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Abstract

Let I ⊂ K[x1, . . . , xn] be a zero-dimensional monomial ideal, and ∆(I) be the
simplicial complex whose Stanley–Reisner ideal is the polarization of I. It follows
from a result of Soleyman Jahan that ∆(I) is shellable. We give a new short proof
of this fact by providing an explicit shelling. Moreover, we show that ∆(I) is even
vertex decomposable. The ideal L(I), which is defined to be the Stanley–Reisner
ideal of the Alexander dual of ∆(I), has a linear resolution which is cellular and
supported on a regular CW-complex. All powers of L(I) have a linear resolution.
We compute depth L(I)k and show that depth L(I)k = n for all k > n.

Keywords: depth function; linear quotients; vertex decomposable; whisker com-
plexes; zero-dimensional ideals

1 Introduction

Graphs with whiskers have first been considered by Villarreal in [19]. They all share
the nice property that they are Cohen-Macaulay. Various extensions of this concept and
generalizations of his result have been considered in the literature, see [2, 8, 13, 18]. The
edge ideal of a whisker graph is obtained as the polarization of a monomial ideal I ⊂ S,
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where S = K[x1, . . . , xn] is the polynomial ring over a field K, I is generated in degree 2
and dimS/I = 0. In particular, I contains the squares x2

1, . . . , x
2
n. More generally, given

a simplicial complex Γ, the whisker complex W (Γ) is studied in [15]. Its facet ideal is
the polarization of a monomial ideal in S which contains all the x2

i . In [15], Loiskekoski
shows that the Stanley–Reisner ideal of the Alexander dual of the independence complex
of W (Γ) has a linear resolution, as well as its powers.

In the present paper we generalize the above mentioned results by considering the
polarization of any monomial ideal I ⊂ S with dimS/I = 0. The simplicial complex
Θ(I), whose facet ideal coincides with the polarization I℘ of I, is called of whisker type
– the whiskers being the simplices corresponding to the polarization of the pure powers
contained in I. The independence complex of Θ(I), denoted ∆(I), is characterized by the
property that the Stanley–Reisner ideal I∆(I) coincides with I℘. Note that F ∈ ∆(I) if
and only if F does not contain any facet of Θ(I).

Given an arbitrary monomial ideal I ⊂ S, a multicomplex is associated with I, as
defined by Popescu and the second author in [11]. Soleyman Jahan defines in [17, Propo-
sition 3.8] a bijection between the facets of the multicomplex given by I and the facets
of the simplicial complex associated with I℘. In Theorem 1 we present a short proof of
this bijection when dimS/I = 0, by using multiplicity theory. This result allows us to
describe in Corollary 2 the facets of ∆(I). By applying the Eagon–Reiner Theorem it
is then shown in Corollary 3 that the ideal L(I) has a linear resolution, where L(I) is
generated by the monomials x1,a1+1 · · · xn,an+1 for which xa11 · · ·xann is a monomial in S not
belonging to I.

In the case that dimS/I = 0, the case we consider here, the corresponding multicom-
plex is pretty clean, see [11]. Soleyman Jahan showed in [17, Theorem 4.3] that if I de-
fines a pretty clean multicomplex, then the simplicial complex associated with I℘ is clean,
which, by a theorem of Dress [5], implies that the simplicial complex attached to I℘ is
shellable. Applied to our situation it follows that ∆(I) is shellable. We give a direct proof
of this fact by showing that L(I) has linear quotients. This provides an explicit shelling
of ∆(I), and as a side result we obtain a formula for the Betti numbers of L(I) in terms
of the h-vector of S/I, see Corollary 6. We conclude Section 2 with Corollary 8, where
it is shown that the minimal graded free resolution of L(I) is cellular and supported on
a regular CW-complex. The proof is based on a result of Dochtermann and Mohammadi
[4, Theorem 3.10], who showed that the minimal graded free resolution of any ideal with
regular decomposition function, as defined in [12], have such nice cellular structure.

In Section 3 we show that ∆(I) is not only shellable but even vertex decomposable.
This was already known for whisker graphs (see [3, Theorem 4.4]). Finally in Section 4 we
prove that all powers of L(I) have linear quotients, see Theorem 10. Analyzing the linear
quotients, the depth function f(k) = depth S/L(I)k can be computed. In Corollary 11 a
formula for the depth function is given and limk→∞ depth S/L(I)k is determined.
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2 Independence complex of a whisker type simplicial complex

Throughout this paper S denotes the polynomial ring K[x1, . . . , xn] and I ⊂ S a monomial
ideal with dimS/I = 0, unless otherwise stated. The (finite) set of monomials in S which
belong to S but not to I will be denoted by Mon(S \ I). For an arbitrary monomial
ideal I, we denote by G(I) the unique minimal set of monomial generators of I. We will
consider the polarization of I, denoted I℘. The polynomial ring in which I℘ is defined
will be denoted by S℘.

In the following theorem (cf. [17, Proposition 3.8]) we determine the set Min(I℘) of
minimal prime ideals of I℘.

Theorem 1. Let I ⊂ S be a monomial ideal with dimS/I = 0. The map φ which
assigns to each monomial u = xa11 · · ·xann ∈ S \ I the monomial prime ideal φ(u) =
(x1,a1+1, . . . , xn,an+1) ⊂ S℘, establishes a bijection between Mon(S \ I) and Min(I℘).

Proof. We first observe that φ(Mon(S \ I)) ⊂ S℘. Indeed, since dimS/I = 0, there
exists for each 1 6 i 6 n an integer bi > 0 such that xbii ∈ I and xbi−1

i /∈ I. It follows
that S℘ is the polynomial ring in the variables xi,1, . . . , xi,bi with 1 6 i 6 n. Now let
u = xa11 · · ·xann ∈ Mon(S \ I). Then ai < bi for all i, and this implies that φ(u) ∈ S℘.

Next we show that φ(Mon(S \I)) ⊂ Min(I℘). In fact, let u = xa11 · · ·xann be an element
in Mon(S \ I), and let v ∈ G(I). We claim that there exists an integer i such that xi,ai+1

divides v℘, where v℘ is the polarization of v. From this claim it follows that I℘ ⊂ φ(u).
Since height I℘ = height I = n and since height φ(u) = n, we then see that φ(u) is in
fact a minimal prime ideal of I℘.

Let v = xb11 · · ·xbnn . In order to prove the claim, note that v℘ =
∏n

i=1(
∏bi

j=1 xi,j). Since
v does not divide u, there exists an integer i such that bi > ai. Therefore, xi,ai+1 divides
v℘, as desired.

Clearly, φ is injective. We will show that |Mon(S \ I)| = |Min(I℘)|. This will then
imply that φ : Mon(S \ I) → Min(I℘) is bijective. In order to see that these two sets
have the same cardinality we observe that the multiplicity e(S/I) of S/I is equal to the
length `(S/I) of S/I, because dimS/I = 0, see [1, Corollary 4.7.11(b)]. Since `(S/I) =
dimK S/I and since the elements of Mon(S \ I) form a K-basis of S/I, we see that
e(S/I) = dimK S/I = |Mon(S \ I)|. On the other hand, since S/I is isomorphic to S℘/I℘

modulo a regular sequence of linear forms [9, Proposition 1.6.2], and since S℘/I℘ is reduced
and equidimensional, [1, Corollary 4.7.8] implies that e(S/I) = e(S℘/I℘) = |Min(I℘)|.

We denote by ∆(I) the simplicial complex whose Stanley-Reisner ideal is I℘. We view
the variables xi,j ∈ S℘ as the vertices of ∆(I). As an immediate consequence of Theorem 1
we obtain

Corollary 2. Let S be the set of variables of S℘. Then F ⊂ S is a facet of ∆(I) if and
only if there exists xa11 · · ·xann ∈ Mon(S \ I) such that

F = S \ {x1,a1+1, . . . , xn,an+1}.
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Since ∆(I) is Cohen–Macaulay, the Eagon–Reiner Theorem [6] (see also [9, Theo-
rem 8.1.9]) implies that I∆(I)∨ has a linear resolution. Here ∆(I)∨ denotes the Alexander
dual of ∆(I). Recall that, if ∆ is an arbitrary simplicial complex on the vertex set
[n] = {1, . . . , n} and I∆ =

⋂
F PF where PF = (xi : i ∈ F ), then I∆∨ is generated by the

monomials uF where uF =
∏

i∈F xi. These facts applied to our case yield

Corollary 3. The ideal L(I) generated by the monomials x1,a1+1 · · ·xn,an+1, with
xa11 · · ·xann ∈ Mon(S \ I), has a linear resolution.

In the following we consider the special case that x2
i ∈ I for all i. In that case all

other generators of I are square-free. In simplified notation, the polarization I℘ of I is
generated by the square-free monomials in I and by the monomials xiyi for i = 1, . . . , n.

Let Γ be the simplicial complex with I(Γ) = J and W (Γ) be the simplicial complex
with I(W (Γ)) = (J, x1y1, . . . , xnyn). The edges of W (Γ) corresponding to the xiyi are
called the whiskers of W (Γ) and W (Γ) is called the whisker complex of Γ.

Given a simplicial complex Σ, the independence complex Λ of Σ is the simplicial
complex such that IΛ = I(Σ). Notice that F ∈ Λ if and only if no face of Σ is contained
in F .

Corollary 4. Let Γ be a simplicial complex on the vertex set [n], I ′ = I(Γ) the facet
ideal of Γ and W (Γ) its whisker complex. Let I = (I ′, x2

1, x
2
2, . . . , x

2
n). Then ∆(I) is the

independence complex ofW (Γ) and L(I) is generated by the monomials
∏

i∈[n]\F xi
∏

i∈F yi
with F ∈ ∆, where ∆ is the independence complex of Γ.

3 Linear quotients

Let I ⊂ S be a monomial ideal with dimS/I = 0. The main purpose of this section is to
show that L(I) not only has a linear resolution, but even has linear quotients.

Theorem 5. The ideal L(I) has linear quotients.

Proof. Let u, v ∈ G(L(I)), u = x1,a1+1 · · ·xn,an+1 and v = x1,b1+1 · · ·xn,bn+1. We set u 6 v
if ai 6 bi for all i, and extend this partial order to a total order on G(L(I)). We claim
that, with respect to this total order of the monomial generators of L(I), the ideal L(I)
has linear quotients. Indeed, let x1,a1+1 · · ·xn,an+1 be the largest element in G(L(I)).
Then u = xa11 · · ·xann ∈ Mon(S \ I) and xiu ∈ I for all i. Set I ′ = I + (u). Then the
polarization (I ′)℘ of I ′ is equal to I∆(I′). Notice that L(I ′) ⊂ L(I) and `(S/I ′) < `(S/I).
In particular, L(I) = (L(I ′), x1,a1+1 · · ·xn,an+1). Arguing by induction on the length, we
may assume that L(I ′) has linear quotients. Thus we just need to compute the colon ideal
Q = L(I ′) : x1,a1+1 · · ·xn,an+1. We claim that

Q = (x1,1, x1,2, . . . , x1,a1 , x2,1, . . . , x2,a2 , . . . , xn,1, . . . , xn,an). (1)

Suppose that j ∈ {1, . . . , ai} for some i. Then xa11 · · ·x
j−1
i · · · xann ∈ Mon(S \ I) and

φ(xa11 · · ·x
j−1
i · · ·xann ) = x1,a1+1 · · ·xi,j . . . xn,an+1 ∈ L(I ′).
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It follows that xi,j ∈ Q.
On the other hand, the elements v/ gcd(v, x1,a1+1 · · ·xn,an+1) with v ∈ G(L(I ′)) gen-

erate Q, see for example [9, Proposition 1.2.2]. In fact, let v ∈ G(L(I ′)). Then v =
x1,c1+1 · · ·xn,cn+1 and xc11 · · ·xcnn ∈ Mon(S \ I ′). There exists i such that ci < ai because
xiu ∈ I for all i. Hence xi,ci+1 does not divide x1,a1+1 · · ·xn,an+1, and therefore xi,ci+1

divides v/ gcd(v, x1,a1+1 · · ·xn,an+1). Since ci + 1 6 ai, the desired conclusion follows.

Corollary 6. For every i > 0,

βi(S
℘/L(I)) =

∑
j>0

hj

(
j

i− 1

)
,

where hj = hj(S/I) is the j-th component of the h-vector of S/I. In particular,
proj dim S℘/L(I) = max{deg u : u ∈ Mon(S \ I)}+ 1.

Proof. As in the previous proof, let u = xa11 · · ·xann ∈ Mon(S \ I) with xiu ∈ I for all i.
Set I ′ = I + (u), and consider the short exact sequence

0→ L(I)/L(I ′)→ S℘/L(I ′)→ S℘/L(I)→ 0.

Notice that L(I)/L(I ′) ∼= S℘/Q(−n) with Q as in (1). Hence its minimal free resolution
is the Koszul complex K on the variables xi,j with xi,j ∈ G(Q). Thus the minimal free
resolution of S℘/L(I) can be obtained as a mapping cone of K and the minimal free
resolution of S℘/L(I ′). Therefore β0(S℘/L(I)) = β0(S℘/L(I ′)), and for i > 1 we obtain

βi(S
℘/L(I)) = βi(S

℘/L(I ′)) + rank (Ki−1) = βi(S
℘/L(I ′)) +

(
deg u

i− 1

)
=

∑
u∈Mon(S\I)

(
deg u

i− 1

)
=
∑
j>0

hj

(
j

i− 1

)
.

It is easily seen that the geometric realization of ∆(I) is a sphere if I is a complete
intersection, and a ball otherwise. Both topological spaces admit shellable triangulations,
though in general not all triangulations of these spaces are shellable, see [16] and [14].
However, due to Theorem 5 we have

Corollary 7. The simplicial complex ∆(I) is shellable.

As a further consequence of Theorem 5 we have

Corollary 8. The graded minimal free resolution of L(I) is cellular and supported on a
regular CW-complex.
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Proof. Since L(I) has linear quotients we may apply [4, Theorem 3.10] and only need
to show that L(I) admits a regular decomposition function. In order to explain this,
let J = (u1, . . . , um) be an ideal with linear quotients with respect to the given order of
the generators. The decomposition function of J (with respect to the given order of the
generators of J) is the map b : Mon(J) → G(J) with b(u) = uj, where j is the smallest
number such that u ∈ (u1, . . . , uj). For each uj ∈ G(J), let set(uj) be the set of all xi
such that xiuj ∈ (u1, . . . , uj−1). According to [12], the decomposition function b is called
regular, if set(b(xiuj)) ⊂ set(uj) for all uj ∈ G(J) and all xi ∈ set(uj).

Now let u ∈ G(L(I)), u = x1,a1+1 · · ·xn,an+1. By (1) we have

set(u) = {x1,1, x1,2, . . . , x1,a1 , x2,1, . . . , x2,a2 , . . . , xn,1, . . . , xn,an}.

Let xi,j ∈ set(u). Then b(xi,ju) = xi,j(u/xi,ai+1), and so

set(b(xi,ju)) = set(u) \ {xi,j+1, . . . , xi,ai} ⊂ set(u),

as desired.

4 Vertex decomposability

In [3, Theorem 4.4] it was shown that for any graph, the independence complex of its
whisker graph is vertex decomposable. Here we extend this result by showing that ∆(I) is
vertex decomposable for any monomial ideal I with dimS/I = 0. Recall that a simplicial
complex ∆ is called vertex decomposable if ∆ is a simplex, or ∆ contains a vertex v such
that

(i) any facet of del∆(v) is a facet of ∆, and

(ii) both del∆(v) and link∆(v) are vertex decomposable.

Here link∆(v) = {G ∈ ∆ : v 6∈ G and G ∪ {v} ∈ ∆} is the link of v in ∆ and del∆(v) =
{G ∈ ∆ : v 6∈ G} is the deletion of v from ∆.

A vertex v which satisfies condition (i) is called a shedding vertex of ∆.

For the proof of the next result we observe the following fact: let ∆ be a simplicial
complex, F(∆) the set of its facets and v a vertex not belonging to ∆. The cone of v over
∆, denoted by v ∗∆, is the simplicial complex whose set of facets is F(v ∗∆) = {{v}∪F :
F ∈ F(∆)}. If ∆ is vertex decomposable, then v ∗∆ is again vertex decomposable (with
respect to the same shedding vertex).

Theorem 9. Let I be a monomial ideal in S = K[x1, . . . , xn] with dimS/I = 0. Then
∆(I) is vertex decomposable.

Proof. By assumption, for each 1 6 i 6 n there exists bi > 1 such that xbii ∈ G(I). Then
∆(I) is a simplicial complex on S = {x1,1, . . . , x1,b1 , . . . , xn,1, . . . , xn,bn}. We proceed by
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induction on
∑n

i=1 bi. If
∑n

i=1 bi = n, then I = (x1, . . . , xn), which is a trivial case.
Suppose that

∑n
i=1 bi > n. Hence we may assume bn > 1.

We first show that the vertex xn,1 is a shedding vertex of ∆(I). Clearly,

del∆(I)(xn,1) = {F : F ∈ ∆(I), xn,1 /∈ F} ∪ {F \ {xn,1} : F ∈ ∆(I), xn,1 ∈ F}.

Obviously, any facet of del∆(I)(xn,1) with xn,1 /∈ F is a facet of ∆(I). On the other
hand, if we consider F \ {xn,1} with F ∈ F(∆(I)) and xn,1 ∈ F , then F \ {xn,1} is
not a facet of del∆(I)(xn,1). Indeed, since F ∈ F(∆(I)), there exists u ∈ Mon(S \ I)
such that φ(u) = PS\F . Let t be the largest integer such that xtn divides u. Then
xn,t+1 ∈ PS\F and so xn,j ∈ F for all j 6= t + 1. Since xn,1 ∈ F , we have t + 1 6=
1. Let u′ = u/xtn. Then u′ ∈ Mon(S \ I) and φ(u′) = P((S\F )\{xn,t+1})∪{xn,1}. Thus
G = (F \ {xn,1}) ∪ {xn,t+1} ∈ F(∆(I)). Since G ∈ del∆(I)(xn,1), the claim follows.
Consequently, F(del∆(I)(xn,1)) = {F : F ∈ F(∆(I)), xn,1 /∈ F} which implies that xn,1 is
a shedding vertex of ∆(I).

We now prove that del∆(I)(xn,1) and link∆(I)(xn,1) are vertex decomposable.
First we consider del∆(I)(xn,1). Let J1 be the ideal in S with Mon(S \ J1) = {u :

u ∈ Mon(S \ I), xn does not divide u}. Then ∆(J1) is a simplicial complex on S \
{xn,1, . . . , xn,bn}. By using Corollary 2 we see that

del∆(I)(xn,1) = xn,bn ∗ (xn,bn−1 ∗ (· · · ∗ (xn,2 ∗∆(J1)))).

Our induction hypothesis implies that ∆(J1) is vertex decomposable, hence del∆(I)(xn,1)
is vertex decomposable.

As for link∆(I)(xn,1), let Γ be the simplicial complex whose faces are obtained from the
faces of link∆(I)(xn,1) as follows: for every F ∈ link∆(I)(xn,1), we replace each xn,j ∈ F by
xn,j−1. Hence Γ is a simplicial complex on S \ {xn,bn} and Γ ∼= link∆(I)(xn,1). Let J2 be
the monomial ideal in S such that Mon(S \ J2) = {u/xn : u ∈ Mon(S \ I), xn divides u}.
Then Corollary 2 implies that Γ = ∆(J2), which is vertex decomposable by induction
hypothesis. It follows that link∆(I)(xn,1) is vertex decomposable, as desired.

5 Powers

In this section we study the powers of L(I). The main result is

Theorem 10. Let I ⊂ S be a monomial ideal with dimS/I = 0. Then L(I)k has linear
quotients for all k. In particular, all powers of L(I) have a linear resolution.

Proof. Any u ∈ L(I)k can be written in the form u = u′1u
′
2 · · ·u′n, where u′i =

xi,j(i)1xi,j(i)2 · · ·xi,j(i)k for i = 1, . . . , n with j(i)1 6 j(i)2 6 · · · 6 j(i)k. We define a
partial order on G(L(I)k) by setting v 6 u, if, with respect to the lexicographical order,
u′i 6 v′i for all i, and we extend this partial order to a total order on the set of monomial
generators of L(I)k.

Now let v, u ∈ L(I)k with v < u. We need to show that there exists w ∈ L(I)k

with w < u such that w/ gcd(w, u) is of degree 1 and such that w/ gcd(w, u) divides
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v/ gcd(v, u). Indeed, since v < u, there exists i such that u′i < v′i in the lexicographical
order. Thus if v′i = xi,j′(i)1xi,j′(i)2 · · ·xi,j′(i)k with j′(i)1 6 j′(i)2 6 · · · 6 j′(i)k, then there
exists ` such that j′(i)s = j(i)s for s < ` and j′(i)` < j(i)`. We let w = w′1w

′
2 · · ·w′n with

w′t = u′t for t 6= i and w′i = xi,j′(i)`(u
′
i/xi,j(i)`).

It is clear that w < u. Furthermore, w ∈ G(L(I)k). In fact, u = u1 · · ·uk with ui ∈
L(I), and xi,j(i)` divides one of these factors, say it divides ur. Then ūr = xi,j′(i)`(ur/xi,j(i)`)
belongs to L(I) since j′(i)` < j(i)`, and hence w = u1 · · · ūr · · ·uk belongs to G(L(I)k).
Note further that w/ gcd(w, u) = xi,j′(i)` and that xi,j′(i)` divides v/ gcd(v, u). This com-
pletes the proof.

Corollary 11. For i = 1, . . . , n, let bi be the smallest integer such that xbii ∈ I. Then

depth S℘/L(I)k =
n∑

i=1

bi −max{deg(lcm(u1, . . . , uk)) : u1, . . . , uk ∈ Mon(S \ I)} − 1.

In particular, depth S℘/L(I)k = n− 1 for all k > n, and

depth S℘/L(I)k > depth S℘/L(I)k+1,

as long as depth S℘/L(I)k > n− 1.

Proof. In general, let J ⊂ K[x1, . . . , xn] be a graded ideal generated by a sequence
f1, . . . , fs with linear quotients, and denote by qj(J) the minimal number of linear forms
generating the ideal (f1, f2, . . . , fj−1) : fj. Then depth K[x1, . . . , xn]/J = n − q(J) − 1,
where q(J) = max{qj(J) : 2 6 j 6 s}, see [10, Formula (1)].

We apply this formula to S℘/L(I)k. Since the Krull dimension of S℘ is equal to∑n
i=1 bi, it remains to be shown that

q(L(I)k) = max{deg(lcm(u1, u2, . . . , uk)) : u1, u2, . . . , uk ∈ Mon(S \ I)}. (2)

To see this, let u1, u2, . . . , uk ∈ Mon(S \ I) where uj = x
a1(j)
1 · · ·xan(j)

n for j = 1, . . . , k.

Then u = u′1u
′
2 · · ·u′n with u′i =

∏k
j=1 xi,ai(j)+1 is a generator of L(I)k. We may assume

that u is the j-th element in the given total order of the elements of G(L(I)k). As shown
in the proof of Theorem 10, qj(L(I)k) is the cardinality of the set

{x1,1, . . . , x1,c1 , x2,1, . . . , x2,c2 , . . . , xn,1, . . . , xn,cn},

where ci = max{ai(1), . . . , ai(k)} for i = 1, . . . , n. If follows that

qj(L(I)k) = deg(lcm(u1, u2, . . . , uk)),

and hence equation (2) follows.
Suppose now that k > n. Then we may choose ui = xbi−1

i for i = 1, . . . , n and
ui ∈ Mon(S \ I) arbitrary for i > n, and obtain deg(lcm(u1, u2, . . . uk)) =

∑n
i=1(bi − 1) =∑n

i=1 bi − n. Since this is the largest possible least common multiple of sequences of
elements of Mon(S \ I), it follows that depth S℘/L(I)k = n− 1 for all k > n.
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Finally, suppose that depth S℘/L(I)k > n− 1. Then the formula for depth S℘/L(I)k

implies that max{deg(lcm(u1, . . . , uk)) : u1, . . . , uk ∈ Mon(S \ I)} <
∑n

i=1(bi − 1).
Let xa11 · · ·xann = lcm(u1, . . . , uk) attain this maximal degree. Since

∑n
i=1 ai <∑n

i=1(bi − 1), there exists an index i such that ai < bi − 1. Let uk+1 = xbi−1
i . Then

deg(lcm(u1, . . . , uk, uk+1)) > deg(lcm(u1, . . . , uk)). Consequently, depth S℘/L(I)k >
depth S℘/L(I)k+1, as desired.
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