp| = `p. For each family Xp, we use the second
coordinates to denote parts in the family, e.g., Xp = (Xp,1, . . . , Xp,`p) where Xp,i means
the ith part in Xp. When it comes to vertices in a family of parts, we shall use the
notation V (·) to avoid confusion. Given a function f : V (G) → N, for y = 1, 2, . . . ,m,
define

F (y) ≡ min

 ∑
v∈V (Y )

f(v) : Y ⊆ X ∈
m⋃
p=2

Xp and |Y | = y

 .

Notice that F (1) = min
v∈

⋃m
p=2 V (Xp)

f(v). For j = 1, 2, . . . ,m, define

S(j) ≡
j∑

p=2

up +
m∑

p=j+1

(p− j)up.

Let α(1) =
m∑
p=2

up and β(1) = 0, and define recursively that for j = 2, . . . ,m,

α(j) ≡ α(j − 1) + S(j − 1) and

β(j) ≡ β(j − 1) +

m−j+1∑
p=1

|V (Xp)|.
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Then it can be easily expressed as

α(j) =

j∑
p=2

(
j +

p2

2
− 3p

2
+ 1

)
up +

m∑
p=j+1

(
j

2
− j2

2
+ pj − p+ 1

)
up (1)

and

β(j) =

m−j∑
p=1

(j − 1)|V (Xp)|+
m−1∑

p=m−j+1

(m− p)|V (Xp)| (2)

for j = 1, . . . ,m.
The following propositions are elementary but useful observations.

Proposition 3. For j = 1, . . . ,m− 1, let S(m− j) =
m∑
p=2

spup. Then we have 1 = s2 =

s3 = · · · = sm−j+1 < sm−j+2 < · · · < sm−1 < sm.

Proof. The proof follows immediately by definition.

Proposition 4. For j > 2, let α(j) + β(j) =
m∑
p=2

apup +
m−1∑
p=1

bp|V (Xp)| and a1 = b1. The

following is true.

(i) b1 = b2 = · · · = bm−j+1 = j − 1.

(ii) For any integers s and t with 1 6 s < t 6 m, we have at−as > t− s. In particular,
if t > j, then at − as > j − 1 and if t 6 j, then at − as > t− 2.

(iii) For p = 2, 3, . . . ,m, we have ap > max{j, p}.

Proof. The proof of (i) is trivial. We first prove (ii) and consider the following cases.

s = 1 (a) If 2 6 j < t 6 m, then (at − as)− (t− s) = (at − a1)− (t− 1)

=
((

j
2
− j2

2
+ tj − t+ 1

)
− (j − 1)

)
− (t− 1)

= j
2
− j2

2
+ t(j − 2) + 3 > j

2
− j2

2
+ (j + 1)(j − 2) + 3

= j(j−1)+2
2

> 0. Thus, at − as > max{t− s, j − 1}.
(b) If 1 < t 6 j 6 m, then (at − as) − (t − s) = (at − a1) − (t − 1) = ((j +

t2

2
− 3t

2
+ 1) − (j − 1)) − (t − 1) = 1

2
(t− 2)(t− 3) > 0 (as t ∈ N). Therefore,

at − as > max{t− s, t− 2}.

s > 1 (a) If 2 6 j < s < t 6 m, then we have at − as = ( j
2
− j2

2
+ tj − t+ 1)− ( j

2
− j2

2
+

sj − s+ 1) = (t− s)(j − 1) > max{t− s, j − 1}.
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(b) If 2 6 s 6 j < t 6 m, then

(at − as)− (t− s) = (( j
2
− j2

2
+ tj − t+ 1)− (j + s2

2
− 3s

2
+ 1))− (t− s)

= 1
2
(2t(j − 2)− j − j2 − s2 + 5s)

> 1
2
(2(j + 1)(j − 2)− j − j2 − s2 + 5s)

= 1
2
((j + s− 3)(j − s) + 2(s− 2)) > 0.

Besides,

(at − as)− (j − 1) =
((

j
2
− j2

2
+ tj − t+ 1

)
−
(
j + s2

2
− 3s

2
+ 1
))
− (j − 1)

= 1
2

(2t(j − 1)− j2 − 3j + 2− (s2 − 3s))

> 1
2

(2(j + 1)(j − 1)− j2 − 3j + 2− (s2 − 3s))

= 1
2

((j2 − 3j)− (s2 − 3s)) > 0,

where the last inequality holds for j > s > 2. Therefore, at − as > max{t −
s, j − 1}.

(c) If 2 6 s < t 6 j 6 m, then at − as = (j + t2

2
− 3t

2
+ 1) − (j + s2

2
− 3s

2
+ 1) =

1
2
(t − s)(t + s − 3). If s = t − 1, then at − as = t − 2 > t − s. If s < t − 1,

then t− s > 2 and at − as > t+ s− 3 > t− 1 > t− 2 > t− s. In either case,
at − as > max{t− s, t− 2}, as desired.

Next, we prove (iii). When p 6 j, we have j + p2

2
− 3p

2
+ 1 − j = p2−3p+2

2
> 0 for all

p > 2. When p > j + 1,

j

2
− j2

2
+ pj − p+ 1− p =

j

2
− j2

2
+ (j − 2)p+ 1

>
j

2
− j2

2
+ (j − 2)(j + 1) + 1

= 1
2
(j2 − j − 2) > 0

for all j > 2. The proof is complete.
Throughout the paper, U shall be used to denote the set Alice marks and I ⊆ U

denotes the set Bob removes. For any U ⊆ V (G), the indicator function 1U of U is

defined as 1U(x) =

{
1 if x ∈ U ;

0 if x 6∈ U.

Proposition 5. [10, 13] If G is edgeless and f(v) > 1 for all v ∈ V (G), then G is on-line
f -choosable. A graph G is on-line f -choosable if and only if for any U ⊆ V (G) there
exists an independent set I ⊆ U of G such that G− I is on-line (f − 1U)-choosable.

For a subset Y ⊆ X ∈ Xj with |Y | = y, we say that F (y) is saturated with respect to
Y if F (y) =

∑
w∈Y f(w) = α(j) + β(j). We are now ready to prove the main result.

Theorem 6. Let G be a complete multipartite graph with independence number m > 2. If
there is a partition Π of parts of G and a function f : V (G)→ N satisfying the following:
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(R1) F (j) > α(j) + β(j) for all j = 1, . . . ,m and

(R2) f(v) > S(m − j) +

j−1∑
p=1

|V (Xp)| +
i−1∑
q=1

|V (Xj,q)| + 1 for all v ∈ V (Xj,i) for all

j = 1, . . . ,m and 1 6 i 6 `j,

then G is on-line f -choosable.

Proof. We shall prove the theorem by induction on |V (G)|. Obviously, if G is edgeless,
then G is on-line f -choosable since f(v) > F (1) > 1 for all v ∈ V (

⋃m
p=2Xp) by (R1) and

f(v) > 1 for v ∈ V (
⋃m−1

p=1 Xp) by (R2). Assume that G has at least two parts and that
the statement is true for all graphs of order less than |V (G)|. We shall prove that if G has
a partition Π of parts and a function f : V (G) → N so that (R1) and (R2) are satisfied,
then no matter what U ⊆ V (G) Alice marks, there exists an independent set I ⊆ U of G
such that the resulting graph G′ = G − I satisfies the two conditions, i.e., there exists a
partition Π′ of parts of G′ such that f ′ = f − 1U satisfies (R1) and (R2) with respect to
Π′. Then by induction we conclude that G′ is on-line f ′-choosable and thus G is on-line
f -choosable by Proposition 5.

For a given U ⊆ V (G), the crucial step is twofold: decide an independent set I ⊆ U

and give a partition Π′ = {X ′m−1, X ′m−2, . . . , X ′1, X
′
2, . . . , X

′
m} of parts of G′. Our strategy

will be given case by case depending on U . Particularly, in any considered case we shall
assume that all the previous cases do not hold. Note that from Π to Π′ all families
are inherited except two: the family from which I is chosen and the family where the
remaining partite set X − I is inserted. The notations (Xj, X − I) and (X − I,Xj)
denote that the remaining set X−I is inserted to the end and the beginning of the family
Xj, respectively. Note also that, once U is given, the function f ′ can be obtained from f
with little difference 1U . So we may and shall verify the inequalities in (R1) and (R2)
for f ′ and Π′ by comparing the difference with that for f and Π.

Case 1: U contains a part X ∈ Xj∗ for some j∗.
Let I = X and Π′ be obtained from Π by removing I where all families remain except
X
′
j∗ = Xj∗ −X. Next we verify (R1) and (R2) for the updated Π′ and f ′.

(R1). For all j ∈ [m], we have F ′(j) > F (j)− j > α(j) + β(j)− j > α′(j) + β′(j), where
the last inequality follows from u′j∗ = uj∗ − 1, β′(j) = β(j) and Proposition 4.
(R2). Since f ′(v) > f(v) − 1 for each v ∈ V (Xj), it suffices to show that S ′(m − j) 6
S(m− j)− 1. This follows immediately from u′j∗ = uj∗ − 1 and Proposition 3.

Case 2: U ∩X 6= ∅ for some X ∈ Xj∗ and F (y) is saturated with respect
to Y for some Y ⊆ U ∩X, where y = |Y |.
Among all those cases we choose the one with the largest y. Let I = U ∩ X and Π′ be
obtained from Π by removing I where all families remain except X

′
j∗ = Xj∗ − X and

X ′m−y = (Xm−y, X − I). Let y∗ = |U ∩ X|. Obviously, u′j∗ = uj∗ − 1, `′m−y = `m−y + 1
and |V (X ′m−y)| = |V (Xm−y)|+ (j∗− y∗). Of particular note is that j∗ > y otherwise it is
Case 1.
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(R1). Consider F ′(j) for the case j 6 y, which implies j∗ > j. Since j∗ > j and
u′j∗ = uj∗ − 1, from Eq.(1) we obtain

α(j) = α′(j) +

(
j

2
− j2

2
+ jj∗ − j∗ + 1

)
. (3)

Since there are j∗ − y∗ elements inserted to the family X ′m−y and m − y 6 m − j, by
Proposition 4, β(j) = β′(j)− (j − 1)(j∗ − y∗). We now verify (R1),

F.
′(j) > F (j)− j

> α(j) + β(j)− j

=

[
α′(j) +

(
j

2
− j2

2
+ jj∗ − j∗ + 1

)]
+ [β′(j)− (j − 1)(j∗ − y∗)]− j

= α′(j) + β′(j) + (j − 1)

(
y∗ − j + 2

2

)
> α′(j) + β′(j) (as y∗ > y > j).

Consider the case j > y. Since j∗ > y, it follows that m − y > m − j∗ + 1 and the
coefficient of |V (Xm−y)| in the expression (2) of β(j) is y. Thus, β(j) = β′(j)−y(j∗−y∗).
We have F ′(j) > F (j) − j > α(j) + β(j)− j + 1︸ ︷︷ ︸

Q

where the second inequality holds by

the maximality assumption of y.
If j < j∗, then

Q = α′(j) +

(
j

2
− j2

2
+ jj∗ − j∗ + 1

)
︸ ︷︷ ︸

by Eq. (3)

+β′(j)− y(j∗ − y∗)− j + 1

> α′(j) +

(
j

2
− j2

2
+ jj∗ − j∗ + 1

)
+ β′(j)− y∗(j∗ − y∗)− j + 1

> α′(j) + β′(j),

where the last inequality can be proved through two cases: If y∗ > j, then it follows from
the same analysis as the previous case; if y∗ < j, then it follows from the fact that the

quadratic function g(j) =
(

j
2
− j2

2
+ jj∗ − j∗ + 1

)
−y∗(j∗−y∗)− j+ 1 is increasing when

y∗ < j < j∗ and g(y∗ + 1) > 0 for y∗ /∈ (1, 2).

If j > j∗, then the coefficient of uj∗ in the expression (1) of α(j) is j + (j∗)2

2
− 3j∗

2
+ 1,

which implies α(j) = α′(j) +
(
j + (j∗)2

2
− 3j∗

2
+ 1
)

. Hence

Q =

[
α′(j) +

(
j +

(j∗)2

2
− 3j∗

2
+ 1

)]
+ β′(j)− y(j∗ − y∗)− j + 1

> α′(j) + β′(j) +
(j∗)2

2
− 3j∗

2
+ 2− y(j∗ − y)
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> α′(j) + β′(j) +
(j∗)2

2
− 3j∗

2
+ 2− (j∗)2

4

(
as y(j∗ − y) has a max. at y =

j∗

2

)
= α′(j) + β′(j) +

(j∗ − 2)(j∗ − 4)

4
> α′(j) + β′(j) whenever j∗ 6= 3 (noticing that j∗ > 2).

When j∗ = 3, either y = 1 or y = 2. This implies y(j∗ − y) = 2. Consequently,
(j∗)2

2
− 3j∗

2
+ 2− y(j∗ − y) = 0 and then F ′(j) > Q > α′(j) + β′(j), as desired.

(R2). Consider f ′(v) for any v ∈ X ′j,i.
For the case {j < m− y} or {j = m− y and i 6 `m−y}, we conclude the same

f ′(v) > f(v)− 1 > S(m− j) +

j−1∑
p=1

|V (Xp)|+
i−1∑
q=1

|V (Xj,q)|

> S ′(m− j) + 1 +

j−1∑
p=1

|V (X ′p)|+
i−1∑
q=1

|V (X ′j,q)|,

where the last inequality follows from u′j∗ = uj∗ − 1, Proposition 3 and the fact that the
last two terms are inherited.

For the case j = m− y and i = `m−y + 1, obviously v ∈ X − I. In this case,

f ′(v) = f(v) > F (y + 1)−
∑
w∈Y

f(w) (as F (y) is saturated with respect to Y )

= F (y + 1)− [α(y) + β(y)]

> α(y + 1)− α(y) + β(y + 1)− β(y)

= S(y) +

m−y∑
p=1

|V (Xp)|

> [S ′(y) + 1] +

[
m−y−1∑
p=1

|V (X ′p)|+
i−1∑
q=1

|V (Xm−y,q)|

]
(by Proposition 3)

and thus (R2) is satisfied by simply substituting m− j into y.
For the case j > m − y, we have j∗ > y∗ > y > m − j + 1. Therefore, by definition,

the coefficient of uj∗ in the expression of S(m− j) is j∗−m+ j. This implies S ′(m− j) 6
S(m− j)− (j∗ −m+ j) and thus

f ′(v) > f(v)− 1

> S(m− j) +

[
j−1∑
p=1

|V (Xp)|+
i−1∑
q=1

|V (Xj,q)|

]

> S ′(m− j) + (j∗ −m+ j) +

[
j−1∑
p=1

|V (X ′p)|+
i−1∑
q=1

|V (X ′j,q)| − (j∗ − y∗)

]
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> S ′(m− j) +

j−1∑
p=1

|V (X ′p)|+
i−1∑
q=1

|V (X ′j,q)|+ 1,

as desired.
Note that as Cases 1 and 2 were excluded, in all remaining cases we conclude that if

U ∩X 6= ∅ for some X ∈ Xj, then

(i) |U ∩X| < j otherwise it is Case 1,

(ii) for all subsets Y ⊆ U ∩X, F (|Y |) is not saturated with respect to Y otherwise it is
Case 2.

Case 3: From the above discussion, we know that one of the following cases
must happen if U 6= ∅.

(3.1) V (Xm+1−s) ∩ U 6= ∅ for some 2 6 s 6 m,

(3.2) there exists Y ⊆ U and Y ⊆ X ∈
m⋃

p=2

Xp with |Y | = t for some 1 6 t 6

m− 1 such that F (t) is not saturated with respect to Y ,

(3.3) there exists Y * U and Y ⊆ X ∈ Xu for some 2 6 u 6 m such that
F (|Y |) is saturated with respect to Y and X ∩ U 6= ∅.

Among all these cases, we choose the one with the largest s, t, u (if they are equal then
the priority is s, t and then u). For example, if s = u = 4 and t = 5 then the first case
we deal with is Case (3.2) with t = 5.

Case (3.1): Notice that in this case, s > u and s > t. We choose the least i∗

among all i’s with V (Xm+1−s,i) ∩ U 6= ∅. Let I = V (Xm+1−s,i∗) ∩ U and Π′ be obtained
from Π by removing I where all families remain except X ′m+1−s,i∗ = Xm+1−s,i∗ − I and
the orderings are inherited. Obviously, α′(j) = α(j) for all j ∈ [m].
(R1). Consider any subset J ⊆ X ∈ Xj∗ with |J | = j for some j∗. Notice that j 6 j∗.
Here we may assume that J ∩U 6= ∅ because it is trivial that

∑
w∈J f

′(w) > α′(j) + β′(j)
if J ∩ U = ∅.

If F (j) is saturated with respect to J , then J * U (by Case 2) and j∗ 6 s (otherwise
it is Case (3.3) with u = j∗ > s). Since X ′m+1−s = Xm+1−s − I, I 6= ∅, and the coefficient
of |V (Xm+1−s)| in the expression of β(j) is j− 1 (from j 6 s and Proposition 4), we have
β(j) > β′(j) + (j − 1). It follows that∑

w∈J

f ′(w) > F (j)− (j − 1) (as J * U)

> α(j) + β(j)− (j − 1)

> α′(j) + β′(j). (as α′(j) = α(j))
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If F (j) is not saturated with respect to J and J ⊆ U , then j 6 s (otherwise it is Case
(3.2) with t = j > s). Thus, the coefficient of |V (Xm+1−s)| in β(j) is j − 1. This implies
that β(j) > β′(j)+(j−1). Accordingly,

∑
w∈J f

′(w) > [α(j)+β(j)+1]−j > α′(j)+β′(j),
where the first inequality holds as F (j) is not saturated with respect to J .

If F (j) is not saturated and J * U , then F (|J ∩ U |) must also not be saturated
with respect to J ∩ U (by Case 2) and |J ∩ U | 6 s (otherwise it is Case (3.2) with
t = |J ∩ U | > s). Hence,

∑
w∈J f

′(w) > F (j) + 1 − |J ∩ U | > α′(j) + β′(j). Notice that
the last inequality holds as β(j) + 1 − |J ∩ U | > β′(j), which follows from the fact that
the coefficient of |V (Xm+1−s)| of β(j) in Eq.(2) is at least min{j − 1, s− 1}.

From the above discussion, in either case we have
∑

w∈J f
′(w) > α′(j) + β′(j). As J

is chosen arbitrarily, we can conclude that F ′(j) > α′(j) + β′(j) for all j ∈ [m].
(R2). Because of the maximality of s, it suffices to consider v ∈ V (X ′j,i) for the two
cases {j > m+ 1− s} and {j = m+ 1− s and i > i∗} as f ′(v) is inherited otherwise. If
j > m + 1 − s, then f ′(v) > f(v) − 1 > S(m − j) +

∑j−1
p=1 |V (Xp)| +

∑i−1
q=1 |V (Xj,q)| >

S ′(m− j) +
[∑j−1

p=1 |V (X ′p)|+ 1
]

+
∑i−1

q=1 |V (X ′j,q)|, as desired.

For the case that i > i∗ and j = m + 1 − s, because of the minimality of i∗, we
have

∑i−1
q=1 |V (Xj,q)| >

∑i−1
q=1 |V (X ′j,q)| + 1. Similarly, we can conclude that f ′(v) >

S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
[∑i−1

q=1 |V (X ′j,q)|+ 1
]
, as desired.

Case (3.2): Note that in this case, t is the largest, i.e., t > s and t > u. We
may assume that there exists Y ⊆ U and Y ⊆ X ∈ Xj∗ with |Y | = t, 1 6 t 6 m−1, such
that F (t) is not saturated with respect to Y . Let I = U∩X (noticing that j∗ > |I| > t) and

Π′ be obtained from Π by removing I where all families remain except that X
′
j∗ = Xj∗−X,

(a) X
′
j∗−|I| = Xj∗−|I| ∪ {X − I} if j∗ − |I| > 2 and (b) X ′1 = (X − I,X1) if

j∗ − |I| = 1. In other words, we have u′j∗ = uj∗ − 1 and either (a) u′j∗−|I| = uj∗−|I| + 1

or (b) |V (X ′1)| = |V (X1)|+ 1. Observing the corresponding coefficients of uj∗ , uj∗−|I| and
|V (X1)| in the expression of α(j)+β(j), we have that aj∗−aj∗−|I| and aj∗−b1 are at least
|I| by Proposition 4. Accordingly, we can conclude that α(j) + β(j) > α′(j) + β′(j) + |I|.
(R1). Consider any subset J ⊆ K ∈ Xk with |J | = j for some k. Notice that j 6 k.
We may assume that J ∩ U 6= ∅, otherwise

∑
w∈J f

′(w) > F (j) > α′(j) + β′(j) since
α(j) + β(j) > α′(j) + β′(j) + |I|.

For the special case that K = X − I ∈ X ′j∗−|I|,
∑

w∈J f
′(w) =

∑
w∈J f(w) and thus

(R1) is satisfied immediately as α′(j) 6 α(j) and β′(j) = β(j).
Consider the case that F (j) is saturated with respect to J and k 6 t, which implies

J * U by Case 2. It follows that
∑

w∈J f
′(w) > α(j)+β(j)−(j−1). Since j 6 k 6 t 6 |I|,∑

w∈J f
′(w) > α(j) + β(j)− (j − 1) > α′(j) + β′(j) + |I| − (j − 1) > α′(j) + β′(j).

If F (j) is saturated with respect to J and k > t, then J ∩U must be empty otherwise
it is either J ⊆ U (Case 2) or J * U (Case (3.3) with u = k > t), a contradiction to the
assumption J ∩ U 6= ∅.

If F (j) is not saturated with respect to J , then F (|J ∩U |) must not be saturated with
respect to J∩U (by Case 2) and |J∩U | 6 t (by the maximality assumption of t). It follows
that

∑
w∈J f

′(w) > [α(j)+β(j)+1]−|J∩U | > α′(j)+β′(j)+|I|+1−|J∩U | > α′(j)+β′(j)
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as |I| > t > |J ∩ U |.
From the above discussion, in either case we have

∑
w∈J f

′(w) > α′(j) + β′(j). As J
is chosen arbitrarily, we can conclude that F ′(j) > α′(j) + β′(j) for all j ∈ [m].
(R2). Consider f ′(v) for any v ∈ Xj,i.

For the special case that v ∈ X − I = X1,1, f
′(v) = f(v) > F (1) > α(1) + β(1) =∑m

p=2 up = S ′(m− 1) + 1, as desired. Recall that if it is the case (a), all families remain

except that X
′
j∗ = Xj∗ − X and X

′
j∗−|I| = Xj∗−|I| ∪ {X − I}. If it is the case (b), all

families remain except that X
′
j∗ = Xj∗ −X and X ′1 = (X − I,X1).

If j 6 m + 1 − t, then we have v 6∈ V (Xj) ∩ U otherwise it is Case (3.1) with

s = m+1−j > t. Therefore, f ′(v) = f(v) > S(m−j)+
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|+1.
If it is the case (a), then S ′(m − j) 6 S(m − j) (as sj∗ > sj∗−|I| by Proposition 3) and∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| =
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|.
If it is the case (b), then S ′(m− j) 6 S(m− j)− 1 (by Proposition 3 and u′j∗ = uj∗ − 1)

and
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| =
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|+1. In either case,

f ′(v) > S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1, as desired.
If j > m + 1 − t, then m + 1 − j < j∗ since t < j∗ otherwise it is Case 1. In this

case, observing the coefficients of uj∗ and uj∗−|I| in S(m− j), we obtain sj∗ > sj∗−|I| and
sj∗ > 2 by Proposition 3.
If it is the case (a), then S(m − j) > S ′(m − j) + 1 (since sj∗ > sj∗−|I|) and thus

f ′(v) > f(v)− 1 > S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1 as
∑j−1

p=1 |V (X ′p)| and∑i−1
q=1 |V (X ′j,q)| are inherited.

If it is the case (b), then S(m − j) > S ′(m − j) + 2 (since sj∗ > 2 and u′j∗ = uj∗ −
1) and

∑j−1
p=1 |V (X ′p)| +

∑i−1
q=1 |V (X ′j,q)| =

∑j−1
p=1 |V (Xp)| +

∑i−1
q=1 |V (Xj,q)| + 1. Thus,

f ′(v) > f(v)− 1 > [S ′(m− j) + 2] +
[∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| − 1
]
> S ′(m− j) +∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1, as desired.

Case (3.3): Note that in this case, u is the largest, i.e., u > s and u > t.
To avoid confusion, instead of u we shall use j∗ to denote the largest index and assume
that there exists Y * U and Y ⊆ X ∈ Xj∗ such that F (|Y |) is saturated with respect to
Y . Among all these cases with the same j∗, we choose the one with the largest |U ∩X|.
Let I = U ∩ X and Π′ be obtained from Π by removing I where all families remain
except that X

′
j∗ = Xj∗ − X, (a) X

′
j∗−|I| = Xj∗−|I| ∪ {X − I} if j∗ − |I| > 2 and

(b) X ′1 = (X − I,X1) if j∗ − |I| = 1. Notice that u′j∗ = uj∗ − 1 and either (a)
u′j∗−|I| = uj∗−|I| + 1 or (b) |V (X ′1)| = |V (X1)| + 1. The same argument as that in Case

(3.2) implies that α(j) + β(j) > α′(j) + β′(j) + |I|.
(R1). Consider any subset J ⊆ K ∈ Xk with |J | = j for some k and J ∩ U 6= ∅. Notice
that j 6 k.

For the special case thatK = X−I ∈ X ′j∗−|I|, it follows that
∑

w∈J f
′(w) =

∑
w∈J f(w)

and thus (R1) is satisfied immediately as α′(j) 6 α(j) and β′(j) = β(j).
If F (j) is saturated with respect to J , then k 6 j∗ otherwise it is Case (3.3) with

k > j∗ violating the maximality assumption of j∗. Next we discuss the two cases k = j∗
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and k < j∗ separately.
For the case k = j∗,

∑
w∈J f

′(w) > F (j) − |I| > α(j) + β(j) − |I| > α′(j) + β′(j) where
the first inequality follows from the fact that among all the cases with k = j∗ we choose
the one with the largest |U ∩X|.
If k < j∗, then J * U (since Case 2 does not hold). It follows that

∑
w∈J f

′(w) >
α(j)+β(j)− (j−1). In addition, j 6 k < j∗ implies that aj∗−max{aj∗−|I|, b1} > j−1 by
Proposition 4. It follows that α(j) + β(j) > α′(j) + β′(j) + j − 1. Hence,

∑
w∈J f

′(w) >
α′(j) + β′(j).

Consider the case when F (j) is not saturated with respect to J . It follows that∑
w∈J f

′(w) > α(j) + β(j) + 1− j. There are two cases: j < j∗ and j > j∗.
If j < j∗, by Proposition 4 we have aj∗ − max{aj∗−|I|, b1} > j − 1. This implies that
α(j) + β(j) > α′(j) + β′(j) + j − 1 and therefore

∑
w∈J f

′(w) > α′(j) + β′(j).
If j > j∗, then we have J * U otherwise it is Case (3.2) with t = j > j∗ = u. Furthermore,
it must be |J ∩ U | < j∗ otherwise either F (|J ∩ U |) is saturated with respect to J ∩ U
(Case 2) or F (|J ∩ U |) is not saturated with respect to J ∩ U and t = |J ∩ U | > j∗ = u
(Case (3.2)). Since F (j) is not saturated with respect to J and |J ∩ U | < j∗, we have∑

w∈J f
′(w) > α(j) + β(j) + 1 − (j∗ − 1). Since j > j∗, by Proposition 4 we have

aj∗ −max{aj∗−|I|, b1} > j∗ − 2. It follows that α(j) + β(j) > α′(j) + β′(j) + j∗ − 2 and
thus

∑
w∈J f

′(w) > α′(j) + β′(j).
From the above discussion, in either case we have

∑
w∈J f

′(w) > α′(j) + β′(j). As J
is chosen arbitrarily, we can conclude that F ′(j) > α′(j) + β′(j) for all j ∈ [m].
(R2). Consider f ′(v) for any v ∈ Xj,i.

For the special case that v ∈ X − I = X1,1, f
′(v) = f(v) > F (1) > α(1) + β(1) =∑m

p=2 up = S ′(m− 1) + 1, as desired. Recall that if it is the case (a), all families remain

except that X
′
j∗ = Xj∗ − X and X

′
j∗−|I| = Xj∗−|I| ∪ {X − I}. If it is the case (b), all

families remain except that X
′
j∗ = Xj∗ −X and X ′1 = (X − I,X1).

If j 6 m+ 1− j∗, then we have v 6∈ V (Xj)∩U otherwise it is Case (3.1) with s = m+

1− j > j∗ = u. Therefore, f ′(v) = f(v) > S(m− j)+
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|+1.
If it is the case (a), then S ′(m− j) 6 S(m− j) (by Proposition 3 and j∗ > j∗ − |I|) and∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| =
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|.
If it is the case (b), then S ′(m− j) 6 S(m− j)− 1 (by Proposition 3 and u′j∗ = uj∗ − 1)

and
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| =
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)|+ 1.

In either case, f ′(v) > S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1 as desired.
If j > m + 1 − j∗, then j∗ > m + 1 − j. If it is the case (a), then to verify f ′(v) it

suffices to compare the coefficients of uj∗ and uj∗−|I| in S(m− j). Since j∗ > m + 1− j,
we have sj∗ > sj∗−|I| by Proposition 3. Consequently, S ′(m − j) 6 S(m − j) − 1. Thus,

f ′(v) > S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1.

Otherwise, if it is the case (b), then
∑j−1

p=1 |V (X ′p)| +
∑i−1

q=1 |V (X ′j,q)| =
∑j−1

p=1 |V (Xp)| +∑i−1
q=1 |V (Xj,q)| + 1. Since j∗ > m + 1 − j, the term uj∗ in S(m − j) has a coefficient

sj∗ > 2 by Proposition 3. It follows that S(m − j) > S ′(m − j) + 2 as u′j∗ = uj∗ − 1.

Thus, f ′(v) > f(v)− 1 > S(m− j) +
∑j−1

p=1 |V (Xp)|+
∑i−1

q=1 |V (Xj,q)| > (S ′(m− j) + 2) +
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(
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)| − 1) > S ′(m− j) +
∑j−1

p=1 |V (X ′p)|+
∑i−1

q=1 |V (X ′j,q)|+ 1.
As one of the above cases must occur, by induction the proof is complete.

3 Consequences of Theorem 6

Theorem 6 provides a sufficient condition on f for graphs being on-line f -choosable. It is
a widely applicable tool for computing the on-line choice number of complete multipartite
graphs with varying parameters. Many interesting results can be obtained immediately
from Theorem 6. This section provides only some of them that are relevant to recent
results.

Theorem 7. Let G be a complete multipartite graph with independence number m >
2 and let kp denote the number of parts of cardinality p for 1 6 p 6 m. If k1 −
m∑
p=2

(
p2

2
− 3p

2
+ 1

)
kp > 0, then G is on-line chromatic-choosable.

Proof. Consider the particular partition Π = {Xm−1, Xm−2, . . . , X1, X2, . . . , Xm} of
parts of G where Xm−1, Xm−2, . . . , X2 are empty sets. Note that when all the families
Xm−1, Xm−2, . . . , X2 are empty, the remaining families are determined exactly. That
is `m−1 = `m−2 = · · · = `2 = 0, `1 = k1 and up = kp for p = 2, 3, . . . ,m. Obviously,∑m

p=2 up + `1 =
∑m

p=1 kp = χ(G). Let f(v) = χ(G) for all v ∈ V (G).
Next, we will verify that f and Π with arbitrarily ordered X1 satisfy (R1) and (R2)

in Theorem 6. The inequality (R2) holds as f(v) =
∑m

p=2 up + `1 > S(m − 1) +∑i−1
q=1 |V (X1,q)|+ 1 for all v ∈ V (X1,i).

Consider any subset J ⊆ X ∈
⋃m

p=2Xp with |J | = j, 1 6 j 6 m. To verify (R1), it
suffices to prove that

∑
w∈J f(w) > α(j) + β(j), or equivalently that

j

(
m∑
p=2

up + `1

)
>

j∑
p=2

(
j +

p2

2
− 3p

2
+ 1

)
up

+
m∑

p=j+1

(
j

2
− j2

2
+ pj − p+ 1

)
up + (j − 1)`1

⇔ `1 −
j∑

p=2

(
p2

2
− 3p

2
+ 1

)
up −

m∑
p=j+1

(
−j

2
− j2

2
+ pj − p+ 1

)
up > 0. (4)

Obviously, Eq.(4) is always true for j = 1. By using elementary calculus, it is easy to

prove that for all j = 2, 3, . . . ,m with j 6 p−1, (p
2

2
− 3p

2
+ 1)− (− j

2
− j2

2
+pj−p+ 1) > 0.

Thus, to prove Eq.(4) for all j ∈ [m], it suffices to show that

`1 −
m∑
p=2

(
p2

2
− 3p

2
+ 1

)
up > 0. (5)
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This is trivially true as k1 −
∑m

p=2

(
p2

2
− 3p

2
+ 1
)
kp > 0. By Theorem 6, G is on-line

chromatic-choosable.
For any two graphs G and H, denote by G + H the join of G and H, that is, the

disjoint union of G and H with the edges {uv : u ∈ V (G), v ∈ V (H)}. Kozik, Micek
and Zhu [10] proved that for any graph G, the join of G and a complete graph of order
|V (G)|2 is on-line chromatic-choosable. Later, Carraher, Loeb, Mahoney, Puleo, Tsai and
West [2] improved upon |V (G)|2 with an additional assumption. Precisely, they proved
that for every d-degenerate graph G having an optimal proper coloring with color classes
of size at most m, G+Kt is on-line chromatic-choosable if t > (m+ 1)d. Theorem 7 also
provides an alternative result in this aspect.

Corollary 8. Let G be a graph of independence number at most m and have an optimal
proper coloring where there are ki color classes of cardinality i. If

t >
m∑
p=2

(
p2

2
− 3p

2
+ 1

)
kp − k1,

then G+Kt is on-line chromatic-choosable.

Kozik, Micek and Zhu [10] commented that when |V (G)| 6 χ(G) +
√
χ(G), then G is

on-line chromatic-choosable. Later, Carraher et al. [2] showed that the same conclusion
holds under a relaxed condition |V (G)| 6 χ(G) + 2

√
χ(G)− 1. They proposed a weak

version of Conjecture 2:

Conjecture 9 (Weak On-Line Ohba’s Conjecture). [2] There is a constant c ∈ (1, 2] such
that χp(G) = χ(G) whenever |V (G)| 6 cχ(G).

The weak on-line Ohba’s conjecture is still open, to the best of our knowledge. Fol-
lowing the same argument in Theorem 7, we obtain the following result, which goes one
further step towards the weak conjecture.

Corollary 10. If G is a graph with independence number m > 2 and

|V (G)| 6 m2 −m+ 2

m2 − 3m+ 4
χ(G),

then χ(G) = χp(G).

Proof. As |V (G)| 6 m2 −m+ 2

m2 − 3m+ 4
χ(G), χ(G) = `1+

∑m
p=2 up, and |V (G)| = `1+

∑m
p=2 pup,

we have

`1 >
m∑
p=2

[
p(m2 − 3m+ 4)− (m2 −m+ 2)

2m− 2

]
up.

According to Eq.(5), it suffices to show that when 2 6 p 6 m,

p(m2 − 3m+ 4)− (m2 −m+ 2)

2m− 2
−
(
p2

2
− 3p

2
+ 1

)
> 0. (6)
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Simplifying yields (m− 1)p2 − (m2 + 1)p+m2 +m 6 0. Consider the quadratic function
g(p) = (m − 1)p2 − (m2 + 1)p + m2 + m. Obviously, g(2) 6 0 and g(m) 6 0 whenever
m > 2. Thus, one can conclude that g(p) 6 0 whenever 2 6 p 6 m. This completes the
proof.

Consequently, any graph G with |V (G)| 6 2χ(G) and independence number m 6 3 is
on-line chromatic-choosable; the same conclusion was proved independently in [6, 8] for
m = 2 and in [10] for m 6 3.

Alon [1] established the asymptotically tight bound χ`(Km?k) = Θ(k logm). The
following result, which is another immediate consequence of Theorem 6, gives a general
upper bound for χp(Km?k).

Corollary 11. For any integer m > 3, χp(Km?k) 6
(
m+ 1

2
−
√

2m− 2
)
k.

Proof. Consider the partition Π = {Xm−1, Xm−2, . . . , X1, X2, . . . , Xm} of parts of Km?k

where all families are empty except Xm, i.e., um = k and `1 = · · · = `m−1 = u2 = · · · =
um−1 = 0. Let f(v) =

(
m+ 1

2
−
√

2m− 2
)
k for all v ∈ V (Km?k). The corollary follows

directly from Theorem 6 with the specified (Π, f).
Particularly, when m = 3, it assures the same conclusion in [10] that χp(K3?k) 6 3

2
k.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions.

References

[1] N. Alon. Choice numbers of graphs: a probabilistic approach. Combin. Probab.
Comput., 1(02):107–114, 1992.

[2] J. Carraher, S. Loeb, T. Mahoney, G. Puleo, M. Tsai, and D. West. Extending graph
choosability results to paintability. Manuscript, 2011.

[3] P. Erds, A. L. Rubin, and H. Taylor. Choosability in graphs. Congr. Numer., 26:125–
157, 1979.

[4] F. Galvin. The list chromatic index of a bipartite multigraph. J. Combin. Theory B,
63(1):153–158, 1995.

[5] S. Gravier. A Hajs-like theorem for list coloring. Discrete Math., 152(1):299–302,
1996.

[6] P.-Y. Huang, T.-L. Wong, and X. Zhu. Application of polynomial method to on-line
list colouring of graphs. Eur. J. Combin., 33(5):872–883, 2012.

[7] T. R. Jensen and B. Toft. Graph coloring problems. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, New York, 1995.

[8] S.-J. Kim, Y. S. Kwon, D. D.-F. Liu, and X. Zhu. On-line list colouring of complete
multipartite graphs. Electron. J. Combin., 19(1):P41, 2012.

the electronic journal of combinatorics 22(1) (2015), #P1.6 15



[9] A. V. Kostochka and D. R. Woodall. Choosability conjectures and multicircuits.
Discrete Math., 240(1):123–143, 2001.

[10] J. Kozik, P. Micek, and X. Zhu. Towards an on-line version of Ohbas conjecture.
Eur. J. Combin., 36:110–121, 2014.

[11] J. A. Noel, B. A. Reed, and H. Wu. A proof of a conjecture of Ohba. J. Graph
Theory, doi:10.1002/jgt.21819, 2014.

[12] K. Ohba. On chromatic-choosable graphs. J. Graph Theory, 40(2):130–135, 2002.

[13] U. Schauz. Mr. Paint and Mrs. Correct. Electron. J. Combin., 16(1):R77, 2009.

[14] V. G. Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz.,
29(3):10, 1976.

[15] X. Zhu. On-line list colouring of graphs. Electron. J. Combin., 16(1):R127, 2009.

the electronic journal of combinatorics 22(1) (2015), #P1.6 16

http://dx.doi.org/10.1002/jgt.21819

	Introduction
	Main Result
	Consequences of Theorem 6

