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Abstract

Let N be the set of positive integers and n ∈ N. Let a = (a0, a1, . . . , an−1) be a
sequence of length n, with ai ∈ {0, 1}. For 0 6 k 6 n− 1, let

Ak(a) =
∑

06i6j6n−1
j−i=k

aiaj .

The sequence a is called a very odd sequence if Ak(a) is odd for all 0 6 k 6
n − 1. In this paper, we study a generalization of very odd sequences and give a
characterisation of these sequences.

Keywords: very odd sequence, Pelikán’s conjecture

1 Introduction

Let N be the set of positive integers and n ∈ N. Let a = (a0, a1, . . . , an−1) be a sequence
of length n, with ai ∈ {0, 1}. For 0 6 k 6 n− 1, let

Ak(a) =
∑

06i6j6n−1
j−i=k

aiaj.

The sequence a is called a very odd sequence if Ak(a) is odd for all 0 6 k 6 n− 1.
Pelikán [6] conjectured that very odd sequences of length n > 5 do not exist. Later,

Alles [1] and MacWilliams and Odlyzko [4] proved that Pelikán conjecture is false (see
also [5]). In fact, Inglis and Wiseman [2] and MacWilliams and Odlyzko [4] proved the
following theorem which gives a necessary and sufficient condition for the existence of a
very odd sequences of length n.
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Theorem 1. A very odd sequence of length n > 1 exists if and only if the order of 2 is
odd in the multiplicative group of integers modulo 2n− 1.

Let p be a prime and z = (z0, z1, z2, . . . ) be an infinite sequence. A sequence a =
(a0, a1, . . . , an−1) of length n with ai ∈ N ∪ {0} is called a (z, p)-sequence if

Ak(a) ≡ zk mod p, ∀ 0 6 k 6 n− 1.

For each k ∈ N ∪ {0}, let k = (k, k, k, . . . ) be the infinite sequence with all entries
equal to k. Then, Theorem 1 can be rewritten as follows:

Theorem 2. A (1, 2)-sequence of length n > 1 exists if and only if the order of 2 is odd
in the multiplicative group of integers modulo 2n− 1.

In this paper, we give necessary and sufficient conditions for the existence of a (k, p)-
sequence of length n > 1 (Theorem 12). We will also consider the existence of a (yk, p)-
sequence of length n > 1 (Theorem 14) where yk = (y0, y1, y2, . . . ) and yi = (−1)ik.

2 Main Results

Let p be a prime and Zp be the field with p elements. We shall denote the set of all
polynomials over the field Zp by Zp[x]. For any sequence a = (a0, a1, . . . , an−1) of length
n with ai ∈ N ∪ {0}, we set

fa(x) = a0 + a1x+ · · ·+ an−1x
n−1.

Then fa(x) ∈ Zp[x].
For a polynomial g(x) = c0 + c1x+ · · ·+ cn−1x

n−1 ∈ Zp[x], we set

g∗(x) = cn−1 + cn−2x+ · · ·+ c0x
n−1.

Note that g∗(x) = xn−1g
(
1
x

)
and (g∗(x))∗ = g(x). Furthermore, f ∗a(x) = fa∗(x) where

a∗ = (an−1, . . . , a1, a0) is the reverse of a = (a0, a1, . . . , an−1).
The following two lemmas are obvious.

Lemma 3. Let f(x), g(x), h(x) be polynomials of degree at least 1 in Zp[x]. If f(x) =
g(x)h(x), then f ∗(x) = g∗(x)h∗(x).

Lemma 4. If f(x) is a monic irreducible polynomial in Zp[x], then 1
f(0)

f ∗(x) is also a

monic irreducible polynomial in Zp[x].

Lemma 5. A sequence a = (a0, a1, . . . , an−1) is a (z, p)-sequence if and only if

fa(x)f ∗a(x) =
n−1∑
i=0

zn−1−ix
i + xn−1

n−1∑
i=1

zix
i,

in Zp[x].
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Proof. Note that

fa(x)f ∗a(x) =

(
n−1∑
i=0

aix
i

)(
n−1∑
j=0

ajx
n−1−j

)

=
2n−2∑
l=0

 ∑
06i,j6n−1
j−i=n−1−l

aiaj

xl

=
2n−2∑
l=0

A|n−1−l|(a)xl

=
n−1∑
i=0

An−1−i(a)xi + xn−1
n−1∑
i=1

Ai(a)xi.

The lemma follows by noting that a = (a0, a1, . . . , an−1) is a (z, p)-sequence if and only if
Ai(a) ≡ zi mod p for all i.

The following corollary follows immediately from Lemma 5.

Corollary 6. If k ≡ 0 mod p, then there is exactly one (k, p)-sequence of length n > 1,

which is (

n︷ ︸︸ ︷
0, 0, . . . , 0).

We shall require the following lemmas.

Lemma 7. ([3, Theorem 2.14 on p. 128]) Let f(x) and g(x) 6= 0 be polynomials in F [x],
where F is a field. Then there exist polynomials q(x) and r(x) ∈ F [x] with the degree of
r(x) less than the degree of g(x) such that f(x) = q(x)g(x) + r(x).

Lemma 8. ([3, Theorem 4.26 on p. 288]) Let F be a finite field with q = pm elements
and E be a field extension of F with [E : F ] = n. Then the Galois group G(E/F ) is a
cyclic group with generator η, where η : a→ aq.

Note that the Galois group G(E/F ) is the group of all automorphisms of E that fix
F , i.e., θ ∈ G(E/F ) if and only if θ(a) = a for all a ∈ F and θ ∈ Aut(E) the group of all
automorphisms of E.

Lemma 9. ([3, Section 4.4 on p. 229]) Let f(x) ∈ Zp[x] and f ′(x) be the formal derivative
of f(x). If β is a multiple root of f(x), then f ′(β) = 0.

We denote the greatest common divisor of c, d by gcd(c, d).

Lemma 10. Let gcd(p, 2n− 1) = 1 = gcd(p− 1, 2n− 1) and β be a root of
∑2n−2

i=0 xi. If
h(x) ∈ Zp[x] is a monic irreducible polynomial with h(β) = 0 and the order of p modulo
2n−1 is odd, then the degree of h(x) is odd and h(0) = −1. Furthermore, −h∗(x) 6= h(x).
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Proof. Let E be a field extension of Zp containing β. Let the order of β in E be t, i.e.,
t is the least positive integer such that βt = 1. Note that (x − 1)

∑2n−2
i=0 xi = x2n−1 − 1.

So, β is a root of x2n−1 − 1, i.e., β2n−1 = 1. This implies that t divides 2n − 1 and
gcd(p, t) = 1 = gcd(p− 1, t). Let the order of p modulo t be e. Then βpe = β and βpi 6= β
for 1 6 i 6 e− 1. Furthermore, e is odd as the order of p modulo 2n− 1 is odd.

By Lemma 8, the Galois group G(E/Zp) is a cyclic group with generator η. Note
that η((x− β)(x− βp) . . . (x− βpe−1

)) = (x− β)(x− βp) . . . (x− βpe−1
). So, (x− β)(x−

βp) . . . (x− βpe−1
) ∈ Zp[x] and h(x) = (x− β)(x− βp) . . . (x− βpe−1

). Thus, the degree of
h(x) is e which is odd.

Now, (p− 1)(1 + p+ · · ·+ pe−1) = pe− 1 ≡ 0 mod t. Since gcd(p− 1, t) = 1, we have
1 + p+ · · ·+ pe−1 ≡ 0 mod t. Therefore h(0) = (−1)eβ1+p+···+pe−1

= (−1)e = −1.
By Lemma 4, −h∗(x) is a monic irreducible polynomial and −h∗(β−1) = 0. Suppose

−h∗(x) = h(x). Then βpi0 = β−1 for some 0 6 i0 6 e − 1. This implies that pi0 ≡ −1
mod t and p2i0 ≡ 1 mod t. So, e divides 2i0, and e divides i0 for e is odd. This means
that pi0 ≡ 1 mod t and 2 ≡ 0 mod t. Therefore, t = 1 or 2. If t = 1, then β = 1 and
0 =

∑2n−2
i=0 βi = 2n − 1 (in Zp), contradicting the fact that gcd(p, 2n − 1) = 1. If t = 2,

then 2 divides 2n− 1, which is another contradiction. Hence, −h∗(x) 6= h(x).

Lemma 11. Let F be a field. Then xm1 − 1 = (xm2 − 1)w(x) for some polynomial
w(x) ∈ F [x] if and only if m2 divides m1.

Proof. Let m1 = qm2 + r where r, q are integers with 0 6 r < m2. Note that

xm1 − 1 = xqm2+r − 1 = (xm2 − 1)(x(q−1)m2+r + x(q−2)m2+r + · · ·+ xm2+r + xr) + xr − 1.

It then follows from Lemma 7 that xm1 − 1 = (xm2 − 1)w(x) for some polynomial w(x) ∈
F [x] if and only if r = 0.

For each d ∈ N, let Zd be the ring of integers modulo d and Ud be the multiplicative
group of units in Zd.

Theorem 12. Let p be a prime, k ∈ Zp \{0} and gcd(p, 2n−1) = 1 = gcd(p−1, 2n−1).
A (k, p)-sequence of length n > 1 exists if and only if

(a) the order of p is odd in U2n−1,

(b) (−1)n−1k is a quadratic residue modulo p.

Furthermore, if such a sequence exists, then there are exactly 2l of them if p = 2 and 2l+1

if p is odd, where 2l is the number of irreducible factors of
∑2n−2

i=0 xi.

Proof. (⇒) Let a = (a0, a1, . . . , an−1) be a (k, p)-sequence of length n > 1. By Lemma 5,

fa(x)f ∗a(x) = k

2n−2∑
i=0

xi.
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Note that h(x) = (x− 1)
∑2n−2

i=0 xi = x2n−1 − 1 and h′(x) = (2n− 1)xn−2 6= 0 in Zp[x]
for gcd(p, 2n − 1) = 1. It follows from Lemma 9 that h(x) has no multiple roots. Thus,∑2n−2

i=0 xi has no multiple roots.
Note that an−1a0 = k 6≡ 0 mod p for an−1a0 is the coefficient of x2n−2 in fa(x)f ∗a(x).

So, an−1 6≡ 0 mod p. Let fa(x) = an−1q1(x)q2(x) . . . qm(x) where each qi(x) is a monic
irreducible polynomial.

Suppose p is of even order in U2n−1. Let 2l be the order of p modulo 2n − 1. Then
(pl−1)(pl+1) = p2l−1 ≡ 0 mod (2n−1). Let β1, β2, . . . , β2n−2 be all the distinct roots of∑2n−2

i=0 xi. Then each βi is also a root of x2n−1−1. Suppose βpl−1
i = 1 for all 1 6 i 6 2n−2.

Then each βi is a root of xp
l−1 − 1. This implies that xp

l−1 − 1 = (x2n−1 − 1)w(x) for

some w(x) ∈ Zp[x]. By Lemma 11, pl ≡ 1 mod (2n− 1), a contradiction. So, βpl−1
i0
6= 1

for some 1 6 i0 6 2n− 2. Let βpl−1
i0

be a root of qj0(x). Let E be a field extension of Zp

containing βpl−1
i0

. By Lemma 8, the Galois group G(E/Zp) is a cyclic group with generator

η. Note that ηl(βpl−1
i0

) = β
(pl−1)pl
i0

= β
(p2l−1)+1−pl
i0

= β
−(pl−1)
i0

where the last equality follows

from β2n−1
i0

= 1 and p2l− 1 ≡ 0 mod 2n− 1. So, β
−(pl−1)
i0

is a root of qj0(x). On the other

hand, β
−(pl−1)
i0

is also a root of the monic irreducible polynomial
q∗j0

(x)

qj0 (0)
(Lemma 4). This

means qj0(x) =
q∗j0

(x)

qj0 (0)
. By Lemma 3,

q∗j0
(x)

qj0 (0)
is an irreducible factor of f ∗a(x). Therefore,

β
−(pl−1)
i0

a root of
∑2n−2

i=0 xi of multiplicity at least 2, a contradiction. Hence, the order of
p is odd in U2n−1. This proves part (a) of the theorem.

By part (a) of the theorem and Lemma 10, the degree of qi(x) is odd and qi(0) = −1
for 1 6 i 6 m. Then by Lemma 3,

f ∗a(x) = an−1q1(0)q2(0) . . . qm(0)

(
q∗1(x)

q1(0)

)(
q∗2(x)

q2(0)

)
. . .

(
q∗m(x)

qm(0)

)
= an−1(−1)m (−q∗1(x)) (−q∗2(x)) . . . (−q∗m(x)) ,

where each −q∗i (x) is a monic irreducible polynomial (Lemma 4). Therefore (−1)mk ≡
a2n−1 mod p. Let ei be the degree of qi(x). The degree of fa(x)f ∗a(x) is 2

∑m
i=1 ei. So,

2
∑m

i=1 ei = 2n−2, i.e.,
∑m

i=1 ei = n−1. Since each ei is odd, we have m ≡
∑m

i=1 ei ≡ n−1
mod 2. Hence, (−1)m = (−1)n−1 and part (b) of the theorem follows.

(⇐) Suppose (a) and (b) hold. Note that
(∑2n−2

i=0 xi
)∗

=
∑2n−2

i=0 xi. So, if β is a root of∑2n−2
i=0 xi, then β−1 is also a root of

∑2n−2
i=0 xi. This means that if h(x) is a monic irre-

ducible polynomial appearing in the factorization of
∑2n−2

i=0 xi, then by Lemma 4 and 10,
−h∗(x) is also a monic irreducible polynomial appearing in the factorization of

∑2n−2
i=0 xi.

Furthermore, the degree of h(x) and −h∗(x) are odd and −h∗(x) 6= h(x). So, we may
write

2n−2∑
i=0

xi = h1(x)h2(x) . . . hl(x)(−h∗1(x))(−h∗2(x)) . . . (−h∗l (x)).
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If fi is the degree of hi, then l ≡
∑l

i=1 fi ≡ n − 1 mod 2. Therefore (−1)l = (−1)n−1.
Since (−1)n−1k is a quadratic residue modulo p, there exists an an−1 ∈ Zp \ {0} with
a2n−1 ≡ (−1)n−1k. Now, there exists a unique b = (b0, b1, . . . , bn−2, 1) with fb(x) =
h1(x)h2(x) . . . hl(x). Let a = an−1b = (an−1b0, an−1b1, . . . , an−1bn−2, an−1). Then fa(x) =
an−1h1(x)h2(x) . . . hl(x) and by Lemma 3, f ∗a(x) = an−1h

∗
1(x)h∗2(x) . . . h∗l (x). Therefore,

fa(x)f ∗a(x) = a2n−1h1(x)h2(x) . . . hl(x)h∗1(x)h∗2(x) . . . h∗l (x)

= a2n−1(−1)lh1(x)h2(x) . . . hl(x)(−h∗1(x))(−h∗2(x)) . . . (−h∗l (x))

= k
2n−2∑
i=0

xi.

Hence, a is a (k, p)-sequence (Lemma 5).
Finally, note that an−1 and−an−1 are roots of x2−(−1)n−1k. We may choose qi = hi(x)

or −h∗i (x) for 1 6 i 6 l and set gc(x) = ±an−1q1(x)q2(x) . . . ql(x). Then c is also a (k, p)-
sequence. So, if such a sequence exists, there are exactly 2l of them if p = 2 and 2l+1 if p
is odd. This completes the proof of the theorem.

Note that when p = 2, Theorem 12 is the same as Theorem 2. So, Theorem 12 can be
considered as a generalization of Theorem 2.

Recall that yk = (y0, y1, y2, . . . ) with yi = (−1)ik. If k ≡ 0 mod p, then yk = 0. This
case has been considered in Corollary 6. So, we may assume k ∈ Zp \ {0}. If p = 2, then
yk = 1. This case has been considered in Theorem 2 and 12. So, we may assume that p
is an odd prime.

Lemma 13.

(a) Suppose n is odd. Then a = (a0, a1, . . . , an−1) is a (k, p)-sequence if and only if
b = (a0,−a1, . . . , (−1)n−1an−1) is a (yk, p)-sequence.

(b) Suppose n is even. Then a = (a0, a1, . . . , an−1) is a (−k, p)-sequence if and only if
b = (a0,−a1, . . . , (−1)n−1an−1) is a (yk, p)-sequence.

Proof. By Lemma 5, b is a (yk, p)-sequence if and only if

fb(x)f ∗b(x) =
n−1∑
i=0

(−1)n−1−ikxi + xn−1
n−1∑
i=1

(−1)ikxi

= (−1)n−1k
2n−2∑
i=0

(−1)ixi.

Suppose n is odd. Then fb(x)f ∗b(x) = k
∑2n−2

i=0 (−1)ixi. By Lemma 5, a is a (k, p)-
sequence if and only if

fa(x)f ∗a(x) = k

2n−2∑
i=0

xi.
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Hence, part (a) of the lemma follows by noting that fb(x) = fa(−x) and fa(x) = fb(−x).
Suppose n is even. Then fb(x)f ∗b(x) = −k

∑2n−2
i=0 (−1)ixi. By Lemma 5, a is a (−k, p)-

sequence if and only if

fa(x)f ∗a(x) = −k
2n−2∑
i=0

xi.

Hence, part (b) of the lemma follows by noting that fb(x) = fa(−x) and fa(x) = fb(−x).

Theorem 14. Let p be an odd prime, k ∈ Zp \ {0} and gcd(p, 2n − 1) = 1 = gcd(p −
1, 2n− 1). A (yk, p)-sequence of length n > 1 exists if and only if

(a) the order of p is odd in U2n−1,

(b) k is a quadratic residue modulo p.

Furthermore, if such a sequence exists, then there are exactly 2l+1 of them, where 2l is the
number of irreducible factors of

∑2n−2
i=0 xi.

Proof. Suppose n is odd. By part (a) of Lemma 13, there is a (yk, p)-sequence of length
n > 1 if and only if there is a (k, p)-sequence of length n > 1. Hence, Theorem 14 follows
from Theorem 12 by noting that (−1)n−1k = k.

Suppose n is even. By part (a) of Lemma 13, there is a (yk, p)-sequence of length
n > 1 if and only if there is a (−k, p)-sequence of length n > 1. Hence, Theorem 14
follows from Theorem 12 by noting that (−1)n−1(−k) = k.

Corollary 15. Let p be a prime, k ∈ Zp \{0} and gcd(p, 2n−1) = 1 = gcd(p−1, 2n−1).
If there is a (k, p)-sequence or a (yk, p)-sequence of length n > 1, then p is a quadratic
residue modulo 2n− 1.

Proof. By Theorem 12 or 14, the order of p is odd in U2n−1. Let 2e + 1 be the order
of p. Then (pe+1)2 ≡ p2e+2 ≡ p mod (2n − 1). Thus, p is a quadratic residue modulo
2n− 1.

Part (a) of the following Corollary was proved by Inglis and Wiseman [2, Proposition
1]. It was asked by Alles [1, Problem (1)].

Corollary 16. Let p be a prime, k ∈ Zp \{0} and gcd(p, 2n−1) = 1 = gcd(p−1, 2n−1).
Suppose there is a (k, p)-sequence or a (yk, p)-sequence of length n > 1. Then

(a) n ≡ 0 or 1 mod 4, if p = 2;

(b) n ≡ 0 or 1 mod 6, if p = 3;

(c) n ≡ 0 or 1 mod 5, if p = 5;

(d) n ≡ 0, 1, 10, 13, 15, 16, 19, 24, 27, 28, 30, 33 mod 42, if p = 7.
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Proof. (a) By Corollary 15, 2 is a quadratic residue modulo 2n − 1. Let q be a prime
appearing in the factorization of 2n−1. Then q is odd and 2 is a quadratic residue modulo
q. Therefore q ≡ 1 or 7 mod 8. This implies that 2n− 1 ≡ 1 or 7 mod 8. Thus, n ≡ 1
or 0 mod 4.

(b) Since gcd(3, 2n − 1) = 1, we require 2n − 1 ≡ 1 or 2 mod 3, that is n ≡ 1 or 0
mod 3. By Corollary 15, 3 is a quadratic residue modulo 2n−1. If q is a prime appearing
in the factorization of 2n − 1, then q is odd and 3 is a quadratic residue modulo q. By
the Quadratic Reciprocity Law, q ≡ ±1 mod 12. This implies that 2n − 1 ≡ 1 or 11
mod 12. Thus, n ≡ 1 or 0 mod 6.

(c) Since gcd(5, 2n− 1) = 1, we require 2n− 1 ≡ 1, 2, 3, or 4 mod 5, that is n ≡ 1, 4, 2,
or 0 mod 5. As in part (b), if q is a prime appearing in the factorization of 2n− 1, then
5 is a quadratic residue modulo q. By the Quadratic Reciprocity Law, q ≡ ±1 mod 5.
This implies that 2n− 1 ≡ 1 or 4 mod 5. Thus, n ≡ 1 or 0 mod 5.

(d) Since gcd(7, 2n − 1) = 1 and gcd(6, 2n − 1) = 1, n 6≡ 4 mod 7 and n 6≡ 2 mod 3.
As before, if q is a prime appearing in the factorization of 2n − 1, then 7 is a quadratic
residue modulo q. By the Quadratic Reciprocity Law, q ≡ ±1, ±3, or ±9 mod 28. This
implies that 2n − 1 ≡ ±1, ±3, or ±9 mod 28. Thus, n ≡ 0, 1, 2, 5, 10, or 13 mod 14.
Since n 6≡ 2 mod 3 and gcd(3, 14) = 1, we must have n ≡ 0, 28, 1, 15, 16, 30, 19, 33, 10,
24, 13 or 27 mod 42.
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