Nonexistence of a Class of Distance-regular Graphs

Yu-pei Huang^{*}

Department of Applied Mathematics I-Shou University Taiwan R.O.C.

pei.am91g@nctu.edu.tw

Yeh-jong Pan[†]

Department of Computer Science and Entertainment Technology Tajen University Taiwan R.O.C.

yjpan@tajen.edu.tw

Chih-wen Weng[‡]

Department of Applied Mathematics National Chiao Tung University Taiwan R.O.C.

weng@math.nctu.edu.tw

Submitted: May 8, 2013; Accepted: May 14, 2015; Published: Jun 3, 2015 Mathematics Subject Classifications: 05C12, 05E30

Abstract

Let Γ denote a distance-regular graph with diameter $D \ge 3$ and intersection numbers $a_1 = 0, a_2 \ne 0$, and $c_2 = 1$. We show a connection between the *d*-bounded property and the nonexistence of parallelograms of any length up to d + 1. Assume further that Γ is with classical parameters (D, b, α, β) , Pan and Weng (2009) showed that $(b, \alpha, \beta) = (-2, -2, ((-2)^{D+1} - 1)/3)$. Under the assumption $D \ge 4$, we exclude this class of graphs by an application of the above connection.

Keywords: Distance-regular graph; classical parameters; parallelogram; strongly closed subgraph; *D*-bounded

^{*}Supported by ROC Ministry of Science and Technology grant MOST 103-2811-M-214-001 and MOST 103-2632-M-214-001-MY3.

[†]Supported by ROC Ministry of Science and Technology grant MOST 103-2115-M-127-001.

[‡]Supported by ROC National Science Council grant NSC 97-2115-M-009-002.

1 Introduction

Let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \ge 3$. A sequence x, z, y of vertices of Γ is *geodetic* whenever

$$\partial(x, z) + \partial(z, y) = \partial(x, y),$$

where ∂ is the distance function of Γ . A sequence x, z, y of vertices of Γ is *weak-geodetic* whenever

$$\partial(x, z) + \partial(z, y) \leq \partial(x, y) + 1.$$

We consider subsets of the vertex set of Γ that are closed under the sense of weakgeodetic sequences as the following definition.

Definition 1. A subset $\Delta \subseteq X$ is *strongly closed* if for any weak-geodetic sequence x, z, y of Γ ,

$$x, y \in \Delta \Longrightarrow z \in \Delta.$$

A subgraph of Γ which is induced by a strongly closed subset of X is called a *strongly* closed subgraph of Γ . Strongly closed subgraphs are also called *weak-geodetically closed* subgraphs in [14]. If a strongly closed subgraph Δ of diameter d is regular then it has valency $a_d + c_d = b_0 - b_d$, where a_d, c_d, b_0, b_d are intersection numbers of Γ . Furthermore Δ is distance-regular with intersection numbers $a_i(\Delta) = a_i(\Gamma)$ and $c_i(\Delta) = c_i(\Gamma)$ for $1 \leq i \leq d$ [14, Theorem 4.6].

The following property is considered for a distance-regular graph.

Definition 2. Γ is said to be *d*-bounded whenever for all $x, y \in X$ with $\partial(x, y) \leq d$, there is a regular strongly closed subgraph of diameter $\partial(x, y)$ which contains x and y.

Note that a (D-1)-bounded distance-regular graph is clear to be *D*-bounded. The properties of *D*-bounded distance-regular graphs were studied in [13], and these properties were used in the classification of classical distance-regular graphs of negative type [15]. Other applications of *D*-bounded distance-regular graphs are given in [3, 12, 13, 15]. Before stating our main results, we show one more definition and some known results.

Definition 3. A 4-tuple xyzw consisting of vertices of Γ is called a *parallelogram of length* d if $\partial(x, y) = \partial(z, w) = 1$, $\partial(x, w) = d$, and $\partial(x, z) = \partial(y, w) = \partial(y, z) = d - 1$.

The following theorem is a combination of three previous results.

Theorem 4. Let Γ denote a distance-regular graph with diameter $D \ge 3$. Suppose that the intersection numbers a_1, a_2, c_2 satisfy one of the following.

- (i) [4, Theorem 2] $a_2 > a_1 = 0, c_2 > 1;$
- (ii) [14, Theorem 1] $a_1 \neq 0, c_2 > 1$; or

(*iii*) [9, Theorem 1.1] $a_2 > a_1 \ge c_2 = 1$.

Fix an integer $1 \leq d \leq D-1$ and suppose that Γ contains no parallelograms of any length up to d+1. Then Γ is d-bounded.

We deal with the case " $a_1 = 0, a_2 \neq 0$, and $c_2 = 1$ " in the following, which is the key point among our main results.

Theorem 5. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \ge 3$, and intersection numbers $a_1 = 0$, $a_2 \ne 0$ and $c_2 = 1$. Fix an integer $1 \le d \le D - 1$ and suppose that Γ contains no parallelograms of any length up to d+1. Then Γ is d-bounded.

The proof of Theorem 5 is given in Section 4. Theorem 5 is a generalization of [2, Lemma 4.3.13] and [7]. Combining Theorem 4 and Theorem 5, we have the (ii) \Rightarrow (i) part of the following theorem.

Theorem 6. Suppose Γ is a distance-regular graph with diameter $D \ge 3$ and the intersection number $a_2 \ne 0$. Fix an integer $2 \le d \le D - 1$. Then the following two conditions (i), (ii) are equivalent:

(i) Γ is d-bounded.

(ii) Γ contains no parallelograms of any length up to d+1 and $b_1 > b_2$.

The complete proof of Theorem 6 is given in Section 4. Theorem 6 answers the problem proposed in [14, p. 299]. The following is an application of Theorem 6, which excludes a class of distance-regular graphs mentioned in [8, Theorem 2.2].

Theorem 7. There is no distance-regular graph with classical parameters $(D, b, \alpha, \beta) = (D, -2, -2, ((-2)^{D+1} - 1)/3)$, where $D \ge 4$.

We prove Theorem 7 in Section 5. Since Witt graph M_{23} [2, Table 6.1] is a distanceregular graph with classical parameters (D, b, α, β) with $D = 3, b = -2, \alpha = -2$, and $\beta = 5$, the condition $D \ge 4$ in Theorem 7 can not be loosened to $D \ge 3$.

2 Preliminaries

In this section we review some definitions, basic concepts and some previous results concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more background information.

Let $\Gamma = (X, R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function ∂ , and diameter $D := \max\{\partial(x, y) \mid x, y \in X\}$. By a *pentagon*, we mean a 5-tuple $u_1 u_2 u_3 u_4 u_5$ consisting of distinct vertices in Γ such that $\partial(u_i, u_{i+1}) = 1$ for $1 \leq i \leq 4$ and $\partial(u_5, u_1) = 1$.

For a vertex $x \in X$ and an integer $0 \leq i \leq D$, set $\Gamma_i(x) := \{z \in X \mid \partial(x, z) = i\}$. The valency k(x) of a vertex $x \in X$ is the cardinality of $\Gamma_1(x)$. The graph Γ is called regular (with valency k) if each vertex in X has valency k. The graph Γ is said to be distance-regular whenever for all integers $0 \leq h, i, j \leq D$, and all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x, y. The constants p_{ij}^h are known as the *intersection numbers* of Γ .

From now on let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \ge 3$. For two vertices $x, y \in X$ with $\partial(x, y) = i$, set

$$B(x,y) := \Gamma_1(x) \cap \Gamma_{i+1}(y),$$

$$C(x,y) := \Gamma_1(x) \cap \Gamma_{i-1}(y),$$

$$A(x,y) := \Gamma_1(x) \cap \Gamma_i(y).$$

Note that

are independent of x, y. For convenience, set $c_i := p_{1 \ i-1}^i$ for $1 \le i \le D$, $a_i := p_{1 \ i}^i$ for $0 \le i \le D$, $b_i := p_{1 \ i+1}^i$ for $0 \le i \le D-1$ and put $b_D := 0$, $c_0 := 0$, $k := b_0$. Note that k is the valency of each vertex in Γ . It is immediate from the definition of p_{ij}^h that $b_i \ne 0$ for $0 \le i \le D-1$ and $c_i \ne 0$ for $1 \le i \le D$. Moreover $c_1 = 1$ and

$$k = a_i + b_i + c_i \quad \text{for } 0 \leqslant i \leqslant D.$$

$$\tag{1}$$

A subset Ω of X is strongly closed with respect to a vertex $x \in \Omega$ if for any $z \in X$ with x, z, y being a weak-geodetic sequence for some $y \in \Omega$, we have $z \in \Omega$. Note that Ω is strongly closed if and only if for any vertex $x \in \Omega$, Ω is strongly closed with respect to x. A subset Ω of X is strongly closed with respect to a vertex $x \in \Omega$ if and only if [14, Lemma 2.3]

$$C(y,x) \subseteq \Omega \text{ and } A(y,x) \subseteq \Omega \text{ for all } y \in \Omega.$$
 (2)

We quote two more theorems from [14] that will be used later in this paper to end this section.

Theorem 8. ([14, Theorem 4.6]) Let Γ be a distance-regular graph with diameter $D \ge 3$. Let Ω be a regular subgraph of Γ with valency γ and set $d := \min\{i \mid \gamma \le c_i + a_i\}$. Then the following (i),(ii) are equivalent.

- (i) Ω is strongly closed with respect to at least one vertex $x \in \Omega$.
- (ii) Ω is strongly closed with diameter d.

Suppose (i) or (ii) holds. Then Ω is a distance-regular subgraph of Γ with diameter d and $\gamma = c_d + a_d$.

Theorem 9. ([14, Lemma 6.5]) Let Γ be a distance-regular graph with diameter $D \ge 2$. Suppose Γ is d-bounded for some $1 \le d \le D - 1$, then Γ contains no parallelograms of any length up to d + 1.

3 The Shape of Pentagons

Throughout this section, let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \ge 3$, and intersection numbers $a_1 = 0$, $a_2 \ne 0$. Such graphs are also studied in [4, 5, 6, 7, 8].

Fix a vertex $x \in X$, a pentagon $u_1u_2u_3u_4u_5$ has shape i_1, i_2, i_3, i_4, i_5 with respect to xif $i_j = \partial(x, u_j)$ for $1 \leq j \leq 5$. Note that under the assumption $a_1 = 0$ and $a_2 \neq 0$, any two vertices at distance 2 in Γ are always contained in a pentagon, and two nonconsecutive vertices in a pentagon of Γ have distance 2. In this section we give a few lemmas which will be used in the next section.

Lemma 10. Fix an integer $1 \leq d \leq D-1$, and suppose Γ contains no parallelograms of any length up to d+1 for some integer $d \geq 2$. Let x be a vertex in Γ , and let $u_1u_2u_3u_4u_5$ be a pentagon of Γ such that $\partial(x, u_1) = i - 1$ and $\partial(x, u_3) = i + 1$ for $1 \leq i \leq d$. Then the pentagon $u_1u_2u_3u_4u_5$ has shape i - 1, i, i + 1, i + 1, i with respect to x.

Proof. Since $\partial(u_3, u_4) = 1$ and $\partial(u_3, x) = i + 1$, $\partial(x, u_4) = i + 2, i + 1$, or *i*. Since $\partial(u_1, u_4) = 2$ and $\partial(u_1, x) = i - 1$, $\partial(x, u_4) \leq i - 1 + 2 = i + 1$. Consequently we we have $\partial(x, u_4) = i + 1$ or *i*. It suffices to prove $\partial(x, u_4) = i + 1$. We prove this lemma by induction on *i*.

The case i = 1 holds otherwise $\partial(x, u_4) = i = 1$ and $\partial(x, u_5) = 1$, which contradicts the assumption $a_1 = 0$.

Suppose the assertion holds for any $i < \ell \leq d$. For the case $i = \ell$, suppose to the contrary that $u_1u_2u_3u_4u_5$ is a pentagon with $\partial(x, u_1) = \ell - 1$ and $\partial(x, u_3) = \ell + 1$, but $\partial(x, u_4) = \ell$. We can choose $y \in C(x, u_1)$ and hence $\partial(y, u_1) = \ell - 2$. Since $\partial(x, u_3) = \ell + 1$ and $\partial(x, y) = 1$, we have $\partial(y, u_3) = \ell + 2$, $\ell + 1$ or ℓ . Since $\partial(y, u_1) = \ell - 2$ and $\partial(u_1, u_3) = 2$, we have $\partial(y, u_3) \leq \ell - 2 + 2 = \ell$. Consequently we have $\partial(y, u_3) = \ell$. By the induction hypothesis, the pentagon $u_1u_2u_3u_4u_5$ has shape $\ell - 2$, $\ell - 1$, ℓ , ℓ , $\ell - 1$ with respect to y. In particular, $\partial(y, u_3) = \partial(y, u_4) = \ell$. Then xyu_4u_3 is a parallelogram of length $\ell + 1$, a contradiction.

Other versions of Lemma 10 can be seen in [14, Lemma 6.9] and [9, Lemma 4.1] under various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [4] under an additional assumption $c_2 > 1$, but this assumption is essentially not used in his proofs. For the sake of completeness, we still provide the proofs.

Lemma 11. Fix an integer $1 \leq d \leq D - 1$, and suppose Γ contains no parallelograms of any length up to d + 1. Then for any two vertices $z, z' \in X$ such that $\partial(x, z) \leq d$ and $z' \in A(z, x)$, we have B(x, z) = B(x, z').

Proof. Note that $z' \in A(z, x)$ implies $\partial(x, z) = \partial(x, z')$, hence it suffices to show $B(x, z) \subseteq B(x, z')$ since $|B(x, z)| = |B(x, z')| = b_{\partial(x,z)}$. Suppose to the contrary that there exists $w \in B(x, z) - B(x, z')$. Then $\partial(w, z) = \partial(x, z) + 1$ and $\partial(w, z') \neq \partial(x, z) + 1$. Note that

 $\partial(w, z') \leq \partial(w, x) + \partial(x, z') = 1 + \partial(x, z)$ and $\partial(w, z') \geq \partial(w, z) - \partial(z, z') = \partial(x, z)$. Consequently $\partial(w, z') = \partial(x, z)$ and wxz'z forms a parallelogram of length $\partial(x, z) + 1$, a contradiction.

Lemma 12. Fix integers $1 \le i \le d \le D - 1$, and suppose Γ contains no parallelograms of any length up to d + 1. Let x be a vertex in Γ . Then there is no pentagon of shape i, i, i, i + 1 with respect to x in Γ .

Proof. We prove this lemma by induction on i.

The case i = 1 holds otherwise we have a pentagon having shape 1, 1, 1, 1, 2 with respect to x. In particular we have three vertices x, u_1, u_2 with $\partial(x, u_1) = \partial(x, u_2) =$ $\partial(u_1, u_2) = 1$, which is a contradiction to the initial assumption $a_1 = 0$.

Suppose the assertion holds for any $i < \ell \leq d$. For the case $i = \ell$, suppose to the contrary that $u_1u_2u_3u_4u_5$ is a pentagon of shape $\ell, \ell, \ell, \ell, \ell + 1$ with respect to x. This implies $u_2 \in A(u_1, x), u_3 \in A(u_2, x)$, and $u_4 \in A(u_3, x)$. Hence we have $B(x, u_1) = B(x, u_2) = B(x, u_3) = B(x, u_4)$ by Lemma 11. We shall prove $C(x, u_1) = C(x, u_2) = C(x, u_3) = C(x, u_4)$ in the following.

First we prove $C(x, u_1) = C(x, u_2)$. It suffices to show $C(x, u_2) \subseteq C(x, u_1)$ since $|C(x, u_1)| = |C(x, u_2)| = c_\ell$. Suppose to the contrary that there exists $v \in C(x, u_2) - C(x, u_1)$. By our choice of v, we have $v \notin C(x, u_1)$. We also have $v \notin B(x, u_1)$, since $B(x, u_1) = B(x, u_2)$ and $v \notin B(x, u_2)$. Consequently we have $v \in A(x, u_1)$ since v is a neighbor of x. Then $B(u_1, x) = B(u_1, v)$ by Lemma 11. Note that $v \in A(x, u_1)$ implies $\partial(v, u_1) = \partial(x, u_1) = \ell$, and hence $\partial(v, u_5) = \ell + 1$ since $u_5 \in B(u_1, x) = B(u_1, v)$. Applying Lemma 10 to the pentagon $u_2u_1u_5u_4u_3$ with $\partial(v, u_2) = \ell - 1$ and $\partial(v, u_5) = \ell + 1$, we conclude that $u_2u_1u_5u_4u_3$ has shape $\ell - 1, \ell, \ell + 1, \ell + 1, \ell$ with respect to v. In particular $\partial(v, u_4) = \ell + 1$ and hence $v \in B(x, u_4) = B(x, u_2)$. This is a contradiction to $v \in C(x, u_2)$. Consequently we have $C(x, u_2) \subseteq C(x, u_1)$ and hence $C(x, u_1) = C(x, u_2)$ as desired.

By substituting u_4 to u_1 , u_3 to u_2 in the last paragraph and consider the shape of the pentagon $u_3u_4u_5u_1u_2$ with respect to $v' \in C(x, u_3) - C(x, u_4)$, similarly we have $C(x, u_4) = C(x, u_3)$.

It remains to show $C(x, u_2) = C(x, u_4)$. It suffices to show $C(x, u_2) \subseteq C(x, u_4)$. Suppose to the contrary that there exists $u \in C(x, u_2) - C(x, u_4)$. With the similar arguments in the previous paragraphs, we have $u \in A(x, u_4)$ and then $B(u_4, x) = B(u_4, u)$ by Lemma 11. Hence $\partial(u, u_5) = \ell + 1$ since $u_5 \in B(u_4, x) = B(u_4, u)$. Applying Lemma 10 to the pentagon $u_2u_1u_5u_4u_3$ with $\partial(u, u_2) = \ell - 1$ and $\partial(u, u_5) = \ell + 1$, we conclude that $u_2u_1u_5u_4u_3$ has shape $\ell - 1, \ell, \ell + 1, \ell + 1, \ell$ with respect to u. In particular $\partial(u, u_4) = \ell + 1$ and hence $u \in B(x, u_4)$.

Pick a vertex $w \in C(x, u_1) = C(x, u_2) = C(x, u_3) = C(x, u_4)$. Since $\partial(x, w) = 1$ and $\partial(x, u_5) = \ell + 1$, we have $\partial(w, u_5) = \ell + 2, \ell + 1$ or ℓ . Since $\partial(u_4, u_5) = 1$ and $\partial(u_4, w) = \ell - 1$, we have $\partial(w, u_5) = \ell, \ell - 1$ or $\ell - 2$. Consequently we have $\partial(w, u_5) = \ell$. Then $u_1 u_2 u_3 u_4 u_5$ is a pentagon of shape $\ell - 1, \ell - 1, \ell - 1, \ell - 1, \ell$ with respect to w, which is a contradiction to the inductive hypothesis.

Lemma 13. Fix integers $1 \le i \le d \le D - 1$, and suppose Γ contains no parallelograms of any length up to d + 1. Let x be a vertex and $u_1u_2u_3u_4u_5$ be a pentagon of shape i, i - 1, i, i - 1, i or of shape i, i - 1, i, i - 1, i - 1 with respect to x in Γ . Then $B(x, u_1) = B(x, u_3)$.

Proof. It suffices to show $B(x, u_3) \subseteq B(x, u_1)$ since $|B(x, u_3)| = |B(x, u_1)| = b_i$. Pick $u \in B(x, u_3)$, this implies $\partial(u, u_3) = i + 1$. Since $\partial(u_3, u_2) = 1$ and $\partial(u_3, u) = i + 1$, we have $\partial(u_2, u) = i + 2, i + 1$, or *i*. Since $\partial(x, u) = 1$ and $\partial(x, u_2) = i - 1$, we have $\partial(u_2, u) = i, i - 1$, or i - 2. Consequently we have $\partial(u, u_2) = i$. Substituting u_4 to u_2 in the above arguments, we similarly have $\partial(u, u_4) = i$. Next we consider $\partial(u, u_1)$. Note that $\partial(u, u_1) = i + 1, i$ or i - 1 since $\partial(x, u) = 1$ and $\partial(x, u_1) = i$. We show that $\partial(u, u_1) = i + 1$ by excluding the other two cases in the following.

(1) Suppose $\partial(u, u_1) = i-1$, then the pentagon $u_1 u_2 u_3 u_4 u_5$ has shape i-1, i, i+1, i+1, i with respect to u by Lemma 10. In particular we have $\partial(u, u_4) = i + 1$, which is a contradiction to $\partial(u, u_4) = i$ obtained in the last paragraph.

(2) Suppose $\partial(u, u_1) = i$. Since $\partial(u_1, u_5) = 1$ and $\partial(u_1, u) = i$, we have $\partial(u, u_5) = i + 1, i$, or i - 1. If $\partial(u, u_5) = i$, then the pentagon $u_4u_5u_1u_2u_3$ has shape i, i, i, i, i + 1 with respect to u, which is a contradiction to Lemma 12. If $\partial(u, u_5) = i - 1$, then the pentagon $u_5u_4u_3u_2u_1$ has shape i - 1, i, i + 1, i, i with respect to u, which is a contradiction to Lemma 10. Consequently we have $\partial(u, u_5) = i + 1$. For the case $u_1u_2u_3u_4u_5$ having shape i, i - 1, i, i - 1, i - 1 with respect to x, we have $\partial(u, u_5) \leq \partial(x, u_5) + 1 = i$, which is a contradiction to $\partial(u, u_5) = i + 1$. For the other case $u_1u_2u_3u_4u_5$ having shape i, i - 1, i, i - 1, i with respect to x, $\partial(x, u_5) = i$ and hence u_5u_1xu is a parallelogram of length i + 1, also a contradiction.

Hence $\partial(u, u_1) = i + 1$, or equivalently $u \in B(x, u_1)$. This proves $B(x, u_3) \subseteq B(x, u_1)$ as desired.

The following lemma rules out a class of pentagons of certain shapes with respect to a given vertex.

Lemma 14. Fix integers $1 \le i \le d \le D - 1$, and suppose Γ contains no parallelograms of any length up to d + 1. Let x be a vertex in Γ . Then there is no pentagon of shape i, i, i, i + 1, i + 1 with respect to x in Γ .

Proof. We prove this lemma by induction on i. The case i = 1 holds otherwise we have a pentagon of shape 1, 1, 1, 2, 2 with respect to x. In particular we have three vertices x, u_1, u_2 with $\partial(x, u_1) = \partial(x, u_2) = \partial(u_1, u_2) = 1$, which is a contradiction to the initial assumption $a_1 = 0$.

Suppose the assertion holds for any $i < \ell \leq d$. For the case $i = \ell$, suppose to the contrary that $u_1u_2u_3u_4u_5$ is a pentagon of shape $\ell, \ell, \ell, \ell+1, \ell+1$ with respect to x. Pick $v \in C(x, u_1)$ and note that hence $\partial(u_1, v) = \ell - 1$. Since $\partial(x, v) = 1$ and $\partial(x, u_5) = \ell + 1$, we have $\partial(v, u_5) = \ell + 2, \ell + 1$, or ℓ . Since $\partial(u_1, u_5) = 1$ and $\partial(u_1, v) = \ell - 1$, we have $\partial(v, u_5) = \ell, \ell - 1$, or $\ell - 2$. Consequently we have $\partial(v, u_5) = \ell$.

Next we consider $\partial(v, u_3)$. Note that $\partial(x, v) = 1$ and $\partial(x, u_3) = \ell$, hence $\partial(v, u_3) = \ell + 1, \ell$, or $\ell - 1$. We show that $\partial(v, u_3) = \ell - 1$ by excluding the other two cases in the following.

(1) If $\partial(v, u_3) = \ell + 1$, then $v \in B(x, u_3)$. Note that $u_2 \in A(u_1, x)$ and $u_3 \in A(u_2, x)$, hence we have $B(x, u_1) = B(x, u_2) = B(x, u_3)$ by Lemma 11. Then $v \in B(x, u_3) = B(x, u_2) = B(x, u_1)$, which is a contradiction to $v \in C(x, u_1)$.

(2) If $\partial(v, u_3) = \ell$, we have $\partial(v, u_4) = \ell + 1, \ell$, or $\ell - 1$ since $\partial(u_3, u_4) = 1$. We also have $\partial(v, u_4) = \ell + 2, \ell + 1$, or ℓ since $\partial(x, u_4) = \ell + 1$ and $\partial(x, v) = 1$. Consequently we have $\partial(v, u_4) = \ell + 1$ or ℓ . For the case $\partial(v, u_4) = \ell + 1$, applying Lemma 10 to the pentagon $u_1u_5u_4u_3u_2$ with $\partial(u_1, v) = \ell - 1$ and $\partial(v, u_4) = \ell + 1$, we have that the pentagon $u_1u_5u_4u_3u_2$ is of shape $\ell - 1, \ell, \ell + 1, \ell + 1, \ell$ with respect to v. In particular, $\partial(v, u_3) = \ell + 1$ which contradicts $\partial(v, u_3) = \ell$. For the case $\partial(v, u_4) = \ell, xvu_3u_4$ is a parallelogram of length $\ell + 1$, a contradiction to our initial assumption.

Next we consider $\partial(v, u_4)$. Since $\partial(u_3, u_4) = 1$ and $\partial(u_3, v) = \ell - 1$, we have $\partial(v, u_4) = \ell, \ell - 1$, or $\ell - 2$. Since $\partial(x, v) = 1$ and $\partial(x, u_4) = \ell + 1$, we have $\partial(v, u_4) = \ell + 2, \ell + 1$, or ℓ . Consequently we have $\partial(v, u_4) = \ell$.

Finally we consider $\partial(v, u_2)$. Since $\partial(x, v) = 1$ and $\partial(x, u_2) = \ell$, we have $\partial(v, u_4) = \ell + 1, \ell$, or $\ell - 1$. Since $\partial(u_1, u_2) = 1$ and $\partial(u_1, v) = \ell - 1$, we have $\partial(v, u_2) = \ell, \ell - 1$, or $\ell - 2$. Consequently we have $\partial(v, u_2) = \ell$ or $\ell - 1$. If $\partial(v, u_2) = \ell - 1$, the pentagon $u_1u_2u_3u_4u_5$ is of shape $\ell - 1, \ell - 1, \ell - 1, \ell, \ell$ with respect to v. This is a contradiction to the induction hypothesis. Hence $\partial(v, u_2) = \ell$.

We conclude that the pentagon $u_5u_1u_2u_3u_4$ is of shape $\ell, \ell - 1, \ell, \ell - 1, \ell$ with respect to v. By Lemma 13, we have $B(v, u_2) = B(v, u_5)$. Since $\partial(x, u_5) = \ell + 1$ and $\partial(v, u_5) = \ell$, we have $x \in B(v, u_5)$. Since $\partial(x, u_2) = \ell$ and $\partial(v, u_2) = \ell$, we have $x \notin B(v, u_2)$. Consequently we have $x \in B(v, u_5) - B(v, u_2)$, which is a contradiction to $B(v, u_2) = B(v, u_5)$.

4 D-bounded Property and Nonexistence of Parallelograms

Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \ge 3$. Fix an integer $1 \le d \le D - 1$. Throughout this section, we assume that Γ satisfies the following conditions.

Assumption:

- (i) The intersection numbers satisfy $a_1 = 0$, $a_2 \neq 0$, $c_2 = 1$, and
- (ii) Γ contains no parallelograms of any length up to d+1.

We shall prove the *d*-bounded property of Γ in this section. By the definition of strongly closed subgraphs, the following proposition is easily seen.

Proposition 15. Suppose $\Delta \subseteq X$ is a strongly closed subgraph of Γ and $ux_1vx_2x_3$ or $ux_1x_2vx_3$ is a pentagon in Γ . If $u, v \in \Delta$, then x_1, x_2, x_3 are all in Δ .

Proof. Since $a_1 = 0$, it is easily seen that $\partial(u, v) = 2$ and u, x_i, v is weak-geodetic for i = 1, 2, 3.

We then give a definition.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.37

Definition 16. For any vertex $x \in X$ and any subset $\Pi \subseteq X$, define $[x, \Pi]$ to be the set

 $\{v \in X \mid \text{there exists } y' \in \Pi, \text{ such that the sequence } x, v, y' \text{ is geodetic } \}.$

For any $x, y \in X$ with $\partial(x, y) = d'$, set

$$\Pi_{xy} := \{ y' \in \Gamma_{d'}(x) \mid B(x, y) = B(x, y') \}$$

and

$$\Delta(x, y) = [x, \Pi_{xy}].$$

For convenience, we also use $\Delta(x, y)$ to denote the subgraph of Γ induced on $\Delta(x, y)$. Note that $\Delta(x, y)$ contains x, y and $\Gamma_{d'}(x) \cap \Delta(x, y) = \prod_{xy}$. We can also easily see the following proposition.

Proposition 17. For $x, y, z, w \in X$ and $w \in \Delta(x, y)$, if x, z, w is geodetic, then $z \in \Delta(x, y)$.

Proof. Suppose $\partial(x, y) = d'$, $\partial(x, w) = i$ and $\partial(x, z) = j$. Then $\partial(z, w) = i - j$. By the construction of Definition 16, there exists $y' \in \Pi_{xy}$ such that x, w, y' is geodetic. Hence $\partial(w, y') = d' - i$. Note that $\partial(z, y') \leq \partial(z, w) + \partial(w, y') = d' - j$, and $\partial(z, y') \geq \partial(x, y') - \partial(x, z) = d' - j$. So $\partial(z, y') = d' - j$ and thus x, z, y' is geodetic. Hence $z \in \Delta(x, y)$.

For any $1 \leq j \leq d$, we define the following three kinds of conditions:

- (B_j) For any vertices $x, y \in X$ with $\partial(x, y) = j$, $\Delta(x, y)$ is a regular strongly closed subgraph of Γ with valency $a_j + c_j$ and diameter j.
- (W_j) For any vertices $x, y \in X$ with $\partial(x, y) = j$, $\Delta(x, y)$ is strongly closed with respect to x.
- (R_j) For any vertices $x, y \in X$ with $\partial(x, y) = j$, $\Delta(x, y)$ is a regular subgraph of Γ with valency $a_j + c_j$.

By Definition 2, (B_j) holds for each $1 \leq j \leq d$ implies that Γ is *d*-bounded since we can choose $\Delta(x, y)$ as the desired strongly closed subgraphs. By referring to Theorem 8, we know that for a subgraph Ω of Γ , if Ω is regular and Ω is strongly closed with respect to some vertex $x \in \Omega$, then Ω is strongly closed and is a distance-regular subgraph of Γ . Thus if (W_ℓ) and (R_ℓ) hold for some $1 \leq \ell \leq d$, then (B_ℓ) holds. Consequently (W_j) and (R_j) hold for all $1 \leq j \leq d$ provides a sufficient condition for the *d*-bounded property of Γ . We plan to prove Theorem 5 through the above deduction, that is, to prove (W_j) and (R_j) hold for all $1 \leq j \leq d$ under the assumptions in the beginning of this section. We use induction on *j* to achieve our objective. To adequately proceed the induction process, the following lemmas are required. **Lemma 18.** Fix integers i, d' with $1 \leq i < d' \leq d$ and let $x, y \in X$ with $\partial(x, y) = d'$. Suppose for all $\ell \in \{i+1, i+2, \ldots d'\}$, if vertex $z' \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (i), (ii).

(i) $A(z', x) \subseteq \Delta(x, y)$.

(ii) For any vertex $w' \in \Gamma_{\ell}(x) \cap \Gamma_2(z')$ with B(x, w') = B(x, z'), we have $w' \in \Delta(x, y)$.

Then for any $z \in \Delta(x, y) \cap \Gamma_i(x)$, $A(z, x) \subseteq \Delta(x, y)$.

Proof. Let $v \in A(z, x)$. Pick $u \in \Delta(x, y) \cap \Gamma_{i+1}(x) \cap \Gamma_1(z)$. Let uu_2u_3vz be a pentagon of Γ for some $u_2, u_3 \in X$. Note that uu_2u_3vz cannot have shape i + 1, i, i - 1, i, i, shape i + 1, i + 2, i + 1, i, i by Lemma 10, cannot have shape i + 1, i, i, i, i by Lemma 12, and cannot have shape i + 1, i + 1, i, i, i by Lemma 14 with respect to x. Hence uu_2u_3vz has shape i + 1, i + 1, i + 1, i, i or i + 1, i, i + 1, i, i with respect to x. In the first case we have $u_2 \in A(u, x), u_3 \in A(u_2, x)$, and this implies $u_2, u_3 \in \Delta(x, y)$ by the assumption (i). Then $v \in \Delta(x, y)$ by Proposition 17 since x, v, u_3 is geodetic. In the latter case we have $B(x, u) = B(x, u_3)$ by Lemma 13, and consequently $u_3 \in \Delta(x, y)$ by the assumption (ii). Then $v \in \Delta(x, y)$ by Proposition 17 since x, v, u_3 is geodetic.

Lemma 19. Fix integers i, d' with $1 \leq i < d' \leq d$ and let $x, y \in X$ with $\partial(x, y) = d'$. Suppose $(W_j), (R_j)$ and thus (B_j) hold in Γ for all j < d', and for all $\ell \in \{i+1, i+2, \ldots, d'\}$, if vertex $z' \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (i), (ii).

(i) $A(z', x) \subseteq \Delta(x, y)$.

(ii) For any vertex $w' \in \Gamma_{\ell}(x) \cap \Gamma_2(z')$ with B(x, w') = B(x, z'), we have $w' \in \Delta(x, y)$.

Then for any $z \in \Delta(x, y) \cap \Gamma_i(x)$ and $w \in \Gamma_i(x) \cap \Gamma_2(z)$ with B(x, w) = B(x, z), we have $w \in \Delta(x, y)$.

Proof. Let $z \in \Delta(x, y) \cap \Gamma_i(x)$. First we note that (B_i) holds since $1 \leq i < d'$, hence $\Delta(x, z)$ is a regular strongly closed subgraph of diameter *i*.

Suppose to the contrary that there exists $w \in \Gamma_i(x) \cap \Gamma_2(z)$ with B(x, w) = B(x, z) such that $w \notin \Delta(x, y)$. Since B(x, w) = B(x, z), we have $\Pi_{xz} = \Pi_{xw}$ and thus $\Delta(x, z) = \Delta(x, w)$ by the construction in Definition 16.

Note that |C(w,z)| = 1 since $\partial(w,z) = 2$ and $c_2 = 1$. Let v_2 be the unique vertex in C(w,z).

Claim 19.1. $\partial(x, v_2) = i - 1$.

Proof of Claim 19.1. Let $zv_2wv_4v_5$ be a pentagon for some $v_4, v_5 \in X$. Note that this pentagon exists since we can choose $v_4 \in A(w, z)$ with the assumption $a_2 \neq 0$, and we can choose $v_5 \in C(v_4, z)$ where $v_5 \neq v_2$ with the assumption $a_1 = 0$. Since $\partial(x, z) = i$ and $\partial(z, v_2) = 1$, we have $\partial(x, v_2) = i + 1$, *i*, or i - 1. We prove this claim by excluding the other two cases.

The electronic journal of combinatorics 22(2) (2015), #P2.37

(1) Suppose $\partial(x, v_2) = i + 1$. Since $w \in \Delta(x, w) = \Delta(x, z)$ and $z \in \Delta(x, z)$, we have that $v_2, v_4, v_5 \in \Delta(x, z)$ by Proposition 15. In particular, $\partial(x, v_2) \leq i$ since $\Delta(x, z)$ is of diameter *i*. This is a contradiction.

(2) Suppose $\partial(x, v_2) = i$, that is, $v_2 \in A(z, x)$, then $v_2 \in \Delta(x, y)$ by Lemma 18. Since $\partial(x, v_2) = \partial(x, w) = i$, we have $w \in A(v_2, x)$. Applying Lemma 18 again by viewing v_2 as the role of z, we have $w \in \Delta(x, y)$. This contradicts our assumption that $w \notin \Delta(x, y)$. Hence $\partial(x, v_2) = i - 1$.

Let u be a vertex in $\Delta(x, y) \cap \Gamma_{i+1}(x) \cap \Gamma_1(z)$. Let $y_3 \in A(u, v_2)$ and $y_4 \in C(y_3, v_2)$.

Claim 19.2. The pentagon $v_2 z u y_3 y_4$ has shape i - 1, i, i + 1, i + 1, i with respect to x. Moreover the pentagon is contained in $\Delta(x, y)$.

Proof of Claim 19.2. The shape of the pentagon $v_2 z u y_3 y_4$ is determined by Lemma 10. Since $\partial(x, y_3) = i + 1$, we have $y_3 \in A(u, x)$ and we can conclude that $y_3 \in \Delta(x, y)$ by the assumption (i). We can also conclude that the remaining v_2 and y_4 are in $\Delta(x, y)$ by Proposition 17 since x, v_2, y_3 and x, y_4, y_3 are both geodetic.

If $w = y_4$ then $w \in \Delta(x, y)$ by Claim 19.2. This contradicts our assumption that $w \notin \Delta(x, y)$. Hence $w \neq y_4$ and we have $\partial(w, y_4) = 2$ by excluding the other possible case $\partial(w, y_4) = 1$ under the assumption $a_1 = 0$. Let $w_3 \in A(y_4, w)$ and $w_4 \in C(w_3, w)$.

Claim 19.3. The pentagon $v_2y_4w_3w_4w$ has shape i - 1, i, i + 1, i + 1, i with respect to x and $\{w_3, w_4\} \cap \{y_3, u\} = \emptyset$.

Proof of Claim 19.3. Recall that $\Delta(x, w) = \Delta(x, z)$ is strongly closed of diameter *i* since (B_i) holds. Also note that $v_2 \in \Delta(x, z)$ since x, v_2, z is geodetic. Since $\partial(w, w_4) = 1$ and $\partial(x, w) = i$, we have $\partial(x, w_4) = i - 1, i$, or i + 1.

If $\partial(x, w_4) = i - 1$ or i, then x, w_4, w is weak-geodetic. Since $\Delta(x, w)$ is strongly closed, we have $w_4 \in \Delta(x, w) = \Delta(x, z)$. This forces $y_4 \in \Delta(x, z)$ by applying Proposition 15 to the pentagon $v_2y_4w_3w_4w$ with $v_2, w_4 \in \Delta(x, z)$. By applying Proposition 15 again to the pentagon $zv_2y_4y_3u$ with $z, y_4 \in \Delta(x, z)$, we have $y_3 \in \Delta(x, z)$. This is a contradiction since $\Delta(x, z)$ has diameter i and $\partial(x, y_3) = i + 1 > i$. Hence $\partial(x, w_4) = i + 1$ and $v_2ww_4w_3y_4$ has shape i - 1, i, i + 1, i + 1, i with respect to x by Lemma 10.

Since $\partial(x, w_3) = \partial(x, w_4) = i + 1$ and $\partial(w_3, w_4) = 1$, we have $w_4 \in A(w_3, x)$. By the assumption (i), if $w_3 \in \Delta(x, y)$ then $w_4 \in \Delta(x, y)$. Recall that y_3 and u are both in $\Delta(x, y)$ by Claim 19.2. Therefore if $\{w_3, w_4\} \cap \{y_3, u\} \neq \emptyset$, we can conclude that $w_4 \in \Delta(x, y)$ for any case. Since x, w, w_4 is geodetic, we have $w \in \Delta(x, y)$ by Proposition 17. This is a contradiction to our assumption that $w \notin \Delta(x, y)$.

The two pentagons $v_2 z u y_3 y_4$ and $v_2 y_4 w_3 w_4 w$ are shown in Figure 1. Claim 19.4. $B(x, y_3) \neq B(x, w_3)$.

Proof of Claim 19.4. Note that $\partial(y_3, w_3) = 2$ since $\partial(y_4, w_3) = 1$, $\partial(y_4, y_3) = 1$, and $a_1 = 0$. Suppose to the contrary that $B(x, y_3) = B(x, w_3)$. Recall that $y_3 \in \Delta(x, y)$ by Claim 19.2. Hence we have $w_3 \in \Delta(x, y)$ by the assumption (ii). Since $\partial(x, w_3) = \partial(x, w_4) = i + 1$ and $\partial(w_3, w_4) = 1$, we have $w_4 \in A(w_3, x)$. We then have $w_4 \in \Delta(x, y)$ by the assumption (i).

distance to x

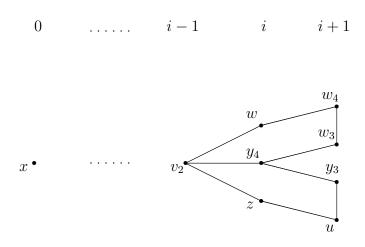


Figure 1: Two pentagons in the proof of Lemma 19.

Since x, w, w_4 is geodetic, we have $w \in \Delta(x, y)$ by Proposition 17. This is a contradiction to our assumption that $w \notin \Delta(x, y)$.

Let $p_3 \in A(y_3, w_3)$ and $p_4 \in C(p_3, w_3)$. Note that these two vertices exist since $\partial(y_3, w_3) = 2, a_2 \neq 0$, and $c_2 = 1$.

Claim 19.5. The pentagon $y_4y_3p_3p_4w_3$ has shape i, i + 1, i + 2, i + 2, i + 1 with respect to x.

Proof of Claim 19.5. Since $\partial(p_3, y_3) = 1$ and $\partial(x, y_3) = i + 1$, we have $\partial(x, p_3) = i, i + 1$ or i + 2. We show that $\partial(x, p_3) = i + 2$ by excluding the other two cases in the following.

(1) Suppose $\partial(x, p_3) = i + 1$, then $\partial(x, p_4) = i + 2, i + 1$, or *i* since $\partial(p_3, p_4) = 1$.

If $\partial(x, p_4) = i+2$, then the pentagon $y_4y_3p_3p_4w_3$ should have shape i, i+1, i+2, i+2, i+1with respect to x by Lemma 10. This is a contradiction to the assumption $\partial(x, p_3) = i+1$ for this case.

If $\partial(x, p_4) = i + 1$, then $\partial(x, y_3) = \partial(x, p_3) = \partial(x, p_4) = \partial(x, w_3) = i + 1$. Hence $p_3 \in A(y_3, x), p_4 \in A(p_3, x)$, and $w_3 \in A(p_4, x)$. By applying Lemma 11 three times, we have $B(x, y_3) = B(x, p_3) = B(x, p_4) = B(x, w_3)$. This is a contradiction to Claim 19.4.

If $\partial(x, p_4) = i$, then the pentagon $y_3y_4w_3p_4p_3$ should have shape i+1, i, i+1, i, i+1 with respect to x. By Lemma 13, we have $B(x, y_3) = B(x, w_3)$. This is also a contradiction to Claim 19.4.

(2) Suppose $\partial(x, p_3) = i$, then $\partial(x, p_4) = i - 1$, *i*, or i + 1 since $\partial(p_3, p_4) = 1$.

If $\partial(x, p_4) = i - 1$, then we immediately get a contradiction from $\partial(x, p_4) = i - 1$, $\partial(x, w_3) = i + 1$, and $\partial(w_3, p_4) = 1$.

If $\partial(x, p_4) = i$, the pentagon $y_3y_4w_3p_4p_3$ should have shape i+1, i, i+1, i, i with respect to x. By Lemma 13, we have $B(x, y_3) = B(x, w_3)$. This is a contradiction to Claim 19.4.

If $\partial(x, p_4) = i + 1$, the pentagon $w_3 y_4 y_3 p_3 p_4$ should have shape i + 1, i, i + 1, i, i + 1 with respect to x. By Lemma 13, we have $B(x, y_3) = B(x, w_3)$. This is also a contradiction to

Claim 19.4.

We conclude that $\partial(x, p_3) = i + 2$. In particular, the pentagon $y_4y_3p_3p_4w_3$ has shape i, i + 1, i + 2, i + 2, i + 1 with respect to x by Lemma 10.

Now we have three pentagons and their shapes with respect to x as shown in Figure 2.

distance to x

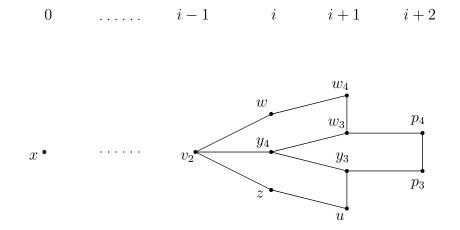


Figure 2: Three pentagons in the proof of Lemma 19.

Claim 19.6. $B(x, y_4) \neq B(x, z)$ and thus $B(x, y_4) - B(x, z) \neq \emptyset$.

Proof of Claim 19.6. Suppose to the contrary that $B(x, y_4) = B(x, z)$. By the construction in Definition 16, we have $\Delta(x, y_4) = \Delta(x, z)$, which is a strongly closed subgraph of diameter *i* since (B_i) holds. By applying Proposition 15 to the pentagon $zv_2y_4y_3u$ with $z, y_4 \in \Delta(x, z)$, we have $y_3 \in \Delta(x, z)$. This is a contradiction since $\partial(x, y_3) = i + 1$ and $\Delta(x, z)$ is of diameter *i*. The fact $B(x, y_4) - B(x, z) \neq \emptyset$ is easily seen by further observe that $|B(x, y_4)| = |B(x, z)| = b_i$, which implies that $B(x, y_4) \nsubseteq B(x, z)$.

Pick $p \in B(x, y_4) - B(x, z)$. Note that hence $\partial(p, y_4) = i + 1$.

Claim 19.7. $\partial(p, z) = i$.

Proof of Claim 19.7. Note that $\partial(p, z) = i$ or i - 1 since $p \notin B(x, z)$ and $\partial(p, x) = 1$. We exclude the case $\partial(p, z) = i - 1$ in the following.

Suppose $\partial(p, z) = i - 1$. Then $zv_2y_4y_3u$ is a pentagon of shape i - 1, i, i + 1, i + 1, iwith respect to p by Lemma 10. More precisely, $\partial(p, z) = i - 1, \partial(p, v_2) = i, \partial(p, y_4) = i + 1, \partial(p, y_3) = i + 1$, and $\partial(p, u) = i$.

Next we show that $\partial(p, p_3) = i + 2$. Since $\partial(p, y_3) = i + 1$ and $\partial(p_3, y_3) = 1$, we have $\partial(p, p_3) = i + 2$, i + 1, or i. Since $\partial(x, p_3) = i + 2$ and $\partial(x, p) = 1$, we have $\partial(p, p_3) = i + 3$, i + 2, or i + 1. Consequently we have $\partial(p, p_3) = i + 2$ or i + 1. If $\partial(p, p_3) = i + 1$ then xpy_3p_3 is a parallelogram of length $i + 2 \leq d + 1$, a contradiction to our initial assumption that no parallelogram of length up to d + 1 exists. Hence $\partial(p, p_3) = i + 2$.

Next we show that $\partial(p, w_3) = i + 2$. We know that $\partial(p, w_3) = i, i + 1$ or i + 2 since $\partial(x, w_3) = i + 1$ and $\partial(x, p) = 1$. If $\partial(p, w_3) = i$, then he pentagon $w_3p_4p_3y_3y_4$ has shape i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10. In particular $\partial(p, y_3) = i + 2$, a contradiction to $\partial(p, y_3) = i + 1$. If $\partial(p, w_3) = i + 1$, we have $\partial(p, p_4) = i + 2$ or i + 1 since $\partial(p, w_3) = i + 1$, $\partial(p, p_3) = i + 2$, and p_4 is the common neighbor of p_3 and w_3 . If $\partial(p, p_4) = i + 2$, the pentagon $w_3y_4y_3p_3p_4$ has shape i + 1, i + 1, i + 2, i + 2 with respect to p, a contradiction to Lemma 14. If $\partial(p, p_4) = i + 1$, the pentagon $p_4w_3y_4y_3p_3$ has shape i + 1, i + 1

We finally consider the shape of the pentagon $v_2y_4w_3w_4w$ with respect to p and get a contradiction. Since $\partial(x, p) = 1$ and $\partial(x, v_2) = i - 1$, we have $\partial(p, v_2) = i, i - 1$, or i - 2. Since $\partial(y_4, v_2) = 1$ and $\partial(y_4, p) = i + 1$, we have $\partial(p, v_2) = i + 2, i + 1$, or i. Consequently $\partial(p, v_2) = i$. Hence $v_2y_4w_3w_4w$ is a pentagon of shape i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10. In particular $\partial(p, w) = i + 1$, which implies $p \in B(x, w)$, a contradiction to our assumptions B(x, z) = B(x, w) and $p \in B(x, y_4) - B(x, z)$.

Claim 19.8. $\partial(p, w) = i$.

Proof of Claim 19.8. Most of the following arguments are similar as the ones in the previous Claim 19.7, so we omit some details. Since $\partial(x, p) = 1$ and $\partial(x, w) = i$, we have $\partial(p, w) = i + 1, i$, or i - 1. We exclude the other two cases in the following.

(1) Suppose $\partial(p, w) = i + 1$, then $p \in B(x, w) = B(x, z)$. This is a contradiction to our assumption $p \in B(x, y_4) - B(x, z)$.

(2) Suppose $\partial(p, w) = i - 1$. First we have that the pentagon $wv_2y_4w_3w_4$ is of shape i - 1, i, i + 1, i + 1, i with respect to p by Lemma 10.

Next we show that then $\partial(p, p_4) = i + 2$. To avoid xpw_3p_4 to be a parallelogram of length $i + 2 \leq d + 1$, we have $\partial(p, p_4) = i + 2$.

Then we show that $\partial(p, y_3) = i+2$. By applying Lemma 10, Lemma 12, and Lemma 14 to the shape of the pentagon $y_4 w_3 p_4 p_3 y_3$ with respect to p, we have that $\partial(p, y_3) = i+2$.

We finally consider the shape of the pentagon $v_2y_4y_3uz$ with respect to p and get a contradiction. Consequently $v_2y_4y_3uz$ is a pentagon of shape i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10, which is a contradiction to $\partial(p, z) = i$.

Claim 19.9. $\partial(p, u) = \partial(p, w_4) = i + 1$.

Proof of Claim 19.9. Since $\partial(p, z) = \partial(x, z) = i$, we have $p \in A(x, z)$ and thus B(z, x) = B(z, p) by Lemma 11. In particular $u \in B(z, p)$ and hence $\partial(p, u) = i + 1$. Similarly, $\partial(p, w_4) = i + 1$.

Claim 19.10. $\partial(p, y_3) = i$.

Proof of Claim 19.10. Since $\partial(x, y_3) = i+1$ and $\partial(x, p) = 1$, we have $\partial(p, y_3) = i+2, i+1$, or *i*. We exclude the other two cases in the following.

(1) Suppose $\partial(p, y_3) = i + 2$, then $p \in B(x, y_3)$ since $\partial(x, y_3) = i + 1$ and $\partial(x, p) = 1$. Since $\partial(x, y_3) = \partial(x, u) = i + 1$ and $\partial(u, y_3) = 1$, we have $y_3 \in A(u, x)$ and hence $B(x, u) = B(x, y_3)$ by Lemma 11. Then we have $p \in B(x, u)$, which implies $\partial(p, u) = i+2$. This is a contradiction to Claim 19.9.

(2) Suppose $\partial(p, y_3) = i+1$. We first show that $\partial(p, p_3) = i+2$. By applying Lemma 11 we have $B(y_3, x) = B(y_3, p)$. Then as $p_3 \in B(y_3, x) = B(y_3, p)$, $\partial(p, p_3) = i+2$.

Next we show that $\partial(p, w_3) = i + 2$. Applying Lemma 12, Lemma 14 to the pentagon $w_3y_4y_3p_3p_4$ and considering its shape with respect to p, we find $\partial(p, w_3) \neq i+1$. Applying Lemma 10 to the pentagon $w_3p_4p_3y_3y_4$, we find $\partial(p, w_3) \neq i$. Thus $\partial(p, w_3) = i + 2$.

Recall that $\partial(p, w_4) = i + 1$ by Claim 19.9. Then pxw_4w_3 is a parallelogram of length $i + 2 \leq d + 1$. This contradicts our initial assumption that no parallelogram of length up to d + 1 exists.

Claim 19.11. $\partial(p, w_3) = i$.

Proof of Claim 19.11. Since $\partial(x, w_3) = i+1$ and $\partial(x, p) = 1$, we have $\partial(p, w_3) = i+2, i+1$, or *i*. We exclude the other two cases in the following.

(1) Suppose $\partial(p, w_3) = i + 2$. Since $\partial(x, w_3) = \partial(x, w_4) = i + 1$, we have $w_4 \in A(w_3, x)$ and hence $B(x, w_4) = B(x, w_3)$ by Lemma 11. Then $p \in B(x, w_3) = B(x, w_4)$, which implies $\partial(p, w_4) = i + 2$ since $\partial(x, w_4) = i + 1$. This is a contradiction to Claim 19.9.

(2) Suppose $\partial(p, w_3) = i + 1$. Since $\partial(p_4, w_3) = 1$, we have $\partial(p, p_4) = i + 2, i + 1$, or *i*. Since $\partial(x, p) = 1$ and $\partial(x, p_4) = i + 2$, we have $\partial(p, p_4) = i + 3, i + 2$, or i + 1. Consequently we have $\partial(p, p_4) = i + 2$ or i + 1.

If $\partial(p, p_4) = i + 2$, recall that $\partial(p, y_3) = i$ by Claim 19.10. Then the pentagon $y_3p_3p_4w_3y_4$ has shape i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10. In particular $\partial(p, w_3) = i + 2$, which contradicts the assumption $\partial(p, w_3) = i + 1$.

If $\partial(p, p_4) = i + 1$, then xpw_3p_4 is a parallelogram of length $i + 2 \leq d + 1$. This contradicts our initial assumption that no parallelogram of length up to d + 1 exists.

Claim 19.12. The pentagon $p_4w_3y_4y_3p_3$ has shape i+1, i, i+1, i, i+1 with respect to p.

Proof of Claim 19.12. Since $\partial(x, p_3) = i+2$ and $\partial(x, p) = 1$, we have $\partial(p, p_3) = i+3, i+2$, or i+1. Since $\partial(p_3, y_3) = 1$ and $\partial(p, y_3) = i$ by Claim 19.10, we have $\partial(p, p_3) = i+1, i$, or i-1. Consequently we have $\partial(p, p_3) = i+1$. Similarly we have $\partial(p, p_4) = i+1$ since $\partial(p, w_3) = i$ by Claim 19.11.

Recall that $\partial(p, y_4) = i + 1$ since $p \in B(x, y_4) - B(x, z)$. Sum up Claim 19.10, Claim 19.11 and the above arguments, we conclude that the pentagon $p_4 w_3 y_4 y_3 p_3$ has shape i + 1, i, i + 1, i, i + 1 with respect to p.

Applying Lemma 13 to the pentagon $p_4w_3y_4y_3p_3$ yields that $B(p, p_4) = B(p, y_4)$. Since $\partial(x, p_4) = i + 2$ and $\partial(p, p_4) = i + 1$ by Claim 19.11, we have $x \in B(p, p_4) = B(p, y_4)$. Hence $\partial(x, y_4) = \partial(p, y_4) + 1 = i + 2$. This is a contradiction since $\partial(x, y_4) = i$.

Consequently, $w \in \Delta(x, y)$ and this completes the proof.

Lemma 20. Fix integer d' with $1 < d' \leq d$ and let $x, y \in X$ with $\partial(x, y) = d'$. Suppose $(W_j), (R_j)$ and thus (B_j) hold in Γ for all j < d'. Then for any vertex $z \in \Delta(x, y) \cap \Gamma_{\ell}(x)$ where $1 \leq \ell \leq d'$, we have the following (i), (ii).

(i) $A(z,x) \subseteq \Delta(x,y)$.

(ii) For any vertex $w \in \Gamma_{\ell}(x) \cap \Gamma_2(z)$ with B(x, w) = B(x, z), we have $w \in \Delta(x, y)$.

In particular $(W_{d'})$ holds.

Proof. We prove (i), (ii) by induction on $d' - \ell$. For the case $d' - \ell = 0$, i.e. $\ell = d'$, we have $z \in \Pi_{xy}$. Hence (i), (ii) follows by Lemma 11 and the construction of Π_{xy} in Definition 16.

Suppose for all ℓ with $0 \leq d' - \ell < d' - i$, i.e. $\ell \in \{i + 1, i + 2, \dots d'\}$, if vertex $z' \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (a), (b).

- (a) $A(z', x) \subseteq \Delta(x, y)$.
- (b) For any vertex $w' \in \Gamma_{\ell}(x) \cap \Gamma_2(z')$ with B(x, w') = B(x, z'), we have $w' \in \Delta(x, y)$.

Then (i), (ii) hold for $\ell = i$, i.e. $d' - \ell = d' - i$, by Lemma 18 and Lemma 19. Then we conclude that (i), (ii) hold for all $0 \leq d' - \ell \leq d' - 1$, i.e. $1 \leq \ell \leq d'$, by induction.

In particular, we have $A(z, x) \subseteq \Delta(x, y)$ by (i), and we also have $C(z, x) \subseteq \Delta(x, y)$ by Proposition 17. Hence $(W_{d'})$ holds by (2).

The following proposition proves $(R_{d'})$ and hence completes the preparation for the proof of Theorem 5.

Lemma 21. Fix integer d' with $1 < d' \leq d$ and let $x, y \in X$ with $\partial(x, y) = d'$. Suppose (W_j) , (R_j) and thus (B_j) hold in Γ for all j < d'. Then $\Delta(x, y)$ is regular with valency $a_{d'} + c_{d'}$.

Proof. Set $\Delta = \Delta(x, y)$. Clearly for any $v \in \Delta$, the construction ensures us that $\partial(x, v) \leq d'$. Hence $B(y', x) \cap \Delta = \emptyset$ for any $y' \in \Pi_{xy}$. Applying Lemma 20, we have $|\Gamma_1(y') \cap \Delta| = a_{d'} + c_{d'}$ for any $y' \in \Pi_{xy}$.

Next we show $|\Gamma_1(x) \cap \Delta| = a_{d'} + c_{d'}$. Note that $y \in \Delta \cap \Gamma_{d'}(x)$ by the construction of Δ . For any $z \in C(x, y) \cup A(x, y)$,

$$\partial(x, z) + \partial(z, y) \leq \partial(x, y) + 1.$$

This implies x, z, y is a weak-geodetic sequence, then $z \in \Delta$ since Δ is strongly closed with respect to x by Lemma 20. Hence $C(x, y) \cup A(x, y) \subseteq \Delta$. Suppose $B(x, y) \cap \Delta \neq \emptyset$ and let $t \in B(x, y) \cap \Delta$. Then there exists $y' \in \Pi_{xy}$ such that x, t, y' is a geodetic sequence by Definition 16. This implies $t \in C(x, y')$, a contradiction to B(x, y) = B(x, y'). Hence $B(x, y) \cap \Delta = \emptyset$ and $\Gamma_1(x) \cap \Delta = C(x, y) \cup A(x, y)$. This proves $|\Gamma_1(x) \cap \Delta| = a_{d'} + c_{d'}$.

Since each vertex in Δ appears in a sequence of vertices $x = x_0, x_1, \ldots, x_{d'}$ in Δ , where $\partial(x, x_\ell) = \ell$, $\partial(x_{\ell-1}, x_\ell) = 1$ for $1 \leq \ell \leq d'$, and $x_{d'} \in \Pi_{xy}$, it suffices to show

$$|\Gamma_1(x_i) \cap \Delta| = a_{d'} + c_{d'} \tag{3}$$

16

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.37

for $1 \leq i \leq d' - 1$. For each integer $1 \leq i \leq d'$, we show

$$|\Gamma_1(x_{i-1}) \setminus \Delta| \leqslant |\Gamma_1(x_i) \setminus \Delta| \tag{4}$$

by the 2-way counting of the number of the pairs (z, s) with $z \in \Gamma_1(x_{i-1}) \setminus \Delta$, $s \in \Gamma_1(x_i) \setminus \Delta$ and $\partial(z, s) = 2$.

For a fixed $s \in \Gamma_1(x_i) \setminus \Delta$, we have $\partial(s, x_{i-1}) = 2$ since $a_1 = 0$. Hence such a z must be one of the a_2 vertices in $A(x_{i-1}, s)$. The number of such pairs (z, s) is thus at most $|\Gamma_1(x_i) \setminus \Delta|a_2$.

On the other hand, we show this number is $|\Gamma_1(x_{i-1}) \setminus \Delta| a_2$ exactly. Fix $z \in \Gamma_1(x_{i-1}) \setminus \Delta$. Note that $\partial(x_i, z) = 2$ since $a_1 = 0$. Hence the condition " $s \in \Gamma_1(x_i)$ with $\partial(z, s) = 2$ " is equivalent to " $s \in A(x_i, z)$ ". We shall prove $s \notin \Delta$ for any $s \in A(x_i, z)$. Recall that Δ is strongly closed with respect to x by Lemma 20, which implies $C(x_{i-1}, x) \subseteq \Delta$ and $A(x_{i-1}, x) \subseteq \Delta$. Then $z \in B(x_{i-1}, x)$ and hence $\partial(x, z) = i$.

Suppose to the contrary that there exists $s \in A(x_i, z) \cap \Delta$. Let $w \in C(s, z)$. Note that $w \neq x_i$ since $a_1 = 0$. Since $\partial(x_i, x) = i$ and $\partial(x_i, s) = 1$, we have $\partial(x, s) = i + 1, i$, or i - 1.

We first show that $\partial(x, s) = i$ or i - 1. If $\partial(x, s) = i + 1$, applying Lemma 10 to the pentagon $x_{i-1}x_iswz$ with $\partial(x, x_{i-1}) = i - 1$ and $\partial(x, s) = i + 1$, we see that the pentagon $x_{i-1}x_iswz$ has shape i - 1, i, i + 1, i + 1, i with respect to x. In particular, $\partial(x, w) = i + 1$ and hence $w \in A(s, x)$. Then we have $w \in \Delta$ by Lemma 20(i). Note that $\partial(x, w) = i + 1$ and $\partial(x, z) = i$, which implies that x, z, w is a geodetic sequence. Then we have $z \in \Delta$ by Proposition 17, a contradiction to $z \in \Gamma_1(x_{i-1}) \setminus \Delta$.

We next show that $\partial(x, w) = i$ or i - 1. Since $\partial(z, x) = i$ and $\partial(z, w) = 1$, we have $\partial(x, w) = i + 1, i$, or i - 1. If $\partial(x, w) = i + 1$, the pentagon $x_{i-1}zwsx_i$ has shape i - 1, i, i + 1, i + 1, i with respect to x by Lemma 10. In particular $\partial(x, s) = i + 1$, which is a contradiction to $\partial(x, s) = i$ or i - 1 constructed in the last paragraph.

If $\partial(x, w) = \partial(x, s) = i$, then $s \in A(x_i, x)$, $w \in A(s, x)$, and $z \in A(w, x)$. Applying Lemma 20(i) three times we have $z \in \Delta$, which is a contradiction to $z \in \Gamma_1(x_{i-1}) \setminus \Delta$. Hence $\partial(x, w) \leq i - 1$ or $\partial(x, s) \leq i - 1$. For the case $\partial(x, s) = i - 1$ and $\partial(x, w) = i$ we consider the shape of the pentagon $zx_{i-1}x_isw$ with respect to x. For the case $\partial(x, s) = i$ and $\partial(x, w) = i - 1$, or the case $\partial(x, s) = i - 1$ and $\partial(x, w) = i - 1$, we consider the shape of the pentagon $x_ix_{i-1}zws$ with respect to x. Applying Lemma 13 to each of the these three cases we have $B(x, z) = B(x, x_i)$ and then $z \in \Delta$ by Lemma 20(ii), a contradiction to $z \in \Gamma_1(x_{i-1}) \setminus \Delta$.

From the above counting, we have

$$|\Gamma_1(x_{i-1}) \setminus \Delta|a_2 \leqslant |\Gamma_1(x_i) \setminus \Delta|a_2 \tag{5}$$

for $1 \leq i \leq d'$. Eliminating the nonzero a_2 from (5), we find (4) or equivalently

$$|\Gamma_1(x_{i-1}) \cap \Delta| \ge |\Gamma_1(x_i) \cap \Delta| \tag{6}$$

for $1 \leq i \leq d'$. We have shown previously that $|\Gamma_1(x_0) \cap \Delta| = |\Gamma_1(x_{d'}) \cap \Delta| = a_{d'} + c_{d'}$. Hence (3) follows from (6).

The electronic journal of combinatorics 22(2) (2015), #P2.37

17

Proof of Theorem 5. For $1 \leq j \leq d$, we prove (W_j) and (R_j) by induction on j. Since $a_1 = 0$, there are no edges in $\Gamma_1(x)$ for any vertex $x \in X$.

For j = 1, then $\Pi_{xy} = \{y\}$ since for any other $y' \in \Gamma_1(x), y' \in B(x, y)$ but $y' \notin B(x, y')$. Consequently $\Delta(x, y) = \{x, y\}$ is an edge; in particular $\Delta(x, y)$ is regular with valency $1 = a_1 + c_1$ and is strongly closed with respect to x since $a_1 = 0$. This proves (R_1) and (W_1) .

For $j \ge 2$, assume (W_j) , (R_j) and thus (B_j) hold for all $1 \le j < d' \le d$. By Lemma 20 and Lemma 21, we have that $(W_{d'})$, $(R_{d'})$ and thus $(B_{d'})$ hold.

Then we have (B_j) holds for $1 \leq j \leq d$. By the deduction in the paragraph before Lemma 18, the proof is completed.

Combining Theorem 4 and Theorem 5, the Proof of Theorem 6 can be completed.

Proof of Theorem 6. ((i) \Rightarrow (ii)) By Theorem 9, we see that Γ contains no parallelograms of any length up to d + 1. Suppose that Γ is *d*-bounded for $d \ge 2$. Let $\Omega \subseteq \Delta$ be two regular strongly closed subgraphs of diameters 1, 2 respectively. Since Ω and Δ have different valency $b_0 - b_1$ and $b_0 - b_2$ respectively by Theorem 8, we have $b_1 > b_2$.

((ii) \Rightarrow (i)) Under the assumptions Theorem 6(ii) (hence $b_1 > b_2$) and $a_2 \neq 0$, consider the following four cases.

- (a) $a_1 = 0$ and $c_2 > 1$: This case follows by Theorem 4 (i).
- (b) $a_1 = 0$ and $c_2 = 1$: This case follows by Theorem 5.
- (c) $a_1 \neq 0$ and $c_2 > 1$: This case follows by Theorem 4 (ii).
- (d) $a_1 \neq 0$ and $c_2 = 1$: Note that by equation (1), $a_1 + b_1 + c_1 = k = a_2 + b_2 + c_2$. Since $c_1 = c_2 = 1$ and $b_1 > b_2$, this case is equivalent to the case $a_2 > a_1 \ge c_2 = 1$. Then the result follows by Theorem 4 (iii).

5 Classical parameters

Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \ge 3$. Γ is said to have classical parameters (D, b, α, β) whenever the intersection numbers of Γ satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_b \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_b \right) \quad \text{for } 0 \leqslant i \leqslant D, \tag{7}$$

$$b_i = \left(\begin{bmatrix} D \\ 1 \end{bmatrix}_b - \begin{bmatrix} i \\ 1 \end{bmatrix}_b \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_b \right) \quad \text{for } 0 \leq i \leq D, \tag{8}$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix}_b := \begin{cases} 1+b+b^2+\dots+b^{i-1} & \text{if } i > 0, \\ 0 & \text{if } i \leqslant 0. \end{cases}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.37

Applying (1) with (7) and (8), we have

$$a_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix}_{b} \left(\beta - 1 + \alpha \left(\begin{bmatrix} D \\ 1 \end{bmatrix}_{b} - \begin{bmatrix} i \\ 1 \end{bmatrix}_{b} - \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_{b} \right) \right)$$
(9)
$$\begin{bmatrix} i \\ 1 \end{bmatrix}_{b} \left(1 - 1 \end{bmatrix}_{b} = \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_{b} \right)$$
(9)

$$= \begin{bmatrix} 1 \end{bmatrix}_{b} \begin{pmatrix} a_{1} - \alpha \begin{pmatrix} 1 \end{bmatrix}_{b} + \begin{bmatrix} 1 \end{bmatrix}_{b} - 1 \end{pmatrix}$$
(10)

for $0 \leq i \leq D$.

Classical parameters were introduced in [2, Chapter 6]. Graphs with such parameters yield P- and Q-polynomial association schemes. Bannai and Ito proposed the classification of such schemes in [1].

The following theorem is a combination of [11, Theorem 2.12] and [14, Lemma 7.3(ii)].

Theorem 22. ([11, Theorem 2.12], [14, Lemma 7.3(ii)]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) , where b < -1 and $D \ge 3$. Then Γ contains no parallelograms of any length.

The following two lemmas are given in [13].

Lemma 23. ([13, Corollary 3.7]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \ge 3$. Suppose Γ contains no parallelogram of length 2 and $a_1 > -b - 1$. Then

$$c_2 = b + 1.$$

Lemma 24. ([13, Theorem 4.2]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \ge 4$. Suppose Γ is D-bounded and $a_1 \le -b - 1$. Then

$$\beta = \alpha \frac{1 + b^D}{1 - b}.$$

By Theorem 22, Lemma 23 and Lemma 24, we have the following theorem.

Theorem 25. Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) where b < -1. Suppose that Γ is D-bounded with $D \ge 4$. Then

$$\beta = \alpha \frac{1 + b^D}{1 - b}.\tag{11}$$

Proof. Since b < -1 and $D \ge 3$, we have that Γ contains no parallelograms of any length by Theorem 22. Note that $c_2 = b + 1$ implies b > -1. If $a_1 > -b - 1$ in Γ , then we get a contradiction by Lemma 23. Hence $a_1 \le -b - 1$ and (11) follows by Lemma 24.

The following is a proof of Theorem 7 which demonstrates an application of Theorem 6. **Proof of Theorem 7.** Let Γ denote a distance-regular graph with classical parameters $(D, b, \alpha, \beta) = (D, -2, -2, ((-2)^{D+1} - 1)/3)$, where $D \ge 4$. Then Γ contains no parallelograms of any length by Theorem 22. By (7), (9) and (10) we have $c_2 = 1$ and $a_2 = 2 > 0 = a_1$. Hence Γ is *D*-bounded by Theorem 6 since $b_1 > b_2$. By (11), $\beta = ((-2)^{D+1} - 2)/3$, which is a contradiction. \Box

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions.

References

- [1] E. Bannai and T. Ito, *Algebraic Combinatorics I: Association Schemes*, Benjamin/Cummings, Menlo Park, 1984.
- [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- [3] J. Guo and K. Wang, Posets associated with subspaces in a d-bounded distanceregular graph, *Discrete Mathematics*, 310 (2010), 714–719.
- [4] A. Hiraki, Distance-regular graphs with $c_2 > 1$ and $a_1 = 0 < a_2$, Graphs and Combinatorics, 25(2009), 65–79.
- [5] Y. Liang, and C. Weng, Parallelogram-free distance-regular graphs, Journal of Combinatorial Theory, Series B, 71(1997), 231–243.
- [6] Y. Pan, M. Lu, and C. Weng, Triangle-free distance-regular graphs, Journal of Algebraic Combinatorics, 27(2008), 23–34.
- [7] Y. Pan and C. Weng, 3-bounded properties in a triangle-free distance-regular graph, *European Journal of Combinatorics*, 29(2008), 1634–1642.
- [8] Y. Pan and C. Weng, A note on triangle-free distance-regular graphs with $a_2 \neq 0$, Journal of Combinatorial Theory, Series B, 99(2009), 266–270.
- [9] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, *Kyushu Journal of Mathematics*, 50(1996), 371–384.
- [10] P. Terwilliger, The subconstituent algebra of an association scheme (Part I), Journal of Algebraic Combinatorics, 1(1992), 363–388.
- P. Terwilliger, Kite-free distance-regular graphs, European Journal of Combinatorics, 16(1995), 405–414.
- [12] F. Vanhove, A Higman inequality for regular near polygons, Journal of Algebraic Combinatorics, 34(2011), 357–373.
- [13] C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics, 18(1997), 211–229.
- [14] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics, 14(1998), 275–304.
- [15] C. Weng, Classical distance-regular graphs of negative type, Journal of Combinatorial Theory, Series B, 76(1999), 93–116.