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Abstract

In 2012 Andrews and Merca gave a new expansion for partial sums of Euler’s
pentagonal number series and expressed

k−1∑
j=0

(−1)j(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) = (−1)k−1Mk(n)

where Mk(n) is the number of partitions of n where k is the least integer that does
not occur as a part and there are more parts greater than k than there are less
than k. We will show that Mk(n) = Ck(n) where Ck(n) is the number of partition
pairs (S,U) where S is a partition with parts greater than k, U is a partition with
k − 1 distinct parts all of which are greater than the smallest part in S, and the
sum of the parts in S ∪U is n. We use partition pairs to determine what is counted
by three similar expressions involving linear combinations of pentagonal numbers.
Most of the results will be presented analytically and combinatorially.

Keywords: Partitions, Euler’s pentagonal number theorem, Partition pairs.

1 Introduction

Euler’s pentagonal number theorem gives an easy recurrence for the number of partitions
of n, denoted by p(n). Namely,

p(n) =
∞∑
j=1

(−1)j+1(p(n− j(3j − 1)/2) + p(n− j(3j + 1)/2))

∗The results in Section 3 are based on Michael Burnette’s undergraduate research project at UT
Martin. He is currently a graduate student at Tennessee Tech.
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where p(k) = 0 if k < 0. An interesting question is to determine how far off from
p(n) we are if we truncate this recurrence sum before we reach n − j(3j − 1)/2 < 0 or
n− j(3j + 1)/2 < 0. In [1] Andrews and Merca answered this question when we stop the
recurrence sum after an odd number of terms. In [3] Kolitsch gave an answer when we stop
the recurrence sum with p(n−1) +p(n−2). In Section 2 we will use generating functions
to prove the general results. In section 3 we will interpret the results combinatorially.

2 A Generating Function Proof

If we define Bk(n) for k > 0 to be the number of partition pairs (S, T ) where S is a
partition with parts greater than k, T is a partition with k distinct parts all of which
are greater than the smallest part in S, and the sum of the parts in S ∪ T is n, then the
generating function for Bk(n) is given by

Theorem 1.

∞∑
n=0

Bk(n)qn =
1

(q; q)∞

∞∑
j=k+1

(−1)j+k+1(qj(3j−1)/2 + qj(3j+1)/2).

As an immediate consequence of Theorem 1 and Euler’s pentagonal number theorem
we get

Corollary 2.

p(n) +
k∑

j=1

(−1)j(p(n− j(3j − 1)/2) + p(n− j(3j + 1)/2)) = (−1)kBk(n)

since

∞∑
n=0

Bk(n)qn =
1

(q; q)∞

∞∑
j=k+1

(−1)j+k+1(qj(3j−1)/2 + qj(3j+1)/2)

=
1

(q; q)∞
((−1)k+1(q; q)∞ − (−1)k+1 −

k∑
j=1

(−1)j+k+1(qj(3j−1)/2 + qj(3j+1)/2))

= (−1)k+1 − (−1)k+1(
∞∑
n=0

p(n)qn)(1 +
k∑

j=1

(−1)j(qj(3j−1)/2 + qj(3j+1)/2)).

Comparing coefficients of qn, we get the desired corollary.
To prove Theorem 1 we note that for j > k the generating function for partitions that

fulfill the criterion to be a partition S as described above with smallest part j is
qj

(qj ;q)∞
and the corresponding generating function for partitions that fulfill the criterion to be a

partition T as described above is
q
k(j+1)+(k

2)
(q;q)k

.
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Thus

∞∑
n=0

Bk(n)qn =
∞∑

j=k+1

(
qj

(qj; q)∞
· q

k(j+1)+(k
2)

(q; q)k

)

=
1

(q; q)∞

∞∑
j=k+1

qk(j+1)+(k
2)+j(q; q)j−1

(q; q)k

=
1

(q; q)∞

∞∑
j=0

qk(j+k+2)+(k
2)+j+k+1(q; q)j+k

(q; q)k

=
1

(q; q)∞

∞∑
j=0

q(3k
2+5k+2)/2(qk+1)j(qk+1; q)j

=
1

(q; q)∞

∞∑
j=1

(−1)j+1(q(j+k)(3(j+k)−1)/2 + q(j+k)(3(j+k)+1)/2)

=
1

(q; q)∞

∞∑
j=k+1

(−1)j+k+1(qj(3j−1)/2 + qj(3j+1)/2).

To rewrite
∞∑
j=0

q(3k
2+5k+2)/2(qk+1)j(qk+1; q)j

as
∞∑
j=1

(−1)j+1(q(j+k)(3(j+k)−1)/2 + q(j+k)(3(j+k)+1)/2)

we are using identity 10 on page 29 in [2] with x = qk.
If we define Ck(n) for k > 0 to be the number of partition pairs (S, U) where S is a

partition with parts greater than k, U is a partition with k− 1 distinct parts all of which
are greater than the smallest part in S, and the sum of the parts in S ∪ U is n then we
have the following theorem.

Theorem 3.
∞∑
n=0

Ck+1(n)qn =
∞∑
n=0

Bk(n)qn − qk(3k+5)/2+1

(q; q)∞
.

From the proof of Theorem 1 we have

∞∑
n=0

Ck+1(n)qn =
∞∑

j=k+2

(
qj

(qj; q)∞
· q

k(j+1)+(k
2)

(q; q)k

)

=
∞∑

j=k+1

(
qj

(qj; q)∞
· q

k(j+1)+(k
2)

(q; q)k

)
− qk(3k+5)/2+1

(q; q)∞

which gives the desired result. As an immediate consequence of Theorem 3 we get
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Corollary 4.

k∑
j=0

(−1)j(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) = (−1)kCk+1(n).

This corollary follows immediately from Corollary 2 by observing that Theorem 3 gives

Ck+1(n) = Bk(n)− p(n− k(3k + 5)/2− 1).

From Theorem 1 in [1] we get

Corollary 5.
Ck(n) = Mk(n)

where Mk(n) is the number of partitions of n where k is the least integer that does not
occur as a part and there are more parts greater than k than there are less than k.

Corollary 6. For k > 1,

k−1∑
j=0

(−1)j(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) + (−1)k+1p(n− k(3k + 5)/2− 1)

= (−1)k−1(Ck(n) +Dk(n))

where Dk(n) is the number of partition pairs (S, T ) where S is a partition with parts
greater than k containing at least one part equal to k + 1, T is a partition with k distinct
parts all of which are greater than k + 1, and the sum of the parts in S ∪ T is n.

This corollary follows immediately by observing that

∞∑
n=0

(Ck(n) +Dk(n))qn =
∞∑

j=k+1

(
qj

(qj; q)∞
· q

(k−1)(j+1)+(k−1
2 )

(q; q)k − 1

)
+

qk+1

(qk+1; q)∞
· q

k(k+2)+(k
2)

(q; q)k
.

Corollary 7. For k > 2,

p(n)+
k−1∑
j=1

(−1)j(p(n− j(3j−1)/2)+p(n− j(3j+1)/2))+(−1)k+1p(n− (k+1)(3k+4)/2)

= (−1)k+1(Ck(n) + Ek(n))

where Ek(n) is the number of partition pairs (S, U) where S is a partition with one part
equal to k and all other parts greater than k, U is a partition with k− 1 distinct parts all
of which are greater than k, and the sum of the parts in S ∪ U is n.

This corollary follows immediately by observing that

∞∑
n=0

(Ck(n)+Ek(n))qn =
∞∑

j=k+1

(
qj

(qj; q)∞
· q

(k−1)(j+1)+(k−1
2 )

(q; q)k − 1

)
+

qk

(qk+1; q)∞
· q

(k−1)(k−1)+(k−1
2 )

(q; q)k−1
.
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3 A Combinatorial Look at Our Results

In this section we will combinatorially verify the result observed from Theorem 3 that was
used to prove Corollary 4 and the companion result that relates Ck(n) and Bk(n). These
two relationships are stated in the next theorem.

Theorem 8. For k > 0,

(i) Bk(n)− p(n− k(3k + 5)/2− 1) = Ck+1(n)

(ii) p(n− k(3k + 1)/2) = Ck(n) +Bk(n).

To prove part (i) of Theorem 8 we need to show how the partitions of n−k(3k+5)/2−1
bijectively correspond to the partition pairs (S, T ) for n where S is a partition with all
parts greater than k and k + 1 is included as a part and T is a partition into k distinct
parts greater than k. Given a partition P = {a1, a2, . . . , ar} with a1 6 a2 6 · · · 6 ar and∑r

i=1 ai = n − k(3k + 5)/2 − 1, we will construct a partition pair ({k + 1} ∪ {ai : ai >

k}, {t1, t2, . . . , tk}) by defining ti = (k + 1 + i) +
∑i

j=1 α(k + 1 − j) where α(m) is the
number of parts equal to m in P . This gives a partition pair of the desired type since
k + 1 +

∑k
j=1(k + 1 + i) = k(3k + 5) + 1 and

∑k
i=1

∑i
j=1 α(k + 1 − j) =

∑
ai∈P,ai6k ai.

Thus Bk(n) − p(n − k(3k + 5)/2 − 1) counts the number of partition pairs for n of the
type counted by Ck+1(n).

We illustrate the correspondence used to prove part (i) below:
Let k = 2 and n = 25. The partition P = {1, 2, 2, 3, 5} corresponds to the partition

pair ({3, 3, 5}, {6, 8}) and the partition pair ({3, 4, 6}, {5, 7}) corresponds to the partition
P = {1, 2, 4, 6}.

To prove part (ii) of Theorem 8 we need to show that the partitions of n−k(3k+1)/2
bijectively correspond to the partition pairs counted by Bk(n) +Ck(n). Given a partition
P = {a1, a2, . . . , ar} with a1 6 a2 6 · · · 6 ar and

∑r
i=1 ai = n−k(3k+1)/2, we will define

ti = (k+ i) +
∑i

j=1 α(k+ 1− j) for i = 1, 2, . . . , k. If t1 is less than the smallest part in P
that is larger than k, our partition pair will be given by ({t1}∪{ai : ai > k}, {t2, t3, . . . , tk})
(note if k = 1 then T = { }). These partition pairs are counted by Ck(n). If t1 is greater
than or equal to the smallest part in P that is larger than k, our partition pair will be
given by ({ai : ai > k}, {t1, t2, t3, . . . , tk}). These partition pairs are counted by Bk(n).

We illustrate the correspondence used to prove part (ii) below:
Let k = 2 and n = 25. The partition P = {1, 1, 1, 2, 3, 5, 5} corresponds to the

partition pair ({3, 5, 5}, {4, 8}) and the partition pair ({3, 4, 5, 6}, {7}) corresponds to the
partition P = {1, 1, 1, 4, 5, 6}.

We now present a combinatorial proof of Corollary 5 by showing how the partitions
of n counted by Mk(n) bijectively correspond to the partition pairs counted by Ck(n).
Given a partition P = {a1, a2, . . . , au, b1, b2, . . . , bv} with a1 6 a2 6 · · · 6 au < k < b1 6
b2 6 · · · 6 bv}, u < v and

∑u
i=1 ai +

∑v
i=1 bi = n, we will define xi = bv−u+i + ai for

i = 1, 2, . . . , u. The corresponding partition pair will be (S, T ) where the k − 1 elements
of T are defined by tj = smallest value among the xi’s where ai = j for j = 1, 2, . . . , k− 1
and S = {bi : i 6 v − u} ∪ ({xi : i = 1, 2, . . . , u} − T ).
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We illustrate the correspondence used to prove Corollary 5 below: Let k = 3 and
n = 31. The partition P = {1, 1, 2, 4, 5, 5, 6, 7} will be transformed to {5, 6©, 7, 9©} where
the tj’s have been circled. The corresponding partition pair will be ({4, 5, 7}, {6, 9}). If we
look at the bijection in the other direction and start with the partition pair ({4, 5, 5, 6},
{5, 6}) we will first transform it to {4, 5©, 5, 5, 6©, 6}. This will then become the partition
{1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4} counted by M3(31).

We now define Nk(n) for k > 0 to be the number of of partitions of n where 1, 2, . . . , k
all occur as a part and there are more parts greater than k than there are less than or
equal to k. The following theorem holds.

Theorem 9. For k > 0, Nk(n) = Bk(n).

We can use a correspondence similar to the one used to prove Corollary 5 to prove
Theorem 9. Given a partition P = {a1, a2, . . . , au, b1, b2, . . . , bv} with

a1 6 a2 6 · · · 6 au = k < b1 6 b2 6 · · · 6 bv,

u < v and
∑u

i=1 ai +
∑v

i=1 bi = n, we will define xi = bv−u+i + ai for i = 1, 2, . . . , u.
The corresponding partition pair will be (S, T ) where the k elements of T are defined by
tj = smallest value among the xi’s where ai = j for j = 1, 2, . . . , k and S = {bi : i 6
v − u} ∪ ({xi : i = 1, 2, . . . , u} − T ).

We illustrate the correspondence used to prove Theorem 9 below: Let k = 3 and
n = 31. The partition P = {1, 1, 2, 3, 4, 5, 5, 5, 5} will be transformed to {4, 6©, 6, 7©, 8©}
where the tj’s have been circled. The corresponding partition pair will be ({4, 6}, {6, 7, 8}).
If we look at the bijection in the other direction and start with the partition pair ({4, 4, 5},
{5, 6, 7}) we will first transform it to {4, 4, 5©, 5, 6©, 7©}. This will then become the par-
tition {1, 1, 2, 3, 4, 4, 4, 4, 4, 4} counted by N3(31).
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As an immediate consequence of Theorem 9 we have

Corollary 10.

p(n) +
k∑

j=1

(−1)j(p(n− j(3j − 1)/2) + p(n− j(3j + 1)/2)) = (−1)kNk(n).

4 Concluding Remarks

A natural question that arises from this paper is whether or not partition pairs can be used
to interpret other truncated series. In particular, can they be used to answer question 2
posed by Andrews and Merca in [1]?
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