Closing the gap on path-kipas Ramsey numbers

We dedicate this paper to the memory of Ralph Faudree, one of the exponents of Ramsey theory who died on January 13, 2015

Binlong Li*

Department of Mathematics
University of West Bohemia European Centre of Excellence NTIS New Technologies for the Inf. Society 30614 Pilsen, Czech Rep.
libinlong@mail.nwpu.edu.cn
Yanbo Zhang
Faculty of Electrical Engineering
University of Twente
7500 AE Enschede, The Netherlands
Department of Applied Mathematics
Northwestern Polytechnical University
Xi'an, Shaanxi 710072, P.R. China
libinlong@mail.nwpu.edu.cn
Yanbo Zhang

Department of Mathematics
Nanjing University Nanjing 210093, P.R. China
y.zhang@utwente.nl

Halina Bielak

Institute of Mathematics
Maria Curie-Sklodowska University
20-031 Lublin, Poland
hbiel@hektor.umcs.lublin.pl

Hajo Broersma
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
h.j.broersma@utwente.nl

Přemysl Holub ${ }^{\dagger}$
Department of Mathematics
University of West Bohemia
P.O. Box 314, 30614 Pilsen, Czech Republic
holubpre@kma.zcu.cz
Submitted: Jan 30, 2015; Accepted: Jul 26, 2015; Published: Aug 14, 2015
Mathematics Subject Classifications: 05C55, 05D10

Abstract
*The first author is partly supported by the Doctorate Foundation of Northwestern Polytechnical University (No. cx201202) and by the project NEXLIZ-CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic.
${ }^{\dagger}$ Research partly supported by project P202/12/G061 of the Czech Science Foundation.

Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G_{1} is a subgraph of G, or G_{2} is a subgraph of the complement of G. Let P_{n} denote a path of order n and \widehat{K}_{m} a kipas of order $m+1$, i.e., the graph obtained from a P_{m} by adding one new vertex v and edges from v to all vertices of the P_{m}. We close the gap in existing knowledge on exact values of the Ramsey numbers $R\left(P_{n}, \widehat{K}_{m}\right)$ by determining the exact values for the remaining open cases.

Keywords: Ramsey number; path; kipas

1 Introduction

We only consider finite simple graphs. A cycle, a path and a complete graph of order n are denoted by C_{n}, P_{n} and K_{n}, respectively. A complete k-partite graph with classes of cardinalities $n_{1}, n_{2}, \ldots, n_{k}$ is denoted by $K_{n_{1}, n_{2}, \ldots, n_{k}}$. For a nonempty proper subset $S \subseteq V(G)$, let $G[S]$ and $G-S$ denote the subgraph induced by S and $V(G)-S$, respectively. For a vertex $v \in V(G)$, we let $N_{S}(v)$ denote the set of neighbors of v that are contained in S. For two vertex-disjoint graphs H_{1}, H_{2}, we define $H_{1}+H_{2}$ to be the graph with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup\left\{u v \mid u \in V\left(H_{1}\right)\right.$ and $\left.v \in V\left(H_{2}\right)\right\}$. For two disjoint vertex sets $X, Y, e(X, Y)$ denotes the number of edges with one end in X and one end in Y. We use $m G$ to denote m vertex-disjoint copies of G. A star $K_{1, n}=K_{1}+n K_{1}$, a kipas $\widehat{K}_{n}=K_{1}+P_{n}$ and a wheel $W_{n}=K_{1}+C_{n}$. The term kipas and its notation were adopted from [8]. Kipas is the Malay word for fan; the motivation for the term kipas is that the graph $K_{1}+P_{n}$ looks like a hand fan (especially if the path P_{n} is drawn as part of a circle) but the term fan was already in use for the graphs $K_{1}+n K_{2}$.

We use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degree of G, respectively.
Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. It is easy to check that $R\left(G_{1}, G_{2}\right)=R\left(G_{2}, G_{1}\right)$, and, if G_{1} is a subgraph of G_{3}, then $R\left(G_{1}, G_{2}\right) \leqslant R\left(G_{3}, G_{2}\right)$. Thus, $R\left(P_{n}, K_{1, m}\right) \leqslant R\left(P_{n}, \widehat{K}_{m}\right) \leqslant$ $R\left(P_{n}, W_{m}\right)$. In [7], an explicit formula for $R\left(P_{n}, K_{1, m}\right)$ is given, while in [5], the Ramsey numbers $R\left(P_{n}, W_{m}\right)$ for all m, n have been obtained. It follows from these results that $R\left(P_{n}, K_{1, m}\right)=R\left(P_{n}, W_{m}\right)$ for $m \geqslant 2 n$. Therefore, $R\left(P_{n}, \widehat{K}_{m}\right)=R\left(P_{n}, K_{1, m}\right)=$ $R\left(P_{n}, W_{m}\right)$ for $m \geqslant 2 n$, and the exact values of these Ramsey numbers can be found in both [5] and [7].

It is trivial that $R\left(P_{1}, \widehat{K}_{m}\right)=1$ and $R\left(P_{n}, \widehat{K}_{1}\right)=n$. Many nontrivial exact values for $R\left(P_{n}, \widehat{K}_{m}\right)$ have been obtained by Salman and Broersma in [8]. Here we completely solve the case by determining all the remaining path-kipas Ramsey numbers. $R\left(P_{n}, \widehat{K}_{m}\right)$ can easily be determined for $m \geqslant 2 n$ (and follows directly from earlier results, as indicated above). In this note we close the gap by proving the following theorem.
Theorem 1. $R\left(P_{n}, \widehat{K}_{m}\right)=\max \{2 n-1,\lceil 3 m / 2\rceil-1,2\lfloor m / 2\rfloor+n-2\}$ for $m \leqslant 2 n-1$ and $m, n \geqslant 2$.

2 Proof of Theorem 1

We first list the following eight useful results that we will use in our proof of Theorem 1, as separate lemmas.

Lemma 2. (Gerencsér and Gyárfás [4]). For $m \geqslant n \geqslant 2, R\left(P_{m}, P_{n}\right)=m+\lfloor n / 2\rfloor-1$.
Lemma 3. (Faudree et al. [3]). For $n \geqslant 2$ and even $m \geqslant 4, R\left(C_{m}, P_{n}\right)=\max \{m+$ $\lfloor n / 2\rfloor-1, n+m / 2-1\}$.

Lemma 4. (Parsons [6]). For $n \geqslant m \geqslant 2, R\left(K_{1, m}, P_{n}\right)=\max \{2 m-1, n\}$.
Lemma 5. (Salman and Broersma [8]). $R\left(P_{4}, \widehat{K}_{6}\right)=8$.
Lemma 6. (Dirac [2]). If G is a connected graph, then G contains a path of order at least $\min \{2 \delta(G)+1,|V(G)|\}$.

Lemma 7. (Bondy [1]). If $\delta(G) \geqslant|V(G)| / 2$, then G contains cycles of every length between 3 and $|V(G)|$, or $r=|V(G)| / 2$ and $G=K_{r, r}$.

Lemma 8. (Zhang et al. [9]). Let C be a longest cycle of a graph G and $v_{1}, v_{2} \in$ $V(G)-V(C)$. Then $\left|N_{V(C)}\left(v_{1}\right) \cup N_{V(C)}\left(v_{2}\right)\right| \leqslant\lfloor|V(C)| / 2\rfloor+1$.

Lemma 9. Let G be a graph with $|V(G)| \geqslant 6$ and $\delta(G) \geqslant 2$. Then G contains two vertex-disjoint paths, one with order three and one with order two.

Proof. If G is connected, by Lemma 6, G contains a path of order at least 5. Let $x_{1} x_{2} x_{3} x_{4} x_{5}$ be a path in G. Then G contains two vertex-disjoint paths $x_{1} x_{2} x_{3}$ and $x_{4} x_{5}$. If G is disconnected, then each component of G contains a path of order three. This completes the proof of Lemma 9.

We proceed to prove Theorem 1 . Let $N=\max \{2 n-1,\lceil 3 m / 2\rceil-1,2\lfloor m / 2\rfloor+n-2\}$, and let $m \leqslant 2 n-1$ and $m, n \geqslant 2$. It suffices to show that $R\left(P_{n}, \widehat{K}_{m}\right)=N$.

If $n=2$, then $m \leqslant 2 n-1$ and $m, n \geqslant 2$ imply $m=2$ or $m=3$. It is obvious that $R\left(P_{2}, \widehat{K}_{m}\right)=m+1$, and one easily checks that $m+1=N$ for these values of m and n. Next we assume that $n \geqslant 3$. We first show that $R\left(P_{n}, \widehat{K}_{m}\right) \geqslant N$. For this purpose, we note that it is straightforward to check that any of the graphs $G \in\left\{K_{n-1, n-1}, K_{\lfloor m / 2\rfloor,\lceil m / 2\rceil-1,\lceil m / 2\rceil-1}, K_{n-1,\lfloor m / 2\rfloor-1,\lfloor m / 2\rfloor-1}\right\}$ contains no \widehat{K}_{m}, whereas \bar{G} contains no P_{n}. Thus, $R\left(P_{n}, \widehat{K}_{m}\right) \geqslant \max \{2 n-1,\lceil 3 m / 2\rceil-1,2\lfloor m / 2\rfloor+n-2\}=N$.

It remains to prove $R\left(P_{n}, \widehat{K}_{m}\right) \leqslant N$. To the contrary, we assume there exists a graph G of order N such that neither G contains a \widehat{K}_{m}, nor \bar{G} contains a P_{n}.

We first claim that $\Delta(G) \geqslant N-\lfloor n / 2\rfloor$. To prove this claim, assume to the contrary that $\Delta(G) \leqslant N-\lfloor n / 2\rfloor-1$. Then $\delta(\bar{G}) \geqslant\lfloor n / 2\rfloor$. Let H be a largest component of \bar{G}. If $|V(H)| \geqslant n$, then, since $\delta(H) \geqslant\lfloor n / 2\rfloor, H$ contains a P_{n} by Lemma 6 , a contradiction. Thus, $|V(H)| \leqslant n-1$ and $|V(G)|-|V(H)| \geqslant N-n+1$. Since $m \leqslant 2 n-1$, we have $n \geqslant\lfloor m / 2\rfloor$. From the definition of N we get that $N-n+1 \geqslant n$ and $N-n+1 \geqslant 2\lfloor m / 2\rfloor-1$,
so $N-n+1 \geqslant \max \{2\lfloor m / 2\rfloor-1, n\}$. Since $\bar{G}-V(H)$ contains no P_{n}, by Lemma $4, G-V(H)$ contains a $K_{1,\lfloor m / 2\rfloor}$. If $|V(H)| \geqslant\lceil m / 2\rceil$, since every vertex of $V(H)$ is adjacent to every vertex of $V(G)-V(H)$ in G, then G contains a \widehat{K}_{m}, a contradiction. This implies that $|V(H)| \leqslant\lceil m / 2\rceil-1$. Recall that H is a largest component of \bar{G}. Thus \bar{G} contains at least four components; otherwise $|V(\bar{G})| \leqslant 3(\lceil m / 2\rceil-1)<\lceil 3 m / 2\rceil-1 \leqslant N$, a contradiction. Let H^{\prime} be a smallest component of \bar{G}. Then $\left|V\left(H^{\prime}\right)\right| \leqslant N / 4$ and $|V(G)|-\left|V\left(H^{\prime}\right)\right| \geqslant$ $3 N / 4 \geqslant 3 / 4(\lceil 3 m / 2\rceil-1) \geqslant 9 m / 8-3 / 4>m-3 / 4$. That is, $|V(G)|-\left|V\left(H^{\prime}\right)\right| \geqslant m$. Since every component in $\bar{G}-V\left(H^{\prime}\right)$ is of order at most $\lceil m / 2\rceil-1$, then every vertex in $\bar{G}-V\left(H^{\prime}\right)$ is of degree at most $\lceil m / 2\rceil-2$. Thus, we have $\delta\left(G-V\left(H^{\prime}\right)\right)>\left(|V(G)|-\left|V\left(H^{\prime}\right)\right|\right) / 2$. By Lemma 7, $G-V\left(H^{\prime}\right)$ contains a P_{m}, which together with any vertex of $V\left(H^{\prime}\right)$ forms a \widehat{K}_{m} in G, a contradiction. This proves our claim that $\Delta(G) \geqslant N-\lfloor n / 2\rfloor$.

Let u be a vertex of G with $d(u)=d=\Delta(G)$, let $F=G[N(u)]$ and $Z=V(G)-$ $V(F)-\{u\}$. Then $|V(F)|=d \geqslant N-\lfloor n / 2\rfloor=\max \{n+\lceil n / 2\rceil-1,\lceil 3 m / 2\rceil-\lfloor n / 2\rfloor-$ $1,2\lfloor m / 2\rfloor+\lceil n / 2\rceil-2\}$. We claim that $R\left(P_{m}, P_{n}\right)>d$; otherwise $R\left(P_{m}, P_{n}\right) \leqslant d$, and either F contains a P_{m}, which together with u forms a \widehat{K}_{m}, a contradiction; or \bar{F} contains a P_{n}, also a contradiction. If $m \leqslant n$, or if $m=n+1$ and m is even, then by Lemma 2 , $R\left(P_{m}, P_{n}\right)=\max \{n+\lfloor m / 2\rfloor-1, m+\lfloor n / 2\rfloor-1\} \leqslant n+\lceil n / 2\rceil-1 \leqslant d$, a contradiction. Therefore, it remains to deal with the cases that $m \geqslant n+2$, and that $m=n+1$ and m is odd. We first deal with the latter case.

Let $m=n+1$ and m is odd. Then n is even, hence $n \geqslant 4$. We claim that $|Z| \geqslant 1$; otherwise $d=N-1=2 n-2$, and then $R\left(P_{m}, P_{n}\right)=m+n / 2-1 \leqslant 2 n-2=d$ by Lemma 2, a contradiction. By Lemma 3, $R\left(C_{m-1}, P_{n}\right)=m-1+n / 2-1=n+n / 2-1 \leqslant$ d. Since \bar{F} contains no P_{n}, then F contains a C_{m-1}. Let $C_{m-1}=x_{1} x_{2} \ldots x_{m-1} x_{1}$, $Y=V(F)-V\left(C_{m-1}\right)=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. Then $k \geqslant n / 2-1$. If $e\left(V\left(C_{m-1}\right), Y\right) \geqslant 1$, say $x_{1} y_{1} \in E(G)$, then $y_{1} x_{1} x_{2} \ldots x_{m-1}$ is a path in G, which together with u forms a \widehat{K}_{m}, a contradiction. Thus, $e\left(V\left(C_{m-1}\right), Y\right)=0$. If there is an edge in $\bar{G}\left[V\left(C_{m-1}\right)\right]$, say $x_{i} x_{j} \in E(\bar{G})(1 \leqslant i<j \leqslant m-1)$, then $x_{i} x_{j} y_{1} x_{1}^{\prime} y_{2} x_{2}^{\prime} \ldots y_{n / 2-1} x_{n / 2-1}^{\prime}$ with $\left\{x_{k}^{\prime}\right.$: $1 \leqslant k \leqslant n / 2-1\} \subseteq V\left(C_{m-1}\right)-\left\{x_{i}, x_{j}\right\}$ is a path of order n in \bar{G}, a contradiction. Thus, $G\left[V\left(C_{m-1}\right)\right]$ is a complete graph. Set $z \in Z$. If $e\left(\{z\}, V\left(C_{m-1}\right)\right) \geqslant 1$ in \bar{G}, say $z x_{1} \in E(\bar{G})$, then $u z x_{1} y_{1} \ldots x_{n / 2-1} y_{n / 2-1}$ is a path of order n in \bar{G}, a contradiction. Thus, $e\left(\{z\}, V\left(C_{m-1}\right)\right)=0$ in \bar{G}, and G contains a path $u x_{1} z x_{2} x_{3} \ldots x_{m-2}$, which together with x_{m-1} forms a \widehat{K}_{m}, another contradiction. This completes the case that $m=n+1$ and m is odd. We proceed with the case that $n+2 \leqslant m \leqslant 2 n-1$, and first consider the small values of n.

For $n=3$ and $m=5$, or $n=4$ and $m=7$, or $n=5$ and $7 \leqslant m \leqslant 9$, we get that $R\left(P_{m}, P_{n}\right)=m+\lfloor n / 2\rfloor-1 \leqslant\lceil 3 m / 2\rceil-\lfloor n / 2\rfloor-1 \leqslant d$, a contradiction. By Lemma 5 , $R\left(P_{4}, \widehat{K}_{6}\right)=8=N$. Hence it remains to consider the case that $m \geqslant n+2 \geqslant 8$.

We first claim that $|Z| \geqslant 2$. If not, $|Z| \leqslant 1$ and $d=N-1-|Z| \geqslant N-2$. By Lemma 2, $R\left(P_{m}, P_{n}\right)=m+\lfloor n / 2\rfloor-1$. If $m \geqslant n+3$, then $m+\lfloor n / 2\rfloor-1 \leqslant\lceil 3 m / 2\rceil-3 \leqslant N-2 \leqslant d$, a contradiction; if $n \geqslant 7$ or $(n, m)=(6,8)$, then $m+\lfloor n / 2\rfloor-1 \leqslant 2\lfloor m / 2\rfloor+n-4 \leqslant N-2 \leqslant d$, also a contradiction. Thus, for $m \geqslant n+2 \geqslant 8$, we have $|Z| \geqslant 2$.

Since $m \geqslant n+2 \geqslant 8$, by Lemma $3, R\left(C_{2\lfloor m / 2\rfloor-2}, P_{n}\right)=\max \{2\lfloor m / 2\rfloor+\lfloor n / 2\rfloor-$
$3, n+\lfloor m / 2\rfloor-2\}<2\lfloor m / 2\rfloor+\lceil n / 2\rceil-2 \leqslant d$. Since \bar{F} contains no P_{n}, F contains a $C_{2\lfloor m / 2\rfloor-2}$. Let C be a longest cycle in F. Then $|V(C)| \geqslant m-3$. If $|V(C)| \geqslant m$, then F contains a P_{m}, which together with u forms a \widehat{K}_{m} in G, a contradiction. Thus, $m-3 \leqslant|V(C)| \leqslant m-1$. We complete the proof by distinguishing the three cases that $|V(C)|=m-1,|V(C)|=m-2$ or $|V(C)|=m-3$. In each case, let $C=x_{1} x_{2} \ldots x_{|V(C)|} x_{1}$ and $Y=V(F)-V(C)=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$.
Case 1: $|V(C)|=m-1$.
We have $k=d-(m-1) \geqslant\lceil n / 2\rceil-2$. If $e(V(C), Y) \geqslant 1$, say $x_{1} y_{1} \in E(G)$, then $y_{1} x_{1} x_{2} \ldots x_{m-1}$ is a path in G, which together with u forms a \widehat{K}_{m}, a contradiction. Thus, $e(V(C), Y)=0$. Let $z_{1}, z_{2} \in Z$. If $e\left(\left\{z_{1}\right\}, V(C)\right) \geqslant 1$ in \bar{G}, say $z_{1} x_{1} \in E(\bar{G})$, then $z_{2} u z_{1} x_{1} y_{1} \ldots x_{\lceil n / 2\rceil-2} y_{\lceil n / 2\rceil-2} x_{\lceil n / 2\rceil-1}$ is a path of order at least n in \bar{G}, a contradiction. This implies that $e\left(\left\{z_{1}\right\}, V(C)\right)=0$ in \bar{G}. For the same reason, $e\left(\left\{z_{2}\right\}, V(C)\right)=0$ in \bar{G}.

We claim that $\delta(\bar{G}[V(C)]) \leqslant 1$. If not, $\delta(\bar{G}[V(C)]) \geqslant 2$. Since $m \geqslant 8$, by Lemma 9 , there are two vertex-disjoint paths in $\bar{G}[V(C)]$, one with order three and one with order two. Without loss of generality, let $x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$ and $x_{4}^{\prime} x_{5}^{\prime}$ be the two paths in $\bar{G}[V(C)]$. Because $m-1 \geqslant\lceil n / 2\rceil+2$, we may assume that $x_{6}^{\prime}, \ldots, x_{\lceil n / 2\rceil+2}^{\prime} \in V(C)-\left\{x_{1}^{\prime}, \ldots, x_{5}^{\prime}\right\}$. Then $x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} y_{1} x_{4}^{\prime} x_{5}^{\prime} y_{2} x_{6}^{\prime} y_{3} \ldots x_{\lceil n / 2\rceil+1}^{\prime} y_{\lceil n / 2\rceil-2} x_{\lceil n / 2\rceil+2}^{\prime}$ is a path of order at least n in \bar{G}, a contradiction. This proves our claim that $\delta(\bar{G}[V(C)]) \leqslant 1$. That is, there exists a vertex of $V(C)$ which is adjacent to at least $|V(C)|-2$ vertices of $V(C)$. Without loss of generality, let x_{1} be a vertex with maximum degree in $G[V(C)]$, and let x_{3} be the possible vertex that is nonadjacent to x_{1}. Then $u x_{2} z_{1} x_{4} z_{2} x_{5} x_{6} \ldots x_{m-1}$ is a path of order m, which together with x_{1} forms a \widehat{K}_{m} in G, our final contradiction in Case 1.
Case 2: $|V(C)|=m-2$.
We have $k=d-(m-2)$. Note that $k \geqslant\lceil n / 2\rceil-1$ for odd m, and $k \geqslant\lceil n / 2\rceil$ for even m. Let X be the set of all vertices of $V(C)$ that are nonadjacent to Y in G. For $1 \leqslant i \leqslant m-2$, either $x_{i} \in X$, or $x_{i+1} \in X$. Here, $x_{m-1}=x_{1}$. This is because, if x_{i} and x_{i+1} have a common neigbor in Y, say y_{1}, then by replacing $x_{i} x_{i+1}$ by $x_{i} y_{1} x_{i+1}$ in C, we obtain a cycle longer than C, a contradiction; if x_{i} and x_{i+1} are adjacent to different vertices of Y, say $x_{i} y_{1}, x_{i+1} y_{2} \in E(G)$, then $y_{2} x_{i+1} x_{i+2} \ldots x_{m-2} x_{1} \ldots x_{i} y_{1}$ is a path of length m, which together with u forms a \widehat{K}_{m} in G, also a contradiction. Thus, at least one end of each edge of C is nonadjacent to Y in G. Note that $|X| \geqslant\lceil n / 2\rceil$ and $|Y| \geqslant\lceil n / 2\rceil-1$ for odd m and $|Y| \geqslant\lceil n / 2\rceil$ for even m. If m is even or n is odd, then we get a path P_{n} in $\bar{G}[X \cup Y]$. This implies it remains to consider the case that n is even and m is odd, with $m \geqslant n+3$.

If $|V(C)-X| \geqslant 2$, say $x_{i}, x_{j} \notin X$, then $x_{i+1}, x_{j+1} \in X$. Moreover, $x_{i+1} x_{j+1} \notin E(G)$; otherwise we may obtain either a cycle longer than C in F, or a path of length m in F, which together with u forms a \widehat{K}_{m} in G, both of which are contradictions. Now let $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{|X|-2}^{\prime} \in X-\left\{x_{i+1}, x_{j+1}\right\}$. Since $|X|-2 \geqslant\lceil|V(C)| / 2\rceil-2 \geqslant n / 2-1$, let $P=x_{i+1} x_{j+1} y_{1} x_{1}^{\prime} y_{2} x_{2}^{\prime} \ldots y_{n / 2-1} x_{n / 2-1}^{\prime}$. Note that P is a path of order n in \bar{G}, a contradiction. Thus, $m-3 \leqslant|X| \leqslant m-2$ and there exists a vertex in $V(C)$, say x_{1}, such that $e\left(V(C)-\left\{x_{1}\right\}, Y\right)=0$.

Since $m \geqslant n+3 \geqslant 9$, we have $m-3 \geqslant\lceil n / 2\rceil+2$. If there is an edge in $\bar{G}\left[V(C)-\left\{x_{1}\right\}\right]$, say $x_{i} x_{j} \in E(\bar{G})$, then $\bar{G}[X \cup Y]$ contains a path P_{n}, a contradiction. Thus, $G\left[V(C)-\left\{x_{1}\right\}\right]$ is a complete graph of order $m-3$.

Let $z_{1}, z_{2} \in Z$. We claim that $e\left(\left\{z_{1}\right\}, V(C)-\left\{x_{1}\right\}\right)=0$ in \bar{G}; otherwise, say for $z_{1} x_{2} \in E(\bar{G}), z_{2} u z_{1} x_{2} y_{2} x_{3} y_{3} \ldots x_{n / 2-1} y_{n / 2-1} x_{n / 2}$ is a path of order n in \bar{G}, a contradiction. For the same reason, $e\left(\left\{z_{2}\right\}, V(C)-\left\{x_{1}\right\}\right)=0$ in \bar{G}.

It is easy to check that $x_{1} u x_{3} z_{1} x_{4} z_{2} x_{5} \ldots x_{m-2}$ is a path of order m, which together with x_{2} forms a \widehat{K}_{m} in G, our final contradiction in Case 2.
Case 3: $|V(C)|=m-3$.
If $m=n+2 \geqslant 8$, then m and n have the same parity. In that case, $R\left(C_{2\lfloor(m-1) / 2\rfloor}, P_{n}\right)=$ $2\lfloor(m-1) / 2\rfloor+\lfloor n / 2\rfloor-1 \leqslant 2\lfloor m / 2\rfloor+\lceil n / 2\rceil-2 \leqslant d$. Since \bar{F} contains no P_{n}, F contains a $C_{2\lfloor(m-1) / 2\rfloor}$. This contradicts the fact that C with $|V(C)|=m-3$ is a longest cycle in F. It remains to consider the case that $m \geqslant n+3 \geqslant 9$.

We have $k=d-(m-3) \geqslant\lceil n / 2\rceil$. By Lemma 8 , any two vertices of Y have at least $\lceil(m-3) / 2\rceil-1 \geqslant\lceil n / 2\rceil-1$ common nonadjacent vertices of $V(C)$ in G. Since C is a longest cycle in G, any vertex of Y has at least $\lceil(m-3) / 2\rceil \geqslant\lceil n / 2\rceil$ nonadjacent vertices of $V(C)$ in G. By these observations, y_{1} and y_{2} have a common nonadjacent vertex in $V(C)$, say x_{1}; for $2 \leqslant i \leqslant\lceil n / 2\rceil-1, y_{i}$ and y_{i+1} have a common nonadjacent vertex in $V(C)-$ $\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}$, say $x_{i} ; y_{\lceil n / 2\rceil}$ have a nonadjacent vertex in $X-\left\{x_{1}, x_{2}, \ldots, x_{\lceil n / 2\rceil-1}\right\}$, say $x_{[n / 2\rceil}$. Then $y_{1} x_{1} y_{2} x_{2} \ldots y_{[n / 2\rceil} x_{\lceil n / 2\rceil}$ is a path of order at least n in \bar{G}. This final contradiction completes the proof of Case 3 and of Theorem 1.

References

[1] J.A. Bondy, Pancyclic graphs I, Journal of Combinatorial Theory, Series B 11 (1971), 80-84.
[2] G.A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society 2 (1952), 69-81.
[3] R.J. Faudree, S.L. Lawrence, T.D. Parsons, and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Mathematics 10 (1974), 269-277.
[4] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Annales Universitatis Scientiarum Budapestinensis, Eötvös Sect. Math. 10 (1967), 167-170.
[5] B. Li and B. Ning, The Ramsey numbers of paths versus wheels: a complete solution, The Electronic Journal of Combinatorics 21 (2014), \#P4.41.
[6] T.D. Parsons, Path-star Ramsey numbers, Journal of Combinatorial Theory, Series B 17 (1974), 51-58.
[7] C.C. Rousseau and J. Sheehan, A class of Ramsey problems involving trees, Journal of the London Mathematical Society 2 (1978), 392-396.
[8] A.N.M. Salman and H.J. Broersma, Path-kipas Ramsey numbers, Discrete Applied Mathematics 155 (2007), 1878-1884.
[9] Y.B. Zhang, Y.Q. Zhang, and Y.J. Chen, The Ramsey numbers of wheels versus odd cycles, Discrete Mathematics 323 (2014), 76-80.

