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Abstract

In 2012 Andrews and Merca gave a new expansion for partial sums of Euler’s
pentagonal number series and expressed

k-1

D (=1 (p(n = j(3j +1)/2) — p(n — j(3j + 5)/2 — 1)) = (=1)* ' My(n)
7=0

where My (n) is the number of partitions of n where k is the least integer that does
not occur as a part and there are more parts greater than k£ than there are less
than k. We will show that My (n) = Cx(n) where Ck(n) is the number of partition
pairs (S,U) where S is a partition with parts greater than k, U is a partition with
k — 1 distinct parts all of which are greater than the smallest part in S, and the
sum of the parts in SUU is n. We use partition pairs to determine what is counted
by three similar expressions involving linear combinations of pentagonal numbers.
Most of the results will be presented analytically and combinatorially.
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Introduction

Euler’s pentagonal number theorem gives an easy recurrence for the number of partitions
of n, denoted by p(n). Namely,

[e.9]

p(n) =Y (=1 (p(n — §(3j — 1)/2) + p(n — (35 +1)/2))

Jj=1

*The results in Section 3 are based on Michael Burnette’s undergraduate research project at UT

Martin. He is currently a graduate student at Tennessee Tech.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.55 1



where p(k) = 0 if & < 0. An interesting question is to determine how far off from
p(n) we are if we truncate this recurrence sum before we reach n — j(3j —1)/2 < 0 or
n—7(37+1)/2 <0. In [1] Andrews and Merca answered this question when we stop the
recurrence sum after an odd number of terms. In [3] Kolitsch gave an answer when we stop
the recurrence sum with p(n—1) +p(n—2). In Section 2 we will use generating functions
to prove the general results. In section 3 we will interpret the results combinatorially.

2 A Generating Function Proof

If we define Byg(n) for £k > 0 to be the number of partition pairs (S,7) where S is a
partition with parts greater than k, T is a partition with k distinct parts all of which
are greater than the smallest part in S, and the sum of the parts in S UT is n, then the
generating function for By(n) is given by

Theorem 1.

S B = L 3 (L1 4 i
Bi(n)¢" = @0 E : (—1)ih+L (I BI=D/2 | giGi+1)/2y
n=0 QJq Ooj:k‘-i-l

As an immediate consequence of Theorem 1 and Euler’s pentagonal number theorem
we get

Corollary 2.

k
p(n) + Z(—l)j(p(n — (3 —1)/2) + p(n — j(3j + 1)/2)) = (=1)* By(n)
ZBk(n)q” = (q;)oo Z (=1)FHRH1(gIBI=D/2 o i Bi+1)/2)
= @((—1)“1((];61)00 — (=) — Z(_l)j+k+l(qj(3j—1)/2 + @Dy

1

(_1)j(qj(3j—1)/2 + qj(3j+1)/2))_

M= 5

= (=1 = (=1 (Y p(n)g") (1 +

1

J

Comparing coefficients of ¢", we get the desired corollary.

To prove Theorem 1 we note that for j > k the generating function for partitions that
J
fulfill the criterion to be a partition S as described above with smallest part 7 is (

q

. . . " o (@59)ee

and the corresponding generating function for partitions that fulfill the criterion to be a
kG+D+(5)

partition T as described above is -
(G:9)k
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Thus

i) (GO

o0 (j+1)+(’;)+j<

q¢" 4 q)j-1

(@ 9k

o0 k(j+k+2)+(§)+j+k+1(q; Q)jk

(¢ 0) = (¢ @)

_ Z q(3k2+5k+2)/2 (qk—i-l)j (qk-i-l; q)j

8

To rewrite .
D BRI (gL ),
=0
as
(_1)j+1(q(j+k)(3(j+k)*l)/2 + q(j+kr)(3(j+k)+1)/2)

M

1

j
we are using identity 10 on page 29 in [2] with x = ¢*.

If we define Cy(n) for k > 0 to be the number of partition pairs (S,U) where S is a
partition with parts greater than k, U is a partition with k£ — 1 distinct parts all of which
are greater than the smallest part in S, and the sum of the parts in S UU is n then we
have the following theorem.

Theorem 3.
k(3k+5)/2+1

o o q

Cis1(n)q" = > By(n)q" —
; ! ,; (5 9)oo
From the proof of Theorem 1 we have

S - 5 (1)

G @50 (450)

k(j+1)+(’;)) FBk+5)/2+1

R ¢ q
= 2 ((qj;q)oo (¢; )

which gives the desired result. As an immediate consequence of Theorem 3 we get
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Corollary 4.

k

Y (=1 (pln = j(35 +1)/2) = pln = j(3j +5)/2 = 1) = (=1)*Crya(n).

§=0
This corollary follows immediately from Corollary 2 by observing that Theorem 3 gives
Cir+1(n) = Br(n) — p(n — k(3k +5)/2 — 1).
From Theorem 1 in [1] we get

Corollary 5.
Ck(n) = My(n)

where My(n) is the number of partitions of n where k is the least integer that does not
occur as a part and there are more parts greater than k than there are less than k.

Corollary 6. Fork > 1,

E
—_

(1) (p(n = (35 +1)/2) = p(n = j(3j +5)/2 = 1)) + (=1)*"'p(n — k(3k +5)/2 — 1)

<.
Il
o

= (=" (Cr(n) + Di(n))

where Dy(n) is the number of partition pairs (S, T) where S is a partition with parts
greater than k containing at least one part equal to k+ 1, T is a partition with k distinct
parts all of which are greater than k + 1, and the sum of the parts in SUT isn.

This corollary follows immediately by observing that

> — ¢ q(k—l)(j+1>+(’“;1) s qk(k+2)+(’§)
2 (Gl =2 (o Tan ) o Tan
Corollary 7. For k > 2,
p(n)+, (1Y (p(n—3(35 = 1)/2) +p(n—35(3j +1)/2)) + (=) 'p(n — (k+1)(3k +4)/2)

= (—=)"(Cr(n) + Ex(n))

where Ex(n) is the number of partition pairs (S,U) where S is a partition with one part
equal to k and all other parts greater than k, U s a partition with k — 1 distinct parts all
of which are greater than k, and the sum of the parts in SUU is n.

This corollary follows immediately by observing that

S (Culn) 4 Bl = 3 (( ¢4

=0 G\ @@ (@) — 1

q q
R ) oo (6 Q-1

(k=1)G+1)+(*31) k (k=1)(k=1)+(*3")
) (g
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3 A Combinatorial Look at Our Results

In this section we will combinatorially verify the result observed from Theorem 3 that was
used to prove Corollary 4 and the companion result that relates Cy(n) and By(n). These
two relationships are stated in the next theorem.

Theorem 8. For k > 0,

(1) Bi(n) —p(n—k(3k +5)/2 = 1) = Crya(n)
(i7) p(n — k(3k +1)/2) = Cy(n) + Bi(n).

To prove part (i) of Theorem 8 we need to show how the partitions of n—k(3k+5)/2—1
bijectively correspond to the partition pairs (S,7T') for n where S is a partition with all
parts greater than k& and k + 1 is included as a part and T is a partition into k£ distinct
parts greater than k. Given a partition P = {ay, as,...,a,} with a; < as < --- < a, and
Yoiya; =n—k(@Bk+5)/2—1, we will construct a partition pair ({k + 1} U {a; : a; >
k}, {t1,ta,...,tx}) by defining t; = (K + 1+ 1) + Z;Zl alk + 1 — j) where a(m) is the
number of parts equal to m in P. This gives a partition pair of the desired type since
B 14300 (k+140) = kBk+5) + Land 20, 300 alk+ 1= ) = X, cpaap
Thus By(n) — p(n — k(3k 4+ 5)/2 — 1) counts the number of partition pairs for n of the
type counted by Cyi1(n).

We illustrate the correspondence used to prove part (i) below:

Let kK = 2 and n = 25. The partition P = {1,2,2,3,5} corresponds to the partition
pair ({3,3,5},{6,8}) and the partition pair ({3,4,6},{5,7}) corresponds to the partition
P ={1,2,4,6}.

To prove part (i7) of Theorem 8 we need to show that the partitions of n—k(3k+1)/2
bijectively correspond to the partition pairs counted by By(n)+ Ci(n). Given a partition
P={aj,as,...,a,} witha; <ay <---<a,and ), a;, = n—Fk(3k+1)/2, we will define
ti=(k+1i)+ 22:1 alk+1—7j) fori=1,2,...,k. If t; is less than the smallest part in P
that is larger than k, our partition pair will be given by ({¢1}U{a; : a; > k}, {t2,t3,...,tx})
(note if £ =1 then T'= { }). These partition pairs are counted by Ci(n). If ¢; is greater
than or equal to the smallest part in P that is larger than k, our partition pair will be
given by ({a; : a; > k},{t1,%2,1t3,...,tx}). These partition pairs are counted by By(n).

We illustrate the correspondence used to prove part (ii) below:

Let £ = 2 and n = 25. The partition P = {1,1,1,2,3,5,5} corresponds to the
partition pair ({3,5,5}, {4,8}) and the partition pair ({3,4, 5,6}, {7}) corresponds to the
partition P ={1,1,1,4,5,6}.

We now present a combinatorial proof of Corollary 5 by showing how the partitions
of n counted by M (n) bijectively correspond to the partition pairs counted by Cj(n).
Given a partition P = {ay,as,...,ay,b1,bs,...,b,} witha; <ay <---<a, <k <b <
by < - < byh,u<vand Y ;a4 + >, b =n, we will define z; = b,_,4; + a; for
i=1,2,...,u. The corresponding partition pair will be (S,7T") where the k — 1 elements
of T" are defined by t; = smallest value among the z;’s where a; = j for j =1,2,..., k—1
and S ={b;:i<v—ulU{z;:i=1,2,...,u}—=T).
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We illustrate the correspondence used to prove Corollary 5 below: Let £ = 3 and
n = 31. The partition P = {1,1,2,4,5,5,6, 7} will be transformed to {5, ®,7, @} where
the t;’s have been circled. The corresponding partition pair will be ({4, 5,7},{6,9}). If we
look at the bijection in the other direction and start with the partition pair ({4, 5,5,6},
{5,6}) we will first transform it to {4, (®), 5,5, ®, 6}. This will then become the partition
{1,1,1,2,2,4,4,4,4,4,4} counted by M;3(31).

We now define Ng(n) for k& > 0 to be the number of of partitions of n where 1,2,... k
all occur as a part and there are more parts greater than k& than there are less than or
equal to k. The following theorem holds.

Theorem 9. For k > 0, Ng(n) = B(n).

We can use a correspondence similar to the one used to prove Corollary 5 to prove
Theorem 9. Given a partition P = {ay,as,. .., ay,b1,bs,...,b,} with

ap S ay < <K a,=k<b <by <<y,

u < v and Zyzl a; + Zle b; = n, we will define z; = b, i +a; for ¢ = 1,2,... u.
The corresponding partition pair will be (S,T") where the k elements of T" are defined by
t; = smallest value among the z;’s where a; = j for j = 1,2,...,kand S = {b; : i <

v—ulU{z;:i=1,2,...,u} =T).

We illustrate the correspondence used to prove Theorem 9 below: Let k& = 3 and
n = 31. The partition P = {1,1,2,3,4,5,5,5,5} will be transformed to {4,®,6, D, ®}
where the ¢,’s have been circled. The corresponding partition pair will be ({4, 6}, {6,7,8}).
If we look at the bijection in the other direction and start with the partition pair ({4,4, 5},
{5,6,7}) we will first transform it to {4,4,®),5,®,@}. This will then become the par-
tition {1,1,2,3,4,4,4,4,4,4} counted by N3(31).
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As an immediate consequence of Theorem 9 we have

Corollary 10.

p(n) + ‘

k
J=

(=17 (p(n = (35 = 1)/2) + p(n — j(3j +1)/2)) = (=1)*Ni(n).

1

4 Concluding Remarks

A natural question that arises from this paper is whether or not partition pairs can be used
to interpret other truncated series. In particular, can they be used to answer question 2
posed by Andrews and Merca in [1]?
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