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Abstract

We study a generalization of the notion of coloring of graphs, similar in spirit
to that of list colorings: a cooperative coloring of a family of graphs G1, G2, . . . , Gk

on the same vertex set V is a choice of independent sets Ai in Gi (1 6 i 6 k) such
that

⋃k
i=1Ai = V . This notion is linked (with translation in both directions) to

the notion of ISRs, which are choice functions on given sets, whose range belongs
to some simplicial complex. When the complex is that of the independent sets in
a graph G, an ISR for a partition of the vertex set of G into sets V1, . . . , Vn is a
choice of a vertex vi ∈ Vi for each i such that {v1, . . . , vn} is independent in G.
Using topological tools, we study degree conditions for the existence of cooperative
colorings and of ISRs. A sample result: Three cycles on the same vertex set have a
cooperative coloring.
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1 Cooperative colorings

For a graph G denote by I(G) the complex (closed down hypergraph) of independent
sets in G. A k-coloring of G is a choice of disjoint sets A1, A2, . . . , Ak in I(G) such
that

⋃k
i=1Ai = V (G). It is possible to require that the sets Ai belong to prescribed

induced subgraphs of G - this is the idea behind the notion of list coloring. Given subsets
Ci, i = 1, . . . , k of V (G), a list coloring is a decomposition of V (G) into sets Ai ∈
I(G[Ci]), i = 1, . . . , k (Ci is the set of vertices in whose list color i appears). In another
setting, there are given general graphs Gi on the same vertex set V , and each set Ai in the
partition is taken from I(Gi). This is called cooperative coloring. Combining the two, we
get a still more general setting, in which the graphs are each on a different set of vertices,
in which case the decomposition into the sets Ai is called a cooperative list coloring. Here
it is, more formally:

Definition 1.1. A family of (not necessarily distinct) graphs G1, G2, . . . , Gk with respective
vertex sets V (G1), V (G2), . . . , V (Gk) ⊆ V is called a cooperative list coloring system, or
CLC-system for short. The multiplicity of the system, denoted by m, is the minimum over
all v ∈ V of |{i : v ∈ V (Gi)}|. A cooperative list coloring then is a choice of independent
sets Ai in Gi (1 6 i 6 k) such that

⋃k
i=1Ai = V . If Gi = G[Ci] for a fixed G, then

the system is called a list coloring system. If all sets V (Gi) are the same set V , then
the system is called a cooperative coloring system, and a choice of Ai as above is called a
cooperative coloring.

In an even more general setting, there are complexes C1, . . . , Ck on the same vertex
V , and a cooperative coloring is a partition of V into sets Ai ∈ Ci, i = 1, . . . , k. The
list coloring case, of complexes on subsets Ci of V , is then obtained as a special case by
taking the singleton set of every point not in Ci as not belonging to the complex Ci.

We shall be interested in degree conditions guaranteeing cooperative colorings, in the
spirit of the bound ∆ + 1 on the chromatic number of a graph. The natural conjecture
would be that a CLC-system of graphs with maximal degree d and multiplicity m > d+1
has a cooperative list coloring. In fact, this was conjectured by Reed [18] in the case of list
colorings, but was refuted in [8]. Below we shall see examples showing that this also fails
in the case of cooperative colorings. Yet, these examples refute only the d+ 1 conjecture,
and there are no examples known of CLC-systems with m > d+ 2 and no cooperative list
coloring.

2 Cooperative list coloring systems as layered ISR-systems

The notion of cooperative list colorings is a special case of that of independent systems of
representatives, or ISRs (also called in the literature independent transversals). This is a
generalization of the notion of SDRs (systems of distinct representatives). As in the setting
of SDRs, there are given sets Vi, 1 6 i 6 n, and we wish to find representatives f(i) =
vi ∈ Vi. In the ISR setting the requirement of distinctness is replaced by another type of
restriction. A complex C is given on V =

⋃n
i=1 Vi, and it is required that {v1, . . . , vn} ∈ C.

The choice function f is then called a C-SR. A simple reduction shows that it is enough
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to consider disjoint Vis: form a distinct copy vi of v for every appearance of a vertex v in
a set Vi, and for p 6= q do not include {vp, vq} in the new complex generated. Henceforth,
we assume the Vis are disjoint. Here we study the case where C = I(G) for some graph
G on V , and refer to C-SRs as ISRs.

As mentioned, cooperative list colorings are a special case, that of layered ISRs. In a
layered ISR-system,

⋃n
i=1 Vi =

⋃k
j=1 Lj, where the Ljs are disjoint, |Vi ∩ Lj| 6 1 for all

i, j, and C is the join of Cj = C[Lj] (namely A ∈ C if and only if A∩Lj ∈ C for all j). The
sets Lj are then called layers. In the graphic case that we study here, the graph G is the
disjoint union of graphs Gj on the layers Lj.

The translation of cooperative list colorings to layered ISRs is done as follows. Let
G1, . . . , Gk be given, with respective vertex sets V (G1), . . . , V (Gk) ⊆ V = {v1, . . . , vn}.
For i = 1, . . . , n let Vi = {(i, j) : vi ∈ V (Gj)}, and for j = 1, . . . , k let Lj = {(i, j) :
vi ∈ V (Gj)}. On each layer Lj, we have a copy of the corresponding graph Gj. An
ISR f for this system is equivalent to a cooperative list coloring that decomposes V into
the sets Aj = {v` : f(`) = (`, j)}, j = 1, . . . , k. Observe that under this translation,
the multiplicity m becomes the minimal size of the Vis. We write J (G1, . . . , Gk) for the
ISR-system constructed in this way.

Remark 2.1. The idea of this translation first appeared, for the list coloring problem, in
[13].

The translation above allows to deduce existence results for cooperative list colorings
as immediate corollaries of corresponding existence results for ISRs. We list here a few
such corollaries, in each case citing the paper where the relevant ISR result appeared. In
all items, we consider a CLC-system G1, G2, . . . , Gk of graphs with maximal degree at
most d and multiplicity m, and the stated conditions are sufficient for the existence of a
cooperative list coloring.

1. m > 2d [13].

2. m > d+ o(d) [15].

3. m > d+ 2 and all Gi are line graphs [2].

4. m > d+ 1 and all Gi are chordal graphs [4].

We note that the ISR results corresponding to items (1), (3) and (4) above were
proved for general ISR-systems, not just layered ones, which arise under the translation
from CLC-systems. The result corresponding to (2) was proved for so-called locally sparse
systems, a subclass of ISR-systems which is still more general than layered systems.

The consideration of cooperative list colorings motivates the study of layered ISR-
systems. To what extent does the property of being layered allow a relaxation of the size
requirement on the Vis for the existence of an ISR? What if, moreover, the layers are
full, i.e., |Vi ∩ Lj| = 1 for all i, j? (This corresponds to cooperative coloring.) What if,
alternatively, the layer-graphs are all induced from the same graph? (This corresponds to
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list coloring, and was studied in [18], [19], [8].) Of course, if both restrictions apply, we
are back to plain graph coloring, and |Vi| > d+ 1 suffices.

As a curiosity, we note that the translation between cooperative coloring problems
and ISR problems goes also in the other direction. Let (G, (Vi)

n
i=1) be an ISR-system.

Form a cooperative coloring system as follows. First, augment every Vi to V ∗i of size
k := max{|V`| : 1 6 ` 6 n}, by adding k − |Vi| vertices that are connected to all vertices
of all other V ∗` ’s. Denote by (G∗, (V ∗i )ni=1) the augmented system. Then let G1, . . . , Gk−1
be identical graphs, each consisting of disjoint cliques, a clique on each V ∗i . Let Gk = G∗.
An independent set taken from Gj (j < k) can contain at most one vertex from each V ∗i .
Therefore a cooperative coloring must have at least one vertex from each V ∗i belonging
to the independent set taken in Gk, and these vertices form an ISR in (G∗, (V ∗i )ni=1) and
hence in (G, (Vi)

n
i=1). Conversely, an ISR in the latter produces a cooperative coloring

of G1, . . . , Gk. We write C(G, (Vi)ni=1) for the cooperative coloring system constructed in
this way.

3 Topological tools

There is a topological version of Hall’s theorem, that allows to extend Hall’s theorem to
the setting of ISRs. Here are some relevant preliminary notions. A simplicial complex
C is called (homologically) k-connected if for every −1 6 j 6 k, the j-th reduced sim-
plicial homology group of C with rational coefficients H̃j(C) vanishes. The (homological)
connectivity ηH(C) is the largest k for which C is k-connected, plus 2.

Remark 3.1.

(a) This is a shifted (by 2) version of the usual definition of connectivity. This shift
simplifies the statements below.

(b) If H̃j(C) = 0 for all j then ηH(C) =∞.

(c) There exists also a homotopical notion of connectivity, η(C). The first topological
version of Hall’s theorem [5] used that notion, but the later version [16, 17] that we
cite and apply below uses the homological notion ηH(C).

The join A∗B of two complexes A,B on disjoint sets of vertices is {σ∪ τ | σ ∈ A, τ ∈
B}.

Lemma 3.2. ηH(A ∗ B) = ηH(A) + ηH(B).

This follows from the formula

H̃i+1(A ∗ B) ∼=
⊕
p+q=i

(H̃p(A)⊗ H̃q(B)),

see (9.12) in [7].
When G is disconnected (as a graph), the complex I(G) is the join of the complexes

corresponding to the components. Hence:
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Lemma 3.3. If G consists of connected components Hi, i = 1, . . . , n, then ηH(I(G)) =∑n
i=1 ηH(I(Hi)).

Notation 3.4. Given an ISR-system (G, (Vi)
n
i=1) and a subset I of [n] = {1, . . . , n}, we

write VI for
⋃
i∈I Vi. We denote by I(G) � A the complex of independent sets in the graph

induced by G on A.

The topological version of Hall’s theorem is:

Theorem 3.5. If ηH(I(G) � VI) > |I| for every I ⊆ [n] then there exists an ISR.

Variants of this theorem appeared implicitly in [5] and [16], and the theorem is stated
and proved explicitly as Proposition 1.6 in [17]. Together with Lemma 3.3 and the trans-
lation of cooperative list colorings to ISRs, this yields:

Corollary 3.6. A CLC-system G1, G2, . . . , Gk of multiplicity m, such that ηH(I(Gj) �
A) > |A|

m
for all j and all A ⊆ V (Gj), has a cooperative list coloring.

In order to apply Theorem 3.5 or Corollary 3.6, one needs good lower bounds on
ηH(I(G)). For example, a useful lower bound established in [3] is ηH(I(G)) > |V (G)|

λ(G)
,

where λ(G) is the largest eigenvalue of the Laplacian of G. Another general lower bound is
essentially due to Meshulam [17] and is conveniently expressed in terms of a game between
two players, CON and NON, on the graph G. CON wants to show high connectivity,
NON wants to thwart his attempt. At each step, CON chooses an edge e from the graph
remaining at this stage, where in the first step the graph is G. NON can then either

1. delete e from the graph (we call such a step a “deletion”),

or

2. remove the two endpoints of e, together with all neighbors of these vertices and the
edges incident to them, from the graph (we call such a step an “explosion”).

The result of the game (payoff to CON) is defined as follows: if at some point there
remains an isolated vertex, the result is ∞. Otherwise, at some point all vertices have
disappeared, in which case the result of the game is the number of explosion steps. We
define Ψe(G) as the value of the game, i.e., the result obtained by optimal play on the
graph G.

Theorem 3.7. ηH(I(G)) > Ψe(G).

Remark 3.8.

(a) The idea underlying this lower bound originated in [17]. The game theoretic for-
mulation first appeared in [4]. This formulation of Ψe is equivalent to a recursive
definition of Ψe(G) as the maximum over all edges of G, of the minimum between
Ψe of the graph obtained by deleting the edge, and Ψe of the graph obtained by ex-
ploding it plus 1. For an explicit proof of Theorem 3.7 using the recursive definition
of Ψe, see Theorem 1 in [1].
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(b) The subscript e in our notation Ψe is intended to distinguish this notion from a
variant that has been used elsewhere, which is based on a game where CON may
choose vertices as well as edges.

Our final tools are explicit formulae for ηH(I(G)) when G is a path Pn or a cycle Cn
on n vertices (see Claim 3.3 in Meshulam [17]).

Theorem 3.9. ηH(I(Pn)) = dn
3
e if n ≡ 0 or 2(mod3) and ηH(I(Pn)) = ∞ if n ≡

1(mod3).

Theorem 3.10. ηH(I(Cn)) = [n
3
]. (Here [α] is the rounding of α to the nearest integer.)

4 ISRs in the absence of Kd,d

Our main concern in this paper is conditions for the existence of ISRs and cooperative
list colorings, that are formulated in terms of the maximal degree ∆(G). A basic result
due to Haxell is:

Theorem 4.1 ([12, 13]). Let ∆(G) = d. If |Vi| > 2d for all i, then there exists an ISR.

Theorem 4.1 is sharp. Two types of examples were given, one in [14, 23] and the other
in [21], of ISR-systems with Vis of size 2d− 1, in which there is no ISR. In both types the
graph in question consists of 2d− 1 disjoint copies of Kd,d. Our first result is that this is
not a coincidence, but a must:

Theorem 4.2. Let ∆(G) = d > 2. If |Vi| > 2d− 1 for all i, then there is an ISR unless
G contains at least 2d− 1 connected components isomorphic to Kd,d.

In order to prove Theorem 4.2, we establish the following lower bound on the connec-
tivity of the independence complex of a graph:

Theorem 4.3. Let d > 2. If G has maximal degree at most d and contains no Kd,d, then

ηH(I(G)) > Ψe(G) >
|V (G)|
2d− 1

.

Before proving Theorem 4.3, let us show how it implies Theorem 4.2. Indeed, for every
I ⊆ [n], let kI be the number of copies of Kd,d contained in G[VI ]. Since ηH(I(Kd,d)) =

1 =
|V (Kd,d)|−1

2d−1 , we obtain by Lemma 3.3 and Theorem 4.3

ηH(I(G) � VI) >
|VI | − kI
2d− 1

> |I| − kI
2d− 1

.

Therefore, if G contains fewer than 2d − 1 copies of Kd,d, then kI < 2d − 1, and thus
ηH(I(G) � VI) > |I|− 1, and since ηH is integral this means that ηH(I(G) � VI) > |I|. By
Theorem 3.5 there exists an ISR.
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Proof of Theorem 4.3. We may clearly assume that G is connected. We will prove the
theorem by showing that in the game that defines Ψe(G), CON can force NON to either

create an isolated vertex or spend at least |V (G)|
2d−1 explosion steps to destroy all vertices.

In the first step 2d vertices may be removed in an explosion, but from that step
on there is at each step a vertex of degree at most d − 1, and as we may assume that
it is not isolated, CON can choose an edge uv with |N(u) ∪ N(v)| 6 2d − 1. This

implies that Ψe(G) > |V (G)|−1
2d−1 , and we may assume that equality holds (otherwise we

are done). Therefore, the first step must be an explosion destroying 2d vertices, and
any subsequent explosion step must remove 2d − 1 vertices. We may assume that G is
d-regular and triangle-free, otherwise CON can choose his first edge so as to prevent NON
from exploding 2d vertices in the first step.

Suppose first that Ψe(G) = 1. Then |V (G)| = 2d. Taking an arbitrary edge uv, we can
partition V (G) into A = N(u) and B = N(v), each of size d. By triangle-freeness these
sets are independent, and d-regularity implies that G is the complete bipartite graph with
parts A,B. This contradicts our no Kd,d assumption.

Suppose next that Ψe(G) > 1. Consider the position after Ψe(G)− 1 explosion steps.
The remaining graph has 2d− 1 vertices. If it has an edge whose explosion would remove
fewer that 2d− 1 vertices, CON can choose it and force NON to delete it. By iteratively
choosing and deleting such edges, we are left with a graph H in which every edge uv
satisfies |NH(u) ∪NH(v)| = 2d− 1. An argument similar to the one above shows that H
is a complete bipartite graph, this time with one part, say A, of size d and the other, B,
of size d− 1.

Returning to G, each x ∈ A has precisely one neighbor in V (G)\V (H). This neighbor
cannot be the same for all x ∈ A, or else a Kd,d is formed. Let xy be an edge with x ∈ A
and y ∈ V (G) \V (H). Let z ∈ A be a non-neighbor of y. CON can choose xy as the first
step edge in the game, and exploding it removes all but at most one neighbor of z. If z
is isolated, the result is ∞. If it still has a neighbor w, then CON can choose zw at the
second step. NON must explode it (to avoid isolating z), but this explosion removes at
most d+ 1 vertices, which is less than 2d− 1 (as we assume d > 2).

5 Degree conditions for cooperative coloring

A basic fact on standard graph coloring is that a graph of maximal degree d is (d + 1)-
colorable. Rephrased in our terminology, this says that if G1, G2, . . . , Gd+1 are identical
graphs of maximal degree d, then they have a cooperative coloring. Our first observation
is that this is no longer true for non-identical graphs.

Theorem 5.1. For every d > 2, there exists a cooperative coloring system G1, G2, . . . , Gd+1

with ∆(Gi) = d for i = 1, . . . , d+ 1, that does not have a cooperative coloring.

Proof. First, we construct an ISR-system (G, (Vi)
n
i=1) with ∆(G) = d, |Vi| = d + 1 for

all i, having no ISR (as mentioned above, this can be done even with |Vi| = 2d − 1, but
for completeness we give the easy construction that we need here). Let n = 4, and Vi =
Ui∪{vi} where |Ui| = d and vi /∈ Ui, i = 1, . . . , 4. Let G have three connected components:
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a Kd,d with sides U1, U2, a Kd,d with sides U3, U4, and a K2,2 with sides {v1, v2}, {v3, v4}.
Clearly, this system has no ISR. From this system, we pass to a cooperative coloring
system C(G, (Vi)4i=1) which, as shown at the end of Section 2, has no cooperative coloring.
Each of the first d graphs in the system is a disjoint union of Kd+1’s, and the last graph
is G, so they all have maximal degree d, as required.

If d+1 graphs of maximal degree d do not suffice for a cooperative coloring, how many
of them are needed? More generally, for CLC-systems, how high does the multiplicity
need to be (in terms of the maximal degree d) in order to guarantee the existence of a
cooperative list coloring? We get an upper bound by applying the reduction of CLC-
systems to ISR-systems described in Section 2, and invoking Theorems 4.1 and 4.2.

Corollary 5.2. Any CLC-system of multiplicity 2d or more, in which the graphs have
maximal degree d, has a cooperative list coloring. Moreover, for d > 2 multiplicity 2d− 1
suffices, unless the graphs in the system have between them at least 2d− 1 copies of Kd,d.

The two parts of the corollary bear a similarity to the known facts about standard
(or list) graph coloring: there, d + 1 colors (or lists of size d + 1) are needed to color a
graph of maximal degree d, and Brooks’ theorem asserts that one color (or list element)
may be saved in the absence of Kd+1, for d > 2. But, contrary to this analogy to graph
coloring, and unlike the situation for Theorems 4.1 and 4.2 from which it was derived,
Corollary 5.2 is not sharp for general d. The reason is that the reduction of CLC-systems
to ISR-systems described in Section 2 yields layered ISR-systems. An asymptotic result
of Loh and Sudakov [15] implies that for such systems Vis of size (1 + o(1))d suffice for an
ISR. In particular, multiplicity (1 + o(1))d in a CLC-system suffices for a cooperative list
coloring.

However, it is not known whether multiplicity d + O(1) suffices for a cooperative list
coloring. In view of Theorem 5.1, d+1 does not suffice, but the question for d+2 is open.
In particular, do every d + 2 graphs of maximal degree d on the same vertex set have a
cooperative coloring? The following theorem shows that no counterexample to the latter
can exist, in which d of the graphs are identical (as was the case in the construction of
the counterexample for d+ 1 graphs above).

Theorem 5.3. d+2 graphs of maximal degree d on the same vertex set have a cooperative
coloring, provided that d of the graphs are identical.

The proof of Theorem 5.3 requires the following lemma, in which we speak of a partial
ISR for a system (G, (Vi)

n
i=1): this is a choice of independent representatives from some

of the Vis, and is expressed as a function h with domain dom(h) ⊆ [n].

Lemma 5.4. If H1, H2 are two graphs on the same vertex set V having both degrees at
most d, and (Vi)

n
i=1 is a partition of V into sets of size at least d, then there exist a partial

ISR h1 for (H1, (Vi)) and a partial ISR h2 for (H2, (Vi)), such that dom(h1) ∪ dom(h2) =
[n].
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Proof. We form an ISR-system (G∗, (V ∗i )ni=1) on a vertex set V ∗ consisting of two disjoint
copies of V . The graph G∗ is the disjoint union of H1 and H2, placed on the two respective
copies of V . Each V ∗i is the union of the two respective copies of Vi. By Theorem 4.1,
there is an ISR for (G∗, (V ∗i )ni=1); clearly, such an ISR decomposes into partial ISRs for
H1 and H2 as desired.

We can now prove Theorem 5.3. By Corollary 5.2, we may assume that d > 3. Say our
cooperative coloring system consists of d copies of the same graph G, and two additional
graphs Gd+1, Gd+2, all of maximal degree d. Let V1, . . . , Vn, Vn+1, . . . , Vr be the partition
of the vertex set V into the connected components of G, enumerated so that G[Vi] is
d-colorable if and only if n+ 1 6 i 6 r. Clearly,

⋃r
i=n+1 Vi can be covered by independent

sets from the d copies of G. If n = 0 we are done; if n > 0 it suffices to find a cooperative
coloring of V ′ :=

⋃n
i=1 Vi. By Brooks’ theorem, each G[Vi] (1 6 i 6 n) is a Kd+1. Applying

Lemma 5.4 to the graphs Gd+1[V
′], Gd+2[V

′], we find independent sets in these two graphs
whose union contains a vertex from each Vi, i = 1, . . . , n. The remaining d vertices in each
of these Vis can be covered by independent sets from the d copies of G, thus obtaining
the desired cooperative coloring.

6 The case d = 2

The ISR problem for a 2-regular graph G and Vis of size 3 is of particular interest. When
G is just one cycle, the existence of an ISR is precisely the conjecture of Du, Hsu, and
Hwang [9]. That conjecture, in a stronger 3-colorability version proposed by Erdős [10],
became well known and got the name “the cycle-plus-triangles problem”. It was proved by
Fleischner and Stiebitz [11] and Sachs [20]. Counterexamples have been found, showing
that the result does not extend to all graphs G that consist of several disjoint cycles.
But there has not been a good insight as to what features of the decomposition into
cycles are needed for a positive answer. We show here, using topological connectivity and
Theorems 3.9 and 3.10, that the mod3 length of the cycles is crucial.

Theorem 6.1. Let ∆(G) = 2, and assume that at most two connected components of G
are cycles of length 1(mod3). If |Vi| > 3 for all i, then there exists an ISR.

Proof. By Theorem 3.5, it suffices to show that for every I ⊆ [n], η(I(G) � VI) is at
least |I|. Let H1, . . . , Hr be the connected components of G[VI ], with n1, . . . , nr vertices
respectively. Note that

∑r
j=1 nj = |VI | > 3|I|. By our assumption on G, all but at

most two of the Hj’s are paths of any length or cycles of length 0 or 2 modulo 3; the
exceptional cases are cycles of length 1( mod 3). Applying Theorems 3.9 and 3.10, we have
ηH(I(Hj)) >

nj

3
for all j except possibly two j’s for which ηH(I(Hj)) =

nj−1
3

. Lemma 3.3
yields

ηH(I(G) � VI) > d
∑r

j=1 nj − 2

3
e > d3|I| − 2

3
e = |I|.
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Theorem 6.1 is sharp: an example with three 4-cycles and Vis of size 3 without an ISR
is known. In order to show that it is not just 4-cycles, but cycles of length 1(mod3) in
general, that hinder ISRs, we prove the following.

Theorem 6.2. For every ` ≡ 1(mod3), ` > 4, there exists a graph, all of whose con-
nected components are cycles of length `, and a partition of its vertex set into sets of size
3, for which there is no ISR. Such an example exists with `

2
+ 1 cycles if ` is even, and

with `+ 2 cycles if ` is odd.

The building block for the necessary construction is presented in the following lemma.

Lemma 6.3. Let ` = 3r+ 1, r > 1. The vertices of a cycle of length ` can be partitioned
into r − 1 sets V1, . . . , Vr−1 of size 3 and 2 sets U0, Ur of size 2 each, so that there is no
ISR.

Proof. Let the vertices of the cycle be enumerated in cyclical order as v1, v2, . . . , v`. Let

Vi = {v3i−1, v3i+1, v3i+3}, i = 1, . . . , r − 1, U0 = {v1, v3}, Ur = {v`−2, v`}.

Suppose, for the sake of contradiction, that A is an independent set in the cycle containing
an element from each of U0, V1, . . . , Vr−1, Ur. If the U0 element of A is v3, then the V1
element must be v6, the V2 element must be v9, . . ., the Vr−1 element must be v`−1,
leaving no choice for the Ur element. A similar argument going backwards shows that
the Ur element of A cannot be v`−2. Thus the U0 element must be v1 and the Ur element
must be v`, but these two are adjacent on the cycle.

We give now the construction for Theorem 6.2. For even `, we take `
2

cycles of length
`, and partition the vertices of each of them as in the lemma. This gives us a total of
`
2
(r − 1) sets of size 3, and ` sets of size 2. We add a new vertex to each of these ` sets,

increasing their size to 3, and place a new cycle on the new vertices. The way we place
that cycle is arbitrary, except that for one of the pairs U0, Ur, the two vertices added to
them, denoted u0, ur, are at distance 2 on the new cycle. By the lemma, any ISR of this
system would have to include, for each of the pairs U0, Ur, one of their two new vertices.
This requires an independent set of size `

2
from the new cycle, but by construction, no

such set contains exactly one of u0, ur.
For odd `, we carry out a similar construction with ` original cycles of length `, giving

us a total of `(r − 1) sets of size 3, and 2` sets of size 2. We add a new vertex to each
of these 2` sets, and place two new disjoint cycles on them arbitrarily. The non-existence
of an ISR follows from the lemma and the fact that independent sets from the two new
(odd) cycles of length ` can only have total size `− 1.

We note that Vandenbussche and West [22] gave a construction similar to the above,
but only for ` ≡ 1(mod6) - our odd case. This led them to conjecture that if a 2-regular
graph G on V has girth at least

√
|V |, and V is partitioned into sets of size 3, then there

is an ISR (with the exception of a particular 12-vertex example). Our construction above
for even ` has girth ` and |V | = `2+2`

2
, so it disproves their conjecture by a factor of

√
2.

The conjecture may still be true up to a constant factor.
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Theorem 6.2 also serves to show that the condition d > 2 in Theorem 4.2 is necessary.
Turning now to cooperative coloring in the case d = 2, we have the following corollary

of Theorem 6.1.

Corollary 6.4. A CLC-system of multiplicity 3, in which all graphs have degrees at most
2, and the total number of components which are cycles of length 1(mod3) is at most 2,
has a cooperative list coloring.

Theorem 6.2 also has a cooperative list coloring counterpart.

Theorem 6.5. For every ` ≡ 1(mod3), ` > 4, there exists a CLC-system of multiplicity
3, in which all graphs are cycles of length `, that does not have a cooperative list coloring.

Proof. Note that we cannot just apply to the ISR-system constructed in Theorem 6.2
the transformation to a cooperative coloring system described in Section 2 (because then
only one of the graphs in the system would have cycles of length `, the others would have
3-cliques). We do start with the ISR-system (G, (Vi)

n
i=1) produced in Theorem 6.2, but

proceed differently. We augment each Vi by adding `− 2 new vertices, obtaining a set of
size `+ 1 written as Ui = {v1i , v2i , v3i , . . . , v`+1

i }, where the first 3 elements are those of Vi.
Thus the vertex set of the CLC-system will be U =

⋃n
i=1 Ui, of size n(`+ 1). The graphs

in the system are the cycles of G and 3n new cycles: for each i = 1, . . . , n we introduce
the 3 cycles

C1
i := v1i , v

2
i , v

4
i , . . . , v

`+1
i , C2

i := v2i , v
3
i , v

4
i , . . . , v

`+1
i , C3

i := v3i , v
1
i , v

4
i , . . . , v

`+1
i .

Clearly, the resulting CLC-system has multiplicity 3. Assume, for the sake of contra-
diction, that it has a cooperative list coloring. Because the original G has no ISR, the
independent sets coming from the original cycles leave some Ui untouched. This Ui needs
to be covered by independent sets A1 from C1

i , A2 from C2
i , A3 from C3

i . There are only
two ways in which v1i , v

2
i , v

3
i can all be covered: either v1i ∈ A1, v

2
i ∈ A2, v

3
i ∈ A3, or

v1i ∈ A3, v
2
i ∈ A1, v

3
i ∈ A2. In the former case, none of the independent sets can contain

v`+1
i ; in the latter case, the contradiction is obtained for v4i .

We remark that a CLC-system in which all graphs are 4-cycles may be interpreted as
a CNF formula, and in fact the ` = 4 case of Theorem 6.5 is equivalent to a construction
of an unsatisfiable (3,B2)-SAT formula given in [6].

We do not know if Theorem 6.5 can be strengthened to assert the existence of a
cooperative coloring system with these properties, i.e., three graphs on the same vertex
set, each of them a disjoint union of `-cycles, having no cooperative coloring. This question
remains open, even for ` = 4.

There is, however, an important special case of cooperative coloring systems, in which
a cooperative coloring is guaranteed regardless of the mod 3 length of the cycles. Namely,
when each of the three graphs is a cycle on the entire vertex set.

Theorem 6.6. Three cycles on the same vertex set possess a cooperative coloring.
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Proof. Let G1, G2, G3 be a system of three cycles on the same vertex set V . Choose
any vertex v, and take it into the independent set chosen from G1. Completing this
choice to a cooperative coloring means finding an ISR in the ISR-system K obtained from
J (G1, G2, G3) by removing the set Vv, and removing from the G1-copy of V the two
vertices (that we shall name below u and w) adjacent to v in G1. We shall prove that K
satisfies the conditions of Theorem 3.5.

Write V ′y = Vy for y ∈ V \ {v, u, w}, and let V ′u, V
′
w be obtained from Vu, Vw, by

removing the G1-copies of u, w, respectively. Let H be the underlying graph of K. Let
X be a subset of V \{v}. Because Vv was removed, the three graphs induced on the three
copies of X in H have only paths as their connected components. By Theorem 3.9, ηH
of each path is at least a third of its number of vertices. The total number of vertices in⋃
x∈X V

′
x is at least 3|X| − 2. Thus we get by Lemma 3.3

η(I(H) �
⋃
x∈X

V ′x) > d
3|X| − 2

3
e = |X|,

as required in order to apply Theorem 3.5.

7 Open problems

Let us summarize some of the main open problems concerning cooperative colorings and
ISRs (some of them have already been mentioned above).

1. A central problem on cooperative colorings is whether there exists some constant c
such that d+ c graphs of maximum degree d always have a cooperative coloring. At
the moment, even the case c = 2 is open.

2. The list version of the above, where d+ c is the multiplicity of the CLC-system.

3. Understand what makes layered ISR systems special, and why they behave better
than ordinary systems. If the layers are known to be full, or alternatively to be
induced from the same graph, does the behavior become even better?

4. A more general notion than layered ISR systems, considered in [15], is that of locally
sparse systems, in which every vertex is connected to o(d) vertices in each Vi. Is
this the property that is really relevant?

5. In all examples known in which |Vi| = 2d − 1 and yet there are no ISRs, not
only is there a Kd,d-component in the graph, but there is such a component which is
contained in the union of two Vjs. It would be interesting to strengthen Theorem 4.2
accordingly.

6. Do three graphs on the same vertex set, each of them a disjoint union of `-cycles,
always have a cooperative coloring? The first interesting case is ` = 4.

7. A small challenge - find a combinatorial proof of Theorem 6.6.
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