Nonexistence of a Class of Distance-regular Graphs

Yu-pei Huang*
Department of Applied Mathematics
I-Shou University
Taiwan R.O.C.
pei.am91g@nctu.edu.tw
Yeh-jong Pan ${ }^{\dagger}$
Department of Computer Science and Entertainment Technology
Tajen University
Taiwan R.O.C.
yjpan@tajen.edu.tw
Chih-wen Weng ${ }^{\ddagger}$
Department of Applied Mathematics
National Chiao Tung University
Taiwan R.O.C.
weng@math.nctu.edu.tw

Submitted: May 8, 2013; Accepted: May 14, 2015; Published: Jun 3, 2015
Mathematics Subject Classifications: 05C12, 05E30

Abstract

Let Γ denote a distance-regular graph with diameter $D \geqslant 3$ and intersection numbers $a_{1}=0, a_{2} \neq 0$, and $c_{2}=1$. We show a connection between the d-bounded property and the nonexistence of parallelograms of any length up to $d+1$. Assume further that Γ is with classical parameters (D, b, α, β), Pan and Weng (2009) showed that $(b, \alpha, \beta)=\left(-2,-2,\left((-2)^{D+1}-1\right) / 3\right)$. Under the assumption $D \geqslant 4$, we exclude this class of graphs by an application of the above connection.

Keywords: Distance-regular graph; classical parameters; parallelogram; strongly closed subgraph; D-bounded

[^0]
1 Introduction

Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geqslant 3$. A sequence x, z, y of vertices of Γ is geodetic whenever

$$
\partial(x, z)+\partial(z, y)=\partial(x, y)
$$

where ∂ is the distance function of Γ. A sequence x, z, y of vertices of Γ is weak-geodetic whenever

$$
\partial(x, z)+\partial(z, y) \leqslant \partial(x, y)+1
$$

We consider subsets of the vertex set of Γ that are closed under the sense of weakgeodetic sequences as the following definition.

Definition 1. A subset $\Delta \subseteq X$ is strongly closed if for any weak-geodetic sequence x, z, y of Γ,

$$
x, y \in \Delta \Longrightarrow z \in \Delta
$$

A subgraph of Γ which is induced by a strongly closed subset of X is called a strongly closed subgraph of Γ. Strongly closed subgraphs are also called weak-geodetically closed subgraphs in [14]. If a strongly closed subgraph Δ of diameter d is regular then it has valency $a_{d}+c_{d}=b_{0}-b_{d}$, where $a_{d}, c_{d}, b_{0}, b_{d}$ are intersection numbers of Γ. Furthermore Δ is distance-regular with intersection numbers $a_{i}(\Delta)=a_{i}(\Gamma)$ and $c_{i}(\Delta)=c_{i}(\Gamma)$ for $1 \leqslant i \leqslant d$ [14, Theorem 4.6].

The following property is considered for a distance-regular graph.
Definition 2. Γ is said to be d-bounded whenever for all $x, y \in X$ with $\partial(x, y) \leqslant d$, there is a regular strongly closed subgraph of diameter $\partial(x, y)$ which contains x and y.

Note that a $(D-1)$-bounded distance-regular graph is clear to be D-bounded. The properties of D-bounded distance-regular graphs were studied in [13], and these properties were used in the classification of classical distance-regular graphs of negative type [15]. Other applications of D-bounded distance-regular graphs are given in [3, 12, 13, 15]. Before stating our main results, we show one more definition and some known results.

Definition 3. A 4-tuple $x y z w$ consisting of vertices of Γ is called a parallelogram of length d if $\partial(x, y)=\partial(z, w)=1, \partial(x, w)=d$, and $\partial(x, z)=\partial(y, w)=\partial(y, z)=d-1$.

The following theorem is a combination of three previous results.
Theorem 4. Let Γ denote a distance-regular graph with diameter $D \geqslant 3$. Suppose that the intersection numbers a_{1}, a_{2}, c_{2} satisfy one of the following.
(i) [4, Theorem 2] $a_{2}>a_{1}=0, c_{2}>1$;
(ii) [14, Theorem 1] $a_{1} \neq 0, c_{2}>1$; or
(iii) [9, Theorem 1.1] $a_{2}>a_{1} \geqslant c_{2}=1$.

Fix an integer $1 \leqslant d \leqslant D-1$ and suppose that Γ contains no parallelograms of any length up to $d+1$. Then Γ is d-bounded.

We deal with the case " $a_{1}=0, a_{2} \neq 0$, and $c_{2}=1$ " in the following, which is the key point among our main results.

Theorem 5. Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geqslant 3$, and intersection numbers $a_{1}=0, a_{2} \neq 0$ and $c_{2}=1$. Fix an integer $1 \leqslant d \leqslant D-1$ and suppose that Γ contains no parallelograms of any length up to $d+1$. Then Γ is d-bounded.

The proof of Theorem 5 is given in Section 4. Theorem 5 is a generalization of [2, Lemma 4.3.13] and [7]. Combining Theorem 4 and Theorem 5, we have the (ii) \Rightarrow (i) part of the following theorem.

Theorem 6. Suppose Γ is a distance-regular graph with diameter $D \geqslant 3$ and the intersection number $a_{2} \neq 0$. Fix an integer $2 \leqslant d \leqslant D-1$. Then the following two conditions (i), (ii) are equivalent:
(i) Γ is d-bounded.
(ii) Γ contains no parallelograms of any length up to $d+1$ and $b_{1}>b_{2}$.

The complete proof of Theorem 6 is given in Section 4. Theorem 6 answers the problem proposed in [14, p. 299]. The following is an application of Theorem 6 , which excludes a class of distance-regular graphs mentioned in [8, Theorem 2.2].

Theorem 7. There is no distance-regular graph with classical parameters $(D, b, \alpha, \beta)=$ $\left(D,-2,-2,\left((-2)^{D+1}-1\right) / 3\right)$, where $D \geqslant 4$.

We prove Theorem 7 in Section 5. Since Witt graph $M_{23}[2$, Table 6.1] is a distanceregular graph with classical parameters (D, b, α, β) with $D=3, b=-2, \alpha=-2$, and $\beta=5$, the condition $D \geqslant 4$ in Theorem 7 can not be loosened to $D \geqslant 3$.

2 Preliminaries

In this section we review some definitions, basic concepts and some previous results concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more background information.

Let $\Gamma=(X, R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X, edge set R, distance function ∂, and diameter $D:=\max \{\partial(x, y) \mid$ $x, y \in X\}$. By a pentagon, we mean a 5 -tuple $u_{1} u_{2} u_{3} u_{4} u_{5}$ consisting of distinct vertices in Γ such that $\partial\left(u_{i}, u_{i+1}\right)=1$ for $1 \leqslant i \leqslant 4$ and $\partial\left(u_{5}, u_{1}\right)=1$.

For a vertex $x \in X$ and an integer $0 \leqslant i \leqslant D$, set $\Gamma_{i}(x):=\{z \in X \mid \partial(x, z)=i\}$. The valency $k(x)$ of a vertex $x \in X$ is the cardinality of $\Gamma_{1}(x)$. The graph Γ is called
regular (with valency k) if each vertex in X has valency k. The graph Γ is said to be distance-regular whenever for all integers $0 \leqslant h, i, j \leqslant D$, and all vertices $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|
$$

is independent of x, y. The constants $p_{i j}^{h}$ are known as the intersection numbers of Γ.
From now on let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geqslant 3$. For two vertices $x, y \in X$ with $\partial(x, y)=i$, set

$$
\begin{aligned}
B(x, y) & :=\Gamma_{1}(x) \cap \Gamma_{i+1}(y), \\
C(x, y) & :=\Gamma_{1}(x) \cap \Gamma_{i-1}(y), \\
A(x, y) & :=\Gamma_{1}(x) \cap \Gamma_{i}(y) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
|B(x, y)| & =p_{1}^{i}{ }_{i+1}, \\
|C(x, y)| & =p_{1 i-1}^{i}, \\
|A(x, y)| & =p_{1 i}^{i}
\end{aligned}
$$

are independent of x, y. For convenience, set $c_{i}:=p_{1}^{i}{ }_{i-1}$ for $1 \leqslant i \leqslant D, a_{i}:=p_{1}^{i}{ }_{i}$ for $0 \leqslant i \leqslant D, b_{i}:=p_{1}^{i}{ }_{i+1}$ for $0 \leqslant i \leqslant D-1$ and put $b_{D}:=0, c_{0}:=0, k:=b_{0}$. Note that k is the valency of each vertex in Γ. It is immediate from the definition of $p_{i j}^{h}$ that $b_{i} \neq 0$ for $0 \leqslant i \leqslant D-1$ and $c_{i} \neq 0$ for $1 \leqslant i \leqslant D$. Moreover $c_{1}=1$ and

$$
\begin{equation*}
k=a_{i}+b_{i}+c_{i} \quad \text { for } \quad 0 \leqslant i \leqslant D \tag{1}
\end{equation*}
$$

A subset Ω of X is strongly closed with respect to a vertex $x \in \Omega$ if for any $z \in X$ with x, z, y being a weak-geodetic sequence for some $y \in \Omega$, we have $z \in \Omega$. Note that Ω is strongly closed if and only if for any vertex $x \in \Omega, \Omega$ is strongly closed with respect to x. A subset Ω of X is strongly closed with respect to a vertex $x \in \Omega$ if and only if [14, Lemma 2.3]

$$
\begin{equation*}
C(y, x) \subseteq \Omega \text { and } A(y, x) \subseteq \Omega \quad \text { for all } y \in \Omega \tag{2}
\end{equation*}
$$

We quote two more theorems from [14] that will be used later in this paper to end this section.
Theorem 8. ([14, Theorem 4.6]) Let Γ be a distance-regular graph with diameter $D \geqslant 3$. Let Ω be a regular subgraph of Γ with valency γ and set $d:=\min \left\{i \mid \gamma \leqslant c_{i}+a_{i}\right\}$. Then the following (i),(ii) are equivalent.
(i) Ω is strongly closed with respect to at least one vertex $x \in \Omega$.
(ii) Ω is strongly closed with diameter d.

Suppose (i) or (ii) holds. Then Ω is a distance-regular subgraph of Γ with diameter d and $\gamma=c_{d}+a_{d}$.
Theorem 9. ([14, Lemma 6.5]) Let Γ be a distance-regular graph with diameter $D \geqslant 2$. Suppose Γ is d-bounded for some $1 \leqslant d \leqslant D-1$, then Γ contains no parallelograms of any length up to $d+1$.

3 The Shape of Pentagons

Throughout this section, let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geqslant 3$, and intersection numbers $a_{1}=0, a_{2} \neq 0$. Such graphs are also studied in $[4,5,6,7,8]$.

Fix a vertex $x \in X$, a pentagon $u_{1} u_{2} u_{3} u_{4} u_{5}$ has shape $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ with respect to x if $i_{j}=\partial\left(x, u_{j}\right)$ for $1 \leqslant j \leqslant 5$. Note that under the assumption $a_{1}=0$ and $a_{2} \neq 0$, any two vertices at distance 2 in Γ are always contained in a pentagon, and two nonconsecutive vertices in a pentagon of Γ have distance 2 . In this section we give a few lemmas which will be used in the next section.

Lemma 10. Fix an integer $1 \leqslant d \leqslant D-1$, and suppose Γ contains no parallelograms of any length up to $d+1$ for some integer $d \geqslant 2$. Let x be a vertex in Γ, and let $u_{1} u_{2} u_{3} u_{4} u_{5}$ be a pentagon of Γ such that $\partial\left(x, u_{1}\right)=i-1$ and $\partial\left(x, u_{3}\right)=i+1$ for $1 \leqslant i \leqslant d$. Then the pentagon $u_{1} u_{2} u_{3} u_{4} u_{5}$ has shape $i-1, i, i+1, i+1, i$ with respect to x.

Proof. Since $\partial\left(u_{3}, u_{4}\right)=1$ and $\partial\left(u_{3}, x\right)=i+1, \partial\left(x, u_{4}\right)=i+2, i+1$, or i. Since $\partial\left(u_{1}, u_{4}\right)=2$ and $\partial\left(u_{1}, x\right)=i-1, \partial\left(x, u_{4}\right) \leqslant i-1+2=i+1$. Consequently we we have $\partial\left(x, u_{4}\right)=i+1$ or i. It suffices to prove $\partial\left(x, u_{4}\right)=i+1$. We prove this lemma by induction on i.

The case $i=1$ holds otherwise $\partial\left(x, u_{4}\right)=i=1$ and $\partial\left(x, u_{5}\right)=1$, which contradicts the assumption $a_{1}=0$.

Suppose the assertion holds for any $i<\ell \leqslant d$. For the case $i=\ell$, suppose to the contrary that $u_{1} u_{2} u_{3} u_{4} u_{5}$ is a pentagon with $\partial\left(x, u_{1}\right)=\ell-1$ and $\partial\left(x, u_{3}\right)=\ell+1$, but $\partial\left(x, u_{4}\right)=\ell$. We can choose $y \in C\left(x, u_{1}\right)$ and hence $\partial\left(y, u_{1}\right)=\ell-2$. Since $\partial\left(x, u_{3}\right)=\ell+1$ and $\partial(x, y)=1$, we have $\partial\left(y, u_{3}\right)=\ell+2, \ell+1$ or ℓ. Since $\partial\left(y, u_{1}\right)=\ell-2$ and $\partial\left(u_{1}, u_{3}\right)=2$, we have $\partial\left(y, u_{3}\right) \leqslant \ell-2+2=\ell$. Consequently we have $\partial\left(y, u_{3}\right)=\ell$. By the induction hypothesis, the pentagon $u_{1} u_{2} u_{3} u_{4} u_{5}$ has shape $\ell-2, \ell-1, \ell, \ell, \ell-1$ with respect to y. In particular, $\partial\left(y, u_{3}\right)=\partial\left(y, u_{4}\right)=\ell$. Then $x y u_{4} u_{3}$ is a parallelogram of length $\ell+1$, a contradiction.

Other versions of Lemma 10 can be seen in [14, Lemma 6.9] and [9, Lemma 4.1] under various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [4] under an additional assumption $c_{2}>1$, but this assumption is essentially not used in his proofs. For the sake of completeness, we still provide the proofs.

Lemma 11. Fix an integer $1 \leqslant d \leqslant D-1$, and suppose Γ contains no parallelograms of any length up to $d+1$. Then for any two vertices $z, z^{\prime} \in X$ such that $\partial(x, z) \leqslant d$ and $z^{\prime} \in A(z, x)$, we have $B(x, z)=B\left(x, z^{\prime}\right)$.

Proof. Note that $z^{\prime} \in A(z, x)$ implies $\partial(x, z)=\partial\left(x, z^{\prime}\right)$, hence it suffices to show $B(x, z) \subseteq$ $B\left(x, z^{\prime}\right)$ since $|B(x, z)|=\left|B\left(x, z^{\prime}\right)\right|=b_{\partial(x, z)}$. Suppose to the contrary that there exists $w \in B(x, z)-B\left(x, z^{\prime}\right)$. Then $\partial(w, z)=\partial(x, z)+1$ and $\partial\left(w, z^{\prime}\right) \neq \partial(x, z)+1$. Note that
$\partial\left(w, z^{\prime}\right) \leqslant \partial(w, x)+\partial\left(x, z^{\prime}\right)=1+\partial(x, z)$ and $\partial\left(w, z^{\prime}\right) \geqslant \partial(w, z)-\partial\left(z, z^{\prime}\right)=\partial(x, z)$. Consequently $\partial\left(w, z^{\prime}\right)=\partial(x, z)$ and $w x z^{\prime} z$ forms a parallelogram of length $\partial(x, z)+1$, a contradiction.

Lemma 12. Fix integers $1 \leqslant i \leqslant d \leqslant D-1$, and suppose Γ contains no parallelograms of any length up to $d+1$. Let x be a vertex in Γ. Then there is no pentagon of shape $i, i, i, i, i+1$ with respect to x in Γ.

Proof. We prove this lemma by induction on i.
The case $i=1$ holds otherwise we have a pentagon having shape $1,1,1,1,2$ with respect to x. In particular we have three vertices x, u_{1}, u_{2} with $\partial\left(x, u_{1}\right)=\partial\left(x, u_{2}\right)=$ $\partial\left(u_{1}, u_{2}\right)=1$, which is a contradiction to the initial assumption $a_{1}=0$.

Suppose the assertion holds for any $i<\ell \leqslant d$. For the case $i=\ell$, suppose to the contrary that $u_{1} u_{2} u_{3} u_{4} u_{5}$ is a pentagon of shape $\ell, \ell, \ell, \ell, \ell+1$ with respect to x. This implies $u_{2} \in A\left(u_{1}, x\right), u_{3} \in A\left(u_{2}, x\right)$, and $u_{4} \in A\left(u_{3}, x\right)$. Hence we have $B\left(x, u_{1}\right)=$ $B\left(x, u_{2}\right)=B\left(x, u_{3}\right)=B\left(x, u_{4}\right)$ by Lemma 11. We shall prove $C\left(x, u_{1}\right)=C\left(x, u_{2}\right)=$ $C\left(x, u_{3}\right)=C\left(x, u_{4}\right)$ in the following.

First we prove $C\left(x, u_{1}\right)=C\left(x, u_{2}\right)$. It suffices to show $C\left(x, u_{2}\right) \subseteq C\left(x, u_{1}\right)$ since $\left|C\left(x, u_{1}\right)\right|=\left|C\left(x, u_{2}\right)\right|=c_{\ell}$. Suppose to the contrary that there exists $v \in C\left(x, u_{2}\right)-$ $C\left(x, u_{1}\right)$. By our choice of v, we have $v \notin C\left(x, u_{1}\right)$. We also have $v \notin B\left(x, u_{1}\right)$, since $B\left(x, u_{1}\right)=B\left(x, u_{2}\right)$ and $v \notin B\left(x, u_{2}\right)$. Consequently we have $v \in A\left(x, u_{1}\right)$ since v is a neighbor of x. Then $B\left(u_{1}, x\right)=B\left(u_{1}, v\right)$ by Lemma 11. Note that $v \in A\left(x, u_{1}\right)$ implies $\partial\left(v, u_{1}\right)=\partial\left(x, u_{1}\right)=\ell$, and hence $\partial\left(v, u_{5}\right)=\ell+1$ since $u_{5} \in B\left(u_{1}, x\right)=B\left(u_{1}, v\right)$. Applying Lemma 10 to the pentagon $u_{2} u_{1} u_{5} u_{4} u_{3}$ with $\partial\left(v, u_{2}\right)=\ell-1$ and $\partial\left(v, u_{5}\right)=\ell+1$, we conclude that $u_{2} u_{1} u_{5} u_{4} u_{3}$ has shape $\ell-1, \ell, \ell+1, \ell+1, \ell$ with respect to v. In particular $\partial\left(v, u_{4}\right)=\ell+1$ and hence $v \in B\left(x, u_{4}\right)=B\left(x, u_{2}\right)$. This is a contradiction to $v \in C\left(x, u_{2}\right)$. Consequently we have $C\left(x, u_{2}\right) \subseteq C\left(x, u_{1}\right)$ and hence $C\left(x, u_{1}\right)=C\left(x, u_{2}\right)$ as desired.

By substituting u_{4} to u_{1}, u_{3} to u_{2} in the last paragraph and consider the shape of the pentagon $u_{3} u_{4} u_{5} u_{1} u_{2}$ with respect to $v^{\prime} \in C\left(x, u_{3}\right)-C\left(x, u_{4}\right)$, similarly we have $C\left(x, u_{4}\right)=C\left(x, u_{3}\right)$.

It remains to show $C\left(x, u_{2}\right)=C\left(x, u_{4}\right)$. It suffices to show $C\left(x, u_{2}\right) \subseteq C\left(x, u_{4}\right)$. Suppose to the contrary that there exists $u \in C\left(x, u_{2}\right)-C\left(x, u_{4}\right)$. With the similar arguments in the previous paragraphs, we have $u \in A\left(x, u_{4}\right)$ and then $B\left(u_{4}, x\right)=B\left(u_{4}, u\right)$ by Lemma 11. Hence $\partial\left(u, u_{5}\right)=\ell+1$ since $u_{5} \in B\left(u_{4}, x\right)=B\left(u_{4}, u\right)$. Applying Lemma 10 to the pentagon $u_{2} u_{1} u_{5} u_{4} u_{3}$ with $\partial\left(u, u_{2}\right)=\ell-1$ and $\partial\left(u, u_{5}\right)=\ell+1$, we conclude that $u_{2} u_{1} u_{5} u_{4} u_{3}$ has shape $\ell-1, \ell, \ell+1, \ell+1, \ell$ with respect to u. In particular $\partial\left(u, u_{4}\right)=\ell+1$ and hence $u \in B\left(x, u_{4}\right)$. This is a contradiction since $u \in A\left(x, u_{4}\right)$.

Pick a vertex $w \in C\left(x, u_{1}\right)=C\left(x, u_{2}\right)=C\left(x, u_{3}\right)=C\left(x, u_{4}\right)$. Since $\partial(x, w)=1$ and $\partial\left(x, u_{5}\right)=\ell+1$, we have $\partial\left(w, u_{5}\right)=\ell+2, \ell+1$ or ℓ. Since $\partial\left(u_{4}, u_{5}\right)=1$ and $\partial\left(u_{4}, w\right)=\ell-1$, we have $\partial\left(w, u_{5}\right)=\ell, \ell-1$ or $\ell-2$. Consequently we have $\partial\left(w, u_{5}\right)=\ell$. Then $u_{1} u_{2} u_{3} u_{4} u_{5}$ is a pentagon of shape $\ell-1, \ell-1, \ell-1, \ell-1, \ell$ with respect to w, which is a contradiction to the inductive hypothesis.

Lemma 13. Fix integers $1 \leqslant i \leqslant d \leqslant D-1$, and suppose Γ contains no parallelograms of any length up to $d+1$. Let x be a vertex and $u_{1} u_{2} u_{3} u_{4} u_{5}$ be a pentagon of shape $i, i-1, i, i-1, i$ or of shape $i, i-1, i, i-1, i-1$ with respect to x in Γ. Then $B\left(x, u_{1}\right)=$ $B\left(x, u_{3}\right)$.
Proof. It suffices to show $B\left(x, u_{3}\right) \subseteq B\left(x, u_{1}\right)$ since $\left|B\left(x, u_{3}\right)\right|=\left|B\left(x, u_{1}\right)\right|=b_{i}$. Pick $u \in B\left(x, u_{3}\right)$, this implies $\partial\left(u, u_{3}\right)=i+1$. Since $\partial\left(u_{3}, u_{2}\right)=1$ and $\partial\left(u_{3}, u\right)=i+1$, we have $\partial\left(u_{2}, u\right)=i+2, i+1$, or i. Since $\partial(x, u)=1$ and $\partial\left(x, u_{2}\right)=i-1$, we have $\partial\left(u_{2}, u\right)=i, i-1$, or $i-2$. Consequently we have $\partial\left(u, u_{2}\right)=i$. Substituting u_{4} to u_{2} in the above arguments, we similarly have $\partial\left(u, u_{4}\right)=i$. Next we consider $\partial\left(u, u_{1}\right)$. Note that $\partial\left(u, u_{1}\right)=i+1, i$ or $i-1$ since $\partial(x, u)=1$ and $\partial\left(x, u_{1}\right)=i$. We show that $\partial\left(u, u_{1}\right)=i+1$ by excluding the other two cases in the following.
(1) Suppose $\partial\left(u, u_{1}\right)=i-1$, then the pentagon $u_{1} u_{2} u_{3} u_{4} u_{5}$ has shape $i-1, i, i+1, i+1, i$ with respect to u by Lemma 10. In particular we have $\partial\left(u, u_{4}\right)=i+1$, which is a contradiction to $\partial\left(u, u_{4}\right)=i$ obtained in the last paragraph.
(2) Suppose $\partial\left(u, u_{1}\right)=i$. Since $\partial\left(u_{1}, u_{5}\right)=1$ and $\partial\left(u_{1}, u\right)=i$, we have $\partial\left(u, u_{5}\right)=$ $i+1, i$, or $i-1$. If $\partial\left(u, u_{5}\right)=i$, then the pentagon $u_{4} u_{5} u_{1} u_{2} u_{3}$ has shape $i, i, i, i, i+1$ with respect to u, which is a contradiction to Lemma 12. If $\partial\left(u, u_{5}\right)=i-1$, then the pentagon $u_{5} u_{4} u_{3} u_{2} u_{1}$ has shape $i-1, i, i+1, i, i$ with respect to u, which is a contradiction to Lemma 10. Consequently we have $\partial\left(u, u_{5}\right)=i+1$. For the case $u_{1} u_{2} u_{3} u_{4} u_{5}$ having shape $i, i-1, i, i-1, i-1$ with respect to x, we have $\partial\left(u, u_{5}\right) \leqslant \partial\left(x, u_{5}\right)+1=i$, which is a contradiction to $\partial\left(u, u_{5}\right)=i+1$. For the other case $u_{1} u_{2} u_{3} u_{4} u_{5}$ having shape $i, i-1, i, i-1, i$ with respect to $x, \partial\left(x, u_{5}\right)=i$ and hence $u_{5} u_{1} x u$ is a parallelogram of length $i+1$, also a contradiction.

Hence $\partial\left(u, u_{1}\right)=i+1$, or equivalently $u \in B\left(x, u_{1}\right)$. This proves $B\left(x, u_{3}\right) \subseteq B\left(x, u_{1}\right)$ as desired.

The following lemma rules out a class of pentagons of certain shapes with respect to a given vertex.
Lemma 14. Fix integers $1 \leqslant i \leqslant d \leqslant D-1$, and suppose Γ contains no parallelograms of any length up to $d+1$. Let x be a vertex in Γ. Then there is no pentagon of shape $i, i, i, i+1, i+1$ with respect to x in Γ.
Proof. We prove this lemma by induction on i. The case $i=1$ holds otherwise we have a pentagon of shape $1,1,1,2,2$ with respect to x. In particular we have three vertices x, u_{1}, u_{2} with $\partial\left(x, u_{1}\right)=\partial\left(x, u_{2}\right)=\partial\left(u_{1}, u_{2}\right)=1$, which is a contradiction to the initial assumption $a_{1}=0$.

Suppose the assertion holds for any $i<\ell \leqslant d$. For the case $i=\ell$, suppose to the contrary that $u_{1} u_{2} u_{3} u_{4} u_{5}$ is a pentagon of shape $\ell, \ell, \ell, \ell+1, \ell+1$ with respect to x. Pick $v \in C\left(x, u_{1}\right)$ and note that hence $\partial\left(u_{1}, v\right)=\ell-1$. Since $\partial(x, v)=1$ and $\partial\left(x, u_{5}\right)=\ell+1$, we have $\partial\left(v, u_{5}\right)=\ell+2, \ell+1$, or ℓ. Since $\partial\left(u_{1}, u_{5}\right)=1$ and $\partial\left(u_{1}, v\right)=\ell-1$, we have $\partial\left(v, u_{5}\right)=\ell, \ell-1$, or $\ell-2$. Consequently we have $\partial\left(v, u_{5}\right)=\ell$.

Next we consider $\partial\left(v, u_{3}\right)$. Note that $\partial(x, v)=1$ and $\partial\left(x, u_{3}\right)=\ell$, hence $\partial\left(v, u_{3}\right)=$ $\ell+1, \ell$, or $\ell-1$. We show that $\partial\left(v, u_{3}\right)=\ell-1$ by excluding the other two cases in the following.
(1) If $\partial\left(v, u_{3}\right)=\ell+1$, then $v \in B\left(x, u_{3}\right)$. Note that $u_{2} \in A\left(u_{1}, x\right)$ and $u_{3} \in A\left(u_{2}, x\right)$, hence we have $B\left(x, u_{1}\right)=B\left(x, u_{2}\right)=B\left(x, u_{3}\right)$ by Lemma 11 . Then $v \in B\left(x, u_{3}\right)=$ $B\left(x, u_{2}\right)=B\left(x, u_{1}\right)$, which is a contradiction to $v \in C\left(x, u_{1}\right)$.
(2) If $\partial\left(v, u_{3}\right)=\ell$, we have $\partial\left(v, u_{4}\right)=\ell+1$, ℓ, or $\ell-1$ since $\partial\left(u_{3}, u_{4}\right)=1$. We also have $\partial\left(v, u_{4}\right)=\ell+2, \ell+1$, or ℓ since $\partial\left(x, u_{4}\right)=\ell+1$ and $\partial(x, v)=1$. Consequently we have $\partial\left(v, u_{4}\right)=\ell+1$ or ℓ. For the case $\partial\left(v, u_{4}\right)=\ell+1$, applying Lemma 10 to the pentagon $u_{1} u_{5} u_{4} u_{3} u_{2}$ with $\partial\left(u_{1}, v\right)=\ell-1$ and $\partial\left(v, u_{4}\right)=\ell+1$, we have that the pentagon $u_{1} u_{5} u_{4} u_{3} u_{2}$ is of shape $\ell-1, \ell, \ell+1, \ell+1, \ell$ with respect to v. In particular, $\partial\left(v, u_{3}\right)=\ell+1$ which contradicts $\partial\left(v, u_{3}\right)=\ell$. For the case $\partial\left(v, u_{4}\right)=\ell, x v u_{3} u_{4}$ is a parallelogram of length $\ell+1$, a contradiction to our initial assumption.

Next we consider $\partial\left(v, u_{4}\right)$. Since $\partial\left(u_{3}, u_{4}\right)=1$ and $\partial\left(u_{3}, v\right)=\ell-1$, we have $\partial\left(v, u_{4}\right)=$ $\ell, \ell-1$, or $\ell-2$. Since $\partial(x, v)=1$ and $\partial\left(x, u_{4}\right)=\ell+1$, we have $\partial\left(v, u_{4}\right)=\ell+2, \ell+1$, or ℓ. Consequently we have $\partial\left(v, u_{4}\right)=\ell$.

Finally we consider $\partial\left(v, u_{2}\right)$. Since $\partial(x, v)=1$ and $\partial\left(x, u_{2}\right)=\ell$, we have $\partial\left(v, u_{4}\right)=$ $\ell+1, \ell$, or $\ell-1$. Since $\partial\left(u_{1}, u_{2}\right)=1$ and $\partial\left(u_{1}, v\right)=\ell-1$, we have $\partial\left(v, u_{2}\right)=\ell, \ell-1$, or $\ell-2$. Consequently we have $\partial\left(v, u_{2}\right)=\ell$ or $\ell-1$. If $\partial\left(v, u_{2}\right)=\ell-1$, the pentagon $u_{1} u_{2} u_{3} u_{4} u_{5}$ is of shape $\ell-1, \ell-1, \ell-1, \ell, \ell$ with respect to v. This is a contradiction to the induction hypothesis. Hence $\partial\left(v, u_{2}\right)=\ell$.

We conclude that the pentagon $u_{5} u_{1} u_{2} u_{3} u_{4}$ is of shape $\ell, \ell-1, \ell, \ell-1, \ell$ with respect to v. By Lemma 13, we have $B\left(v, u_{2}\right)=B\left(v, u_{5}\right)$. Since $\partial\left(x, u_{5}\right)=\ell+1$ and $\partial\left(v, u_{5}\right)=\ell$, we have $x \in B\left(v, u_{5}\right)$. Since $\partial\left(x, u_{2}\right)=\ell$ and $\partial\left(v, u_{2}\right)=\ell$, we have $x \notin B\left(v, u_{2}\right)$. Consequently we have $x \in B\left(v, u_{5}\right)-B\left(v, u_{2}\right)$, which is a contradiction to $B\left(v, u_{2}\right)=$ $B\left(v, u_{5}\right)$.

4 D-bounded Property and Nonexistence of Parallelograms

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geqslant 3$. Fix an integer $1 \leqslant$ $d \leqslant D-1$. Throughout this section, we assume that Γ satisfies the following conditions.

Assumption:

(i) The intersection numbers satisfy $a_{1}=0, a_{2} \neq 0, c_{2}=1$, and
(ii) Γ contains no parallelograms of any length up to $d+1$.

We shall prove the d-bounded property of Γ in this section. By the definition of strongly closed subgraphs, the following proposition is easily seen.

Proposition 15. Suppose $\Delta \subseteq X$ is a strongly closed subgraph of Γ and $u x_{1} v x_{2} x_{3}$ or $u x_{1} x_{2} v x_{3}$ is a pentagon in Γ. If $u, v \in \Delta$, then x_{1}, x_{2}, x_{3} are all in Δ.

Proof. Since $a_{1}=0$, it is easily seen that $\partial(u, v)=2$ and u, x_{i}, v is weak-geodetic for $i=1,2,3$.

We then give a definition.

Definition 16. For any vertex $x \in X$ and any subset $\Pi \subseteq X$, define $[x, \Pi]$ to be the set

$$
\left\{v \in X \mid \text { there exists } y^{\prime} \in \Pi, \text { such that the sequence } x, v, y^{\prime} \text { is geodetic }\right\} .
$$

For any $x, y \in X$ with $\partial(x, y)=d^{\prime}$, set

$$
\Pi_{x y}:=\left\{y^{\prime} \in \Gamma_{d^{\prime}}(x) \mid B(x, y)=B\left(x, y^{\prime}\right)\right\}
$$

and

$$
\Delta(x, y)=\left[x, \Pi_{x y}\right] .
$$

For convenience, we also use $\Delta(x, y)$ to denote the subgraph of Γ induced on $\Delta(x, y)$. Note that $\Delta(x, y)$ contains x, y and $\Gamma_{d^{\prime}}(x) \cap \Delta(x, y)=\Pi_{x y}$. We can also easily see the following proposition.

Proposition 17. For $x, y, z, w \in X$ and $w \in \Delta(x, y)$, if x, z, w is geodetic, then $z \in$ $\Delta(x, y)$.

Proof. Suppose $\partial(x, y)=d^{\prime}, \partial(x, w)=i$ and $\partial(x, z)=j$. Then $\partial(z, w)=i-j$. By the construction of Definition 16, there exists $y^{\prime} \in \Pi_{x y}$ such that x, w, y^{\prime} is geodetic. Hence $\partial\left(w, y^{\prime}\right)=d^{\prime}-i$. Note that $\partial\left(z, y^{\prime}\right) \leqslant \partial(z, w)+\partial\left(w, y^{\prime}\right)=d^{\prime}-j$, and $\partial\left(z, y^{\prime}\right) \geqslant$ $\partial\left(x, y^{\prime}\right)-\partial(x, z)=d^{\prime}-j$. So $\partial\left(z, y^{\prime}\right)=d^{\prime}-j$ and thus x, z, y^{\prime} is geodetic. Hence $z \in \Delta(x, y)$.

For any $1 \leqslant j \leqslant d$, we define the following three kinds of conditions:
$\left(B_{j}\right)$ For any vertices $x, y \in X$ with $\partial(x, y)=j, \Delta(x, y)$ is a regular strongly closed subgraph of Γ with valency $a_{j}+c_{j}$ and diameter j.
$\left(W_{j}\right)$ For any vertices $x, y \in X$ with $\partial(x, y)=j, \Delta(x, y)$ is strongly closed with respect to x.
$\left(R_{j}\right)$ For any vertices $x, y \in X$ with $\partial(x, y)=j, \Delta(x, y)$ is a regular subgraph of Γ with valency $a_{j}+c_{j}$.

By Definition $2,\left(B_{j}\right)$ holds for each $1 \leqslant j \leqslant d$ implies that Γ is d-bounded since we can choose $\Delta(x, y)$ as the desired strongly closed subgraphs. By referring to Theorem 8, we know that for a subgraph Ω of Γ, if Ω is regular and Ω is strongly closed with respect to some vertex $x \in \Omega$, then Ω is strongly closed and is a distance-regular subgraph of Γ. Thus if $\left(W_{\ell}\right)$ and $\left(R_{\ell}\right)$ hold for some $1 \leqslant \ell \leqslant d$, then $\left(B_{\ell}\right)$ holds. Consequently $\left(W_{j}\right)$ and $\left(R_{j}\right)$ hold for all $1 \leqslant j \leqslant d$ provides a sufficient condition for the d-bounded property of Γ. We plan to prove Theorem 5 through the above deduction, that is, to prove $\left(W_{j}\right)$ and $\left(R_{j}\right)$ hold for all $1 \leqslant j \leqslant d$ under the assumptions in the beginning of this section. We use induction on j to achieve our objective. To adequately proceed the induction process, the following lemmas are required.

Lemma 18. Fix integers i, d^{\prime} with $1 \leqslant i<d^{\prime} \leqslant d$ and let $x, y \in X$ with $\partial(x, y)=d^{\prime}$. Suppose for all $\ell \in\left\{i+1, i+2, \ldots d^{\prime}\right\}$, if vertex $z^{\prime} \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (i), (ii).
(i) $A\left(z^{\prime}, x\right) \subseteq \Delta(x, y)$.
(ii) For any vertex $w^{\prime} \in \Gamma_{\ell}(x) \cap \Gamma_{2}\left(z^{\prime}\right)$ with $B\left(x, w^{\prime}\right)=B\left(x, z^{\prime}\right)$, we have $w^{\prime} \in \Delta(x, y)$.

Then for any $z \in \Delta(x, y) \cap \Gamma_{i}(x), A(z, x) \subseteq \Delta(x, y)$.
Proof. Let $v \in A(z, x)$. Pick $u \in \Delta(x, y) \cap \Gamma_{i+1}(x) \cap \Gamma_{1}(z)$. Let $u u_{2} u_{3} v z$ be a pentagon of Γ for some $u_{2}, u_{3} \in X$. Note that $u u_{2} u_{3} v z$ cannot have shape $i+1, i, i-1, i, i$, shape $i+1, i+2, i+1, i, i$ by Lemma 10, cannot have shape $i+1, i, i, i, i$ by Lemma 12, and cannot have shape $i+1, i+1, i, i, i$ by Lemma 14 with respect to x. Hence $u u_{2} u_{3} v z$ has shape $i+1, i+1, i+1, i, i$ or $i+1, i, i+1, i, i$ with respect to x. In the first case we have $u_{2} \in A(u, x), u_{3} \in A\left(u_{2}, x\right)$, and this implies $u_{2}, u_{3} \in \Delta(x, y)$ by the assumption (i). Then $v \in \Delta(x, y)$ by Proposition 17 since x, v, u_{3} is geodetic. In the latter case we have $B(x, u)=B\left(x, u_{3}\right)$ by Lemma 13, and consequently $u_{3} \in \Delta(x, y)$ by the assumption (ii). Then $v \in \Delta(x, y)$ by Proposition 17 since x, v, u_{3} is geodetic.

Lemma 19. Fix integers i, d^{\prime} with $1 \leqslant i<d^{\prime} \leqslant d$ and let $x, y \in X$ with $\partial(x, y)=d^{\prime}$. Suppose $\left(W_{j}\right),\left(R_{j}\right)$ and thus $\left(B_{j}\right)$ hold in Γ for all $j<d^{\prime}$, and for all $\ell \in\left\{i+1, i+2, \ldots d^{\prime}\right\}$, if vertex $z^{\prime} \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (i), (ii).
(i) $A\left(z^{\prime}, x\right) \subseteq \Delta(x, y)$.
(ii) For any vertex $w^{\prime} \in \Gamma_{\ell}(x) \cap \Gamma_{2}\left(z^{\prime}\right)$ with $B\left(x, w^{\prime}\right)=B\left(x, z^{\prime}\right)$, we have $w^{\prime} \in \Delta(x, y)$.

Then for any $z \in \Delta(x, y) \cap \Gamma_{i}(x)$ and $w \in \Gamma_{i}(x) \cap \Gamma_{2}(z)$ with $B(x, w)=B(x, z)$, we have $w \in \Delta(x, y)$.

Proof. Let $z \in \Delta(x, y) \cap \Gamma_{i}(x)$. First we note that $\left(B_{i}\right)$ holds since $1 \leqslant i<d^{\prime}$, hence $\Delta(x, z)$ is a regular strongly closed subgraph of diameter i.

Suppose to the contrary that there exists $w \in \Gamma_{i}(x) \cap \Gamma_{2}(z)$ with $B(x, w)=B(x, z)$ such that $w \notin \Delta(x, y)$. Since $B(x, w)=B(x, z)$, we have $\Pi_{x z}=\Pi_{x w}$ and thus $\Delta(x, z)=\Delta(x, w)$ by the construction in Definition 16.

Note that $|C(w, z)|=1$ since $\partial(w, z)=2$ and $c_{2}=1$. Let v_{2} be the unique vertex in $C(w, z)$.
Claim 19.1. $\partial\left(x, v_{2}\right)=i-1$.
Proof of Claim 19.1. Let $z v_{2} w v_{4} v_{5}$ be a pentagon for some $v_{4}, v_{5} \in X$. Note that this pentagon exists since we can choose $v_{4} \in A(w, z)$ with the assumption $a_{2} \neq 0$, and we can choose $v_{5} \in C\left(v_{4}, z\right)$ where $v_{5} \neq v_{2}$ with the assumption $a_{1}=0$. Since $\partial(x, z)=i$ and $\partial\left(z, v_{2}\right)=1$, we have $\partial\left(x, v_{2}\right)=i+1, i$, or $i-1$. We prove this claim by excluding the other two cases.
(1) Suppose $\partial\left(x, v_{2}\right)=i+1$. Since $w \in \Delta(x, w)=\Delta(x, z)$ and $z \in \Delta(x, z)$, we have that $v_{2}, v_{4}, v_{5} \in \Delta(x, z)$ by Proposition 15. In particular, $\partial\left(x, v_{2}\right) \leqslant i$ since $\Delta(x, z)$ is of diameter i. This is a contradiction.
(2) Suppose $\partial\left(x, v_{2}\right)=i$, that is, $v_{2} \in A(z, x)$, then $v_{2} \in \Delta(x, y)$ by Lemma 18. Since $\partial\left(x, v_{2}\right)=\partial(x, w)=i$, we have $w \in A\left(v_{2}, x\right)$. Applying Lemma 18 again by viewing v_{2} as the role of z, we have $w \in \Delta(x, y)$. This contradicts our assumption that $w \notin \Delta(x, y)$. Hence $\partial\left(x, v_{2}\right)=i-1$.

Let u be a vertex in $\Delta(x, y) \cap \Gamma_{i+1}(x) \cap \Gamma_{1}(z)$. Let $y_{3} \in A\left(u, v_{2}\right)$ and $y_{4} \in C\left(y_{3}, v_{2}\right)$.
Claim 19.2. The pentagon $v_{2} z u y_{3} y_{4}$ has shape $i-1, i, i+1, i+1, i$ with respect to x. Moreover the pentagon is contained in $\Delta(x, y)$.

Proof of Claim 19.2. The shape of the pentagon $v_{2} z u y_{3} y_{4}$ is determined by Lemma 10. Since $\partial\left(x, y_{3}\right)=i+1$, we have $y_{3} \in A(u, x)$ and we can conclude that $y_{3} \in \Delta(x, y)$ by the assumption (i). We can also conclude that the remaining v_{2} and y_{4} are in $\Delta(x, y)$ by Proposition 17 since x, v_{2}, y_{3} and x, y_{4}, y_{3} are both geodetic.

If $w=y_{4}$ then $w \in \Delta(x, y)$ by Claim 19.2. This contradicts our assumption that $w \notin \Delta(x, y)$. Hence $w \neq y_{4}$ and we have $\partial\left(w, y_{4}\right)=2$ by excluding the other possible case $\partial\left(w, y_{4}\right)=1$ under the assumption $a_{1}=0$. Let $w_{3} \in A\left(y_{4}, w\right)$ and $w_{4} \in C\left(w_{3}, w\right)$.
Claim 19.3. The pentagon $v_{2} y_{4} w_{3} w_{4} w$ has shape $i-1, i, i+1, i+1, i$ with respect to x and $\left\{w_{3}, w_{4}\right\} \cap\left\{y_{3}, u\right\}=\emptyset$.
Proof of Claim 19.3. Recall that $\Delta(x, w)=\Delta(x, z)$ is strongly closed of diameter i since $\left(B_{i}\right)$ holds. Also note that $v_{2} \in \Delta(x, z)$ since x, v_{2}, z is geodetic. Since $\partial\left(w, w_{4}\right)=1$ and $\partial(x, w)=i$, we have $\partial\left(x, w_{4}\right)=i-1, i$, or $i+1$.

If $\partial\left(x, w_{4}\right)=i-1$ or i, then x, w_{4}, w is weak-geodetic. Since $\Delta(x, w)$ is strongly closed, we have $w_{4} \in \Delta(x, w)=\Delta(x, z)$. This forces $y_{4} \in \Delta(x, z)$ by applying Proposition 15 to the pentagon $v_{2} y_{4} w_{3} w_{4} w$ with $v_{2}, w_{4} \in \Delta(x, z)$. By applying Proposition 15 again to the pentagon $z v_{2} y_{4} y_{3} u$ with $z, y_{4} \in \Delta(x, z)$, we have $y_{3} \in \Delta(x, z)$. This is a contradiction since $\Delta(x, z)$ has diameter i and $\partial\left(x, y_{3}\right)=i+1>i$. Hence $\partial\left(x, w_{4}\right)=i+1$ and $v_{2} w w_{4} w_{3} y_{4}$ has shape $i-1, i, i+1, i+1, i$ with respect to x by Lemma 10 .

Since $\partial\left(x, w_{3}\right)=\partial\left(x, w_{4}\right)=i+1$ and $\partial\left(w_{3}, w_{4}\right)=1$, we have $w_{4} \in A\left(w_{3}, x\right)$. By the assumption (i), if $w_{3} \in \Delta(x, y)$ then $w_{4} \in \Delta(x, y)$. Recall that y_{3} and u are both in $\Delta(x, y)$ by Claim 19.2. Therefore if $\left\{w_{3}, w_{4}\right\} \cap\left\{y_{3}, u\right\} \neq \emptyset$, we can conclude that $w_{4} \in \Delta(x, y)$ for any case. Since x, w, w_{4} is geodetic, we have $w \in \Delta(x, y)$ by Proposition 17. This is a contradiction to our assumption that $w \notin \Delta(x, y)$.

The two pentagons $v_{2} z u y_{3} y_{4}$ and $v_{2} y_{4} w_{3} w_{4} w$ are shown in Figure 1.
Claim 19.4. $B\left(x, y_{3}\right) \neq B\left(x, w_{3}\right)$.
Proof of Claim 19.4. Note that $\partial\left(y_{3}, w_{3}\right)=2$ since $\partial\left(y_{4}, w_{3}\right)=1, \partial\left(y_{4}, y_{3}\right)=1$, and $a_{1}=0$. Suppose to the contrary that $B\left(x, y_{3}\right)=B\left(x, w_{3}\right)$. Recall that $y_{3} \in \Delta(x, y)$ by Claim 19.2. Hence we have $w_{3} \in \Delta(x, y)$ by the assumption (ii). Since $\partial\left(x, w_{3}\right)=\partial\left(x, w_{4}\right)=i+1$ and $\partial\left(w_{3}, w_{4}\right)=1$, we have $w_{4} \in A\left(w_{3}, x\right)$. We then have $w_{4} \in \Delta(x, y)$ by the assumption (i).

Figure 1: Two pentagons in the proof of Lemma 19.

Since x, w, w_{4} is geodetic, we have $w \in \Delta(x, y)$ by Proposition 17. This is a contradiction to our assumption that $w \notin \Delta(x, y)$.

Let $p_{3} \in A\left(y_{3}, w_{3}\right)$ and $p_{4} \in C\left(p_{3}, w_{3}\right)$. Note that these two vertices exist since $\partial\left(y_{3}, w_{3}\right)=2, a_{2} \neq 0$, and $c_{2}=1$.
Claim 19.5. The pentagon $y_{4} y_{3} p_{3} p_{4} w_{3}$ has shape $i, i+1, i+2, i+2, i+1$ with respect to x.

Proof of Claim 19.5. Since $\partial\left(p_{3}, y_{3}\right)=1$ and $\partial\left(x, y_{3}\right)=i+1$, we have $\partial\left(x, p_{3}\right)=i, i+1$ or $i+2$. We show that $\partial\left(x, p_{3}\right)=i+2$ by excluding the other two cases in the following.
(1) Suppose $\partial\left(x, p_{3}\right)=i+1$, then $\partial\left(x, p_{4}\right)=i+2, i+1$, or i since $\partial\left(p_{3}, p_{4}\right)=1$.

If $\partial\left(x, p_{4}\right)=i+2$, then the pentagon $y_{4} y_{3} p_{3} p_{4} w_{3}$ should have shape $i, i+1, i+2, i+2, i+1$ with respect to x by Lemma 10. This is a contradiction to the assumption $\partial\left(x, p_{3}\right)=i+1$ for this case.

If $\partial\left(x, p_{4}\right)=i+1$, then $\partial\left(x, y_{3}\right)=\partial\left(x, p_{3}\right)=\partial\left(x, p_{4}\right)=\partial\left(x, w_{3}\right)=i+1$. Hence $p_{3} \in A\left(y_{3}, x\right), p_{4} \in A\left(p_{3}, x\right)$, and $w_{3} \in A\left(p_{4}, x\right)$. By applying Lemma 11 three times, we have $B\left(x, y_{3}\right)=B\left(x, p_{3}\right)=B\left(x, p_{4}\right)=B\left(x, w_{3}\right)$. This is a contradiction to Claim 19.4.

If $\partial\left(x, p_{4}\right)=i$, then the pentagon $y_{3} y_{4} w_{3} p_{4} p_{3}$ should have shape $i+1, i, i+1, i, i+1$ with respect to x. By Lemma 13, we have $B\left(x, y_{3}\right)=B\left(x, w_{3}\right)$. This is also a contradiction to Claim 19.4.
(2) Suppose $\partial\left(x, p_{3}\right)=i$, then $\partial\left(x, p_{4}\right)=i-1, i$, or $i+1$ since $\partial\left(p_{3}, p_{4}\right)=1$.

If $\partial\left(x, p_{4}\right)=i-1$, then we immediately get a contradiction from $\partial\left(x, p_{4}\right)=i-$ $1, \partial\left(x, w_{3}\right)=i+1$, and $\partial\left(w_{3}, p_{4}\right)=1$.

If $\partial\left(x, p_{4}\right)=i$, the pentagon $y_{3} y_{4} w_{3} p_{4} p_{3}$ should have shape $i+1, i, i+1, i, i$ with respect to x. By Lemma 13, we have $B\left(x, y_{3}\right)=B\left(x, w_{3}\right)$. This is a contradiction to Claim 19.4.

If $\partial\left(x, p_{4}\right)=i+1$, the pentagon $w_{3} y_{4} y_{3} p_{3} p_{4}$ should have shape $i+1, i, i+1, i, i+1$ with respect to x. By Lemma 13, we have $B\left(x, y_{3}\right)=B\left(x, w_{3}\right)$. This is also a contradiction to

Claim 19.4.
We conclude that $\partial\left(x, p_{3}\right)=i+2$. In particular, the pentagon $y_{4} y_{3} p_{3} p_{4} w_{3}$ has shape $i, i+1, i+2, i+2, i+1$ with respect to x by Lemma 10 .

Now we have three pentagons and their shapes with respect to x as shown in Figure 2.
distance to x
$0 \quad \ldots . . \quad i-1 \quad i \quad i+1 \quad i+2$

Figure 2: Three pentagons in the proof of Lemma 19.

Claim 19.6. $B\left(x, y_{4}\right) \neq B(x, z)$ and thus $B\left(x, y_{4}\right)-B(x, z) \neq \emptyset$.
Proof of Claim 19.6. Suppose to the contrary that $B\left(x, y_{4}\right)=B(x, z)$. By the construction in Definition 16, we have $\Delta\left(x, y_{4}\right)=\Delta(x, z)$, which is a strongly closed subgraph of diameter i since (B_{i}) holds. By applying Proposition 15 to the pentagon $z v_{2} y_{4} y_{3} u$ with $z, y_{4} \in \Delta(x, z)$, we have $y_{3} \in \Delta(x, z)$. This is a contradiction since $\partial\left(x, y_{3}\right)=i+1$ and $\Delta(x, z)$ is of diameter i. The fact $B\left(x, y_{4}\right)-B(x, z) \neq \emptyset$ is easily seen by further observe that $\left|B\left(x, y_{4}\right)\right|=|B(x, z)|=b_{i}$, which implies that $B\left(x, y_{4}\right) \nsubseteq B(x, z)$.

Pick $p \in B\left(x, y_{4}\right)-B(x, z)$. Note that hence $\partial\left(p, y_{4}\right)=i+1$.
Claim 19.7. $\partial(p, z)=i$.
Proof of Claim 19.7. Note that $\partial(p, z)=i$ or $i-1$ since $p \notin B(x, z)$ and $\partial(p, x)=1$. We exclude the case $\partial(p, z)=i-1$ in the following.

Suppose $\partial(p, z)=i-1$. Then $z v_{2} y_{4} y_{3} u$ is a pentagon of shape $i-1, i, i+1, i+1, i$ with respect to p by Lemma 10. More precisely, $\partial(p, z)=i-1, \partial\left(p, v_{2}\right)=i, \partial\left(p, y_{4}\right)=$ $i+1, \partial\left(p, y_{3}\right)=i+1$, and $\partial(p, u)=i$.

Next we show that $\partial\left(p, p_{3}\right)=i+2$. Since $\partial\left(p, y_{3}\right)=i+1$ and $\partial\left(p_{3}, y_{3}\right)=1$, we have $\partial\left(p, p_{3}\right)=i+2, i+1$, or i. Since $\partial\left(x, p_{3}\right)=i+2$ and $\partial(x, p)=1$, we have $\partial\left(p, p_{3}\right)=i+3$, $i+2$, or $i+1$. Consequently we have $\partial\left(p, p_{3}\right)=i+2$ or $i+1$. If $\partial\left(p, p_{3}\right)=i+1$ then $x p y_{3} p_{3}$ is a parallelogram of length $i+2 \leqslant d+1$, a contradiction to our initial assumption that no parallelogram of length up to $d+1$ exists. Hence $\partial\left(p, p_{3}\right)=i+2$.

Next we show that $\partial\left(p, w_{3}\right)=i+2$. We know that $\partial\left(p, w_{3}\right)=i, i+1$ or $i+2$ since $\partial\left(x, w_{3}\right)=i+1$ and $\partial(x, p)=1$. If $\partial\left(p, w_{3}\right)=i$, then he pentagon $w_{3} p_{4} p_{3} y_{3} y_{4}$ has shape $i, i+1, i+2, i+2, i+1$ with respect to p by Lemma 10. In particular $\partial\left(p, y_{3}\right)=i+2$, a contradiction to $\partial\left(p, y_{3}\right)=i+1$. If $\partial\left(p, w_{3}\right)=i+1$, we have $\partial\left(p, p_{4}\right)=i+2$ or $i+1$ since $\partial\left(p, w_{3}\right)=i+1, \partial\left(p, p_{3}\right)=i+2$, and p_{4} is the common neighbor of p_{3} and w_{3}. If $\partial\left(p, p_{4}\right)=i+2$, the pentagon $w_{3} y_{4} y_{3} p_{3} p_{4}$ has shape $i+1, i+1, i+1, i+2, i+2$ with respect to p, a contradiction to Lemma 14. If $\partial\left(p, p_{4}\right)=i+1$, the pentagon $p_{4} w_{3} y_{4} y_{3} p_{3}$ has shape $i+1, i+1, i+1, i+1, i+2$ with respect to p, a contradiction to Lemma 12 . Hence $\partial\left(p, w_{3}\right)=i+2$.

We finally consider the shape of the pentagon $v_{2} y_{4} w_{3} w_{4} w$ with respect to p and get a contradiction. Since $\partial(x, p)=1$ and $\partial\left(x, v_{2}\right)=i-1$, we have $\partial\left(p, v_{2}\right)=i, i-1$, or $i-2$. Since $\partial\left(y_{4}, v_{2}\right)=1$ and $\partial\left(y_{4}, p\right)=i+1$, we have $\partial\left(p, v_{2}\right)=i+2, i+1$, or i. Consequently $\partial\left(p, v_{2}\right)=i$. Hence $v_{2} y_{4} w_{3} w_{4} w$ is a pentagon of shape $i, i+1, i+2, i+2, i+1$ with respect to p by Lemma 10. In particular $\partial(p, w)=i+1$, which implies $p \in B(x, w)$, a contradiction to our assumptions $B(x, z)=B(x, w)$ and $p \in B\left(x, y_{4}\right)-B(x, z)$.

Claim 19.8. $\partial(p, w)=i$.
Proof of Claim 19.8. Most of the following arguments are similar as the ones in the previous Claim 19.7, so we omit some details. Since $\partial(x, p)=1$ and $\partial(x, w)=i$, we have $\partial(p, w)=i+1, i$, or $i-1$. We exclude the other two cases in the following.
(1) Suppose $\partial(p, w)=i+1$, then $p \in B(x, w)=B(x, z)$. This is a contradiction to our assumption $p \in B\left(x, y_{4}\right)-B(x, z)$.
(2) Suppose $\partial(p, w)=i-1$. First we have that the pentagon $w v_{2} y_{4} w_{3} w_{4}$ is of shape $i-1, i, i+1, i+1, i$ with respect to p by Lemma 10 .

Next we show that then $\partial\left(p, p_{4}\right)=i+2$. To avoid $x p w_{3} p_{4}$ to be a parallelogram of length $i+2 \leqslant d+1$, we have $\partial\left(p, p_{4}\right)=i+2$.

Then we show that $\partial\left(p, y_{3}\right)=i+2$. By applying Lemma 10, Lemma 12, and Lemma 14 to the shape of the pentagon $y_{4} w_{3} p_{4} p_{3} y_{3}$ with respect to p, we have that $\partial\left(p, y_{3}\right)=i+2$.

We finally consider the shape of the pentagon $v_{2} y_{4} y_{3} u z$ with respect to p and get a contradiction. Consequently $v_{2} y_{4} y_{3} u z$ is a pentagon of shape $i, i+1, i+2, i+2, i+1$ with respect to p by Lemma 10, which is a contradiction to $\partial(p, z)=i$.

Claim 19.9. $\partial(p, u)=\partial\left(p, w_{4}\right)=i+1$.
Proof of Claim 19.9. Since $\partial(p, z)=\partial(x, z)=i$, we have $p \in A(x, z)$ and thus $B(z, x)=$ $B(z, p)$ by Lemma 11. In particular $u \in B(z, p)$ and hence $\partial(p, u)=i+1$. Similarly, $\partial\left(p, w_{4}\right)=i+1$.

Claim 19.10. $\partial\left(p, y_{3}\right)=i$.
Proof of Claim 19.10. Since $\partial\left(x, y_{3}\right)=i+1$ and $\partial(x, p)=1$, we have $\partial\left(p, y_{3}\right)=i+2, i+1$, or i. We exclude the other two cases in the following.
(1) Suppose $\partial\left(p, y_{3}\right)=i+2$, then $p \in B\left(x, y_{3}\right)$ since $\partial\left(x, y_{3}\right)=i+1$ and $\partial(x, p)=1$. Since $\partial\left(x, y_{3}\right)=\partial(x, u)=i+1$ and $\partial\left(u, y_{3}\right)=1$, we have $y_{3} \in A(u, x)$ and hence
$B(x, u)=B\left(x, y_{3}\right)$ by Lemma 11. Then we have $p \in B(x, u)$, which implies $\partial(p, u)=i+2$. This is a contradiction to Claim 19.9.
(2) Suppose $\partial\left(p, y_{3}\right)=i+1$. We first show that $\partial\left(p, p_{3}\right)=i+2$. By applying Lemma 11 we have $B\left(y_{3}, x\right)=B\left(y_{3}, p\right)$. Then as $p_{3} \in B\left(y_{3}, x\right)=B\left(y_{3}, p\right), \partial\left(p, p_{3}\right)=i+2$.

Next we show that $\partial\left(p, w_{3}\right)=i+2$. Applying Lemma 12, Lemma 14 to the pentagon $w_{3} y_{4} y_{3} p_{3} p_{4}$ and considering its shape with respect to p, we find $\partial\left(p, w_{3}\right) \neq i+1$. Applying Lemma 10 to the pentagon $w_{3} p_{4} p_{3} y_{3} y_{4}$, we find $\partial\left(p, w_{3}\right) \neq i$. Thus $\partial\left(p, w_{3}\right)=i+2$.

Recall that $\partial\left(p, w_{4}\right)=i+1$ by Claim 19.9. Then $p x w_{4} w_{3}$ is a parallelogram of length $i+2 \leqslant d+1$. This contradicts our initial assumption that no parallelogram of length up to $d+1$ exists.

Claim 19.11. $\partial\left(p, w_{3}\right)=i$.
Proof of Claim 19.11. Since $\partial\left(x, w_{3}\right)=i+1$ and $\partial(x, p)=1$, we have $\partial\left(p, w_{3}\right)=i+2, i+1$, or i. We exclude the other two cases in the following.
(1) Suppose $\partial\left(p, w_{3}\right)=i+2$. Since $\partial\left(x, w_{3}\right)=\partial\left(x, w_{4}\right)=i+1$, we have $w_{4} \in A\left(w_{3}, x\right)$ and hence $B\left(x, w_{4}\right)=B\left(x, w_{3}\right)$ by Lemma 11. Then $p \in B\left(x, w_{3}\right)=B\left(x, w_{4}\right)$, which implies $\partial\left(p, w_{4}\right)=i+2$ since $\partial\left(x, w_{4}\right)=i+1$. This is a contradiction to Claim 19.9.
(2) Suppose $\partial\left(p, w_{3}\right)=i+1$. Since $\partial\left(p_{4}, w_{3}\right)=1$, we have $\partial\left(p, p_{4}\right)=i+2, i+1$, or i. Since $\partial(x, p)=1$ and $\partial\left(x, p_{4}\right)=i+2$, we have $\partial\left(p, p_{4}\right)=i+3, i+2$, or $i+1$. Consequently we have $\partial\left(p, p_{4}\right)=i+2$ or $i+1$.

If $\partial\left(p, p_{4}\right)=i+2$, recall that $\partial\left(p, y_{3}\right)=i$ by Claim 19.10. Then the pentagon $y_{3} p_{3} p_{4} w_{3} y_{4}$ has shape $i, i+1, i+2, i+2, i+1$ with respect to p by Lemma 10. In particular $\partial\left(p, w_{3}\right)=i+2$, which contradicts the assumption $\partial\left(p, w_{3}\right)=i+1$.

If $\partial\left(p, p_{4}\right)=i+1$, then $x p w_{3} p_{4}$ is a parallelogram of length $i+2 \leqslant d+1$. This contradicts our initial assumption that no parallelogram of length up to $d+1$ exists.

Claim 19.12. The pentagon $p_{4} w_{3} y_{4} y_{3} p_{3}$ has shape $i+1, i, i+1, i, i+1$ with respect to p. Proof of Claim 19.12. Since $\partial\left(x, p_{3}\right)=i+2$ and $\partial(x, p)=1$, we have $\partial\left(p, p_{3}\right)=i+3, i+2$, or $i+1$. Since $\partial\left(p_{3}, y_{3}\right)=1$ and $\partial\left(p, y_{3}\right)=i$ by Claim 19.10, we have $\partial\left(p, p_{3}\right)=i+1, i$, or $i-1$. Consequently we have $\partial\left(p, p_{3}\right)=i+1$. Similarly we have $\partial\left(p, p_{4}\right)=i+1$ since $\partial\left(p, w_{3}\right)=i$ by Claim 19.11.

Recall that $\partial\left(p, y_{4}\right)=i+1$ since $p \in B\left(x, y_{4}\right)-B(x, z)$. Sum up Claim 19.10, Claim 19.11 and the above arguments, we conclude that the pentagon $p_{4} w_{3} y_{4} y_{3} p_{3}$ has shape $i+1, i, i+1, i, i+1$ with respect to p.

Applying Lemma 13 to the pentagon $p_{4} w_{3} y_{4} y_{3} p_{3}$ yields that $B\left(p, p_{4}\right)=B\left(p, y_{4}\right)$. Since $\partial\left(x, p_{4}\right)=i+2$ and $\partial\left(p, p_{4}\right)=i+1$ by Claim 19.11, we have $x \in B\left(p, p_{4}\right)=B\left(p, y_{4}\right)$. Hence $\partial\left(x, y_{4}\right)=\partial\left(p, y_{4}\right)+1=i+2$. This is a contradiction since $\partial\left(x, y_{4}\right)=i$.

Consequently, $w \in \Delta(x, y)$ and this completes the proof.

Lemma 20. Fix integer d^{\prime} with $1<d^{\prime} \leqslant d$ and let $x, y \in X$ with $\partial(x, y)=d^{\prime}$. Suppose $\left(W_{j}\right),\left(R_{j}\right)$ and thus $\left(B_{j}\right)$ hold in Γ for all $j<d^{\prime}$. Then for any vertex $z \in \Delta(x, y) \cap \Gamma_{\ell}(x)$ where $1 \leqslant \ell \leqslant d^{\prime}$, we have the following (i), (ii).
(i) $A(z, x) \subseteq \Delta(x, y)$.
(ii) For any vertex $w \in \Gamma_{\ell}(x) \cap \Gamma_{2}(z)$ with $B(x, w)=B(x, z)$, we have $w \in \Delta(x, y)$.

In particular $\left(W_{d^{\prime}}\right)$ holds.
Proof. We prove (i), (ii) by induction on $d^{\prime}-\ell$. For the case $d^{\prime}-\ell=0$, i.e. $\ell=d^{\prime}$, we have $z \in \Pi_{x y}$. Hence (i), (ii) follows by Lemma 11 and the construction of $\Pi_{x y}$ in Definition 16.

Suppose for all ℓ with $0 \leqslant d^{\prime}-\ell<d^{\prime}-i$, i.e. $\ell \in\left\{i+1, i+2, \ldots d^{\prime}\right\}$, if vertex $z^{\prime} \in \Delta(x, y) \cap \Gamma_{\ell}(x)$, we have the following (a), (b).
(a) $A\left(z^{\prime}, x\right) \subseteq \Delta(x, y)$.
(b) For any vertex $w^{\prime} \in \Gamma_{\ell}(x) \cap \Gamma_{2}\left(z^{\prime}\right)$ with $B\left(x, w^{\prime}\right)=B\left(x, z^{\prime}\right)$, we have $w^{\prime} \in \Delta(x, y)$.

Then (i), (ii) hold for $\ell=i$, i.e. $d^{\prime}-\ell=d^{\prime}-i$, by Lemma 18 and Lemma 19. Then we conclude that (i), (ii) hold for all $0 \leqslant d^{\prime}-\ell \leqslant d^{\prime}-1$, i.e. $1 \leqslant \ell \leqslant d^{\prime}$, by induction.

In particular, we have $A(z, x) \subseteq \Delta(x, y)$ by (i), and we also have $C(z, x) \subseteq \Delta(x, y)$ by Proposition 17. Hence ($W_{d^{\prime}}$) holds by (2).

The following proposition proves $\left(R_{d^{\prime}}\right)$ and hence completes the preparation for the proof of Theorem 5.

Lemma 21. Fix integer d^{\prime} with $1<d^{\prime} \leqslant d$ and let $x, y \in X$ with $\partial(x, y)=d^{\prime}$. Suppose $\left(W_{j}\right),\left(R_{j}\right)$ and thus $\left(B_{j}\right)$ hold in Γ for all $j<d^{\prime}$. Then $\Delta(x, y)$ is regular with valency $a_{d^{\prime}}+c_{d^{\prime}}$.

Proof. Set $\Delta=\Delta(x, y)$. Clearly for any $v \in \Delta$, the construction ensures us that $\partial(x, v) \leqslant$ d^{\prime}. Hence $B\left(y^{\prime}, x\right) \cap \Delta=\emptyset$ for any $y^{\prime} \in \Pi_{x y}$. Applying Lemma 20, we have $\left|\Gamma_{1}\left(y^{\prime}\right) \cap \Delta\right|=$ $a_{d^{\prime}}+c_{d^{\prime}}$ for any $y^{\prime} \in \Pi_{x y}$.

Next we show $\left|\Gamma_{1}(x) \cap \Delta\right|=a_{d^{\prime}}+c_{d^{\prime}}$. Note that $y \in \Delta \cap \Gamma_{d^{\prime}}(x)$ by the construction of Δ. For any $z \in C(x, y) \cup A(x, y)$,

$$
\partial(x, z)+\partial(z, y) \leqslant \partial(x, y)+1
$$

This implies x, z, y is a weak-geodetic sequence, then $z \in \Delta$ since Δ is strongly closed with respect to x by Lemma 20. Hence $C(x, y) \cup A(x, y) \subseteq \Delta$. Suppose $B(x, y) \cap \Delta \neq \emptyset$ and let $t \in B(x, y) \cap \Delta$. Then there exists $y^{\prime} \in \Pi_{x y}$ such that x, t, y^{\prime} is a geodetic sequence by Definition 16. This implies $t \in C\left(x, y^{\prime}\right)$, a contradiction to $B(x, y)=B\left(x, y^{\prime}\right)$. Hence $B(x, y) \cap \Delta=\emptyset$ and $\Gamma_{1}(x) \cap \Delta=C(x, y) \cup A(x, y)$. This proves $\left|\Gamma_{1}(x) \cap \Delta\right|=a_{d^{\prime}}+c_{d^{\prime}}$.

Since each vertex in Δ appears in a sequence of vertices $x=x_{0}, x_{1}, \ldots, x_{d^{\prime}}$ in Δ, where $\partial\left(x, x_{\ell}\right)=\ell, \partial\left(x_{\ell-1}, x_{\ell}\right)=1$ for $1 \leqslant \ell \leqslant d^{\prime}$, and $x_{d^{\prime}} \in \Pi_{x y}$, it suffices to show

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i}\right) \cap \Delta\right|=a_{d^{\prime}}+c_{d^{\prime}} \tag{3}
\end{equation*}
$$

for $1 \leqslant i \leqslant d^{\prime}-1$. For each integer $1 \leqslant i \leqslant d^{\prime}$, we show

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i-1}\right) \backslash \Delta\right| \leqslant\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| \tag{4}
\end{equation*}
$$

by the 2-way counting of the number of the pairs (z, s) with $z \in \Gamma_{1}\left(x_{i-1}\right) \backslash \Delta, s \in \Gamma_{1}\left(x_{i}\right) \backslash \Delta$ and $\partial(z, s)=2$.

For a fixed $s \in \Gamma_{1}\left(x_{i}\right) \backslash \Delta$, we have $\partial\left(s, x_{i-1}\right)=2$ since $a_{1}=0$. Hence such a z must be one of the a_{2} vertices in $A\left(x_{i-1}, s\right)$. The number of such pairs (z, s) is thus at most $\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| a_{2}$.

On the other hand, we show this number is $\left|\Gamma_{1}\left(x_{i-1}\right) \backslash \Delta\right| a_{2}$ exactly. Fix $z \in \Gamma_{1}\left(x_{i-1}\right) \backslash$ Δ. Note that $\partial\left(x_{i}, z\right)=2$ since $a_{1}=0$. Hence the condition " $s \in \Gamma_{1}\left(x_{i}\right)$ with $\partial(z, s)=2$ " is equivalent to " $s \in A\left(x_{i}, z\right)$ ". We shall prove $s \notin \Delta$ for any $s \in A\left(x_{i}, z\right)$. Recall that Δ is strongly closed with respect to x by Lemma 20, which implies $C\left(x_{i-1}, x\right) \subseteq \Delta$ and $A\left(x_{i-1}, x\right) \subseteq \Delta$. Then $z \in B\left(x_{i-1}, x\right)$ and hence $\partial(x, z)=i$.

Suppose to the contrary that there exists $s \in A\left(x_{i}, z\right) \cap \Delta$. Let $w \in C(s, z)$. Note that $w \neq x_{i}$ since $a_{1}=0$. Since $\partial\left(x_{i}, x\right)=i$ and $\partial\left(x_{i}, s\right)=1$, we have $\partial(x, s)=i+1, i$, or $i-1$.

We first show that $\partial(x, s)=i$ or $i-1$. If $\partial(x, s)=i+1$, applying Lemma 10 to the pentagon $x_{i-1} x_{i} s w z$ with $\partial\left(x, x_{i-1}\right)=i-1$ and $\partial(x, s)=i+1$, we see that the pentagon $x_{i-1} x_{i} s w z$ has shape $i-1, i, i+1, i+1, i$ with respect to x. In particular, $\partial(x, w)=i+1$ and hence $w \in A(s, x)$. Then we have $w \in \Delta$ by Lemma 20(i). Note that $\partial(x, w)=i+1$ and $\partial(x, z)=i$, which implies that x, z, w is a geodetic sequence. Then we have $z \in \Delta$ by Proposition 17, a contradiction to $z \in \Gamma_{1}\left(x_{i-1}\right) \backslash \Delta$.

We next show that $\partial(x, w)=i$ or $i-1$. Since $\partial(z, x)=i$ and $\partial(z, w)=1$, we have $\partial(x, w)=i+1, i$, or $i-1$. If $\partial(x, w)=i+1$, the pentagon $x_{i-1} z w s x_{i}$ has shape $i-1, i, i+1, i+1, i$ with respect to x by Lemma 10. In particular $\partial(x, s)=i+1$, which is a contradiction to $\partial(x, s)=i$ or $i-1$ constructed in the last paragraph.

If $\partial(x, w)=\partial(x, s)=i$, then $s \in A\left(x_{i}, x\right), w \in A(s, x)$, and $z \in A(w, x)$. Applying Lemma 20(i) three times we have $z \in \Delta$, which is a contradiction to $z \in \Gamma_{1}\left(x_{i-1}\right) \backslash \Delta$. Hence $\partial(x, w) \leqslant i-1$ or $\partial(x, s) \leqslant i-1$. For the case $\partial(x, s)=i-1$ and $\partial(x, w)=i$ we consider the shape of the pentagon $z x_{i-1} x_{i} s w$ with respect to x. For the case $\partial(x, s)=i$ and $\partial(x, w)=i-1$, or the case $\partial(x, s)=i-1$ and $\partial(x, w)=i-1$, we consider the shape of the pentagon $x_{i} x_{i-1} z w s$ with respect to x. Applying Lemma 13 to each of the these three cases we have $B(x, z)=B\left(x, x_{i}\right)$ and then $z \in \Delta$ by Lemma 20(ii), a contradiction to $z \in \Gamma_{1}\left(x_{i-1}\right) \backslash \Delta$.

From the above counting, we have

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i-1}\right) \backslash \Delta\right| a_{2} \leqslant\left|\Gamma_{1}\left(x_{i}\right) \backslash \Delta\right| a_{2} \tag{5}
\end{equation*}
$$

for $1 \leqslant i \leqslant d^{\prime}$. Eliminating the nonzero a_{2} from (5), we find (4) or equivalently

$$
\begin{equation*}
\left|\Gamma_{1}\left(x_{i-1}\right) \cap \Delta\right| \geqslant\left|\Gamma_{1}\left(x_{i}\right) \cap \Delta\right| \tag{6}
\end{equation*}
$$

for $1 \leqslant i \leqslant d^{\prime}$. We have shown previously that $\left|\Gamma_{1}\left(x_{0}\right) \cap \Delta\right|=\left|\Gamma_{1}\left(x_{d^{\prime}}\right) \cap \Delta\right|=a_{d^{\prime}}+c_{d^{\prime}}$. Hence (3) follows from (6).

Proof of Theorem 5 . For $1 \leqslant j \leqslant d$, we prove $\left(W_{j}\right)$ and $\left(R_{j}\right)$ by induction on j. Since $a_{1}=0$, there are no edges in $\Gamma_{1}(x)$ for any vertex $x \in X$.

For $j=1$, then $\Pi_{x y}=\{y\}$ since for any other $y^{\prime} \in \Gamma_{1}(x), y^{\prime} \in B(x, y)$ but $y^{\prime} \notin B\left(x, y^{\prime}\right)$. Consequently $\Delta(x, y)=\{x, y\}$ is an edge; in particular $\Delta(x, y)$ is regular with valency $1=a_{1}+c_{1}$ and is strongly closed with respect to x since $a_{1}=0$. This proves $\left(R_{1}\right)$ and $\left(W_{1}\right)$.

For $j \geqslant 2$, assume $\left(W_{j}\right),\left(R_{j}\right)$ and thus $\left(B_{j}\right)$ hold for all $1 \leqslant j<d^{\prime} \leqslant d$. By Lemma 20 and Lemma 21, we have that $\left(W_{d^{\prime}}\right),\left(R_{d^{\prime}}\right)$ and thus $\left(B_{d^{\prime}}\right)$ hold.

Then we have $\left(B_{j}\right)$ holds for $1 \leqslant j \leqslant d$. By the deduction in the paragraph before Lemma 18, the proof is completed.

Combining Theorem 4 and Theorem 5, the Proof of Theorem 6 can be completed.
Proof of Theorem 6. ((i) \Rightarrow (ii)) By Theorem 9, we see that Γ contains no parallelograms of any length up to $d+1$. Suppose that Γ is d-bounded for $d \geqslant 2$. Let $\Omega \subseteq \Delta$ be two regular strongly closed subgraphs of diameters 1,2 respectively. Since Ω and Δ have different valency $b_{0}-b_{1}$ and $b_{0}-b_{2}$ respectively by Theorem 8 , we have $b_{1}>b_{2}$.
((ii) \Rightarrow (i)) Under the assumptions Theorem 6(ii) (hence $b_{1}>b_{2}$) and $a_{2} \neq 0$, consider the following four cases.
(a) $a_{1}=0$ and $c_{2}>1$: This case follows by Theorem 4 (i).
(b) $a_{1}=0$ and $c_{2}=1$: This case follows by Theorem 5 .
(c) $a_{1} \neq 0$ and $c_{2}>1$: This case follows by Theorem 4 (ii).
(d) $a_{1} \neq 0$ and $c_{2}=1$: Note that by equation (1), $a_{1}+b_{1}+c_{1}=k=a_{2}+b_{2}+c_{2}$. Since $c_{1}=c_{2}=1$ and $b_{1}>b_{2}$, this case is equivalent to the case $a_{2}>a_{1} \geqslant c_{2}=1$. Then the result follows by Theorem 4 (iii).

5 Classical parameters

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geqslant 3 . \Gamma$ is said to have classical parameters (D, b, α, β) whenever the intersection numbers of Γ satisfy

$$
\begin{align*}
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]_{b}\right) \quad \text { for } 0 \leqslant i \leqslant D, \tag{7}\\
& b_{i}=\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]_{b}-\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}\right) \quad \text { for } 0 \leqslant i \leqslant D, \tag{8}
\end{align*}
$$

where

$$
\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}:= \begin{cases}1+b+b^{2}+\cdots+b^{i-1} & \text { if } i>0 \\
0 & \text { if } i \leqslant 0\end{cases}
$$

Applying (1) with (7) and (8), we have

$$
\begin{align*}
a_{i} & =\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}\left(\beta-1+\alpha\left(\left[\begin{array}{c}
D \\
1
\end{array}\right]_{b}-\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}-\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]_{b}\right)\right) \tag{9}\\
& =\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}\left(a_{1}-\alpha\left(\left[\begin{array}{l}
i \\
1
\end{array}\right]_{b}+\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]_{b}-1\right)\right) \tag{10}
\end{align*}
$$

for $0 \leqslant i \leqslant D$.
Classical parameters were introduced in [2, Chapter 6]. Graphs with such parameters yield P - and Q-polynomial association schemes. Bannai and Ito proposed the classification of such schemes in [1].

The following theorem is a combination of [11, Theorem 2.12] and [14, Lemma 7.3(ii)].
Theorem 22. ([11, Theorem 2.12], [14, Lemma 7.3(ii)]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β), where $b<-1$ and $D \geqslant 3$. Then Γ contains no parallelograms of any length.

The following two lemmas are given in [13].
Lemma 23. ([13, Corollary 3.7]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geqslant 3$. Suppose Γ contains no parallelogram of length 2 and $a_{1}>-b-1$. Then

$$
c_{2}=b+1
$$

Lemma 24. ([13, Theorem 4.2]) Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geqslant 4$. Suppose Γ is D-bounded and $a_{1} \leqslant-b-1$. Then

$$
\beta=\alpha \frac{1+b^{D}}{1-b} .
$$

By Theorem 22, Lemma 23 and Lemma 24, we have the following theorem.
Theorem 25. Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) where $b<-1$. Suppose that Γ is D-bounded with $D \geqslant 4$. Then

$$
\begin{equation*}
\beta=\alpha \frac{1+b^{D}}{1-b} . \tag{11}
\end{equation*}
$$

Proof. Since $b<-1$ and $D \geqslant 3$, we have that Γ contains no parallelograms of any length by Theorem 22. Note that $c_{2}=b+1$ implies $b>-1$. If $a_{1}>-b-1$ in Γ, then we get a contradiction by Lemma 23. Hence $a_{1} \leqslant-b-1$ and (11) follows by Lemma 24 .

The following is a proof of Theorem 7 which demonstrates an application of Theorem 6.
Proof of Theorem 7. Let Γ denote a distance-regular graph with classical parameters $(D, b, \alpha, \beta)=\left(D,-2,-2,\left((-2)^{D+1}-1\right) / 3\right)$, where $D \geqslant 4$. Then Γ contains no parallelograms of any length by Theorem 22. By (7), (9) and (10) we have $c_{2}=1$ and $a_{2}=2>0=a_{1}$. Hence Γ is D-bounded by Theorem 6 since $b_{1}>b_{2}$. By (11), $\beta=\left((-2)^{D+1}-2\right) / 3$, which is a contradiction.

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions.

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, 1984.
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, SpringerVerlag, Berlin, 1989.
[3] J. Guo and K. Wang, Posets associated with subspaces in a d-bounded distanceregular graph, Discrete Mathematics, 310 (2010), 714-719.
[4] A. Hiraki, Distance-regular graphs with $c_{2}>1$ and $a_{1}=0<a_{2}$, Graphs and Combinatorics, 25(2009), 65-79.
[5] Y. Liang, and C. Weng, Parallelogram-free distance-regular graphs, Journal of Combinatorial Theory, Series B, 71(1997), 231-243.
[6] Y. Pan, M. Lu, and C. Weng, Triangle-free distance-regular graphs, Journal of Algebraic Combinatorics, 27(2008), 23-34.
[7] Y. Pan and C. Weng, 3-bounded properties in a triangle-free distance-regular graph, European Journal of Combinatorics, 29(2008), 1634-1642.
[8] Y. Pan and C. Weng, A note on triangle-free distance-regular graphs with $a_{2} \neq 0$, Journal of Combinatorial Theory, Series B, 99(2009), 266-270.
[9] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics, 50(1996), 371-384.
[10] P. Terwilliger, The subconstituent algebra of an association scheme (Part I), Journal of Algebraic Combinatorics, 1(1992), 363-388.
[11] P. Terwilliger, Kite-free distance-regular graphs, European Journal of Combinatorics, 16(1995), 405-414.
[12] F. Vanhove, A Higman inequality for regular near polygons, Journal of Algebraic Combinatorics, 34(2011), 357-373.
[13] C. Weng, D-bounded distance-regular graphs, European Journal of Combinatorics, 18(1997), 211-229.
[14] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs and Combinatorics, 14(1998), 275-304.
[15] C. Weng, Classical distance-regular graphs of negative type, Journal of Combinatorial Theory, Series B, 76(1999), 93-116.

[^0]: *Supported by ROC Ministry of Science and Technology grant MOST 103-2811-M-214-001 and MOST 103-2632-M-214-001-MY3.
 ${ }^{\dagger}$ Supported by ROC Ministry of Science and Technology grant MOST 103-2115-M-127-001.
 ${ }^{\ddagger}$ Supported by ROC National Science Council grant NSC 97-2115-M-009-002.

