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Abstract

Let Γ denote a distance-regular graph with diameter D > 3 and intersection
numbers a1 = 0, a2 6= 0, and c2 = 1. We show a connection between the d-bounded
property and the nonexistence of parallelograms of any length up to d+ 1. Assume
further that Γ is with classical parameters (D, b, α, β), Pan and Weng (2009) showed
that (b, α, β) = (−2,−2, ((−2)D+1−1)/3). Under the assumption D > 4, we exclude
this class of graphs by an application of the above connection.
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1 Introduction

Let Γ = (X,R) be a distance-regular graph with diameter D > 3. A sequence x, z, y of
vertices of Γ is geodetic whenever

∂(x, z) + ∂(z, y) = ∂(x, y),

where ∂ is the distance function of Γ. A sequence x, z, y of vertices of Γ is weak-geodetic
whenever

∂(x, z) + ∂(z, y) 6 ∂(x, y) + 1.

We consider subsets of the vertex set of Γ that are closed under the sense of weak-
geodetic sequences as the following definition.

Definition 1. A subset ∆ ⊆ X is strongly closed if for any weak-geodetic sequence x, z,
y of Γ,

x, y ∈ ∆ =⇒ z ∈ ∆.

A subgraph of Γ which is induced by a strongly closed subset of X is called a strongly
closed subgraph of Γ. Strongly closed subgraphs are also called weak-geodetically closed
subgraphs in [14]. If a strongly closed subgraph ∆ of diameter d is regular then it has
valency ad + cd = b0 − bd, where ad, cd, b0, bd are intersection numbers of Γ. Furthermore
∆ is distance-regular with intersection numbers ai(∆) = ai(Γ) and ci(∆) = ci(Γ) for
1 6 i 6 d [14, Theorem 4.6].

The following property is considered for a distance-regular graph.

Definition 2. Γ is said to be d-bounded whenever for all x, y ∈ X with ∂(x, y) 6 d, there
is a regular strongly closed subgraph of diameter ∂(x, y) which contains x and y.

Note that a (D − 1)-bounded distance-regular graph is clear to be D-bounded. The
properties of D-bounded distance-regular graphs were studied in [13], and these properties
were used in the classification of classical distance-regular graphs of negative type [15].
Other applications of D-bounded distance-regular graphs are given in [3, 12, 13, 15].
Before stating our main results, we show one more definition and some known results.

Definition 3. A 4-tuple xyzw consisting of vertices of Γ is called a parallelogram of length
d if ∂(x, y) = ∂(z, w) = 1, ∂(x,w) = d, and ∂(x, z) = ∂(y, w) = ∂(y, z) = d− 1.

The following theorem is a combination of three previous results.

Theorem 4. Let Γ denote a distance-regular graph with diameter D > 3. Suppose that
the intersection numbers a1, a2, c2 satisfy one of the following.

(i) [4, Theorem 2] a2 > a1 = 0, c2 > 1;

(ii) [14, Theorem 1] a1 6= 0, c2 > 1; or

the electronic journal of combinatorics 22(2) (2015), #P2.37 2



(iii) [9, Theorem 1.1] a2 > a1 > c2 = 1.

Fix an integer 1 6 d 6 D−1 and suppose that Γ contains no parallelograms of any length
up to d+ 1. Then Γ is d-bounded.

We deal with the case “a1 = 0, a2 6= 0, and c2 = 1” in the following, which is the key
point among our main results.

Theorem 5. Let Γ = (X,R) denote a distance-regular graph with diameter D > 3, and
intersection numbers a1 = 0, a2 6= 0 and c2 = 1. Fix an integer 1 6 d 6 D − 1 and
suppose that Γ contains no parallelograms of any length up to d+ 1. Then Γ is d-bounded.

The proof of Theorem 5 is given in Section 4. Theorem 5 is a generalization of [2,
Lemma 4.3.13] and [7]. Combining Theorem 4 and Theorem 5, we have the (ii) ⇒ (i)
part of the following theorem.

Theorem 6. Suppose Γ is a distance-regular graph with diameter D > 3 and the inter-
section number a2 6= 0. Fix an integer 2 6 d 6 D − 1. Then the following two conditions
(i), (ii) are equivalent:

(i) Γ is d-bounded.

(ii) Γ contains no parallelograms of any length up to d+ 1 and b1 > b2.

The complete proof of Theorem 6 is given in Section 4. Theorem 6 answers the problem
proposed in [14, p. 299]. The following is an application of Theorem 6, which excludes a
class of distance-regular graphs mentioned in [8, Theorem 2.2].

Theorem 7. There is no distance-regular graph with classical parameters (D, b, α, β) =
(D,−2,−2, ((−2)D+1 − 1)/3), where D > 4.

We prove Theorem 7 in Section 5. Since Witt graph M23 [2, Table 6.1] is a distance-
regular graph with classical parameters (D, b, α, β) with D = 3, b = −2, α = −2, and
β = 5, the condition D > 4 in Theorem 7 can not be loosened to D > 3.

2 Preliminaries

In this section we review some definitions, basic concepts and some previous results con-
cerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more back-
ground information.

Let Γ=(X, R) denote a finite undirected, connected graph without loops or multiple
edges with vertex set X, edge set R, distance function ∂, and diameter D:=max{ ∂(x, y) |
x, y ∈ X}. By a pentagon, we mean a 5-tuple u1u2u3u4u5 consisting of distinct vertices
in Γ such that ∂(ui, ui+1) = 1 for 1 6 i 6 4 and ∂(u5, u1) = 1.

For a vertex x ∈ X and an integer 0 6 i 6 D, set Γi(x) := { z ∈ X | ∂(x, z) = i}.
The valency k(x) of a vertex x ∈ X is the cardinality of Γ1(x). The graph Γ is called
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regular (with valency k) if each vertex in X has valency k. The graph Γ is said to be
distance-regular whenever for all integers 0 6 h, i, j 6 D, and all vertices x, y ∈ X with
∂(x, y) = h, the number

phij = |Γi(x) ∩ Γj(y)|
is independent of x, y. The constants phij are known as the intersection numbers of Γ.

From now on let Γ = (X,R) be a distance-regular graph with diameter D > 3. For
two vertices x, y ∈ X with ∂(x, y) = i, set

B(x, y) := Γ1(x) ∩ Γi+1(y),

C(x, y) := Γ1(x) ∩ Γi−1(y),

A(x, y) := Γ1(x) ∩ Γi(y).

Note that

|B(x, y)| = pi1 i+1,

|C(x, y)| = pi1 i−1,

|A(x, y)| = pi1 i

are independent of x, y. For convenience, set ci := pi1 i−1 for 1 6 i 6 D, ai := pi1 i for
0 6 i 6 D, bi := pi1 i+1 for 0 6 i 6 D − 1 and put bD := 0, c0 := 0, k := b0. Note that k
is the valency of each vertex in Γ. It is immediate from the definition of phij that bi 6= 0
for 0 6 i 6 D − 1 and ci 6= 0 for 1 6 i 6 D. Moreover c1 = 1 and

k = ai + bi + ci for 0 6 i 6 D. (1)

A subset Ω of X is strongly closed with respect to a vertex x ∈ Ω if for any z ∈ X
with x, z, y being a weak-geodetic sequence for some y ∈ Ω, we have z ∈ Ω. Note that Ω
is strongly closed if and only if for any vertex x ∈ Ω, Ω is strongly closed with respect to
x. A subset Ω of X is strongly closed with respect to a vertex x ∈ Ω if and only if [14,
Lemma 2.3]

C(y, x) ⊆ Ω and A(y, x) ⊆ Ω for all y ∈ Ω. (2)

We quote two more theorems from [14] that will be used later in this paper to end
this section.

Theorem 8. ([14, Theorem 4.6]) Let Γ be a distance-regular graph with diameter D > 3.
Let Ω be a regular subgraph of Γ with valency γ and set d := min{i | γ 6 ci + ai}. Then
the following (i),(ii) are equivalent.

(i) Ω is strongly closed with respect to at least one vertex x ∈ Ω.

(ii) Ω is strongly closed with diameter d.

Suppose (i) or (ii) holds. Then Ω is a distance-regular subgraph of Γ with diameter d and
γ = cd + ad.

Theorem 9. ([14, Lemma 6.5]) Let Γ be a distance-regular graph with diameter D > 2.
Suppose Γ is d-bounded for some 1 6 d 6 D − 1, then Γ contains no parallelograms of
any length up to d+ 1.
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3 The Shape of Pentagons

Throughout this section, let Γ = (X,R) denote a distance-regular graph with diameter
D > 3, and intersection numbers a1 = 0, a2 6= 0. Such graphs are also studied in
[4, 5, 6, 7, 8].

Fix a vertex x ∈ X, a pentagon u1u2u3u4u5 has shape i1, i2, i3, i4, i5 with respect to x
if ij = ∂(x, uj) for 1 6 j 6 5. Note that under the assumption a1 = 0 and a2 6= 0, any two
vertices at distance 2 in Γ are always contained in a pentagon, and two nonconsecutive
vertices in a pentagon of Γ have distance 2. In this section we give a few lemmas which
will be used in the next section.

Lemma 10. Fix an integer 1 6 d 6 D − 1, and suppose Γ contains no parallelograms of
any length up to d+ 1 for some integer d > 2. Let x be a vertex in Γ, and let u1u2u3u4u5
be a pentagon of Γ such that ∂(x, u1) = i− 1 and ∂(x, u3) = i+ 1 for 1 6 i 6 d. Then the
pentagon u1u2u3u4u5 has shape i− 1, i, i+ 1, i+ 1, i with respect to x.

Proof. Since ∂(u3, u4) = 1 and ∂(u3, x) = i + 1, ∂(x, u4) = i + 2, i + 1, or i. Since
∂(u1, u4) = 2 and ∂(u1, x) = i − 1, ∂(x, u4) 6 i − 1 + 2 = i + 1. Consequently we we
have ∂(x, u4) = i + 1 or i. It suffices to prove ∂(x, u4) = i + 1. We prove this lemma by
induction on i.

The case i = 1 holds otherwise ∂(x, u4) = i = 1 and ∂(x, u5) = 1, which contradicts
the assumption a1 = 0.

Suppose the assertion holds for any i < ` 6 d. For the case i = `, suppose to the
contrary that u1u2u3u4u5 is a pentagon with ∂(x, u1) = ` − 1 and ∂(x, u3) = ` + 1, but
∂(x, u4) = `. We can choose y ∈ C(x, u1) and hence ∂(y, u1) = `−2. Since ∂(x, u3) = `+1
and ∂(x, y) = 1, we have ∂(y, u3) = `+2, `+1 or `. Since ∂(y, u1) = `−2 and ∂(u1, u3) = 2,
we have ∂(y, u3) 6 ` − 2 + 2 = `. Consequently we have ∂(y, u3) = `. By the induction
hypothesis, the pentagon u1u2u3u4u5 has shape ` − 2, ` − 1, `, `, ` − 1 with respect to y.
In particular, ∂(y, u3) = ∂(y, u4) = `. Then xyu4u3 is a parallelogram of length ` + 1, a
contradiction.

Other versions of Lemma 10 can be seen in [14, Lemma 6.9] and [9, Lemma 4.1] under
various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [4] under an additional
assumption c2 > 1, but this assumption is essentially not used in his proofs. For the sake
of completeness, we still provide the proofs.

Lemma 11. Fix an integer 1 6 d 6 D − 1, and suppose Γ contains no parallelograms of
any length up to d + 1. Then for any two vertices z, z′ ∈ X such that ∂(x, z) 6 d and
z′ ∈ A(z, x), we have B(x, z) = B(x, z′).

Proof. Note that z′ ∈ A(z, x) implies ∂(x, z) = ∂(x, z′), hence it suffices to show B(x, z) ⊆
B(x, z′) since |B(x, z)| = |B(x, z′)| = b∂(x,z). Suppose to the contrary that there exists
w ∈ B(x, z)− B(x, z′). Then ∂(w, z) = ∂(x, z) + 1 and ∂(w, z′) 6= ∂(x, z) + 1. Note that
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∂(w, z′) 6 ∂(w, x) + ∂(x, z′) = 1 + ∂(x, z) and ∂(w, z′) > ∂(w, z) − ∂(z, z′) = ∂(x, z).
Consequently ∂(w, z′) = ∂(x, z) and wxz′z forms a parallelogram of length ∂(x, z) + 1, a
contradiction.

Lemma 12. Fix integers 1 6 i 6 d 6 D − 1, and suppose Γ contains no parallelograms
of any length up to d + 1. Let x be a vertex in Γ. Then there is no pentagon of shape
i, i, i, i, i+ 1 with respect to x in Γ.

Proof. We prove this lemma by induction on i.
The case i = 1 holds otherwise we have a pentagon having shape 1, 1, 1, 1, 2 with

respect to x. In particular we have three vertices x, u1, u2 with ∂(x, u1) = ∂(x, u2) =
∂(u1, u2) = 1, which is a contradiction to the initial assumption a1 = 0.

Suppose the assertion holds for any i < ` 6 d. For the case i = `, suppose to
the contrary that u1u2u3u4u5 is a pentagon of shape `, `, `, `, ` + 1 with respect to x.
This implies u2 ∈ A(u1, x), u3 ∈ A(u2, x), and u4 ∈ A(u3, x). Hence we have B(x, u1) =
B(x, u2) = B(x, u3) = B(x, u4) by Lemma 11. We shall prove C(x, u1) = C(x, u2) =
C(x, u3) = C(x, u4) in the following.

First we prove C(x, u1) = C(x, u2). It suffices to show C(x, u2) ⊆ C(x, u1) since
|C(x, u1)| = |C(x, u2)| = c`. Suppose to the contrary that there exists v ∈ C(x, u2) −
C(x, u1). By our choice of v, we have v /∈ C(x, u1). We also have v /∈ B(x, u1), since
B(x, u1) = B(x, u2) and v /∈ B(x, u2). Consequently we have v ∈ A(x, u1) since v is
a neighbor of x. Then B(u1, x) = B(u1, v) by Lemma 11. Note that v ∈ A(x, u1)
implies ∂(v, u1) = ∂(x, u1) = `, and hence ∂(v, u5) = `+ 1 since u5 ∈ B(u1, x) = B(u1, v).
Applying Lemma 10 to the pentagon u2u1u5u4u3 with ∂(v, u2) = `−1 and ∂(v, u5) = `+1,
we conclude that u2u1u5u4u3 has shape `−1, `, `+1, `+1, ` with respect to v. In particular
∂(v, u4) = `+1 and hence v ∈ B(x, u4) = B(x, u2). This is a contradiction to v ∈ C(x, u2).
Consequently we have C(x, u2) ⊆ C(x, u1) and hence C(x, u1) = C(x, u2) as desired.

By substituting u4 to u1, u3 to u2 in the last paragraph and consider the shape of
the pentagon u3u4u5u1u2 with respect to v′ ∈ C(x, u3) − C(x, u4), similarly we have
C(x, u4) = C(x, u3).

It remains to show C(x, u2) = C(x, u4). It suffices to show C(x, u2) ⊆ C(x, u4).
Suppose to the contrary that there exists u ∈ C(x, u2) − C(x, u4). With the similar
arguments in the previous paragraphs, we have u ∈ A(x, u4) and then B(u4, x) = B(u4, u)
by Lemma 11. Hence ∂(u, u5) = `+1 since u5 ∈ B(u4, x) = B(u4, u). Applying Lemma 10
to the pentagon u2u1u5u4u3 with ∂(u, u2) = `− 1 and ∂(u, u5) = `+ 1, we conclude that
u2u1u5u4u3 has shape `−1, `, `+1, `+1, ` with respect to u. In particular ∂(u, u4) = `+1
and hence u ∈ B(x, u4). This is a contradiction since u ∈ A(x, u4).

Pick a vertex w ∈ C(x, u1) = C(x, u2) = C(x, u3) = C(x, u4). Since ∂(x,w) = 1
and ∂(x, u5) = ` + 1, we have ∂(w, u5) = ` + 2, ` + 1 or `. Since ∂(u4, u5) = 1 and
∂(u4, w) = `− 1, we have ∂(w, u5) = `, `− 1 or `− 2. Consequently we have ∂(w, u5) = `.
Then u1u2u3u4u5 is a pentagon of shape `−1, `−1, `−1, `−1, ` with respect to w, which
is a contradiction to the inductive hypothesis.
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Lemma 13. Fix integers 1 6 i 6 d 6 D − 1, and suppose Γ contains no parallelograms
of any length up to d + 1. Let x be a vertex and u1u2u3u4u5 be a pentagon of shape
i, i− 1, i, i− 1, i or of shape i, i− 1, i, i− 1, i− 1 with respect to x in Γ. Then B(x, u1) =
B(x, u3).

Proof. It suffices to show B(x, u3) ⊆ B(x, u1) since |B(x, u3)| = |B(x, u1)| = bi. Pick
u ∈ B(x, u3), this implies ∂(u, u3) = i + 1. Since ∂(u3, u2) = 1 and ∂(u3, u) = i + 1,
we have ∂(u2, u) = i + 2, i + 1, or i. Since ∂(x, u) = 1 and ∂(x, u2) = i − 1, we have
∂(u2, u) = i, i− 1, or i− 2. Consequently we have ∂(u, u2) = i. Substituting u4 to u2 in
the above arguments, we similarly have ∂(u, u4) = i. Next we consider ∂(u, u1). Note that
∂(u, u1) = i+1, i or i−1 since ∂(x, u) = 1 and ∂(x, u1) = i. We show that ∂(u, u1) = i+1
by excluding the other two cases in the following.

(1) Suppose ∂(u, u1) = i−1, then the pentagon u1u2u3u4u5 has shape i−1, i, i+1, i+1, i
with respect to u by Lemma 10. In particular we have ∂(u, u4) = i + 1, which is a
contradiction to ∂(u, u4) = i obtained in the last paragraph.

(2) Suppose ∂(u, u1) = i. Since ∂(u1, u5) = 1 and ∂(u1, u) = i, we have ∂(u, u5) =
i + 1, i, or i − 1. If ∂(u, u5) = i, then the pentagon u4u5u1u2u3 has shape i, i, i, i, i + 1
with respect to u, which is a contradiction to Lemma 12. If ∂(u, u5) = i − 1, then the
pentagon u5u4u3u2u1 has shape i−1, i, i+1, i, i with respect to u, which is a contradiction
to Lemma 10. Consequently we have ∂(u, u5) = i + 1. For the case u1u2u3u4u5 having
shape i, i − 1, i, i − 1, i − 1 with respect to x, we have ∂(u, u5) 6 ∂(x, u5) + 1 = i,
which is a contradiction to ∂(u, u5) = i+ 1. For the other case u1u2u3u4u5 having shape
i, i − 1, i, i − 1, i with respect to x, ∂(x, u5) = i and hence u5u1xu is a parallelogram of
length i+ 1, also a contradiction.

Hence ∂(u, u1) = i+ 1, or equivalently u ∈ B(x, u1). This proves B(x, u3) ⊆ B(x, u1)
as desired.

The following lemma rules out a class of pentagons of certain shapes with respect to
a given vertex.

Lemma 14. Fix integers 1 6 i 6 d 6 D − 1, and suppose Γ contains no parallelograms
of any length up to d + 1. Let x be a vertex in Γ. Then there is no pentagon of shape
i, i, i, i+ 1, i+ 1 with respect to x in Γ.

Proof. We prove this lemma by induction on i. The case i = 1 holds otherwise we have
a pentagon of shape 1, 1, 1, 2, 2 with respect to x. In particular we have three vertices
x, u1, u2 with ∂(x, u1) = ∂(x, u2) = ∂(u1, u2) = 1, which is a contradiction to the initial
assumption a1 = 0.

Suppose the assertion holds for any i < ` 6 d. For the case i = `, suppose to the
contrary that u1u2u3u4u5 is a pentagon of shape `, `, `, `+ 1, `+ 1 with respect to x. Pick
v ∈ C(x, u1) and note that hence ∂(u1, v) = `− 1. Since ∂(x, v) = 1 and ∂(x, u5) = `+ 1,
we have ∂(v, u5) = ` + 2, ` + 1, or `. Since ∂(u1, u5) = 1 and ∂(u1, v) = ` − 1, we have
∂(v, u5) = `, `− 1, or `− 2. Consequently we have ∂(v, u5) = `.

Next we consider ∂(v, u3). Note that ∂(x, v) = 1 and ∂(x, u3) = `, hence ∂(v, u3) =
` + 1, `, or `− 1. We show that ∂(v, u3) = `− 1 by excluding the other two cases in the
following.
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(1) If ∂(v, u3) = ` + 1, then v ∈ B(x, u3). Note that u2 ∈ A(u1, x) and u3 ∈ A(u2, x),
hence we have B(x, u1) = B(x, u2) = B(x, u3) by Lemma 11. Then v ∈ B(x, u3) =
B(x, u2) = B(x, u1), which is a contradiction to v ∈ C(x, u1).

(2) If ∂(v, u3) = `, we have ∂(v, u4) = ` + 1, `, or ` − 1 since ∂(u3, u4) = 1. We also
have ∂(v, u4) = ` + 2, ` + 1, or ` since ∂(x, u4) = ` + 1 and ∂(x, v) = 1. Consequently
we have ∂(v, u4) = ` + 1 or `. For the case ∂(v, u4) = ` + 1, applying Lemma 10 to
the pentagon u1u5u4u3u2 with ∂(u1, v) = ` − 1 and ∂(v, u4) = ` + 1, we have that the
pentagon u1u5u4u3u2 is of shape ` − 1, `, ` + 1, ` + 1, ` with respect to v. In particular,
∂(v, u3) = ` + 1 which contradicts ∂(v, u3) = `. For the case ∂(v, u4) = `, xvu3u4 is a
parallelogram of length `+ 1, a contradiction to our initial assumption.

Next we consider ∂(v, u4). Since ∂(u3, u4) = 1 and ∂(u3, v) = `−1, we have ∂(v, u4) =
`, `− 1, or `− 2. Since ∂(x, v) = 1 and ∂(x, u4) = ` + 1, we have ∂(v, u4) = ` + 2, ` + 1,
or `. Consequently we have ∂(v, u4) = `.

Finally we consider ∂(v, u2). Since ∂(x, v) = 1 and ∂(x, u2) = `, we have ∂(v, u4) =
` + 1, `, or ` − 1. Since ∂(u1, u2) = 1 and ∂(u1, v) = ` − 1, we have ∂(v, u2) = `, ` − 1,
or ` − 2. Consequently we have ∂(v, u2) = ` or ` − 1. If ∂(v, u2) = ` − 1, the pentagon
u1u2u3u4u5 is of shape `− 1, `− 1, `− 1, `, ` with respect to v. This is a contradiction to
the induction hypothesis. Hence ∂(v, u2) = `.

We conclude that the pentagon u5u1u2u3u4 is of shape `, `− 1, `, `− 1, ` with respect
to v. By Lemma 13, we have B(v, u2) = B(v, u5). Since ∂(x, u5) = `+ 1 and ∂(v, u5) = `,
we have x ∈ B(v, u5). Since ∂(x, u2) = ` and ∂(v, u2) = `, we have x /∈ B(v, u2).
Consequently we have x ∈ B(v, u5) − B(v, u2), which is a contradiction to B(v, u2) =
B(v, u5).

4 D-bounded Property and Nonexistence of Parallelograms

Let Γ = (X,R) denote a distance-regular graph with diameter D > 3. Fix an integer 1 6
d 6 D − 1. Throughout this section, we assume that Γ satisfies the following conditions.

Assumption:

(i) The intersection numbers satisfy a1 = 0, a2 6= 0, c2 = 1, and

(ii) Γ contains no parallelograms of any length up to d+ 1.

We shall prove the d-bounded property of Γ in this section. By the definition of strongly
closed subgraphs, the following proposition is easily seen.

Proposition 15. Suppose ∆ ⊆ X is a strongly closed subgraph of Γ and ux1vx2x3 or
ux1x2vx3 is a pentagon in Γ. If u, v ∈ ∆, then x1, x2, x3 are all in ∆.

Proof. Since a1 = 0, it is easily seen that ∂(u, v) = 2 and u, xi, v is weak-geodetic for
i = 1, 2, 3.

We then give a definition.
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Definition 16. For any vertex x ∈ X and any subset Π ⊆ X, define [x,Π] to be the set

{v ∈ X | there exists y′ ∈ Π, such that the sequence x, v, y′ is geodetic }.

For any x, y ∈ X with ∂(x, y) = d′, set

Πxy := {y′ ∈ Γd′(x) | B(x, y) = B(x, y′)}

and
∆(x, y) = [x,Πxy].

For convenience, we also use ∆(x, y) to denote the subgraph of Γ induced on ∆(x, y).
Note that ∆(x, y) contains x, y and Γd′(x) ∩ ∆(x, y) = Πxy. We can also easily see the
following proposition.

Proposition 17. For x, y, z, w ∈ X and w ∈ ∆(x, y), if x, z, w is geodetic, then z ∈
∆(x, y).

Proof. Suppose ∂(x, y) = d′, ∂(x,w) = i and ∂(x, z) = j. Then ∂(z, w) = i − j. By
the construction of Definition 16, there exists y′ ∈ Πxy such that x,w, y′ is geodetic.
Hence ∂(w, y′) = d′ − i. Note that ∂(z, y′) 6 ∂(z, w) + ∂(w, y′) = d′ − j, and ∂(z, y′) >
∂(x, y′) − ∂(x, z) = d′ − j. So ∂(z, y′) = d′ − j and thus x, z, y′ is geodetic. Hence
z ∈ ∆(x, y).

For any 1 6 j 6 d, we define the following three kinds of conditions:

(Bj) For any vertices x, y ∈ X with ∂(x, y) = j, ∆(x, y) is a regular strongly closed
subgraph of Γ with valency aj + cj and diameter j.

(Wj) For any vertices x, y ∈ X with ∂(x, y) = j, ∆(x, y) is strongly closed with respect
to x.

(Rj) For any vertices x, y ∈ X with ∂(x, y) = j, ∆(x, y) is a regular subgraph of Γ with
valency aj + cj.

By Definition 2, (Bj) holds for each 1 6 j 6 d implies that Γ is d-bounded since we
can choose ∆(x, y) as the desired strongly closed subgraphs. By referring to Theorem 8,
we know that for a subgraph Ω of Γ, if Ω is regular and Ω is strongly closed with respect
to some vertex x ∈ Ω, then Ω is strongly closed and is a distance-regular subgraph of Γ.
Thus if (W`) and (R`) hold for some 1 6 ` 6 d, then (B`) holds. Consequently (Wj) and
(Rj) hold for all 1 6 j 6 d provides a sufficient condition for the d-bounded property of
Γ. We plan to prove Theorem 5 through the above deduction, that is, to prove (Wj) and
(Rj) hold for all 1 6 j 6 d under the assumptions in the beginning of this section. We
use induction on j to achieve our objective. To adequately proceed the induction process,
the following lemmas are required.
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Lemma 18. Fix integers i, d′ with 1 6 i < d′ 6 d and let x, y ∈ X with ∂(x, y) = d′.
Suppose for all ` ∈ {i+1, i+2, . . . d′}, if vertex z′ ∈ ∆(x, y)∩Γ`(x), we have the following
(i), (ii).

(i) A(z′, x) ⊆ ∆(x, y).

(ii) For any vertex w′ ∈ Γ`(x) ∩ Γ2(z
′) with B(x,w′) = B(x, z′), we have w′ ∈ ∆(x, y).

Then for any z ∈ ∆(x, y) ∩ Γi(x), A(z, x) ⊆ ∆(x, y).

Proof. Let v ∈ A(z, x). Pick u ∈ ∆(x, y) ∩ Γi+1(x) ∩ Γ1(z). Let uu2u3vz be a pentagon
of Γ for some u2, u3 ∈ X. Note that uu2u3vz cannot have shape i + 1, i, i − 1, i, i, shape
i + 1, i + 2, i + 1, i, i by Lemma 10, cannot have shape i + 1, i, i, i, i by Lemma 12, and
cannot have shape i + 1, i + 1, i, i, i by Lemma 14 with respect to x. Hence uu2u3vz has
shape i + 1, i + 1, i + 1, i, i or i + 1, i, i + 1, i, i with respect to x. In the first case we
have u2 ∈ A(u, x), u3 ∈ A(u2, x), and this implies u2, u3 ∈ ∆(x, y) by the assumption (i).
Then v ∈ ∆(x, y) by Proposition 17 since x, v, u3 is geodetic. In the latter case we have
B(x, u) = B(x, u3) by Lemma 13, and consequently u3 ∈ ∆(x, y) by the assumption (ii).
Then v ∈ ∆(x, y) by Proposition 17 since x, v, u3 is geodetic.

Lemma 19. Fix integers i, d′ with 1 6 i < d′ 6 d and let x, y ∈ X with ∂(x, y) = d′.
Suppose (Wj), (Rj) and thus (Bj) hold in Γ for all j < d′, and for all ` ∈ {i+1, i+2, . . . d′},
if vertex z′ ∈ ∆(x, y) ∩ Γ`(x), we have the following (i), (ii).

(i) A(z′, x) ⊆ ∆(x, y).

(ii) For any vertex w′ ∈ Γ`(x) ∩ Γ2(z
′) with B(x,w′) = B(x, z′), we have w′ ∈ ∆(x, y).

Then for any z ∈ ∆(x, y) ∩ Γi(x) and w ∈ Γi(x) ∩ Γ2(z) with B(x,w) = B(x, z), we have
w ∈ ∆(x, y).

Proof. Let z ∈ ∆(x, y) ∩ Γi(x). First we note that (Bi) holds since 1 6 i < d′, hence
∆(x, z) is a regular strongly closed subgraph of diameter i.

Suppose to the contrary that there exists w ∈ Γi(x)∩Γ2(z) with B(x,w) = B(x, z) such
that w /∈ ∆(x, y). SinceB(x,w) = B(x, z), we have Πxz = Πxw and thus ∆(x, z) = ∆(x,w)
by the construction in Definition 16.

Note that |C(w, z)| = 1 since ∂(w, z) = 2 and c2 = 1. Let v2 be the unique vertex in
C(w, z).

Claim 19.1. ∂(x, v2) = i− 1.

Proof of Claim 19.1. Let zv2wv4v5 be a pentagon for some v4, v5 ∈ X. Note that this
pentagon exists since we can choose v4 ∈ A(w, z) with the assumption a2 6= 0, and we can
choose v5 ∈ C(v4, z) where v5 6= v2 with the assumption a1 = 0. Since ∂(x, z) = i and
∂(z, v2) = 1, we have ∂(x, v2) = i + 1, i, or i − 1. We prove this claim by excluding the
other two cases.

the electronic journal of combinatorics 22(2) (2015), #P2.37 10



(1) Suppose ∂(x, v2) = i + 1. Since w ∈ ∆(x,w) = ∆(x, z) and z ∈ ∆(x, z), we have
that v2, v4, v5 ∈ ∆(x, z) by Proposition 15. In particular, ∂(x, v2) 6 i since ∆(x, z) is of
diameter i. This is a contradiction.

(2) Suppose ∂(x, v2) = i, that is, v2 ∈ A(z, x), then v2 ∈ ∆(x, y) by Lemma 18. Since
∂(x, v2) = ∂(x,w) = i, we have w ∈ A(v2, x). Applying Lemma 18 again by viewing v2 as
the role of z, we have w ∈ ∆(x, y). This contradicts our assumption that w /∈ ∆(x, y).
Hence ∂(x, v2) = i− 1.

Let u be a vertex in ∆(x, y) ∩ Γi+1(x) ∩ Γ1(z). Let y3 ∈ A(u, v2) and y4 ∈ C(y3, v2).

Claim 19.2. The pentagon v2zuy3y4 has shape i − 1, i, i + 1, i + 1, i with respect to x.
Moreover the pentagon is contained in ∆(x, y).

Proof of Claim 19.2. The shape of the pentagon v2zuy3y4 is determined by Lemma 10.
Since ∂(x, y3) = i + 1, we have y3 ∈ A(u, x) and we can conclude that y3 ∈ ∆(x, y) by
the assumption (i). We can also conclude that the remaining v2 and y4 are in ∆(x, y) by
Proposition 17 since x, v2, y3 and x, y4, y3 are both geodetic.

If w = y4 then w ∈ ∆(x, y) by Claim 19.2. This contradicts our assumption that
w /∈ ∆(x, y). Hence w 6= y4 and we have ∂(w, y4) = 2 by excluding the other possible case
∂(w, y4) = 1 under the assumption a1 = 0. Let w3 ∈ A(y4, w) and w4 ∈ C(w3, w).

Claim 19.3. The pentagon v2y4w3w4w has shape i− 1, i, i+ 1, i+ 1, i with respect to x
and {w3, w4} ∩ {y3, u} = ∅.

Proof of Claim 19.3. Recall that ∆(x,w) = ∆(x, z) is strongly closed of diameter i since
(Bi) holds. Also note that v2 ∈ ∆(x, z) since x, v2, z is geodetic. Since ∂(w,w4) = 1 and
∂(x,w) = i, we have ∂(x,w4) = i− 1, i, or i+ 1.

If ∂(x,w4) = i−1 or i, then x,w4, w is weak-geodetic. Since ∆(x,w) is strongly closed,
we have w4 ∈ ∆(x,w) = ∆(x, z). This forces y4 ∈ ∆(x, z) by applying Proposition 15 to
the pentagon v2y4w3w4w with v2, w4 ∈ ∆(x, z). By applying Proposition 15 again to the
pentagon zv2y4y3u with z, y4 ∈ ∆(x, z), we have y3 ∈ ∆(x, z). This is a contradiction since
∆(x, z) has diameter i and ∂(x, y3) = i + 1 > i. Hence ∂(x,w4) = i + 1 and v2ww4w3y4
has shape i− 1, i, i+ 1, i+ 1, i with respect to x by Lemma 10.

Since ∂(x,w3) = ∂(x,w4) = i + 1 and ∂(w3, w4) = 1, we have w4 ∈ A(w3, x). By the
assumption (i), if w3 ∈ ∆(x, y) then w4 ∈ ∆(x, y). Recall that y3 and u are both in ∆(x, y)
by Claim 19.2. Therefore if {w3, w4} ∩ {y3, u} 6= ∅, we can conclude that w4 ∈ ∆(x, y)
for any case. Since x,w,w4 is geodetic, we have w ∈ ∆(x, y) by Proposition 17. This is a
contradiction to our assumption that w /∈ ∆(x, y).

The two pentagons v2zuy3y4 and v2y4w3w4w are shown in Figure 1.
Claim 19.4. B(x, y3) 6= B(x,w3).

Proof of Claim 19.4. Note that ∂(y3, w3) = 2 since ∂(y4, w3) = 1, ∂(y4, y3) = 1, and a1 = 0.
Suppose to the contrary that B(x, y3) = B(x,w3). Recall that y3 ∈ ∆(x, y) by Claim 19.2.
Hence we have w3 ∈ ∆(x, y) by the assumption (ii). Since ∂(x,w3) = ∂(x,w4) = i+1 and
∂(w3, w4) = 1, we have w4 ∈ A(w3, x). We then have w4 ∈ ∆(x, y) by the assumption (i).
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Figure 1: Two pentagons in the proof of Lemma 19.

Since x,w,w4 is geodetic, we have w ∈ ∆(x, y) by Proposition 17. This is a contradiction
to our assumption that w /∈ ∆(x, y).

Let p3 ∈ A(y3, w3) and p4 ∈ C(p3, w3). Note that these two vertices exist since
∂(y3, w3) = 2, a2 6= 0, and c2 = 1.

Claim 19.5. The pentagon y4y3p3p4w3 has shape i, i + 1, i + 2, i + 2, i + 1 with respect
to x.

Proof of Claim 19.5. Since ∂(p3, y3) = 1 and ∂(x, y3) = i + 1, we have ∂(x, p3) = i, i + 1
or i+ 2. We show that ∂(x, p3) = i+ 2 by excluding the other two cases in the following.

(1) Suppose ∂(x, p3) = i+ 1, then ∂(x, p4) = i+ 2, i+ 1, or i since ∂(p3, p4) = 1.
If ∂(x, p4) = i+2, then the pentagon y4y3p3p4w3 should have shape i, i+1, i+2, i+2, i+1

with respect to x by Lemma 10. This is a contradiction to the assumption ∂(x, p3) = i+1
for this case.

If ∂(x, p4) = i + 1, then ∂(x, y3) = ∂(x, p3) = ∂(x, p4) = ∂(x,w3) = i + 1. Hence
p3 ∈ A(y3, x), p4 ∈ A(p3, x), and w3 ∈ A(p4, x). By applying Lemma 11 three times, we
have B(x, y3) = B(x, p3) = B(x, p4) = B(x,w3). This is a contradiction to Claim 19.4.

If ∂(x, p4) = i, then the pentagon y3y4w3p4p3 should have shape i+1, i, i+1, i, i+1 with
respect to x. By Lemma 13, we have B(x, y3) = B(x,w3). This is also a contradiction to
Claim 19.4.

(2) Suppose ∂(x, p3) = i, then ∂(x, p4) = i− 1, i, or i+ 1 since ∂(p3, p4) = 1.
If ∂(x, p4) = i − 1, then we immediately get a contradiction from ∂(x, p4) = i −

1, ∂(x,w3) = i+ 1, and ∂(w3, p4) = 1.
If ∂(x, p4) = i, the pentagon y3y4w3p4p3 should have shape i+1, i, i+1, i, i with respect

to x. By Lemma 13, we have B(x, y3) = B(x,w3). This is a contradiction to Claim 19.4.
If ∂(x, p4) = i+1, the pentagon w3y4y3p3p4 should have shape i+1, i, i+1, i, i+1 with

respect to x. By Lemma 13, we have B(x, y3) = B(x,w3). This is also a contradiction to
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Claim 19.4.
We conclude that ∂(x, p3) = i + 2. In particular, the pentagon y4y3p3p4w3 has shape

i, i+ 1, i+ 2, i+ 2, i+ 1 with respect to x by Lemma 10.

Now we have three pentagons and their shapes with respect to x as shown in Figure 2.
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Figure 2: Three pentagons in the proof of Lemma 19.

Claim 19.6. B(x, y4) 6= B(x, z) and thus B(x, y4)−B(x, z) 6= ∅.
Proof of Claim 19.6. Suppose to the contrary that B(x, y4) = B(x, z). By the construction
in Definition 16, we have ∆(x, y4) = ∆(x, z), which is a strongly closed subgraph of
diameter i since (Bi) holds. By applying Proposition 15 to the pentagon zv2y4y3u with
z, y4 ∈ ∆(x, z), we have y3 ∈ ∆(x, z). This is a contradiction since ∂(x, y3) = i + 1 and
∆(x, z) is of diameter i. The fact B(x, y4)−B(x, z) 6= ∅ is easily seen by further observe
that |B(x, y4)| = |B(x, z)| = bi, which implies that B(x, y4) * B(x, z).

Pick p ∈ B(x, y4)−B(x, z). Note that hence ∂(p, y4) = i+ 1.

Claim 19.7. ∂(p, z) = i.

Proof of Claim 19.7. Note that ∂(p, z) = i or i− 1 since p /∈ B(x, z) and ∂(p, x) = 1. We
exclude the case ∂(p, z) = i− 1 in the following.

Suppose ∂(p, z) = i − 1. Then zv2y4y3u is a pentagon of shape i − 1, i, i + 1, i + 1, i
with respect to p by Lemma 10. More precisely, ∂(p, z) = i − 1, ∂(p, v2) = i, ∂(p, y4) =
i+ 1, ∂(p, y3) = i+ 1, and ∂(p, u) = i.

Next we show that ∂(p, p3) = i + 2. Since ∂(p, y3) = i + 1 and ∂(p3, y3) = 1, we have
∂(p, p3) = i+2, i+1, or i. Since ∂(x, p3) = i+2 and ∂(x, p) = 1, we have ∂(p, p3) = i+3,
i + 2, or i + 1. Consequently we have ∂(p, p3) = i + 2 or i + 1. If ∂(p, p3) = i + 1 then
xpy3p3 is a parallelogram of length i+ 2 6 d+ 1, a contradiction to our initial assumption
that no parallelogram of length up to d+ 1 exists. Hence ∂(p, p3) = i+ 2.
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Next we show that ∂(p, w3) = i + 2. We know that ∂(p, w3) = i, i + 1 or i + 2 since
∂(x,w3) = i+ 1 and ∂(x, p) = 1. If ∂(p, w3) = i, then he pentagon w3p4p3y3y4 has shape
i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10. In particular ∂(p, y3) = i + 2,
a contradiction to ∂(p, y3) = i + 1. If ∂(p, w3) = i + 1, we have ∂(p, p4) = i + 2 or i + 1
since ∂(p, w3) = i + 1, ∂(p, p3) = i + 2, and p4 is the common neighbor of p3 and w3. If
∂(p, p4) = i + 2, the pentagon w3y4y3p3p4 has shape i + 1, i + 1, i + 1, i + 2, i + 2 with
respect to p, a contradiction to Lemma 14. If ∂(p, p4) = i + 1, the pentagon p4w3y4y3p3
has shape i + 1, i + 1, i + 1, i + 1, i + 2 with respect to p, a contradiction to Lemma 12.
Hence ∂(p, w3) = i+ 2.

We finally consider the shape of the pentagon v2y4w3w4w with respect to p and get a
contradiction. Since ∂(x, p) = 1 and ∂(x, v2) = i− 1, we have ∂(p, v2) = i, i− 1, or i− 2.
Since ∂(y4, v2) = 1 and ∂(y4, p) = i+ 1, we have ∂(p, v2) = i+ 2, i+ 1, or i. Consequently
∂(p, v2) = i. Hence v2y4w3w4w is a pentagon of shape i, i + 1, i + 2, i + 2, i + 1 with
respect to p by Lemma 10. In particular ∂(p, w) = i + 1, which implies p ∈ B(x,w), a
contradiction to our assumptions B(x, z) = B(x,w) and p ∈ B(x, y4)−B(x, z).

Claim 19.8. ∂(p, w) = i.

Proof of Claim 19.8. Most of the following arguments are similar as the ones in the
previous Claim 19.7, so we omit some details. Since ∂(x, p) = 1 and ∂(x,w) = i, we have
∂(p, w) = i+ 1, i, or i− 1. We exclude the other two cases in the following.

(1) Suppose ∂(p, w) = i + 1, then p ∈ B(x,w) = B(x, z). This is a contradiction to
our assumption p ∈ B(x, y4)−B(x, z).

(2) Suppose ∂(p, w) = i − 1. First we have that the pentagon wv2y4w3w4 is of shape
i− 1, i, i+ 1, i+ 1, i with respect to p by Lemma 10.

Next we show that then ∂(p, p4) = i + 2. To avoid xpw3p4 to be a parallelogram of
length i+ 2 6 d+ 1, we have ∂(p, p4) = i+ 2.

Then we show that ∂(p, y3) = i+2. By applying Lemma 10, Lemma 12, and Lemma 14
to the shape of the pentagon y4w3p4p3y3 with respect to p, we have that ∂(p, y3) = i+ 2.

We finally consider the shape of the pentagon v2y4y3uz with respect to p and get a
contradiction. Consequently v2y4y3uz is a pentagon of shape i, i+ 1, i+ 2, i+ 2, i+ 1 with
respect to p by Lemma 10, which is a contradiction to ∂(p, z) = i.

Claim 19.9. ∂(p, u) = ∂(p, w4) = i+ 1.

Proof of Claim 19.9. Since ∂(p, z) = ∂(x, z) = i, we have p ∈ A(x, z) and thus B(z, x) =
B(z, p) by Lemma 11. In particular u ∈ B(z, p) and hence ∂(p, u) = i + 1. Similarly,
∂(p, w4) = i+ 1.

Claim 19.10. ∂(p, y3) = i.

Proof of Claim 19.10. Since ∂(x, y3) = i+1 and ∂(x, p) = 1, we have ∂(p, y3) = i+2, i+1,
or i. We exclude the other two cases in the following.

(1) Suppose ∂(p, y3) = i + 2, then p ∈ B(x, y3) since ∂(x, y3) = i + 1 and ∂(x, p) = 1.
Since ∂(x, y3) = ∂(x, u) = i + 1 and ∂(u, y3) = 1, we have y3 ∈ A(u, x) and hence
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B(x, u) = B(x, y3) by Lemma 11. Then we have p ∈ B(x, u), which implies ∂(p, u) = i+2.
This is a contradiction to Claim 19.9.

(2) Suppose ∂(p, y3) = i+1. We first show that ∂(p, p3) = i+2. By applying Lemma 11
we have B(y3, x) = B(y3, p). Then as p3 ∈ B(y3, x) = B(y3, p), ∂(p, p3) = i+ 2.

Next we show that ∂(p, w3) = i+ 2. Applying Lemma 12, Lemma 14 to the pentagon
w3y4y3p3p4 and considering its shape with respect to p, we find ∂(p, w3) 6= i+1. Applying
Lemma 10 to the pentagon w3p4p3y3y4, we find ∂(p, w3) 6= i. Thus ∂(p, w3) = i+ 2.

Recall that ∂(p, w4) = i+ 1 by Claim 19.9. Then pxw4w3 is a parallelogram of length
i+ 2 6 d+ 1. This contradicts our initial assumption that no parallelogram of length up
to d+ 1 exists.

Claim 19.11. ∂(p, w3) = i.

Proof of Claim 19.11. Since ∂(x,w3) = i+1 and ∂(x, p) = 1, we have ∂(p, w3) = i+2, i+1,
or i. We exclude the other two cases in the following.

(1) Suppose ∂(p, w3) = i+2. Since ∂(x,w3) = ∂(x,w4) = i+1, we have w4 ∈ A(w3, x)
and hence B(x,w4) = B(x,w3) by Lemma 11. Then p ∈ B(x,w3) = B(x,w4), which
implies ∂(p, w4) = i+ 2 since ∂(x,w4) = i+ 1. This is a contradiction to Claim 19.9.

(2) Suppose ∂(p, w3) = i+ 1. Since ∂(p4, w3) = 1, we have ∂(p, p4) = i+ 2, i+ 1, or i.
Since ∂(x, p) = 1 and ∂(x, p4) = i+2, we have ∂(p, p4) = i+3, i+2, or i+1. Consequently
we have ∂(p, p4) = i+ 2 or i+ 1.

If ∂(p, p4) = i + 2, recall that ∂(p, y3) = i by Claim 19.10. Then the pentagon
y3p3p4w3y4 has shape i, i + 1, i + 2, i + 2, i + 1 with respect to p by Lemma 10. In
particular ∂(p, w3) = i+ 2, which contradicts the assumption ∂(p, w3) = i+ 1.

If ∂(p, p4) = i + 1, then xpw3p4 is a parallelogram of length i + 2 6 d + 1. This
contradicts our initial assumption that no parallelogram of length up to d+ 1 exists.

Claim 19.12. The pentagon p4w3y4y3p3 has shape i+ 1, i, i+ 1, i, i+ 1 with respect to p.

Proof of Claim 19.12. Since ∂(x, p3) = i+2 and ∂(x, p) = 1, we have ∂(p, p3) = i+3, i+2,
or i + 1. Since ∂(p3, y3) = 1 and ∂(p, y3) = i by Claim 19.10, we have ∂(p, p3) = i + 1, i,
or i− 1. Consequently we have ∂(p, p3) = i + 1. Similarly we have ∂(p, p4) = i + 1 since
∂(p, w3) = i by Claim 19.11.

Recall that ∂(p, y4) = i + 1 since p ∈ B(x, y4) − B(x, z). Sum up Claim 19.10,
Claim 19.11 and the above arguments, we conclude that the pentagon p4w3y4y3p3 has
shape i+ 1, i, i+ 1, i, i+ 1 with respect to p.

Applying Lemma 13 to the pentagon p4w3y4y3p3 yields that B(p, p4) = B(p, y4). Since
∂(x, p4) = i + 2 and ∂(p, p4) = i + 1 by Claim 19.11, we have x ∈ B(p, p4) = B(p, y4).
Hence ∂(x, y4) = ∂(p, y4) + 1 = i+ 2. This is a contradiction since ∂(x, y4) = i.

Consequently, w ∈ ∆(x, y) and this completes the proof.
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Lemma 20. Fix integer d′ with 1 < d′ 6 d and let x, y ∈ X with ∂(x, y) = d′. Suppose
(Wj), (Rj) and thus (Bj) hold in Γ for all j < d′. Then for any vertex z ∈ ∆(x, y)∩Γ`(x)
where 1 6 ` 6 d′, we have the following (i), (ii).

(i) A(z, x) ⊆ ∆(x, y).

(ii) For any vertex w ∈ Γ`(x) ∩ Γ2(z) with B(x,w) = B(x, z), we have w ∈ ∆(x, y).

In particular (Wd′) holds.

Proof. We prove (i), (ii) by induction on d′−`. For the case d′−` = 0, i.e. ` = d′, we have
z ∈ Πxy. Hence (i), (ii) follows by Lemma 11 and the construction of Πxy in Definition 16.

Suppose for all ` with 0 6 d′ − ` < d′ − i, i.e. ` ∈ {i + 1, i + 2, . . . d′}, if vertex
z′ ∈ ∆(x, y) ∩ Γ`(x), we have the following (a), (b).

(a) A(z′, x) ⊆ ∆(x, y).

(b) For any vertex w′ ∈ Γ`(x) ∩ Γ2(z
′) with B(x,w′) = B(x, z′), we have w′ ∈ ∆(x, y).

Then (i), (ii) hold for ` = i, i.e. d′ − ` = d′ − i, by Lemma 18 and Lemma 19. Then we
conclude that (i), (ii) hold for all 0 6 d′ − ` 6 d′ − 1, i.e. 1 6 ` 6 d′, by induction.

In particular, we have A(z, x) ⊆ ∆(x, y) by (i), and we also have C(z, x) ⊆ ∆(x, y) by
Proposition 17. Hence (Wd′) holds by (2).

The following proposition proves (Rd′) and hence completes the preparation for the
proof of Theorem 5.

Lemma 21. Fix integer d′ with 1 < d′ 6 d and let x, y ∈ X with ∂(x, y) = d′. Suppose
(Wj), (Rj) and thus (Bj) hold in Γ for all j < d′. Then ∆(x, y) is regular with valency
ad′ + cd′ .

Proof. Set ∆ = ∆(x, y). Clearly for any v ∈ ∆, the construction ensures us that ∂(x, v) 6
d′. Hence B(y′, x)∩∆ = ∅ for any y′ ∈ Πxy. Applying Lemma 20, we have |Γ1(y

′)∩∆| =
ad′ + cd′ for any y′ ∈ Πxy.

Next we show |Γ1(x) ∩∆| = ad′ + cd′ . Note that y ∈ ∆ ∩ Γd′(x) by the construction
of ∆. For any z ∈ C(x, y) ∪ A(x, y),

∂(x, z) + ∂(z, y) 6 ∂(x, y) + 1.

This implies x, z, y is a weak-geodetic sequence, then z ∈ ∆ since ∆ is strongly closed
with respect to x by Lemma 20. Hence C(x, y) ∪ A(x, y) ⊆ ∆. Suppose B(x, y) ∩∆ 6= ∅
and let t ∈ B(x, y)∩∆. Then there exists y′ ∈ Πxy such that x, t, y′ is a geodetic sequence
by Definition 16. This implies t ∈ C(x, y′), a contradiction to B(x, y) = B(x, y′). Hence
B(x, y) ∩∆ = ∅ and Γ1(x) ∩∆ = C(x, y) ∪ A(x, y). This proves |Γ1(x) ∩∆| = ad′ + cd′ .

Since each vertex in ∆ appears in a sequence of vertices x = x0, x1, . . . , xd′ in ∆, where
∂(x, x`) = `, ∂(x`−1, x`) = 1 for 1 6 ` 6 d′, and xd′ ∈ Πxy, it suffices to show

|Γ1(xi) ∩∆| = ad′ + cd′ (3)
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for 1 6 i 6 d′ − 1. For each integer 1 6 i 6 d′, we show

|Γ1(xi−1) \∆| 6 |Γ1(xi) \∆| (4)

by the 2-way counting of the number of the pairs (z, s) with z ∈ Γ1(xi−1)\∆, s ∈ Γ1(xi)\∆
and ∂(z, s) = 2.

For a fixed s ∈ Γ1(xi) \∆, we have ∂(s, xi−1) = 2 since a1 = 0. Hence such a z must
be one of the a2 vertices in A(xi−1, s). The number of such pairs (z, s) is thus at most
|Γ1(xi) \∆|a2.

On the other hand, we show this number is |Γ1(xi−1)\∆|a2 exactly. Fix z ∈ Γ1(xi−1)\
∆. Note that ∂(xi, z) = 2 since a1 = 0. Hence the condition “s ∈ Γ1(xi) with ∂(z, s) = 2”
is equivalent to “s ∈ A(xi, z)”. We shall prove s 6∈ ∆ for any s ∈ A(xi, z). Recall that
∆ is strongly closed with respect to x by Lemma 20, which implies C(xi−1, x) ⊆ ∆ and
A(xi−1, x) ⊆ ∆. Then z ∈ B(xi−1, x) and hence ∂(x, z) = i.

Suppose to the contrary that there exists s ∈ A(xi, z)∩∆. Let w ∈ C(s, z). Note that
w 6= xi since a1 = 0. Since ∂(xi, x) = i and ∂(xi, s) = 1, we have ∂(x, s) = i+ 1, i, or i−1.

We first show that ∂(x, s) = i or i − 1. If ∂(x, s) = i + 1, applying Lemma 10 to the
pentagon xi−1xiswz with ∂(x, xi−1) = i− 1 and ∂(x, s) = i+ 1, we see that the pentagon
xi−1xiswz has shape i− 1, i, i+ 1, i+ 1, i with respect to x. In particular, ∂(x,w) = i+ 1
and hence w ∈ A(s, x). Then we have w ∈ ∆ by Lemma 20(i). Note that ∂(x,w) = i+ 1
and ∂(x, z) = i, which implies that x, z, w is a geodetic sequence. Then we have z ∈ ∆
by Proposition 17, a contradiction to z ∈ Γ1(xi−1) \∆.

We next show that ∂(x,w) = i or i − 1. Since ∂(z, x) = i and ∂(z, w) = 1, we
have ∂(x,w) = i + 1, i, or i − 1. If ∂(x,w) = i + 1, the pentagon xi−1zwsxi has shape
i− 1, i, i+ 1, i+ 1, i with respect to x by Lemma 10. In particular ∂(x, s) = i+ 1, which
is a contradiction to ∂(x, s) = i or i− 1 constructed in the last paragraph.

If ∂(x,w) = ∂(x, s) = i, then s ∈ A(xi, x), w ∈ A(s, x), and z ∈ A(w, x). Applying
Lemma 20(i) three times we have z ∈ ∆, which is a contradiction to z ∈ Γ1(xi−1) \ ∆.
Hence ∂(x,w) 6 i− 1 or ∂(x, s) 6 i− 1. For the case ∂(x, s) = i− 1 and ∂(x,w) = i we
consider the shape of the pentagon zxi−1xisw with respect to x. For the case ∂(x, s) = i
and ∂(x,w) = i− 1, or the case ∂(x, s) = i− 1 and ∂(x,w) = i− 1, we consider the shape
of the pentagon xixi−1zws with respect to x. Applying Lemma 13 to each of the these
three cases we have B(x, z) = B(x, xi) and then z ∈ ∆ by Lemma 20(ii), a contradiction
to z ∈ Γ1(xi−1) \∆.

From the above counting, we have

|Γ1(xi−1) \∆|a2 6 |Γ1(xi) \∆|a2 (5)

for 1 6 i 6 d′. Eliminating the nonzero a2 from (5), we find (4) or equivalently

|Γ1(xi−1) ∩∆| > |Γ1(xi) ∩∆| (6)

for 1 6 i 6 d′. We have shown previously that |Γ1(x0) ∩∆| = |Γ1(xd′) ∩∆| = ad′ + cd′ .
Hence (3) follows from (6).
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Proof of Theorem 5. For 1 6 j 6 d, we prove (Wj) and (Rj) by induction on j. Since
a1 = 0, there are no edges in Γ1(x) for any vertex x ∈ X.

For j = 1, then Πxy = {y} since for any other y′ ∈ Γ1(x), y′ ∈ B(x, y) but y′ /∈ B(x, y′).
Consequently ∆(x, y) = {x, y} is an edge; in particular ∆(x, y) is regular with valency
1 = a1 + c1 and is strongly closed with respect to x since a1 = 0. This proves (R1) and
(W1).

For j > 2, assume (Wj), (Rj) and thus (Bj) hold for all 1 6 j < d′ 6 d. By Lemma 20
and Lemma 21, we have that (Wd′), (Rd′) and thus (Bd′) hold.

Then we have (Bj) holds for 1 6 j 6 d. By the deduction in the paragraph before
Lemma 18, the proof is completed. �

Combining Theorem 4 and Theorem 5, the Proof of Theorem 6 can be completed.

Proof of Theorem 6. ((i) ⇒ (ii)) By Theorem 9, we see that Γ contains no parallelo-
grams of any length up to d + 1. Suppose that Γ is d-bounded for d > 2. Let Ω ⊆ ∆ be
two regular strongly closed subgraphs of diameters 1, 2 respectively. Since Ω and ∆ have
different valency b0 − b1 and b0 − b2 respectively by Theorem 8, we have b1 > b2.

((ii)⇒ (i)) Under the assumptions Theorem 6(ii) (hence b1 > b2) and a2 6= 0, consider
the following four cases.

(a) a1 = 0 and c2 > 1: This case follows by Theorem 4 (i).

(b) a1 = 0 and c2 = 1: This case follows by Theorem 5.

(c) a1 6= 0 and c2 > 1 : This case follows by Theorem 4 (ii).

(d) a1 6= 0 and c2 = 1 : Note that by equation (1), a1 + b1 + c1 = k = a2 + b2 + c2. Since
c1 = c2 = 1 and b1 > b2, this case is equivalent to the case a2 > a1 > c2 = 1. Then
the result follows by Theorem 4 (iii). �

5 Classical parameters

Let Γ = (X,R) denote a distance-regular graph with diameter D > 3. Γ is said to have
classical parameters (D, b, α, β) whenever the intersection numbers of Γ satisfy

ci =

[
i

1

]
b

(
1 + α

[
i− 1

1

]
b

)
for 0 6 i 6 D, (7)

bi =

([
D

1

]
b

−
[
i

1

]
b

)(
β − α

[
i

1

]
b

)
for 0 6 i 6 D, (8)

where [
i

1

]
b

:=

{
1 + b+ b2 + · · ·+ bi−1 if i > 0,
0 if i 6 0.
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Applying (1) with (7) and (8), we have

ai =

[
i

1

]
b

(
β − 1 + α

([
D

1

]
b

−
[
i

1

]
b

−
[
i− 1

1

]
b

))
(9)

=

[
i

1

]
b

(
a1 − α

([
i

1

]
b

+

[
i− 1

1

]
b

− 1

))
(10)

for 0 6 i 6 D.

Classical parameters were introduced in [2, Chapter 6]. Graphs with such parameters
yield P - andQ-polynomial association schemes. Bannai and Ito proposed the classification
of such schemes in [1].

The following theorem is a combination of [11, Theorem 2.12] and [14, Lemma 7.3(ii)].

Theorem 22. ([11, Theorem 2.12], [14, Lemma 7.3(ii)]) Let Γ denote a distance-regular
graph with classical parameters (D, b, α, β), where b < −1 and D > 3. Then Γ contains
no parallelograms of any length.

The following two lemmas are given in [13].

Lemma 23. ([13, Corollary 3.7]) Let Γ denote a distance-regular graph with classical
parameters (D, b, α, β) and D > 3. Suppose Γ contains no parallelogram of length 2 and
a1 > −b− 1. Then

c2 = b+ 1.

Lemma 24. ([13, Theorem 4.2]) Let Γ denote a distance-regular graph with classical
parameters (D, b, α, β) and D > 4. Suppose Γ is D-bounded and a1 6 −b− 1. Then

β = α
1 + bD

1− b
.

By Theorem 22, Lemma 23 and Lemma 24, we have the following theorem.

Theorem 25. Let Γ denote a distance-regular graph with classical parameters (D, b, α, β)
where b < −1. Suppose that Γ is D-bounded with D > 4. Then

β = α
1 + bD

1− b
. (11)

Proof. Since b < −1 and D > 3, we have that Γ contains no parallelograms of any length
by Theorem 22. Note that c2 = b+ 1 implies b > −1. If a1 > −b− 1 in Γ, then we get a
contradiction by Lemma 23. Hence a1 6 −b− 1 and (11) follows by Lemma 24.

The following is a proof of Theorem 7 which demonstrates an application of Theorem 6.

Proof of Theorem 7. Let Γ denote a distance-regular graph with classical param-
eters (D, b, α, β) = (D,−2,−2, ((−2)D+1 − 1)/3), where D > 4. Then Γ contains no
parallelograms of any length by Theorem 22. By (7), (9) and (10) we have c2 = 1
and a2 = 2 > 0 = a1. Hence Γ is D-bounded by Theorem 6 since b1 > b2. By (11),
β = ((−2)D+1 − 2)/3, which is a contradiction. �
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