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Abstract

For a graph G and a set F of connected graphs, G is said be F-free if G does
not contain any member of F as an induced subgraph. We let G3(F) denote the set
of all 3-connected F-free graphs. This paper is concerned with sets F of connected
graphs such that |F| = 3 and G3(F) is finite. Among other results, we show that
for an integer m > 3 and a connected graph T of order greater than or equal to 4,
G3({K4,K2,m, T}) is finite if and only if T is a path of order 4 or 5.
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1 Introduction

In this paper, we consider only finite undirected simple graphs.
Let G denote the set of connected graphs with order greater than or equal to three.

For a graph G and for F ∈ G, G is said to be F -free if G does not contain F as an induced
subgraph and, for F ⊆ G, G is said to be F-free if G is F -free for every F ∈ F . For
an integer k > 1 and F ⊆ G, we let Gk denote the set of all k-connected graphs, and let
Gk(F) denote the set of all F -free graphs belonging to Gk. Thus

Gk(F) := {G | G is a k-connected F -free graph}.

This paper is concerned with subsets F of G such that Gk(F) is a finite set. In this
context, members of F are often referred to as forbidden subgraphs. For detailed historical
background and related results, we refer the reader to [3].

The following result can be found in [1]. (Here Kn denotes the complete graph of order
n, Pl denotes the path of order l and, in general, Km1,m2

denotes the complete bipartite
graph with partite sets having cardinalities m1 and m2.)

Theorem A (Diestel [1]; Chapter 9). For F ⊆ G, G1(F) is finite if and only if Kn, K1,m,
Pl ∈ F for some integers n > 3, m > 2 and l > 3.

For k > 2, it is unlikely that a general result like Theorem A holds. Thus we confine
ourselves to the case where |F| is “small”. It is known that for any k > 2, there is no
F ⊆ G with |F| = 1 such that Gk(F) is finite. (See [3]; Theorem 2.) Further, those
subsets F of G with |F| = 2 for which Gk(F) is finite are determined for k 6 6 in [3].
Here we are interested in the case where |F| = 3. Note that a connected K1,2-free graph
is a complete graph. Hence if K1,2 ∈ F , then Gk(F) is finite if and only if Kn ∈ F for
some n > 3, and there is no point in forbidding two more graphs. Thus when we discuss
Gk(F) with |F| = 3, we usually assume K1,2 6∈ F . For k = 2, the following theorem is
proved in [3].

Theorem B (Fujisawa, Plummer and Saito [3]). Let F be a subset of G with |F| = 3 and
K1,2 6∈ F . Then G2(F) is finite if and only if one of the following holds:

(i) F = {K3, K2,m, Pl} for some integers m and l with m > 3 and 4 6 l 6 5;

(ii) F = {K3, K2,2, P6}; or

(iii) F = {Kn, K1,m, Pl} for some integers n, m and l with n > 3, m > 3 and l > 4.

In the present paper, we investigate the case where |F| = 3 and k = 3. It is easy
to see G3({K3, K1,3}) = ∅. (See [3].) Thus when we consider G3(F), we assume that
{K3, K1,3} 6⊆ F , in addition to the condition that K1,2 6∈ F . Before stating our results,
we make some more definitions.

Let n be an integer with n > 2. Let P = x1x2 · · ·xn be the path of order n, and let
y1, y2, z1 and z2 be four distinct vertices different from x1, . . . , xn. We let Yn, Y

∗
n , Qn and

Q∗
n denote the graphs defined by

V (Yn) = V (Qn) = V (P ) ∪ {y1, y2}, V (Y ∗
n ) = V (Q∗

n) = V (P ) ∪ {y1, y2, z1, z2},
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E(Yn) = E(P ) ∪ {x1y1, x1y2}, E(Y ∗
n ) = E(P ) ∪ {x1y1, x1y2, xnz1, xnz2},

E(Qn) = E(Yn) ∪ {y1y2} and E(Q∗
n) = E(Y ∗

n ) ∪ {y1y2, z1z2}

(see Figure 1).

Y3

Q3

Y ∗
3

Q∗
3

Figure 1: Graphs Y3, Y
∗
3 , Q3 and Q∗

3

A caterpillar is a tree for which the removal of all endvertices leaves a path. A complete
bipartite graph of the form K1,m with m > 1 is called a star. Let T0 be the set of trees in
G−{K1,2, K1,3} having maximum degree at most 3. Note that T0 does not contain a star.
Let T1 be the set of those caterpillars belonging to T0 in which no two vertices of degree
3 are adjacent. Let T2 = {Pl, Ym, Y

∗
n | l > 4, m > 3, n > 3}. We have T0 ⊇ T1 ⊇ T2.

Let G be a connected graph. A vertex v of G is called a cutvertex if G − v is dis-
connected. If G has a cutvertex, G is said to be separable; otherwise, it is said to be
nonseparable. Note that K1 is a nonseparable graph. A maximal nonseparable subgraph
of G is called a block of G. When G is separable, the block-cutvertex graph of G is defined
to be the bipartite graph Z such that Z has as its partite sets the set of all cutvertices
of G and the set of all blocks of G and, for a cutvertex v and a block B, v and B are
adjacent in Z if and only if v is a vertex of B in G. It is a well-known fact that the
block-cutvertex graph of a connected graph is a tree. A cactus is a connected graph every
block of which is a complete graph of order two or a cycle. Let T ∗

0 be the set of those
cacti T in G−{K1,2, K3} such that all cycles of T are triangles and in the block-cutvertex
graph of T , the distance between any two vertices corresponding to triangles of T is a
multiple of 4. Let T ∗

1 be the set of those members of T ∗
0 whose block-cutvertex graph is

a path. Let T ∗
2 = {Pl, Qm, Q

∗
2n | l > 4, m > 2, n > 1}. We have T ∗

0 ⊇ T ∗
1 ⊇ T ∗

2 .
Our main result is as follows.

Theorem 1.1. Let F be a subset of G with |F| = 3, K1,2 6∈ F and {K1,3, K3} 6⊆ F , and
suppose that G3(F) is finite. Then one of the following holds:

(i) F = {K3, K3,m, T} with m > 3, where T ∈ T2;

(ii) F = {K4, K2,m, T} with m > 2, where T is a path;

(iii) F = {K3, K2,m, T} with m > 2, where T ∈ T0 in the case where m = 2, T ∈ T1 in
the case where 3 6 m 6 4, and T ∈ T2 in the case where m > 5;
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(iv) F = {Kn, K1,m, T} with n > 4 and m > 4, where T is a path;

(v) F = {K3, K1,m, T} with m > 4, where T ∈ T1 in the case where m = 4, and T ∈ T2

in the case where m > 5; or

(vi) F = {Kn, K1,3, T} with n > 4, where T ∈ T ∗
1 in the case where n = 4, and T ∈ T ∗

2

in the case where n > 5.

The converse of Theorem 1.1 does not hold. However, if (iv) of Theorem 1.1 holds,
then G3(F) is finite by Theorem A. Also, as we shall state below in Theorem 1.5, if (v)
holds with m > 5, then G3(F) is finite. Further when m is “large” in cases (i) through
(iii) of Theorem 1.1, we can determine T as follows.

Theorem 1.2. Let m be an integer with m > 4, and let T ∈ G − {K1,2, K1,3}. Then
G3({K3, K3,m, T}) is finite if and only if T is a path of order 4 or 5 or T = Y3.

Theorem 1.3. Let m be an integer with m > 3, and let T ∈ G − {K1,2}. Then
G3({K4, K2,m, T}) is finite if and only if T is a path of order 4 or 5.

Theorem 1.4. Let m be an integer with m > 5, and let T ∈ G − {K1,2, K1,3}. Then
G3({K3, K2,m, T}) is finite if and only if T is either a path of order at most 7 or an
induced subgraph of Y ∗

3 .

Theorem 1.5. Let m be an integer with m > 5, and let T ∈ G − {K1,2, K1,3}. Then
G3({K3, K1,m, T}) is finite if and only if T ∈ T2.

We prove Theorem 1.1 in Section 2. We prove Theorem 1.2 in Section 3, Theorem 1.3
in Section 4, Theorem 1.5 in Section 5, and Theorem 1.4 in Section 6. Our notation and
terminology are standard, and mostly taken from [1]. Exceptions are as follows. Let G
be a graph. For u, v ∈ V (G), d(u, v) denotes the distance between u and v. When G
is connected, we define the diameter diam(G) of G by diam(G) = max{d(u, v) | u, v ∈
V (G)}. Let u ∈ V (G). For an integer i > 1, we let Ni(u) = {x ∈ V (G) | d(u, x) = i}.
We write N(u) for N1(u). We let d(u) denote the degree of u; thus d(u) = |N(u)|. When
we need to specify that the underlying graph is G, we write NG(u) and dG(u) for N(u)
and d(u), respectively. We let ∆(G) = max{d(u) | u ∈ V (G)}. For Y ⊆ V (G), we let
N(Y ) denote the union of N(u) as u ranges over Y . For X, Y ⊆ V (G) with X ∩ Y = ∅,
E(X, Y ) denotes the set of edges joining a vertex in X and a vertex in Y . When G is
connected, a block of G containing at most one cutvertex of G is called an endblock of
G. When G is not necessarily connected, by a cutvertex of G, we mean a cutvertex of a
component of G. Similarly, by a block (resp. an endblock) of G, we mean a block (resp.
an endblock) of a component of G. Note that isolated vertices of G are endblocks of G.
For an endblock B of G, a vertex of B which is not a cutvertex of G is called an internal
vertex of B. For a graph H and an integer s > 2, we let sH denote the disjoint union of
s copies of H . For two graphs H1 and H2, we let H1 +H2 denote the join of H1 and H2.
Finally for s > 4, Cs denotes the cycle of order s and, for t > 5, we let Wt = Ct−1 +K1

denote the wheel graph of order t.
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In subsequent arguments, when we prove the finiteness of G3(F) for a given family
F , we bound the diameter and the maximum degree of a graph G in G3(F) from above,
and then bound the order in terms of the diameter and the maximum degree. For this
purpose, we make one easy observation.

Lemma 1.6. Let m > 2 and k > 3, and let G be a graph with ∆(G) 6 m and diam(G) 6
k. Then |V (G)| 6 mk.

Proof. Let w ∈ V (G). Then |Ni(w)| 6 m(m− 1)i−1 for each 1 6 i 6 k. Hence |V (G)| 6
1 +m+ (

∑
26i6k−1m(m− 1)i−1) +m(m− 1)k−1 6 mk−1 + (

∑
26i6k−1m

k−i(m− 1)i−1) +

m(m− 1)k−1 = mk.
The bound mk in the above lemma is far from sharp, but we use it for the sake of

brevity.

2 A necessary condition

In this section, we prove Theorem 1.1. We start with several lemmas. The first two
lemmas are proved in [4] and [3], respectively.

Lemma 2.1 (Kochol [4]). For every integer g > 3, there exists a 3-connected 3-regular
graph with girth g. In particular, for every integer g > 3, there exist infinitely many
3-connected 3-regular graphs with girth at least g.

Lemma 2.2 (Fujisawa, Plummer and Saito [3]). For F ⊆ G, if G3(F) is finite, then
{Kn, Km1,m2

} ⊆ F for some integers n, m1 and m2 with n > 3, m2 > m1 > 1 and
m1 6 3.

Lemma 2.3. Let F be a finite subset of G−{K1,2, K1,3}, and suppose that G3(F) is finite.
Then F contains a member of T0.

Proof. Let t = max{|V (F )| | F ∈ F}, and let H = {G ∈ G3 | G is a 3-regular graph
with girth at least t + 1}. By Lemma 2.1, H is an infinite set. Since G3(F) is finite and
H is infinite, there exists G ∈ H such that G contains a graph F in F as an induced
subgraph. Since the girth of G is strictly greater than |V (F )|, F is a tree. Since G is
3-regular and since F 6= K1,2, K1,3 by the assumption that F ⊆ G−{K1,2, K1,3}, it follows
that F ∈ T0.

Lemma 2.4. Let m1 and m2 be integers such that m2 > m1 > 1, m1 6 3 and (m1, m2) 6=
(1, 2), (1, 3), (2, 2), and let T ∈ G − {K1,2, K1,3}. Set F = {K3, Km1,m2

, T}, and suppose
that G3(F) is finite. Then the following hold.

(i) We have T ∈ T1.

(ii) If in addition, (m1, m2) 6∈ {(1, 4), (2, 3), (2, 4)}, then T ∈ T2.

Proof. By Lemma 2.3, T ∈ T0.
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(i) For each s > 5, the Cartesian product Cs×K2 is 3-connected and {K3, Km1,m2
}-free.

Since G3(F) is finite, this implies that there exists s > 5 such that Cs×K2 contains
T as an induced subgraph. Since every member of T0 contained in Cs ×K2 as an
induced subgraph belongs to T1, T ∈ T1.

(ii) By (i), T ∈ T1. For each s > 5, let C ′
s denote the so-called lexicographic product of

Cs and the null graph of order two; that is to say, V (C ′
s) = {xi,j | 1 6 i 6 s, 1 6 j 6

2} and E(C ′
s) = {xi,jxi+1,h | 1 6 i 6 s, 1 6 j, h 6 2}, where first indices of the letter

x are to be read modulo s. Then C ′
s is 3-connected and {K3, Km1,m2

}-free. Hence
there exists s > 5 such that C ′

s contains T as an induced subgraph. Since every
member of T1 contained in C ′

s as an induced subgraph belongs to T2, T ∈ T2.

Proof of Theorem 1.1. Let F be as in Theorem 1.1. By Lemma 2.2, {Kn, Km1,m2
} ⊆ F

for some integers n, m1 and m2 with n > 3, m2 > m1 > 1 and m1 6 3. Write F =
{Kn, Km1,m2

, T}.

Case 1: F contains no star
In this case, 2 6 m1 6 3, and we have T ∈ T0 by Lemma 2.3.

Subcase 1.1: m1 = 3
For each s > 3, P3+sK1 is 3-connected and K3,m2

-free. Since T is not a star and every
tree contained in P3+sK1 as an induced subgraph is a star, P3+sK1 is also T -free. Since
G3(F) is finite, this implies that there exists s > 3 such that P3 + sK1 contains Kn as an
induced subgraph. Since P3 + sK1 is K4-free, this forces n = 3. Now by Lemma 2.4(ii),
T ∈ T2, and hence (i) of Theorem 1.1 holds.

Subcase 1.2: m1 = 2 and n > 4
For each s > 3, K3+ sK1 is 3-connected and K2,m2

-free. Since every tree contained in
K3 + sK1 as an induced subgraph is a star, K3 + sK1 is also T -free. Hence there exists
s > 3 such that K3 + sK1 contains Kn as an induced subgraph, which implies n = 4. For
each t > 6, Wt is 3-connected and {K4, K2,m2

}-free. Hence there exists t > 6 such that
Wt contains T as an induced subgraph. Since T ∈ T0 and every member of T0 contained
in Wt as an induced subgraph is a path, T is a path. Consequently (ii) of Theorem 1.1
holds.

Subcase 1.3: m1 = 2 and n = 3
Recall that T ∈ T0. Also if 3 6 m2 6 4, then T ∈ T1 by Lemma 2.4(i); if m2 > 5, then

T ∈ T2 by Lemma 2.4(ii). Thus (iii) of Theorem 1.1 holds.

Case 2: F contains a star
Interchanging the roles of Km1,m2

and T with each other if necessary, we may assume
that Km1,m2

is the star of the smallest order contained in F . Then m1 = 1, and m2 > 3
by the assumption that K1,2 6∈ F , and T 6= K1,2, K1,3 by the minimality of m2.

Subcase 2.1: m2 > 4
By Lemma 2.3, T ∈ T0.

Subcase 2.1.1: n > 4
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For each s > 7, let C2
s denote the square of Cs; that is to say V (C2

s ) = {xi | 1 6 i 6 s}
and E(C2

s ) = {xixi+1, xixi+2 | 1 6 i 6 s}, where indices of the letter x are to be read
modulo s. Then C2

s is 3-connected and {Kn, K1,m2
}-free. Hence there exists s > 7 such

that C2
s contains T as an induced subgraph. Since every tree contained in C2

s as an
induced subgraph is a path, T is a path. Hence (iv) of Theorem 1.1 holds.

Subcase 2.1.2: n = 3
If m2 = 4, then T ∈ T1 by Lemma 2.4(i); if m2 > 5, then T ∈ T2 by Lemma 2.4(ii).

Thus (v) of Theorem 1.1 holds.

Subcase 2.2: m2 = 3
By the assumption that {K1,3, K3} 6⊆ F , we have n > 4 and T 6= K3. Thus T ∈

G − {K1,2, K1,3, K3}.
For a 3-connected 3-regular graph G, let HG be the graph obtained by expanding each

vertex of G to a triangle (see Figure 2); more precisely, we define HG by V (HG) = {xu,v |
(u, v) ∈ V (G)× V (G), uv ∈ E(G)} and E(HG) = {xu,vxu,w | u ∈ V (G), v, w ∈ N(u), v 6=
w} ∪ {xu,vxv,u | uv ∈ E(G)}. Then HG is 3-connected 3-regular and {Kn, K1,3}-free and,
for u ∈ V (G), Bu = xu,v1xu,v2xu,v3xu,v1 ({v1, v2, v3} = N(u)) is a triangle of HG. Also
each cycle of HG which is not of the form Bu with u ∈ V (G) has length at least twice
as large as the girth of G and, for any u, u′ ∈ V (G) with u 6= u′, every induced path
in HG joining Bu and Bu′ has even order. Hence every induced connected subgraph of
HG having order greater than or equal to four and strictly less than twice the girth of
G belongs to T ∗

0 . On the other hand, by Lemma 2.1, the set {HG | G is a 3-connected
3-regular graph with girth at least (|V (T )|+1)/2} is an infinite set. Hence there exists a
3-connected 3-regular graph G with girth at least (|V (T )|+1)/2 such that HG contains T
as an induced subgraph. Note that |V (T )| is less than twice the girth of G. Consequently
T ∈ T ∗

0 .

G HG

Figure 2: Graph HG

Further for each s > 7, C2
s is 3-connected and {Kn, K1,3}-free. Hence there exists s > 7

such that C2
s contains T as an induced subgraph. Since every member of T ∗

0 contained in
C2

s as an induced subgraph belongs to T ∗
1 , T ∈ T ∗

1 .
Now assume n > 5. For each s > 4, let C∗

s denote the lexicographic product of Cs and
K2; that is to say, V (C∗

s ) = {xi,j | 1 6 i 6 s, 1 6 j 6 2} and E(C∗
s ) = {xi,jxi+1,h, xi,1xi,2 |

1 6 i 6 s, 1 6 j, h 6 2}, where first indices of the letter x are to be read modulo s. Then
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C∗
s is 3-connected and {Kn, K1,3}-free. Hence there exists s > 4 such that C∗

s contains
T as an induced subgraph. Since every member of T ∗

1 contained in C∗
s as an induced

subgraph belongs to T ∗
2 , T ∈ T ∗

2 .
Thus we have T ∈ T ∗

1 if n = 4, and T ∈ T ∗
2 if n > 5. Hence (vi) of Theorem 1.1 holds.

This completes the proof of Theorem 1.1.

3 K3,m-free graphs

In this section, we prove Theorem 1.2. We first show that both G3({K3, K3,m, Y3}) and
G3({K3, K3,m, P5}) are finite.

Proposition 3.1. Let m > 4. Then G3({K3, K3,m, Y3}) is finite.

Proof. Let G ∈ G3({K3, K3,m, Y3}). We show that |V (G)| 6 (m+ 1)3.

Claim 3.1. diam(G) 6 3.

Proof. Suppose that diam(G) > 4. Let x, y ∈ V (G) be vertices with d(x, y) = 4, and let
x0x1 · · ·x4 be a shortest x-y path in G. Since G is 3-connected, N(x2) − {x1, x3} 6= ∅.
Let z ∈ N(x2)− {x1, x3}. Since G is K3-free, zx1, zx3 6∈ E(G). Since d(x0, x4) = 4, z is
adjacent to at most one of x0 and x4. Hence {x0, x1, x2, x3, z} or {x4, x3, x2, x1, z} induces
Y3, which is a contradiction.

In view of Claim 3.1 and Lemma 1.6, it suffices to show that ∆(G) 6 m+1. Suppose
that ∆(G) > m+2. Let w ∈ V (G) be a vertex such that d(w) = ∆(G), and let x ∈ N(w).
Since G is K3-free, both N(w) and N(x) are independent. Since G is 3-connected, d(x) >
3. Take y1, y2 ∈ N(x)−{w}. If |N(w)−N(yi)| > 2 for i = 1 or 2, say a, b ∈ N(w)−N(yi),
then {yi, x, w, a, b} induces Y3, a contradiction. Thus |N(yi) ∩ N(w)| > d(w) − 1 for
each i = 1, 2. Consequently |N(w) ∩ N(y1) ∩ N(y2)| > d(w) − 2 > m, which implies
that G[{w, y1, y2} ∪ (N(w) ∩ N(y1) ∩ N(y2))] contains K3,m as an induced subgraph, a
contradiction.

Proposition 3.2. Let m > 4. Then G3({K3, K3,m, P5}) is finite.

Proof. Let G ∈ G3({K3, K3,m, P5}). We show that |V (G)| 6 (4m − 1)3. Since G is P5-
free, diam(G) 6 3. Thus in view of Lemma 1.6, it suffices to show that ∆(G) 6 4m− 1.
Suppose that ∆(G) > 4m, and let w ∈ V (G) be a vertex with d(w) = ∆(G). Since G is
K3-free, N(w) is an independent set.

Claim 3.2. Let X ⊆ N(w), and let Y be a minimal subset of N2(w) such that N(Y ) ⊇ X.
Then |Y | 6 2.

Proof. Suppose that |Y | > 3. Since G is K3-free, there exist vertices y1, y2 ∈ Y such that
y1y2 6∈ E(G). By the minimality of Y , (N(yi) ∩ X) − N(y3−i) 6= ∅ for each i = 1, 2.
For i = 1, 2, let xi ∈ (N(yi) ∩ X) − N(y3−i). Then {y1, x1, w, x2, y2} induces P5, a
contradiction.

Since G is 3-connected and N(w) is independent, N(N2(w)) ⊇ N(w). Let Y be
a minimal subset of N2(w) such that N(Y ) ⊇ N(w). Then |Y | 6 2 by Claim 3.2.
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Hence there exists y ∈ Y such that |N(w) ∩ N(y)| > d(w)/2 > 2m. Since G is 3-
connected and N(w) is independent, N(N2(w) − {y}) ⊇ N(w) ∩ N(y). Let Y ∗ be a
minimal subset of N2(w) − {y} such that N(Y ∗) ⊇ N(w) ∩ N(y) (see Figure 3). Then
|Y ∗| 6 2 by Claim 3.2. Hence there exists y′ ∈ Y ∗ such that |N(w)∩N(y)∩N(y′)| > m.
Since N(y) ∩ N(y′) 6= ∅, we have yy′ 6∈ E(G) by the assumption that G is K3-free.
Consequently G[{w, y, y′}∪(N(w)∩N(y)∩N(y′))] contains K3,m as an induced subgraph,
a contradiction.

N2(w)

N(w)

w

y Y ∗

Figure 3: Vertex y and set Y ∗

Proof of Theorem 1.2. The ‘if’ part follows from Propositions 3.1 and 3.2. Thus it suffices
to prove the ‘only if’ part. Suppose that G3({K3, K3,m, T}) is finite. From Theorem 1.1,
it follows that T ∈ T2. For each s > 2, let Hs be the graph defined by V (Hs) = {xi,j |
1 6 i, j 6 2} ∪ {yi,j | 1 6 i 6 2, 1 6 j 6 s} and E(Hs) = {x1,jx2,h | 1 6 j, h 6

2} ∪ {xi,jyi,h | 1 6 i, j 6 2, 1 6 h 6 s} ∪ {y1,jy2,j | 1 6 j 6 s}. Then Hs is 3-connected
and {K3, K3,m}-free since m > 4. Since G3({K3, K3,m, T}) is finite, there exists s > 2
such that Hs contains T as an induced subgraph. By inspection, we see that if F is a
member of T2 contained in Hs as an induced subgraph, then F is a path of order 4 or 5
or F = Y3. Hence T is a path of order 4 or 5 or T = Y3.

4 {K4, K2,m}-free graphs

In this section, we prove Theorem 1.3.

Proposition 4.1. Let m > 3. Then G3({K4, K2,m, P5}) is finite.

Proof. By part (i) of Theorem B, there exists a positive integer t = t(m) such that every 2-
connected {K3, K2,m, P5}-free graph has order at most t. Let G ∈ G3({K4, K2,m, P5}). We
show that |V (G)| 6 (3(3m−1)t/2)3. Note that diam(G) 6 3. Thus in view of Lemma 1.6,
it suffices to show that ∆(G) 6 3(3m− 1)t/2. Suppose that ∆(G) > 3(3m− 1)t/2, and
let w ∈ V (G) be a vertex with d(w) = ∆(G). Since G is {K4, K2,m, P5}-free, G[N(w)] is
{K3, K2,m, P5}-free.

Let F be a component of G[N(w)]. If F has two or more blocks which are not
endblocks, then F contains P5 as an induced subgraph, a contradiction. Thus F has at
most one block which is not an endblock, which implies that at least two thirds of the
blocks of F are endblocks. Since F is arbitrary, it follows that at least two thirds of
the blocks of G[N(w)] are endblocks. Now suppose that G[N(w)] has at most 3m − 1
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endblocks. Then G[N(w)] has at most 3(3m− 1)/2 blocks. Since d(w) > 3(3m− 1)t/2,
it follows that there exists a block B of G[N(w)] with |V (B)| > t. Since G[N(w)] is
{K3, K2,m, P5}-free, this contradicts the definition of t. Thus G[N(w)] has at least 3m
endblocks. Let B1, . . . , B3m be endblocks of G[N(w)]. Since G is 3-connected, we see that
for each 1 6 i 6 3m, there exists an internal vertex xi of Bi such that N(xi) ∩ (V (G) −
({w} ∪ N(w))) 6= ∅ (see Figure 4). Set X = {x1, . . . , x3m}. Then X is an independent
set of G, and we have N(N2(w)) ⊇ X . Let Y be a minimal subset of N2(w) such that
N(Y ) ⊇ X . If |Y | 6 3, then there exists y ∈ Y such that |N(y) ∩ X| > m, and hence
G[{w, y} ∪ (N(y) ∩ X)] contains K2,m as an induced subgraph, a contradiction. Thus
|Y | > 4. Since G is K4-free, there exist vertices y1, y2 ∈ Y such that y1y2 6∈ E(G). By
the minimality of Y , (N(yi) ∩ X) − N(y3−i) 6= ∅ for each i = 1, 2. For i = 1, 2, let
x′
i ∈ (N(yi) ∩X)−N(y3−i). Then {y1, x

′
1, w, x

′
2, y2} induces P5, a contradiction.

x1 x2 x3

B1 B2 B3

N2(w)

N(w)

w

Figure 4: Endblocks Bi and vertices xi

Proof of Theorem 1.3. The ‘if’ part follows from Proposition 4.1. Thus it suffices to prove
the ‘only if’ part. Suppose that G3({K4, K2,m, T}) is finite. From Theorem 1.1, it follows
that T is a path. For each s > 2, let Hs be the graph defined by V (Hs) = {xi, yi,j | 1 6 i 6
3, 1 6 j 6 s} and E(Hs) = {xixj , yi,hyj,h | i 6= j, 1 6 h 6 s} ∪ {xiyj,h | i 6= j, 1 6 h 6 s}
(see Figure 5). Then Hs is 3-connected and {K4, K2,m}-free. Hence there exists s > 2
such that Hs contains T as an induced subgraph. Since every induced path of Hs has
order at most 5, T has order at most 5. Since T 6= K1,2 by assumption, it follows that T
is a path of order 4 or 5.

x1 x2 x3

y1,1 y2,1 y3,1 y1,2 y2,2 y3,2 y1,s y2,s y3,s

Figure 5: Graph Hs
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5 K1,m-free graphs

In this section, we prove Theorem 1.5. We first prove a lemma, which we also use in
Section 6.

Lemma 5.1. Let n > 3, and let G be a 3-connected {K3, Y
∗
n }-free graph. If n = 3,

let t(n) = 7; if n > 4, let t(n) = 3n + 10. Then diam(G) 6 t(n). In particular,
diam(G) 6 3n+ 10.

Proof. Let t = t(n), and suppose that diam(G) > t+ 1. Let x, y ∈ V (G) be vertices such
that d(x, y) = t + 1, and let P = x0x1 · · ·xt+1 be a shortest x-y path in G. Since G is
3-connected, N(xi)− {xi−1, xi+1} 6= ∅ for each 1 6 i 6 t. Let x′

i ∈ N(xi)− {xi−1, xi+1}.

Case 1: n = 3
We first show that N(x3) ∩ N(x5) = {x4}. By way of contradiction, suppose that

|N(x3) ∩N(x5)| > 2. Then we may assume we have chosen x′
3 and x′

5 so that x′
3 = x′

5 ∈
(N(x3) ∩ N(x5)) − {x4}. Since d(x0, x8) = 8 and G is K3-free, we get N(x′

3) ∩ V (P ) =
{x3, x5}, N(x′

1) ∩ V (P ) ⊆ {x1, x3}, N(x′
7) ∩ V (P ) ⊆ {x5, x7}, and x′

1x
′
3, x

′
3x

′
7 6∈ E(G).

Since neither {x0, x
′
1, x1, x2, x3, x4, x

′
3} nor {x4, x

′
3, x5, x6, x7, x8, x

′
7} induces Y ∗

3 , this forces
N(x′

1)∩V (P ) = {x1, x3} and N(x′
7)∩V (P ) = {x5, x7}. But then {x2, x

′
1, x3, x4, x5, x6, x

′
7}

induces Y ∗
3 , a contradiction. Thus N(x3) ∩N(x5) = {x4}.

Choose z ∈ N(x3) − {x2, x4}. Since {x2, z, x3, x4, x5, x6, x
′
5} does not induce Y ∗

3 and
N(x3)∩N(x5) = {x4}, we get zx

′
5 ∈ E(G). Since d(x1, x5) = 4, it follows that x1z 6∈ E(G).

Since z ∈ N(x3)− {x2, x4} is arbitrary, this implies N(x1) ∩N(x3) = {x2}; in particular,
x′
1x3 6∈ E(G). Letting z = x′

3, we also get x′
3x

′
5 ∈ E(G) and x1x

′
3 6∈ E(G). Since

{x0, x
′
1, x1, x2, x3, x4, x

′
3} does not induce Y ∗

3 , we now obtain x′
1x

′
3 ∈ E(G). Similarly,

x′
7x

′
5 ∈ E(G). But then x0x1x

′
1x

′
3x

′
5x

′
7x7x8 is an x0-x8 path of length 7, which contradicts

the fact that d(x0, x8) = 8.

Case 2: n > 4

Claim 5.1. For 0 6 i 6 t− n− 1, if |N(xi) ∩N(xi+2)| > 2, then x′
i+n+1xi+n−1 ∈ E(G).

For n 6 i 6 t− 1, if |N(xi) ∩N(xi+2)| > 2, then x′
i−n+1xi−n+3 ∈ E(G).

Proof. Let 0 6 i 6 t− n − 1, and assume that |N(xi) ∩ N(xi+2)| > 2. Let u ∈ (N(xi) ∩
N(xi+2)) − {xi+1}. Since d(x0, xt+1) = t + 1 and G is K3-free, we have N(u) ∩ V (P ) =
{xi, xi+2}, N(x′

i+n+1)∩{x0, x1, . . . , xi+n+2} ⊆ {xi+n−1, xi+n+1} and ux′
i+n+1 6∈ E(G). Since

{xi+1, u, xi+2, . . . , xi+n+1, xi+n+2, x
′
i+n+1} does not induce Y ∗

n , this implies x′
i+n+1xi+n−1 ∈

E(G). Thus the first assertion is proved. We can similarly verify the second assertion.

Claim 5.2. There is no integer i with n 6 i 6 t− n− 2 such that |N(xi) ∩N(xi+2)| > 2
and |N(xi+1) ∩N(xi+3)| > 2.

Proof. Suppose that there exists an integer i with n 6 i 6 t− n − 2 such that |N(xi) ∩
N(xi+2)| > 2 and |N(xi+1)∩N(xi+3)| > 2. Then by Claim 5.1, x′

i−n+1xi−n+3, x
′
i+n+2xi+n ∈

E(G). This implies |N(xi−n+1) ∩ N(xi−n+3)| > 2 and |N(xi+n) ∩ N(xi+n+2)| > 2. Let
Q be the set of xi-xi+3 paths of order 4, and let X = (

⋃
Q∈Q V (Q)) − {xi, xi+3}. Since
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G − {xi, xi+3} is connected and V (G) − (X ∪ {xi, xi+3}) 6= ∅, there exists z ∈ X such
that N(z)− (X ∪ {xi, xi+3}) 6= ∅. By the definition of X , z is adjacent to xi or xi+3. By
symmetry, we may assume zxi ∈ E(G). Then there exists z′ ∈ X such that xizz

′xi+3 is
an xi-xi+3 path. Now take w ∈ N(z)− (X ∪{xi, xi+3}). Since |N(xi+n)∩N(xi+n+2)| > 2,
we obtain wxi+3 ∈ E(G) by applying the second assertion of Claim 5.1 to the path
x0x1 · · ·xizz

′xi+3xi+4 · · ·xt+1. But then xizwxi+3 ∈ Q, which contradicts the fact that
w 6∈ X .

Claim 5.3. For n + 2 6 i 6 t− 2n, we have x′
i−1x

′
i+n−2 ∈ E(G) or x′

ix
′
i+n−1 ∈ E(G) or

x′
i+1x

′
i+n ∈ E(G).

Proof. Suppose that x′
ix

′
i+n−1 6∈ E(G). Since {xi−1, x

′
i, xi, . . . , xi+n−1, xi+n, x

′
i+n−1} does

not induce Y ∗
n , x

′
ixi+2 ∈ E(G) or x′

i+n−1xi+n−3 ∈ E(G). First assume that x′
ixi+2 ∈ E(G).

Since 0 6 i 6 t−n−1, we have x′
i+n+1xi+n−1 ∈ E(G) by Claim 5.1. Since n 6 i 6 t−n−2

and n 6 i + n − 2 6 t − n − 2, x′
i+1xi+3, x

′
i+nxi+n−2 6∈ E(G) by Claim 5.2. Since

{xi, x
′
i+1, xi+1, . . . , xi+n, xi+n+1, x

′
i+n} does not induce Y ∗

n and G is K3-free, it follows that
x′
i+1x

′
i+n ∈ E(G), as desired. Next assume that x′

i+n−1xi+n−3 ∈ E(G). Arguing as above,
we get x′

i−2xi ∈ E(G) by Claim 5.1, and x′
i−1xi+1, x

′
i+n−2xi+n−4 6∈ E(G) by Claim 5.2.

Since {xi−2, x
′
i−1, xi−1, . . . , xi+n−2, xi+n−1, x

′
i+n−2} does not induce Y ∗

n and G is K3-free, it
follows that x′

i−1x
′
i+n−2 ∈ E(G), as desired.

Let j = n + 2. Since t > 3n + 10, we have n + 2 6 j 6 t − 2n. Hence it follows
from Claim 5.3 that x′

j−1x
′
j+n−2 ∈ E(G) or x′

jx
′
j+n−1 ∈ E(G) or x′

j+1x
′
j+n ∈ E(G). Since

d(xj−1, xj+n−2) = d(xj , xj+n−1) = d(xj+1, xj+n) = n − 1, this forces n = 4, and hence
t = 22 and j = 6. In particular, x′

5x
′
8 ∈ E(G) or x′

6x
′
9 ∈ E(G) or x′

7x
′
10 ∈ E(G). Let

s ∈ {5, 6, 7} be an integer such that x′
sx

′
s+3 ∈ E(G).

Claim 5.4. For 4 6 i 6 11, if x′
ix

′
i+3 ∈ E(G), then x′

i+2x
′
i+5 ∈ E(G).

Proof. If x′
i+3x

′
i+6 ∈ E(G), then xix

′
ix

′
i+3x

′
i+6xi+6 is a path, which contradicts the fact

that d(xi, xi+6) = 6. Thus x′
i+3x

′
i+6 6∈ E(G). Suppose that x′

i+2x
′
i+5 6∈ E(G). Then

x′
i+2x

′
i+5, x

′
i+3x

′
i+6 6∈ E(G). Since n + 2 = 6 6 i + 2 < i + 3 6 14 = t − 2n, this

together with Claim 5.3 implies x′
i+1x

′
i+4 ∈ E(G) and x′

i+4x
′
i+7 ∈ E(G). It now follows

that xi+1x
′
i+1x

′
i+4x

′
i+7xi+7 is a path, which contradicts the fact that d(xi+1, xi+7) = 6.

Recall that x′
sx

′
s+3 ∈ E(G). Since 4 < s < s + 2 < s + 4 6 11, by repetitively apply-

ing Claim 5.4, we obtain x′
s+2x

′
s+5, x

′
s+4x

′
s+7, x

′
s+6x

′
s+9 ∈ E(G). Since x′

sx
′
s+3, x

′
s+6x

′
s+9 ∈

E(G) and d(xs, xs+9) = 9, we get N(x′
s+3) ∩ {xs+5, xs+6, xs+7, x

′
s+6} = ∅ and N(x′

s+6) ∩
{xs+2, x

′
s+3, xs+3, xs+4} = ∅. SinceG isK3-free, it follows that {xs+2, x

′
s+3, xs+3, xs+4, xs+5,

xs+6, xs+7, x
′
s+6} induces Y ∗

4 , which is a contradiction.
This completes the proof of Lemma 5.1.

Proof of Theorem 1.5. Let n > 3, and let G ∈ G3({K3, K1,m, Y
∗
n }). Then by Lemma 5.1,

diam(G) 6 3n + 10. Since G is {K3, K1,m}-free, we also have ∆(G) 6 m − 1. Hence
|V (G)| 6 (m− 1)3n+10 by Lemma 1.6. Thus G3({K3, K1,m, Y

∗
n }) is finite. Since n > 3 is

arbitrary, this proves the ‘if’ part. The ‘only if’ part follows from Theorem 1.1.
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6 {K3, K2,m}-free graphs

In this section, we prove Theorem 1.4. We first prove several lemmas.

Lemma 6.1. Let m > 2, and let G be a {K3, K2,m}-free graph. Let H be a connected
induced subgraph of G with order n > 2 and let x ∈ V (H), and suppose that dG(x) >

(m− 1)(n− 2) + t+ 1. Then G contains as an induced subgraph the graph obtained from
H by adding t pendant edges to x.

Proof. Since G is K3-free, NG(x)− V (H) is independent and no vertex in NG(x)− V (H)
is adjacent to a vertex in NG(x) ∩ V (H). Since G is K2,m-free, we see that for each
x′ ∈ V (H) − ({x} ∪ NG(x)), x

′ is adjacent to at most m − 1 vertices in NG(x) − V (H).
Set Y = NG(x) ∩ ((

⋃
x′∈V (H)−{x} NG(x

′)) ∪ V (H)). It follows that |Y | 6 (m− 1)(n− 1−

dH(x))+dH(x) 6 (m−1)(n−2)+1. Hence |NG(x)−Y | > t. Now if we let Z be a subset
of NG(x)− Y with |Z| = t, then V (H) ∪ Z induces the desired graph.

Lemma 6.2. Let m > 2, and let G be a {K3, K2,m}-free graph. Let P be an induced
path of G with order n > 2, and suppose that both endvertices of P have degree at least
(m− 1)(n− 1) + 2. Then G contains Pn+2 as an induced subgraph.

Proof. Applying Lemma 6.1 to one of the endvertices of P with H = P , we get an induced
path P ′ of order n+1 and, applying Lemma 6.1 to the other endvertices of P with H = P ′,
we obtain a path of the type desired.

Similarly, we obtain the following lemma.

Lemma 6.3. Let m > 2, and let G be a {K3, K2,m}-free graph, and let P be an induced
path of G with order n > 2, and suppose that both endvertices of P have degree at least
(m− 1)n+ 3. Then G contains Y ∗

n as an induced subgraph.

Proposition 6.4. Let m > 5. Then G3({K3, K2,m, Y
∗
3 }) is finite.

Proof. Let G ∈ G3({K3, K2,m, Y
∗
3 }). We show that |V (G)| 6 ((6m−3)(3m−2)(m−2)+1)7.

By Lemma 5.1, diam(G) 6 7. Thus it suffices to show that ∆(G) 6 (6m−3)(3m−2)(m−
2)+1. Suppose that ∆(G) > (6m−3)(3m−2)(m−2)+2, and let w ∈ V (G) be a vertex
with d(w) = ∆(G). Since G is K3-free, N(w) is independent. In particular, for any two
vertices x, x′ in N(w), {x, w, x′} induces P3. Choose a ∈ N(w) so that d(a) > d(x) for all
x ∈ N(w). If two vertices in N(w) have degree at least 3m, then by Lemma 6.3, G contains
Y ∗
3 as an induced subgraph, a contradiction. Thus all vertex in N(w)− {a} have degree

at most 3m − 1. Let B ⊆ N(w) − {a} be a maximal set such that N(b) ∩ N(b′) = {w}
for any b, b′ ∈ B with b 6= b′.

Suppose that |B| 6 6m − 3. Since B ⊆ N(w) − {a}, |(
⋃

b∈B N(b)) − {w}| 6 (6m −
3)(3m−2). Since G is K2,m-free and (

⋃
b∈B N(b))−{w} ⊆ N2(w), |N(y)∩N(w)| 6 m−1

for all y ∈ (
⋃

b∈B N(b))−{w}. Hence |{x ∈ N(w) | N(x)∩ ((
⋃

b∈B N(b))−{w}) 6= ∅}| 6
(6m−3)(3m−2)(m−1). Since |N(w)−{a}| > (6m−3)(3m−2)(m−1)+1, there exists
b∗ ∈ N(w)−{a} such that (N(b∗)∩ (

⋃
b∈B N(b)))−{w} = ∅. Then B ∪{b∗} satisfies the

condition that N(b) ∩N(b′) = {w} for any b, b′ ∈ B ∪ {b∗} with b 6= b′, which contradicts
the maximality of B. Thus |B| > 6m− 2.
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Since G is 3-connected, |N(b)−{w}| > 2 for every b ∈ B. For each b ∈ B, let vb, ub ∈
N(b)−{w}. Fix a vertex b0 ∈ B. For each b ∈ B−{b0}, we have E({vb0 , ub0}, {vb, ub}) 6= ∅

because {vb0 , ub0, b0, w, b, vb, ub} does not induce Y
∗
3 . Since |B−{b0}| > 6m−3, this implies

that vb0 or ub0 is adjacent to at least 3m− 1 vertices in {vb, ub | b ∈ B − {b0}}. We may
assume |N(vb0) ∩ {vb, ub | b ∈ B − {b0}}| > 3m− 1. Then d(vb0) > 3m. Since d(w) > 3m
and wb0vb0 is an induced path of G of order 3, G contains Y ∗

3 as an induced subgraph by
Lemma 6.3, a contradiction.

This completes the proof of Proposition 6.4.
Before proving the finiteness of G3({K3, K2,m, P7}), we state an important part of the

proof as a separate lemma.

Lemma 6.5. Let m > 5, and let G ∈ G3({K3, K2,m, P7}). Then there exist no vertices
a, b ∈ V (G) such that d(a, b) = 2, d(a) > 2(m− 1)7 and d(b) > 2(m− 1)7.

Proof. Suppose that there exist two vertices a, b ∈ V (G) such that d(a, b) = 2, d(a) >

2(m− 1)7 and d(b) > 2(m− 1)7. Since d(a, b) = 2, ab 6∈ E(G). Let w ∈ N(a)∩N(b), and
let A = N(a) − N(b) and B = N(b) − N(a). Since G is K3-free, N(w), N(a) and N(b)
are independent sets, and hence N(a)− {w}, N(b)− {w} ⊆ N2(w). Since G is K2,m-free,
|N(a)∩N(b)| 6 m− 1, and hence |A| > 2(m− 1)7−m+1 and |B| > 2(m− 1)7−m+1.
Since G is 3-connected, G−w is 2-connected. Let k be the maximum order of an induced
a-b path in G− w.

We consider three cases according to the value of k.

Case 1: k = 3
Note that it follows from the assumption of this case that N(a)∪N(b) is independent.

Since G − w is 2-connected, it also follows that |(N(a) ∩ N(b)) − {w}| > 2. Let c1, c2 ∈
(N(a) ∩N(b))− {w} with c1 6= c2.

Note that we have N(x)∩ (N(a)∪N(b)) = ∅ for each x ∈ A∪B because N(a)∪N(b)
is independent. Let A0 = {x ∈ A | N(x) ⊆ N(w)} and A1 = A − A0. For each x ∈ A,
we define ux ∈ N(x) as follows: if x ∈ A0, let ux ∈ N(x) − {a}; if x ∈ A1, let ux ∈
N(x) − N(w). For A′ ⊆ A, let UA′ = {ux | x ∈ A′}. Let B0 = {y ∈ B | N(y) ⊆ N(w)}
and B1 = B − B0. For each y ∈ B, we define vy ∈ N(y) as follows: if y ∈ B0, let
vy ∈ N(y)− {b}; if y ∈ B1, let vy ∈ N(y)−N(w). For B′ ⊆ B, let VB′ = {vy | y ∈ B′}.

Claim 6.1. For A′ ⊆ A, |UA′ | > |A′|/(m− 1). For B′ ⊆ B, |VB′ | > |B′|/(m− 1).

Proof. Let A′ ⊆ A. Suppose that |UA′ | < |A′|/(m − 1). Then there exists u ∈ UA′ such
that u = ux for some m vertices x in A′. Hence G[{a, u} ∪ (N(a) ∩N(u))] contains K2,m

as an induced subgraph, a contradiction. Thus |UA′ | > |A′|/(m − 1). Similarly, we get
|VB′ | > |B′|/(m− 1) for B′ ⊆ B.

We consider two subcases.

Subcase 1.1: A1 = ∅ or B1 = ∅

We may assume that A1 = ∅. By Claim 6.1 and the fact that |A0| = |A| > 2(m −
1)7 − m + 1 > (m − 1)2, |UA0

| > m. Since |B| > 2(m − 1)7 − m + 1 > (m − 1)2,
|VB| > m by Claim 6.1. Since G is K3-free, it follows that if both c1 and c2 are adjacent
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to all vertices in VB, then G[{c1, c2} ∪ VB] contains K2,m as an induced subgraph, a
contradiction. Thus chvy 6∈ E(G) for some h ∈ {1, 2} and some y ∈ B. Then since
vy 6∈ N(a) ∪N(b), achbyvy is an induced path. Note that UA0

⊆ N(w). Since G is K2,m-
free, |N(ch)∩UA0

| 6 |N(ch)∩N(w)| 6 m− 1. Since |UA0
| > m, there exists x ∈ A0 such

that uxch 6∈ E(G). Then uxxachb is an induced path. Since N(a) ∪N(b) is independent,
xy 6∈ E(G). Since k = 3, we also have uxy, xvy, uxvy 6∈ E(G). Consequently the path
uxxachbyvy is an induced path of order 7, a contradiction.

Subcase 1.2: A1 6= ∅ and B1 6= ∅

Let x ∈ A1 and y ∈ B1. Then since ux, vy 6∈ N(a)∪N(b)∪N(w) and k = 3, uxxawbyvy
is an induced path of order 7, a contradiction.

Case 2: k = 4
Let H1, . . . , Hp be the components of G[A ∪ B]. Let 1 6 i 6 p. Suppose that there

exists x ∈ V (Hi) such that dHi
(x) > m. We may assume that x ∈ A. Then NHi

(x) ⊆ B,
which implies that G[{b}∪V (Hi)] contains K2,m as an induced subgraph, a contradiction.
Thus ∆(Hi) 6 m − 1. Since Hi is P7-free, we also have diam(Hi) 6 5. Consequently
|V (Hi)| 6 (m− 1)5 for each 1 6 i 6 p. Since |A ∪ B| > 2(2(m− 1)7 −m+ 1), it follows
that p > 2(2(m− 1)7 −m + 1)/(m− 1)5 > 3(m − 1)2 + 2. Since k = 4, |V (Hi)| > 2 for
some i. We may assume that |V (H1)| > 2. Let a1b1 ∈ E(H1) with a1 ∈ A and b1 ∈ B.

Note that each vertex in N(a) ∩ N(b) is an isolated vertex in G[N(a) ∪ N(b)]. Since
G − {a, b} is connected, this implies that for each 2 6 i 6 p, there exists xi ∈ V (Hi)
such that N(xi) − ({a, b} ∪ N(a) ∪ N(b)) 6= ∅. Let X = {xi | 2 6 i 6 p}. Let
A0 = {x ∈ A∩X | N(x)−({a, b}∪N(a)∪N(b)) ⊆ N(w)} and A1 = (A∩X)−A0. For each
x ∈ A∩X , we define ux ∈ N(x) as follows: if x ∈ A0, let ux ∈ N(x)−({a, b}∪N(a)∪N(b));
if x ∈ A1, let ux ∈ N(x) − ({a, b} ∪ N(a) ∪ N(b)) − N(w). For A′ ⊆ A ∩ X , let
UA′ = {ux | x ∈ A′}. Let B0 = {y ∈ B ∩X | N(y)− ({a, b} ∪N(a) ∪N(b)) ⊆ N(w)} and
B1 = (B ∩X)− B0. For each y ∈ B ∩X , we define vy ∈ N(y) as follows: if y ∈ B0, let
vy ∈ N(y)−({a, b}∪N(a)∪N(b)); if y ∈ B1, let vy ∈ N(y)−({a, b}∪N(a)∪N(b))−N(w).
For B′ ⊆ B∩X , let VB′ = {vy | y ∈ B′}. Note that |A0|+ |A1|+ |B0|+ |B1| = |X| = p−1.
Arguing as in the proof of Claim 6.1, we obtain the following claim.

Claim 6.2. For A′ ⊆ A∩X, |UA′| > |A′|/(m−1). For B′ ⊆ B∩X, |VB′ | > |B′|/(m−1).

Here we consider the following three subcases:
(1) |A0| > (m− 1)2 or |B0| > (m− 1)2;
(2) |A0| 6 (m− 1)2 and |B0| 6 (m− 1)2 and, moreover, we have A1 6= ∅ and B1 6= ∅;
(3) |A0| 6 (m− 1)2 and |B0| 6 (m− 1)2, but we have A1 = ∅ or B1 = ∅.

Subcase 2.1: |A0| > (m− 1)2 or |B0| > (m− 1)2

We may assume that |A0| > (m − 1)2. By Claim 6.2, |UA0
| > m. Note that UA0

⊆
N(w). Since G is K2,m-free, |N(a1)∩UA0

| 6 m− 1. Since |UA0
| > m, there exists x ∈ A0

such that uxa1 6∈ E(G). We may assume that x = x2. Since x2 and b1 belong to distinct
components of G[A ∪ B], x2b1 6∈ E(G). Since |B| > 2(m − 1)7 − m + 1 > 2(m − 1)5 >

|V (H1)| + |V (H2)|, B − (V (H1) ∪ V (H2)) 6= ∅. Let y ∈ B − (V (H1) ∪ V (H2)). Then
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ya1, yx2 6∈ E(G). Since k = 4, we also have ux2
b1, ux2

y 6∈ E(G). Since ux2
6∈ N(a)∪N(b),

we now see that the path ux2
x2aa1b1by is an induced path of order 7, a contradiction.

Subcase 2.2: |A0| 6 (m− 1)2 and |B0| 6 (m− 1)2 and, moreover, we have A1 6= ∅ and
B1 6= ∅

Let x ∈ A1 and y ∈ B1. By the definition of X , x and y belong to distinct components
of G[A ∪ B], and hence xy 6∈ E(G). Since ux, vy 6∈ N(a) ∪ N(b) ∪ N(w) and k = 4, it
follows that the path uxxawbyvy is an induced path of order 7, a contradiction.

Subcase 2.3: |A0| 6 (m− 1)2 and |B0| 6 (m− 1)2, but we have A1 = ∅ or B1 = ∅

We may assume that A1 = ∅. Then 3(m − 1)2 + 1 < p − 1 = |A0| + |B0| + |B1| 6
|B1| + 2(m − 1)2, and hence |B1| > (m − 1)2 + 1. On the other hand, since |A| >

2(m−1)7−m+1 > (m−1)2(m−1)5 > |A0|(m−1)5 = |A0∪A1|(m−1)5 = |A∩X|(m−1)5

and since |V (Hi)| 6 (m− 1)5 for each 2 6 i 6 p, there exists i with 2 6 i 6 p such that
V (Hi) ∩ A 6= ∅ and xi 6∈ A. We may assume that V (H2) ∩ A 6= ∅ and x2 6∈ A. Then
x2 ∈ B, which implies |V (H2)| > 2. Let a2b2 ∈ E(H2) with a2 ∈ A and b2 ∈ B. Now since
|B1−{x2}| > (m− 1)2, |VB1−{x2}| > m by Claim 6.2. Since G is K3-free, it follows that if
both b1 and b2 are adjacent to all vertices in VB1−{x2}, then G[{b1, b2}∪VB1−{x2}] contains
K2,m as an induced subgraph, a contradiction. Thus bhvy 6∈ E(G) for some h ∈ {1, 2}
and some y ∈ B1 − {x2}. We may assume that y = x3. Since |A| > 2(m− 1)7 −m+ 1 >
3(m − 1)5 > |V (H1)| + |V (H2)| + |V (H3)|, A − (V (H1) ∪ V (H2) ∪ V (H3)) 6= ∅. Let
x ∈ A − (V (H1) ∪ V (H2) ∪ V (H3)). Since vx3

6∈ N(a) ∪ N(b) and k = 4, the path
xaahbhbx3vx3

is an induced path of order 7, a contradiction.

Case 3: k > 5
If k = 5, then by Lemma 6.2 and the assumption that d(a) > 2(m − 1)7 > 4(m −

1) + 2 and d(b) > 2(m − 1)7 > 4(m − 1) + 2, G contains P7 as an induced subgraph, a
contradiction; if k > 6, then by Lemma 6.1 and the assumption that d(a) > 2(m− 1)7 >
4(m− 1) + 2, G contains P7 as an induced subgraph, a contradiction.

This completes the proof of Lemma 6.5.

Proposition 6.6. Let m > 5. Then G3({K3, K2,m, P7}) is finite.

Proof. Let G ∈ G3({K3, K2,m, P7}). We show that |V (G)| 6 (4(m− 1)7(2(m− 1)7 +m−
2)5)5. Since diam(G) 6 5, it suffices to show that ∆(G) 6 4(m−1)7(2(m−1)7+m−2)5.
Suppose that ∆(G) > 4(m− 1)7(2(m− 1)7 +m− 2)5 + 1, and let w ∈ V (G) be a vertex
with d(w) = ∆(G). Since G is K3-free, N(w) is independent. Let L = {x ∈ V (G) |
|N(x) ∩N2(w)| > 2(m− 1)7}. By Lemma 6.5, |L ∩N(w)| 6 1 and L ∩N2(w) = ∅.

Case 1: |L| > 2 and |L ∩N(w)| = 1
Let a ∈ L ∩ N(w) and b ∈ L − N(w). Since b 6∈ N(w) ∪ N2(w), we have b ∈ N3(w),

and hence ab 6∈ E(G). By Lemma 6.5, N(a) ∩ N(b) = ∅. Let y ∈ N(b) ∩ N2(w) and
v ∈ N(y) ∩ N(w). Since ab 6∈ E(G), N(a) ∩ N(b) = ∅, and N(w) is independent, it
follows that the path awvyb is an induced path of order 5. Hence by Lemma 6.2 and the
assumption that d(a) > 2(m− 1)7 > 4(m− 1) + 2 and d(b) > 2(m− 1)7 > 4(m− 1) + 2,
G contains P7 as an induced subgraph, a contradiction.
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Case 2: |L| > 2 and L ∩N(w) = ∅

Let a, b ∈ L with a 6= b. Then a, b ∈ N3(w). If ab ∈ E(G), then N(a) ∩ N(b) = ∅

by the assumption that G is K3-free and, if ab 6∈ E(G), then N(a) ∩ N(b) = ∅ by
Lemma 6.5. Hence in either case, we have N(a) ∩ N(b) = ∅. Let A = N(a) ∩ N2(w)
and B = N(b) ∩ N2(w). Let y ∈ B and v ∈ N(y) ∩ N(w). Since G is K2,m-free,
|N(y) ∩ N(w)| 6 m − 1. Since G is K2,m-free, it follows that |((

⋃
u∈N(y)∩N(w) N(u)) ∪

N(y))∩A| 6 (|N(y)∩N(w)|+1)(m−1) 6 m(m−1). Since |A| > 2(m−1)7 > m(m−1)+1,
A−((

⋃
u∈N(y)∩N(w) N(u))∪N(y)) 6= ∅. Take x ∈ A−((

⋃
u∈N(y)∩N(w) N(u))∪N(y)). Since

v ∈ N(y)∩N(w), we have xv, xy 6∈ E(G). Take u ∈ N(x)∩N(w). By the choice of x, u 6∈
N(y) ∩N(w), and hence uy 6∈ E(G). Consequently the path xuwvyb is an induced path
of order 6. Now by Lemma 6.1 and the assumption that d(b) > 2(m−1)7 > 4(m−1)+2,
G contains P7 as an induced subgraph, a contradiction.

Case 3: |L| 6 1
Let H1, . . . , Hp be the components of G[(N(w) ∪ N2(w)) − L]. Let 1 6 i 6 p. Take

x ∈ V (Hi). Since G is {K3, K2,m}-free, |N(x) ∩ N(w)| 6 m − 1. Since x 6∈ L, we also
have |N(x)∩N2(w)| 6 2(m− 1)7− 1. Hence dHi

(x) 6 |N(x)∩N(w)|+ |N(x)∩N2(w)| 6
2(m− 1)7 +m− 2. Since x ∈ V (Hi) is arbitrary, ∆(Hi) 6 2(m− 1)7 +m− 2. Since Hi

is P7-free, we also have diam(Hi) 6 5. Thus |V (Hi)| 6 (2(m − 1)7 + m − 2)5 for each
1 6 i 6 p. We have V (Hi)∩N2(w) 6= ∅ for each 1 6 i 6 p because N(w) is independent.
Let q = |{i | V (Hi) ∩ N(w) 6= ∅}|. (Note that in the case where ∅ 6= L ⊆ N(w),
it is possible that V (Hi) ∩ N(w) = ∅ for some i.) Without loss of generality, we may
assume that V (Hi) ∩ N(w) 6= ∅ for each 1 6 i 6 q and V (Hi) ∩ N(w) = ∅ for each
q + 1 6 i 6 p. Since |N(w) − L| > d(w) − 1 > 4(m − 1)7(2(m − 1)7 + m − 2)5,
we have q > |N(w) − L|/(2(m − 1)7 + m − 2)5 > 4(m − 1)7. Since G is 3-connected,
G− ({w} ∪ L) is connected. Let P be a shortest V (H1)-((N(w) ∪N2(w))− L− V (H1))
path in G − ({w} ∪ L). Then |V (P )| > 3. Let y1, z1 and z2 be the first three vertices
of P . Then y1 ∈ V (H1) ∩ N2(w) and z1 ∈ N3(w). Let wx1y1 be a shortest w-y1 path
in G[V (H1) ∪ {w}]. Then wx1y1z1z2 is an induced w-z2 path of order 5. Since z1 6∈ L,
|N(z1)∩N2(w)| 6 2(m− 1)7− 1. In particular, z1 is adjacent to at most 2(m− 1)7− 1 of
the Hi, 1 6 i 6 q. If z2 6∈ N2(w), then similarly, z2 is adjacent to at most 2(m− 1)7 − 1
of the Hi, 1 6 i 6 q; if z2 ∈ N2(w), then clearly z2 is adjacent to at most one of the Hi,
1 6 i 6 q (note that it is possible that z2 belongs to Hi for some i with q + 1 6 i 6 p).
Thus z2 is adjacent to at most 2(m− 1)7 − 1 of the Hi. Since q > 4(m− 1)7, there exists
j with 2 6 j 6 q such that neither z1 nor z2 is adjacent to Hj. Since V (Hj) ∩N(w) 6= ∅

and V (Hj) ∩ N2(w) 6= ∅, there exist x2 ∈ V (Hj) ∩ N(w) and y2 ∈ V (Hj) ∩ N2(w) such
that x2y2 ∈ E(G). Then y2x2wx1y1z1z2 is an induced path of order 7, a contradiction.

This completes the proof of Proposition 6.6.

Proof of Theorem 1.4. The ‘if ’ part follows from Propositions 6.4 and 6.6. Thus it suffices
to prove the ‘only if’ part. Suppose that G3({K3, K2,m, T}) is finite. From Theorem 1.1,

it follows that T ∈ T2. For each s > 2, let H
(1)
s be the graph defined by V (H

(1)
s ) =

{x1, x2, x3} ∪ {yi,h, zi,h | 1 6 i 6 2, 1 6 h 6 s} and E(H
(1)
s ) = {x1x2} ∪ {xiyi,h, x3zi,h |

1 6 i 6 2, 1 6 h 6 s} ∪ {yi,hzj,h | 1 6 i, j 6 2, 1 6 h 6 s} (see Figure 6). Then H
(1)
s is
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3-connected and {K3, K2,m}-free. Since G3({K3, K2,m, T}) is finite, there exists s > 2 such

that H
(1)
s contains T as an induced subgraph. Since every tree contained in H

(1)
s as an

induced subgraph has diameter at most 6, diam(T ) 6 6. Now for each t > 3, let P = x1x2

be a path of order 2 and C = y1y2 · · · y2ty1 be a cycle of order 2t, and let H
(2)
t be the

graph defined by V (H
(2)
t ) = V (C)∪ V (P ) and E(H

(2)
t ) = E(C)∪E(P )∪ {x1y2i−1, x2y2i |

1 6 i 6 t} (see Figure 6). Then H
(2)
t is 3-connected and {K3, K2,m}-free. Hence there

exists t > 3 such that H
(2)
t contains T as an induced subgraph. Observe that if F is a

member of T2 contained in H
(2)
t as an induced subgraph, then F is a path or an induced

subgraph of Y ∗
3 . Therefore T is either a path of order at most 7 or an induced subgraph

of Y ∗
3 .

x1 x2

y1,1

z1,1

y2,1

z2,1

y1,2

z1,2

y2,2

z2,2

y2,s

z2,s

y1,s

z1,s

x3

x1

x2

y2t
y1

y2

y3

y4

y5 y6

H
(1)
s H

(2)
t

Figure 6: Graphs H
(1)
s and H

(2)
t

7 Concluding remarks

In this paper, we have considered three forbidden subgraphs which generate a finite set in
the class of 3-connected graphs. As we have seen in Theorem 1.1, there are six types. For
many of them, we have given a characterization. The cases which remain uncharacterized
are the following:
(a) F = {K3, K3,3, T}, where T ∈ T2;
(b) F = {K4, K2,2, T}, where T is a path of order at least 4;
(c) F = {K3, K2,4, T} and {K3, K2,3, T}, where T ∈ T1;
(d) F = {K3, K2,2, T}, where T ∈ T0;
(e) F = {K3, K1,4, T}, where T ∈ T1;
(f) F = {Kn, K1,3, T}, where n > 5 and T ∈ T ∗

2 ;
(g) F = {K4, K1,3, T}, where T ∈ T ∗

1 .
In cases (a)–(d), F does not contain a star. In these cases, we can give a bound on the
diameter of T .
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Proposition 7.1. Let F be a subset of G with |F| = 3. Suppose F does not contain a
star and G3(F) is finite. Then F contains a tree of diameter at most 8.

Proof. Since F does not contain a star, it follows from Theorem 1.1 that F can be written
in the form F = {Kn, Km1,m2

, T}, where n ∈ {3, 4}, m1 ∈ {2, 3}, m2 > m1 and T ∈ T0.

Let s > 2. Let C(i) = a
(i)
1 b

(i)
1 c

(i)
1 a

(i)
2 b

(i)
2 c

(i)
2 a

(i)
1 be a cycle of order 6 for each 1 6

i 6 s, and define a graph Hs by V (Hs) = {a0, b0, c0} ∪ (
⋃

16i6s V (C(i))) and E(Hs) =

{a0a
(i)
j , b0b

(i)
j , c0c

(i)
j | 1 6 i 6 s, 1 6 j 6 2} ∪ (

⋃
16i6sE(C(i))). Then Hs is 3-connected

and {Kn, Km1,m2
}-free. Hence there exists s > 2 such that Hs contains T as an induced

subgraph. However, Hs does not contain P10 as an induced subgraph. Therefore the
diameter of T is at most 8.

In (a)–(d), we have T ∈ T0 and hence ∆(T ) 6 3. By combining this fact and Proposi-
tion 7.1, we see that the order of T is bounded. Thus the number of triples in these cases
is finite. On the other hand, in cases (e)–(g), where the triple contains a star, Proposi-
tion 7.1 gives no further information about F . In fact, Theorem A shows that in these
cases, there exist infinitely many F such that G3(F) is finite.

We add that for (a) and (b), and for the case where F = {K3, K2,4, T} in (c), the
determination of T has recently been completed in [2].
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