A Deza–Frankl type theorem for set partitions

Cheng Yeaw Ku
Department of Mathematics
National University of Singapore
Singapore 117543
matkcy@nus.edu.sg

Kok Bin Wong
Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur, Malaysia
kbwong@um.edu.my

Submitted: Jan 21, 2015; Accepted: Mar 17, 2015; Published: Mar 30, 2015
Mathematics Subject Classifications: 05D99

Abstract
A set partition of \([n]\) is a collection of pairwise disjoint nonempty subsets (called blocks) of \([n]\) whose union is \([n]\). Let \(B(n)\) denote the family of all set partitions of \([n]\). A family \(A \subseteq B(n)\) is said to be \(m\)-intersecting if any two of its members have at least \(m\) blocks in common. For any set partition \(P \in B(n)\), let \(\tau(P) = \{x : \{x\} \in P\}\) denote the union of its singletons. Also, let \(\mu(P) = [n] \setminus \tau(P)\) denote the set of elements that do not appear as a singleton in \(P\). Let

\[
F_{2t} = \{ P \in B(n) : |\mu(P)| \leq t \}; \\
F_{2t+1}(i_0) = \{ P \in B(n) : |\mu(P) \cap ([n] \setminus \{i_0\})| \leq t \}.
\]

In this paper, we show that for \(r \geq 3\), there exists a constant \(n_0 = n_0(r)\) depending on \(r\) such that for all \(n \geq n_0\), if \(A \subseteq B(n)\) is \((n - r)\)-intersecting, then

\[
|A| \leq \begin{cases}
|F_{2t}|, & \text{if } r = 2t; \\
|F_{2t+1}(1)|, & \text{if } r = 2t + 1.
\end{cases}
\]

Moreover, equality holds if and only if

\[
A = \begin{cases}
F_{2t}, & \text{if } r = 2t; \\
F_{2t+1}(i_0), & \text{if } r = 2t + 1,
\end{cases}
\]

for some \(i_0 \in [n]\).

Keywords: \(t\)-intersecting family, Erdős-Ko-Rado, set partitions
1 Introduction

Let \(n = \{1, \ldots, n\} \), and let \(\binom{n}{k} \) denote the family of all \(k \)-subsets of \([n] \). A family \(\mathcal{A} \) of subsets of \([n] \) is \(t \)-intersecting if \(|A \cap B| \geq t \) for all \(A, B \in \mathcal{A} \). One of the most beautiful results in extremal combinatorics is the Erdős-Ko-Rado theorem.

Theorem 1 (Erdős, Ko, and Rado [13], Frankl [15], Wilson [46]). Suppose \(\mathcal{A} \subseteq \binom{[n]}{k} \) is \(t \)-intersecting and \(n > 2k - t \). Then for \(n \geq (k - t + 1)(t + 1) \), we have

\[
|\mathcal{A}| \leq \binom{n - t}{k - t}.
\]

Moreover, if \(n > (k - t + 1)(t + 1) \) then equality holds if and only if \(\mathcal{A} = \{ A \in \binom{[n]}{k} : T \subseteq A \} \) for some \(t \)-set \(T \).

In the celebrated paper [1], Ahlswede and Khachatrian extended the Erdős-Ko-Rado theorem by determining the structure of all \(t \)-intersecting set systems of maximum size for all possible \(n \) (see also [3, 14, 16, 17, 20, 25, 31, 36, 40, 42, 43, 45] for some related results). There have been many recent results showing that a version of the Erdős-Ko-Rado theorem holds for combinatorial objects other than set systems. For example, an analogue of the Erdős-Ko-Rado theorem for the Hamming scheme is proved in [41]. A complete solution for the \(t \)-intersection problem in the Hamming space is given in [2]. Intersecting families of permutations were initiated by Deza and Frankl [10]. Some recent work done on this problem and its variants can be found in [5, 7, 8, 11, 12, 19, 26, 28, 35, 37, 38, 39, 44]. The investigation of the Erdős-Ko-Rado property for graphs started in [23], and gave rise to [4, 6, 21, 22, 24, 47]. The Erdős-Ko-Rado type results also appear in vector spaces [9, 18], set partitions [27, 29, 30] and weak compositions [32, 33, 34].

Let \(S_n \) denote the set of permutations of \([n] \). A family \(\mathcal{A} \subseteq S_n \) is said to be \(m \)-intersecting if for any \(\sigma, \delta \in \mathcal{A} \), there is an \(m \)-set \(T \subseteq [n] \) such that \(\sigma(j) = \delta(j) \) for all \(j \in T \). Given any \(\sigma \in S_n \), set \(\overline{\mu}(\sigma) = \{ j \in [n] : \mu(j) \neq j \} \), i.e., \(\overline{\mu}(\sigma) \) is the set of all elements in \([n] \) that are not fixed by \(\sigma \). Let

\[
\mathcal{F}_r = \begin{cases}
\{ \sigma \in S_n : |\overline{\mu}(\sigma)| \leq t \}, & \text{if } r = 2t; \\
\{ \sigma \in S_n : |\overline{\mu}(\sigma) \cap ([n] \setminus \{1\})| \leq t \}, & \text{if } r = 2t + 1.
\end{cases}
\]

It can be verified easily that \(\mathcal{F}_r \) is \((n - r) \)-intersecting. Furthermore, Deza and Frankl [10] proved the following theorem.

Theorem 2 (Deza-Frankl). For \(r \geq 3 \), there exists an \(n_0 = n_0(r) \) such that for all \(n \geq n_0 \), if \(\mathcal{A} \subseteq S_n \) is \((n - r) \)-intersecting, then

\[
|\mathcal{A}| \leq |\mathcal{F}_r|.
\]

A set partition of \([n] \) is a collection of pairwise disjoint nonempty subsets (called blocks) of \([n] \) whose union is \([n] \). Let \(\mathcal{B}(n) \) denote the family of all set partitions of \([n] \).
It is well-known that the size of $B(n)$ is the n-th Bell number, denoted by B_n. A block of size one is also known as a singleton. We denote the number of all set partitions of $[n]$ which are singleton-free (i.e. without any singleton) by \tilde{B}_n.

A family $\mathcal{A} \subseteq \mathcal{B}(n)$ is said to be m-intersecting if $|P \cap Q| \geq m$ for all $P, Q \in \mathcal{A}$, i.e., any two of its members have at least m blocks in common. Let $I(n, m)$ denote the set of all m-intersecting families of set partitions of $[n]$.

For any set partition $P \in \mathcal{B}(n)$, let $\tau(P) = \{ x : \{ x \} \subseteq P \}$ denote the union of its singletons. Also, let $\mu(P) = [n] - \tau(P)$ denote the set of elements that do not appear as a singleton in P. For any two partitions P, Q, we make the following simple observations:

- P and Q cannot intersect in any singleton $\{ x \}$ where $x \in \mu(P) \triangle \mu(Q)$ (here the operation \triangle denotes the symmetric difference of two sets).
- P and Q must intersect in every singleton $\{ x \}$ where $x \in [n] - (\mu(P) \cup \mu(Q))$.

Let

$$
\mathcal{F}_{2t} = \{ P \in \mathcal{B}(n) : |\mu(P)| \leq t \};
\mathcal{F}_{2t+1}(i_0) = \{ P \in \mathcal{B}(n) : |\mu(P) \cap ([n] \setminus \{i_0\})| \leq t \}.
$$

It can be readily verified that $\mathcal{F}_{2t} \in I(n, n - 2t)$ and $\mathcal{F}_{2t+1}(i_0) \in I(n, n - 2t - 1)$. Moreover,

$$
|\mathcal{F}_{2t}| = \sum_{i=0}^{t} \tilde{B}_i \binom{n}{i},
$$

$$
|\mathcal{F}_{2t+1}(i_0)| = \sum_{i=0}^{t} \tilde{B}_i \binom{n}{i} + \tilde{B}_{t+1} \binom{n-1}{t}.
$$

In this paper, we will prove the following theorem.

Theorem 3. For $r \geq 3$, there exists an $n_0 = n_0(r)$ such that for all $n \geq n_0$, if $\mathcal{A} \subseteq \mathcal{B}(n)$ is $(n - r)$-intersecting, then

$$
|\mathcal{A}| \leq \begin{cases}
|\mathcal{F}_{2t}|, & \text{if } r = 2t; \\
|\mathcal{F}_{2t+1}(1)|, & \text{if } r = 2t + 1.
\end{cases}
$$

Moreover, equality holds if and only if

$$
\mathcal{A} = \begin{cases}
\mathcal{F}_{2t}, & \text{if } r = 2t; \\
\mathcal{F}_{2t+1}(i_0), & \text{if } r = 2t + 1,
\end{cases}
$$

for some $i_0 \in [n]$.

Note that Theorem 3 can be considered as an analogue of Theorem 2 for set partitions. Let $A_0 = \{ \{ x \} : x \in [n] \}$ and $A_1 = \{ \{ x \} : x \in [n] \setminus \{1, 2\} \} \cup \{\{1, 2\}\}$. Then $\mathcal{F}_2 = \{A_0\}$ and $\{A_0, A_1\} \in I(n, n - 2)$. So, $|\{A_0, A_1\}| = 2 > |\mathcal{F}_2| = 1$. This explains why $r \geq 3$ is required in Theorem 3.
2 Splitting operation

In this section, we summarize some important results regarding the splitting operation for intersecting family of set partitions. We refer the reader to [27] for proofs which are omitted here.

Let \(i, j \in [n], i \neq j, \) and \(P \in \mathcal{B}(n) \). Denote by \(P[i] \) the block of \(P \) which contains \(i \). We define the \((i, j)\)-split of \(P \) to be the following set partition:

\[
s_{ij}(P) = \begin{cases} P \setminus \{P[i]\} \cup \{\{i\}, P[i] \setminus \{i\}\} & \text{if } j \in P[i], \\ P & \text{otherwise.} \end{cases}
\]

For a family \(\mathcal{A} \subseteq \mathcal{B}(n) \), let \(s_{ij}(\mathcal{A}) = \{s_{ij}(P) : P \in \mathcal{A}\} \). Any family \(\mathcal{A} \) of set partitions can be decomposed with respect to given \(i, j \in [n] \) as follows:

\[
\mathcal{A} = (\mathcal{A} \setminus \mathcal{A}_{ij}) \cup \mathcal{A}_{ij},
\]

where \(\mathcal{A}_{ij} = \{P \in \mathcal{A} : s_{ij}(P) \notin \mathcal{A}\} \). Define the \((i, j)\)-splitting of \(\mathcal{A} \) to be the family

\[
S_{ij}(\mathcal{A}) = (\mathcal{A} \setminus \mathcal{A}_{ij}) \cup s_{ij}(\mathcal{A}_{ij}).
\]

Surprisingly, it turns out that for any \(\mathcal{A} \in I(n, m) \), splitting operations preserve the size and the intersecting property.

Lemma 4 ([27], Proposition 3.2). Let \(\mathcal{A} \in I(n, m) \). Then \(S_{ij}(\mathcal{A}) \in I(n, m) \) and \(|S_{ij}(\mathcal{A})| = |\mathcal{A}| \).

A family \(\mathcal{A} \) of set partitions is compressed if for any \(i, j \in [n], i \neq j, \) we have \(S_{ij}(\mathcal{A}) = \mathcal{A} \).

Lemma 5 ([27], Proposition 3.3). Given a family \(\mathcal{A} \in I(n, t) \), by repeatedly applying the splitting operations, we eventually obtain a compressed family \(\mathcal{A}^* \in I(n, t) \) with \(|\mathcal{A}^*| = |\mathcal{A}| \).

Lemma 6. Let \(a, b \) be positive integers with \(a + b \leq n \). Let \(P, Q \in \mathcal{B}(n) \) be such that \(|P \cap Q| \geq n - a \). If \(|\tau(P) \setminus \mu(Q)| \leq n - a - b \), then \(P \) and \(Q \) have at least \(b \) blocks of size at least 2 in common and \(|\mu(P) \cap \mu(Q)| \geq 2b \).

Proof. Since \(|\tau(P) \setminus \mu(Q)| \leq n - a - b \), \(P \) and \(Q \) have at most \(n - a - b \) singletons in common. Now, \(|P \cap Q| \geq n - a \) means that \(P \) and \(Q \) have at least \(n - a \) blocks in common. Therefore, \(P \) and \(Q \) must have at least \(b \) blocks of size at least 2 in common.

Let \(W_1, \ldots, W_b \in P \cap Q \) with \(|W_i| \geq 2 \) for all \(i \). Then \(\bigcup_{i=1}^{b} W_i \subseteq \mu(P) \cap \mu(Q) \) and \(W_i \cap W_j = \emptyset \) for \(i \neq j \). This implies that \(2b \leq \sum_{i=1}^{b} |W_i| \leq |\mu(P) \cap \mu(Q)| \).

Lemma 7. If \(\mathcal{A} \in I(n, n - r) \), then \(\max_{P \in \mathcal{A}} |\mu(P)| \leq 2r \).

Proof. Suppose \(\max_{P \in \mathcal{A}} |\mu(P)| = 2r + s \) where \(s \geq 1 \). Let \(P_0 \in \mathcal{A} \) with \(|\mu(P_0)| = 2r + s \). Then \(|\tau(P_0)| = n - 2r - s \). Note that \(|P_0| \geq n - r \) for \(\mathcal{A} \in I(n, n - r) \). By Lemma 6 (take \(Q = P = P_0 \) with \(a = r, b = r + s \)), we have \(2r + s = |\mu(P_0)| \geq 2(r + s) \). Thus, we have \(s \leq 0 \), a contradiction. Hence, the lemma follows.
The following theorem says that the family $F_{2t+1}(i_0)$ is preserved when ‘undoing’ the splitting operations.

Theorem 8. If $t \geq 1$, $n \geq 5t + 3$, $A \in I(n,n - 2t - 1)$ and $S_{ij}(A) = F_{2t+1}(i_0)$, then $A = F_{2t+1}(i_0)$.

Proof. Suppose $A \not\subseteq F_{2t+1}(i_0)$. Then $\max_{P \in A} |\mu(P) \cap ([n] \setminus \{i_0\})| = t + s$ with $s \geq 1$. Let $P_0 \in A$ with $|\mu(P_0) \cap ([n] \setminus \{i_0\})| = t + s$. Then $|\mu(P_0)| = t + 1 + s$ or $t + s$, depending on whether $i_0 \notin \mu(P_0)$ or not. By Lemma 7, $|\mu(P_0)| \leq 4t + 2$. Since $n \geq 5t + 3$, there is a t-set $T \subseteq [n] \setminus (\mu(P_0) \cup \{i_0\})$. Let $A_1 = \{\{x\} : x \in [n] \setminus (T \cup \{i_0\})\} \cup \{T \cup \{i_0\}\}$. Then $A_1 \subseteq F_{2t+1}(i_0) = S_{ij}(A)$.

Now, $|\tau(P_0) \setminus (T \cup \{i_0\})| = n - 2t - 1 - s$, $|T \cup \{i_0\}| = t + 1 \geq 2$ and $(T \cup \{i_0\}) \not\subseteq \mu(P_0)$. The only block in A_1 that has size greater than one is $T \cup \{i_0\}$. Since $(T \cup \{i_0\}) \not\subseteq \mu(P_0)$, $T \cup \{i_0\} \not\subseteq P_0$. So, P_0 and A_1 have singletons in common only. Note that the number of singletons that P_0 and A_1 have in common is exactly $|\tau(P_0) \setminus (T \cup \{i_0\})| = n - 2t - 1 - s$. Thus, $|P_0 \cap A_1| \leq n - 2t - 1 - s \leq n - 2t - 2$. This means that $A_1 \notin A$ and $A_1 = S_{ij}(C_1)$ for some $C_1 \in A$.

Now, there are two possibilities for C_1 depending on whether j is in $T \cup \{i_0\}$ or not:

(i) $C_1 = \{\{x\} : x \in [n] \setminus (T \cup \{i_0\})\} \cup \{T \cup \{i_0\}\}$ and $j \in T \cup \{i_0\}$.

(ii) $C_1 = \{\{x\} : x \in [n] \setminus (T \cup \{i_0, j\})\} \cup \{(T \cup \{i_0\}, \{i, j\}\}$.

If (i) holds, then $(T \cup \{i_0\}) \not\subseteq P_0$ since $(T \cup \{i_0\}) \not\subseteq \mu(P_0)$, and $|\tau(P_0) \setminus (T \cup \{i_0\})| \leq |\tau(P_0) \setminus (T \cup \{i_0\})| = n - 2t - 1 - s$. Thus, $|P_0 \cap C_1| \leq n - 2t - 1 - s \leq n - 2t - 2$, a contradiction.

Suppose (ii) holds. The number of singletons that P_0 and C_1 have in common is at most $|\tau(P_0) \setminus (T \cup \{i_0, j\})| \leq |\tau(P_0) \setminus (T \cup \{i_0\})| \leq n - 2t - 1 - s$. Recall that $T \cup \{i_0\} \not\subseteq P_0$. If $\{i, j\} \notin P_0$, then $|P_0 \cap C_1| \leq n - 2t - 1 - s \leq n - 2t - 2$, a contradiction.

If $\{i, j\} \in P_0$, then $P_0 \cap C_1 \leq n - 2t - s$. Since $|P_0 \cap C_1| > n - 2t - 1$, we must have $s = 1$, $|P_0 \cap C_1| = n - 2t - 1$, and $C_1 = \{\{x\} : x \in [n] \setminus (T \cup \{i_0, j\})\} \cup \{(T \cup \{i_0\}, \{i, j\}\}$. But then $|\mu(C_1) \setminus ([n] \setminus \{i_0\})| = |T \cup \{i, j\}| = t + 2 > t + 1 = |\mu(P_0) \cap ([n] \setminus \{i_0\})|$, contradicting the choice of P_0. Thus, $A \subseteq F_{2t+1}(i_0)$. By Lemma 4, $|A| = |S_{ij}(A)| = |F_{2t+1}(i_0)|$. Hence, $A = F_{2t+1}(i_0)$.

\[\square \]

3 Main result

Lemma 9. Let $t \geq 1$, $A \subseteq B(n)$ and $W \subseteq [n]$. Suppose that $|W| \leq q$ and $|\mu(P) \setminus W| \leq t - 1$ for all $P \in A$. Then there exists an $n_0 = n_0(q,t)$ such that for all $n \geq n_0$,

$$|A| < n^{t - 0.5}.$$

Proof. Note that for each $P \in A$,

$$\mu(P) = C_1 \cup C_2,$$
where \(C_1 \subseteq [n] \setminus W, |C_1| \leq t - 1 \) and \(C_2 \subseteq W \). The number of such \(C_1 \) is at most
\[
\sum_{i=0}^{t-1} \binom{n - |W|}{i} \leq \sum_{i=0}^{t-1} \binom{n}{i},
\]
and the number of such \(C_2 \) is at most \(2^{|W|} \leq 2^n \). Furthermore, \(|\mu(P)| = |\mu(P) \setminus W| + |\mu(P) \cap W| \leq t - 1 + q \). Therefore the number of \(Q \in \mathcal{A} \) with \(|\mu(Q) = \mu(P)| \) is at most \(\tilde{B}_{|\mu(P)|} \leq \tilde{B}_{t-1+q} \), where \(\tilde{B}_m \) is the number of singleton-free set partitions of \([m]\). Thus
\[
|\mathcal{A}| \leq \tilde{B}_{t-1+q} 2^n \sum_{i=0}^{t-1} \binom{n}{i}.
\]
If \(t = 1 \), then \(|\mathcal{A}| \leq \tilde{B}_q 2^n < n^{0.5} \) provided that \(n \geq (B_q 2^n)^2 \). Suppose \(t \geq 2 \). Then
\[
|\mathcal{A}| \leq \tilde{B}_{t-1+q} 2^n \left(1 + \sum_{i=1}^{t-1} \frac{n^i}{i!} \prod_{j=1}^{i-1} \left(1 - \frac{j}{n} \right) \right)
< \tilde{B}_{t-1+q} 2^n \left(1 + \sum_{i=1}^{t-1} \frac{n^{t-1}}{i!} \right)
= \tilde{B}_{t-1+q} 2^n t^{t-1} < n^{t-0.5},
\]
provided that \(n \geq (\tilde{B}_{t-1+q} 2^n t)^2 \). This completes the proof of the lemma. \(\square \)

Lemma 10. For \(t \geq 2 \), there exists an \(n_0 = n_0(t) \) such that for all \(n \geq n_0 \), if \(\mathcal{A} \in I(n, n - 2t) \), then
\[
|\mathcal{A}| \leq |\mathcal{F}_{2t}|.
\]
Moreover, equality holds if and only if \(\mathcal{A} = \mathcal{F}_{2t} \).

Proof. Suppose \(\mathcal{A} \not\subseteq \mathcal{F}_{2t} \). Then \(\max_{P \in \mathcal{A}} |\mu(P)| = t + s \) with \(s \geq 1 \). Let \(P_0 \in \mathcal{A} \) with \(|\mu(P_0)| = t + s \). By Lemma 7, \(\max_{P \in \mathcal{A}} |\mu(P)| \leq 4t \).

Claim*. \(|\mu(P) \setminus \mu(P_0)| \leq t - 1 \) for all \(P \in \mathcal{A} \).

Suppose there is a \(Q \in \mathcal{A} \) with \(|\mu(Q) \setminus \mu(P_0)| \geq t \). Then \(|\tau(P_0) \setminus \mu(Q)| \leq n - 2t - s \). Since \(|P_0 \cap Q| \geq n - 2t \), by Lemma 6, \(|\mu(P_0) \cap \mu(Q)| \geq 2s \). Therefore \(|\mu(Q)| = |\mu(Q) \setminus \mu(P_0)| + |\mu(P_0) \cap \mu(Q)| \geq t + 2s \). On the other hand, \(|\mu(Q)| \leq |\mu(P_0)| = t + s \) by the choice of \(P_0 \). This implies that \(s \leq 0 \), a contradiction. Hence, the claim follows.

By Claim* and Lemma 9 (take \(W = \mu(P_0) \) and \(q = 4t \)), \(|\mathcal{A}| < n^{t-0.5} \). Note that \(\tilde{B}_t \geq \tilde{B}_2 = 1 \) for \(t \geq 2 \). So, by equation (1),
\[
|\mathcal{F}_{2t}| = \sum_{i=0}^{t} \tilde{B}_i \binom{n}{i} > \tilde{B}_t \binom{n}{t} > \frac{1}{t!} \prod_{j=0}^{t-1} (n - j) \geq \frac{n^t}{t! 2^{t-1}} > n^{t-0.5},
\]
provided that \(n \geq \max \left(\left(t! 2^{t-1} \right)^2, 2t - 2 \right) \). Thus, \(|\mathcal{A}| < |\mathcal{F}_{2t}| \).

Suppose \(\mathcal{A} \subseteq \mathcal{F}_{2t} \). Then \(|\mathcal{A}| \leq |\mathcal{F}_{2t}| \) and equality holds if and only if \(\mathcal{A} = \mathcal{F}_{2t} \). \(\square \)
Lemma 11. For \(t \geq 1 \), there exists an \(n_0 = n_0(t) \) such that for all \(n \geq n_0 \), if \(A \in I(n, n - 2t - 1) \) and \(A \) is compressed, then

\[
|A| \leq |\mathcal{F}_{2t+1}(1)|.
\]

Moreover, equality holds if and only if \(A = \mathcal{F}_{2t+1}(i_0) \) for some \(i_0 \in [n] \).

Proof. Since \(t \geq 1 \), \(\tilde{B}_{t+1} = \tilde{B}_2 = 1 \). Therefore, by equation (2), for all \(a \in [n] \),

\[
|\mathcal{F}_{2t+1}(a)| = \sum_{i=0}^{t} \tilde{B}_i \binom{n}{i} + \tilde{B}_{t+1} \binom{n-1}{t}
\]

\[
\geq \tilde{B}_t \binom{n}{t} + \binom{n-1}{t}
\]

\[
= \tilde{B}_t \binom{n}{t} + \frac{1}{t!} \prod_{j=0}^{t-1} (n-1-j)
\]

\[
\geq \tilde{B}_t \binom{n}{t} + \frac{n^t}{t!2^t}, \tag{3}
\]

provided that \(n \geq 2t \).

Suppose \(\max_{P \in A} |\mu(P)| \leq t \). Then \(|\mu(P) \cap ([n] \setminus \{1\})| \leq t \) for all \(P \in A \). Hence, \(A \subseteq \mathcal{F}_{2t+1}(1) \) and the lemma follows.

Suppose \(\max_{P \in A} |\mu(P)| = t + s \) with \(s \geq 1 \). Let \(P_0 \in A \) with \(|\mu(P_0)| = t + s \). By Lemma 7, \(\max_{P \in A} |\mu(P)| \leq 4t + 2 \).

Claim**. If \(s \geq 2 \), then \(|\mu(P) \setminus \mu(P_0)| \leq t - 1 \) for all \(P \in A \).

Suppose there is a \(Q \in A \) with \(|\mu(Q) \setminus \mu(P_0)| \geq t \). Then \(|\tau(P_0) \setminus \mu(Q)| \leq n - 2t - s = n - 2t - 1 - (s - 1) \). Since \(|P_0 \cap Q| \geq n - 2t - 1 \), by Lemma 6, \(P_0 \) and \(Q \) have at least \((s - 1)\) blocks of size at least 2 in common and \(|\mu(P_0) \cap \mu(Q)| \geq 2(s - 1) \). Therefore

\[
|\mu(Q)| = |\mu(Q) \setminus \mu(P_0)| + |\mu(P_0) \cap \mu(Q)| \geq t + 2(s - 1).
\]

On the other hand, \(|\mu(Q)| \leq |\mu(P_0)| = t + s \) by the choice of \(P_0 \). This implies that \(s \leq 2 \). Since \(s \geq 2 \), we must have \(s = 2 \), \(|\mu(Q)| = |\mu(P_0)| = t + 2 \) and \(P_0 \) and \(Q \) have exactly one block of size 2 in common, say \(\{i, j\} \). Since \(A \) is compressed, \(s_{ij}(Q) \in A \). Note that \(\mu(s_{ij}(Q)) = \mu(Q) \setminus \mu(P_0) \). So,

\[
|\mu(s_{ij}(Q)) \setminus \mu(P_0)| = t \quad \text{and} \quad |\tau(P_0) \setminus \mu(s_{ij}(Q))| = n - 2t - 2 = n - 2t - 1 - 1.
\]

Since \(|P_0 \cap s_{ij}(Q)| \geq n - 2t - 1 \), by Lemma 6,

\[
|\mu(P_0) \cap \mu(s_{ij}(Q))| \geq 2.
\]

This contradicts that \(\mu(s_{ij}(Q)) = \mu(Q) \setminus \mu(P_0) \). Hence, the claim follows.

Suppose \(s \geq 2 \). By Claim** and Lemma 9 (take \(W = \mu(P_0) \) and \(q = 4t + 2 \)), \(|A| < n^{t-0.5} \) for sufficiently large \(n \). It then follows from equation (3) that

\[
|A| < n^{t-0.5} < \frac{n^t}{t!2^t} \leq |\mathcal{F}_{2t+1}(1)|,
\]

if \(n \geq (t!2^t)^2 \).

Suppose \(s = 1 \). Then \(\mu(P) \leq t + 1 \) for all \(P \in A \). Let \(P_0, P_1, \ldots, P_m \in A \) be such that for all \(1 \leq i \leq m \), we have
We may assume that m is the largest integer in the sense that there is no $R \in \mathcal{A}$ with $|\mu(R)| = t + 1$ and $|\mu(R) \setminus (\bigcup_{j=0}^{m} \mu(P_j))| = t$.

If there is a $Q \in \mathcal{A}$ with $|\mu(Q) \setminus (\bigcup_{j=0}^{m} \mu(P_j))| \geq t + 1$, then $|\mu(Q)| = t + 1$ and $\mu(Q) \cap \mu(P_0) = \emptyset$. So, $|P_0 \cap Q| = |\tau(P_0) \setminus \mu(Q)| = n - 2t - 2 < n - 2t - 1$, a contradiction. Thus, $|\mu(P) \setminus (\bigcup_{j=0}^{m} \mu(P_j))| \leq t$ for all $P \in \mathcal{A}$, and $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ where

$$\mathcal{A}_1 = \left\{ P \in \mathcal{A} : \left| \mu(P) \setminus \left(\bigcup_{j=0}^{m} \mu(P_j) \right) \right| \leq t - 1 \right\},$$

$$\mathcal{A}_2 = \left\{ P \in \mathcal{A} : \left| \mu(P) \setminus \left(\bigcup_{j=0}^{m} \mu(P_j) \right) \right| = t \text{ and } |\mu(P)| = t \right\}.$$

Suppose $m \leq t$. Then $\left| \bigcup_{j=0}^{m} \mu(P_j) \right| \leq \sum_{j=0}^{m} |\mu(P_j)| \leq (t + 1)^2$. By Lemma 9 (take $W = \bigcup_{j=0}^{m} \mu(P_j)$ and $q = (t + 1)^2$), $|\mathcal{A}_1| < n^{t-0.5}$ for sufficiently large n. Note that the number of $\mu(R)$ with $R \in \mathcal{A}$ and $|\mu(R)| = t$ is at most $\binom{n}{t}$ and the number of $Q \in \mathcal{A}$ with $\mu(Q) = \mu(R)$ is at most \tilde{B}_t. Thus,

$$|\mathcal{A}_2| \leq \tilde{B}_t \binom{n}{t}.$$

It then follows from equation (3) that

$$|\mathcal{A}| \leq |\mathcal{A}_1| + |\mathcal{A}_2| < n^{t-0.5} + \tilde{B}_t \binom{n}{t} < \frac{n^t}{t!2^t} + \tilde{B}_t \binom{n}{t} \leq |\mathcal{F}_{2t+1}(1)|,$$

if $n \geq (t!2)^2$.

Suppose $m \geq t + 1$.

Claim. There is a $i_0 \in [n]$ with $i_0 \in P_i$ for $i = 0, 1, 2, \ldots, t + 1$.

Note that if $\mu(P_i) \cap \mu(P_j) = \emptyset$ for $i \neq j$, then $|P_i \cap P_j| = |\tau(P_i) \setminus \mu(P_j)| = n - 2t - 2 < n - 2t - 1$, a contradiction. So, $\mu(P_i) \cap \mu(P_j) \neq \emptyset$ for $i \neq j$. By properties (i) and (ii), we may conclude that $|\mu(P_i) \cap \mu(P_j)| = 1$ for all i, j with $i \neq j$.

Let $\mu(P_i) \cap \mu(P_0) = \{i_0\}$, $\mu(P_i) \cap \mu(P_0) = \{j_1\}$ and $\mu(P_i) \cap \mu(P_0) = \{j_2\}$ where $2 \leq i \leq t + 1$. Since $|\mu(P_i)| = t + 1$ and $|\mu(P_i) \setminus (\bigcup_{j=0}^{m-1} \mu(P_j))| = t$, $j_1 = j_2 \in \mu(P_i) \cap \mu(P_0) = \{i_0\}$. Thus, $i_0 \in P_i$ for $i = 0, 1, 2, \ldots, t + 1$. This completes the proof of the claim.

By Claim***,

$$\mu(P_i) = W_i \cup \{i_0\},$$
for \(i = 0, 1, \ldots, t + 1 \) and \(W_i \cap W_j = \emptyset \) for \(i \neq j \). Suppose \(A \not\subseteq \mathcal{F}_{2t+1}(i_0) \). Then there is a \(Q \in A \) with \(|\mu(Q) \cap ([n] \setminus \{i_0\})| = t + 1 \), i.e., \(|\mu(Q)| = t + 1 \) and \(i_0 \notin \mu(Q) \). Note that \(\mu(Q) \cap \mu(P_i) \neq \emptyset \) for all \(i \), for otherwise, \(|Q \cap P_i| = |\tau(Q) \setminus \mu(P_i)| = n - 2t - 2 < n - 2t - 1 \). Therefore \(\mu(Q) \cap W_i \neq \emptyset \). Since \(W_i \cap W_j = \emptyset \) for \(i \neq j \), \(\mu(Q) \) will have at least \(t + 2 \) elements, a contradiction. Hence, \(A \subseteq \mathcal{F}_{2t+1}(i_0) \), \(|A| \leq \mathcal{F}_{2t+1}(1) \) and equality holds if and only if \(A = \mathcal{F}_{2t+1}(i_0) \).

This completes the proof of the lemma.

Proof of Theorem 3. If \(r = 2t \), then the theorem follows from Lemma 10. Suppose \(r = 2t + 1 \). By repeatedly applying the splitting operations, we eventually obtain a compressed family \(A^* \in I(n, n - 2t - 1) \) with \(|A^*| = |A| \) (Lemma 5). It then follows from Lemma 11 that \(|A| = |A^*| \leq \mathcal{F}_{2t+1}(1) \) and equality holds if and only if \(A^* = \mathcal{F}_{2t+1}(i_0) \) for some \(i_0 \in [n] \). By Theorem 8, we may conclude that \(A^* = \mathcal{F}_{2t+1}(i_0) \) implies that \(A = \mathcal{F}_{2t+1}(i_0) \).

This completes the proof of Theorem 3.

Acknowledgments

We would like to thank Peter Frankl for suggesting us to look at Theorem 2, and the anonymous referee for reading our paper. This project was supported by the Frontier Science Research Cluster, University of Malaya (RG367-15AFR).

References

