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Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest
integer N such that, for any graph G of order N , either G1 is a subgraph of G, or
G2 is a subgraph of the complement of G. Let Pn denote a path of order n and
K̂m a kipas of order m + 1, i.e., the graph obtained from a Pm by adding one new
vertex v and edges from v to all vertices of the Pm. We close the gap in existing
knowledge on exact values of the Ramsey numbers R(Pn, K̂m) by determining the
exact values for the remaining open cases.

Keywords: Ramsey number; path; kipas

1 Introduction

We only consider finite simple graphs. A cycle, a path and a complete graph of order
n are denoted by Cn, Pn and Kn, respectively. A complete k-partite graph with classes
of cardinalities n1, n2, . . . , nk is denoted by Kn1,n2,...,nk

. For a nonempty proper subset
S ⊆ V (G), let G[S] and G − S denote the subgraph induced by S and V (G) − S,
respectively. For a vertex v ∈ V (G), we let NS(v) denote the set of neighbors of v that
are contained in S. For two vertex-disjoint graphs H1, H2, we define H1 + H2 to be the
graph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2) ∪ {uv | u ∈ V (H1)
and v ∈ V (H2)}. For two disjoint vertex sets X, Y , e(X, Y ) denotes the number of edges
with one end in X and one end in Y . We use mG to denote m vertex-disjoint copies of
G. A star K1,n = K1 + nK1, a kipas K̂n = K1 + Pn and a wheel Wn = K1 + Cn. The
term kipas and its notation were adopted from [8]. Kipas is the Malay word for fan; the
motivation for the term kipas is that the graph K1 + Pn looks like a hand fan (especially
if the path Pn is drawn as part of a circle) but the term fan was already in use for the
graphs K1 + nK2.

We use δ(G) and ∆(G) to denote the minimum and maximum degree ofG, respectively.
Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer

N such that, for any graph G of order N , either G contains G1 or G contains G2, where
G is the complement of G. It is easy to check that R(G1, G2) = R(G2, G1), and, if G1

is a subgraph of G3, then R(G1, G2) 6 R(G3, G2). Thus, R(Pn, K1,m) 6 R(Pn, K̂m) 6
R(Pn,Wm). In [7], an explicit formula for R(Pn, K1,m) is given, while in [5], the Ram-
sey numbers R(Pn,Wm) for all m,n have been obtained. It follows from these results

that R(Pn, K1,m) = R(Pn,Wm) for m > 2n. Therefore, R(Pn, K̂m) = R(Pn, K1,m) =
R(Pn,Wm) for m > 2n, and the exact values of these Ramsey numbers can be found in
both [5] and [7].

It is trivial that R(P1, K̂m) = 1 and R(Pn, K̂1) = n. Many nontrivial exact values for

R(Pn, K̂m) have been obtained by Salman and Broersma in [8]. Here we completely solve

the case by determining all the remaining path-kipas Ramsey numbers. R(Pn, K̂m) can
easily be determined for m > 2n (and follows directly from earlier results, as indicated
above). In this note we close the gap by proving the following theorem.

Theorem 1. R(Pn, K̂m) = max{2n− 1, d3m/2e− 1, 2bm/2c+n− 2} for m 6 2n− 1 and
m,n > 2.
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2 Proof of Theorem 1

We first list the following eight useful results that we will use in our proof of Theorem 1,
as separate lemmas.

Lemma 2. (Gerencsér and Gyárfás [4]). For m > n > 2, R(Pm, Pn) = m+ bn/2c − 1.

Lemma 3. (Faudree et al. [3]). For n > 2 and even m > 4, R(Cm, Pn) = max{m +
bn/2c − 1, n+m/2− 1}.

Lemma 4. (Parsons [6]). For n > m > 2, R(K1,m, Pn) = max{2m− 1, n}.

Lemma 5. (Salman and Broersma [8]). R(P4, K̂6) = 8.

Lemma 6. (Dirac [2]). If G is a connected graph, then G contains a path of order at
least min{2δ(G) + 1, |V (G)|}.

Lemma 7. (Bondy [1]). If δ(G) > |V (G)|/2, then G contains cycles of every length
between 3 and |V (G)|, or r = |V (G)|/2 and G = Kr,r.

Lemma 8. (Zhang et al. [9]). Let C be a longest cycle of a graph G and v1, v2 ∈
V (G)− V (C). Then |NV (C)(v1) ∪NV (C)(v2)| 6 b|V (C)|/2c+ 1.

Lemma 9. Let G be a graph with |V (G)| > 6 and δ(G) > 2. Then G contains two
vertex-disjoint paths, one with order three and one with order two.

Proof. If G is connected, by Lemma 6, G contains a path of order at least 5. Let
x1x2x3x4x5 be a path in G. Then G contains two vertex-disjoint paths x1x2x3 and x4x5.
If G is disconnected, then each component of G contains a path of order three. This
completes the proof of Lemma 9.

We proceed to prove Theorem 1. Let N = max{2n− 1, d3m/2e− 1, 2bm/2c+n− 2}, and

let m 6 2n− 1 and m,n > 2. It suffices to show that R(Pn, K̂m) = N .
If n = 2, then m 6 2n − 1 and m,n > 2 imply m = 2 or m = 3. It is obvi-

ous that R(P2, K̂m) = m + 1, and one easily checks that m + 1 = N for these val-

ues of m and n. Next we assume that n > 3. We first show that R(Pn, K̂m) > N .
For this purpose, we note that it is straightforward to check that any of the graphs
G ∈ {Kn−1,n−1, Kbm/2c,dm/2e−1,dm/2e−1, Kn−1,bm/2c−1,bm/2c−1} contains no K̂m, whereas G

contains no Pn. Thus, R(Pn, K̂m) > max{2n− 1, d3m/2e − 1, 2bm/2c+ n− 2} = N .

It remains to prove R(Pn, K̂m) 6 N . To the contrary, we assume there exists a graph

G of order N such that neither G contains a K̂m, nor G contains a Pn.
We first claim that ∆(G) > N − bn/2c. To prove this claim, assume to the contrary

that ∆(G) 6 N − bn/2c − 1. Then δ(G) > bn/2c. Let H be a largest component of G.
If |V (H)| > n, then, since δ(H) > bn/2c, H contains a Pn by Lemma 6, a contradiction.
Thus, |V (H)| 6 n − 1 and |V (G)| − |V (H)| > N − n + 1. Since m 6 2n − 1, we have
n > bm/2c. From the definition of N we get that N−n+1 > n and N−n+1 > 2bm/2c−1,
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soN−n+1 > max{2bm/2c−1, n}. SinceG−V (H) contains no Pn, by Lemma 4, G−V (H)
contains a K1,bm/2c. If |V (H)| > dm/2e, since every vertex of V (H) is adjacent to every

vertex of V (G) − V (H) in G, then G contains a K̂m, a contradiction. This implies that
|V (H)| 6 dm/2e−1. Recall that H is a largest component of G. Thus G contains at least
four components; otherwise |V (G)| 6 3(dm/2e − 1) < d3m/2e − 1 6 N , a contradiction.
Let H ′ be a smallest component of G. Then |V (H ′)| 6 N/4 and |V (G)| − |V (H ′)| >
3N/4 > 3/4(d3m/2e−1) > 9m/8−3/4 > m−3/4. That is, |V (G)|− |V (H ′)| > m. Since
every component inG−V (H ′) is of order at most dm/2e−1, then every vertex inG−V (H ′)
is of degree at most dm/2e − 2. Thus, we have δ(G − V (H ′)) > (|V (G)| − |V (H ′)|)/2.
By Lemma 7, G− V (H ′) contains a Pm, which together with any vertex of V (H ′) forms

a K̂m in G, a contradiction. This proves our claim that ∆(G) > N − bn/2c.
Let u be a vertex of G with d(u) = d = ∆(G), let F = G[N(u)] and Z = V (G) −

V (F ) − {u}. Then |V (F )| = d > N − bn/2c = max{n + dn/2e − 1, d3m/2e − bn/2c −
1, 2bm/2c + dn/2e − 2}. We claim that R(Pm, Pn) > d; otherwise R(Pm, Pn) 6 d, and

either F contains a Pm, which together with u forms a K̂m, a contradiction; or F contains
a Pn, also a contradiction. If m 6 n, or if m = n + 1 and m is even, then by Lemma 2,
R(Pm, Pn) = max{n+ bm/2c − 1,m+ bn/2c − 1} 6 n+ dn/2e − 1 6 d, a contradiction.
Therefore, it remains to deal with the cases that m > n + 2, and that m = n + 1 and m
is odd. We first deal with the latter case.

Let m = n + 1 and m is odd. Then n is even, hence n > 4. We claim that |Z| > 1;
otherwise d = N − 1 = 2n − 2, and then R(Pm, Pn) = m + n/2 − 1 6 2n − 2 = d by
Lemma 2, a contradiction. By Lemma 3, R(Cm−1, Pn) = m−1 +n/2−1 = n+n/2−1 6
d. Since F contains no Pn, then F contains a Cm−1. Let Cm−1 = x1x2 . . . xm−1x1,
Y = V (F ) − V (Cm−1) = {y1, y2, . . . , yk}. Then k > n/2 − 1. If e(V (Cm−1), Y ) > 1,
say x1y1 ∈ E(G), then y1x1x2 . . . xm−1 is a path in G, which together with u forms a

K̂m, a contradiction. Thus, e(V (Cm−1), Y ) = 0. If there is an edge in G[V (Cm−1)],
say xixj ∈ E(G) (1 6 i < j 6 m − 1), then xixjy1x

′
1y2x

′
2 . . . yn/2−1x

′
n/2−1 with {x′k :

1 6 k 6 n/2 − 1} ⊆ V (Cm−1) − {xi, xj} is a path of order n in G, a contradiction.
Thus, G[V (Cm−1)] is a complete graph. Set z ∈ Z. If e({z}, V (Cm−1)) > 1 in G, say
zx1 ∈ E(G), then uzx1y1 . . . xn/2−1yn/2−1 is a path of order n in G, a contradiction. Thus,
e({z}, V (Cm−1)) = 0 in G, and G contains a path ux1zx2x3 . . . xm−2, which together with

xm−1 forms a K̂m, another contradiction. This completes the case that m = n+ 1 and m
is odd. We proceed with the case that n + 2 6 m 6 2n− 1, and first consider the small
values of n.

For n = 3 and m = 5, or n = 4 and m = 7, or n = 5 and 7 6 m 6 9, we get that
R(Pm, Pn) = m + bn/2c − 1 6 d3m/2e − bn/2c − 1 6 d, a contradiction. By Lemma 5,

R(P4, K̂6) = 8 = N . Hence it remains to consider the case that m > n+ 2 > 8.
We first claim that |Z| > 2. If not, |Z| 6 1 and d = N−1−|Z| > N−2. By Lemma 2,

R(Pm, Pn) = m+bn/2c−1. If m > n+3, then m+bn/2c−1 6 d3m/2e−3 6 N−2 6 d, a
contradiction; if n > 7 or (n,m) = (6, 8), then m+bn/2c−1 6 2bm/2c+n−4 6 N−2 6 d,
also a contradiction. Thus, for m > n+ 2 > 8, we have |Z| > 2.

Since m > n + 2 > 8, by Lemma 3, R(C2bm/2c−2, Pn) = max{2bm/2c + bn/2c −
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3, n + bm/2c − 2} < 2bm/2c + dn/2e − 2 6 d. Since F contains no Pn, F contains
a C2bm/2c−2. Let C be a longest cycle in F . Then |V (C)| > m − 3. If |V (C)| > m,

then F contains a Pm, which together with u forms a K̂m in G, a contradiction. Thus,
m − 3 6 |V (C)| 6 m − 1. We complete the proof by distinguishing the three cases that
|V (C)| = m−1, |V (C)| = m−2 or |V (C)| = m−3. In each case, let C = x1x2 . . . x|V (C)|x1
and Y = V (F )− V (C) = {y1, y2, . . . , yk}.

Case 1: |V (C)| = m− 1.
We have k = d − (m − 1) > dn/2e − 2. If e(V (C), Y ) > 1, say x1y1 ∈ E(G), then

y1x1x2 . . . xm−1 is a path in G, which together with u forms a K̂m, a contradiction. Thus,
e(V (C), Y ) = 0. Let z1, z2 ∈ Z. If e({z1}, V (C)) > 1 in G, say z1x1 ∈ E(G), then
z2uz1x1y1 . . . xdn/2e−2ydn/2e−2xdn/2e−1 is a path of order at least n in G, a contradiction.
This implies that e({z1}, V (C)) = 0 in G. For the same reason, e({z2}, V (C)) = 0 in G.

We claim that δ(G[V (C)]) 6 1. If not, δ(G[V (C)]) > 2. Since m > 8, by Lemma
9, there are two vertex-disjoint paths in G[V (C)], one with order three and one with
order two. Without loss of generality, let x′1x

′
2x
′
3 and x′4x

′
5 be the two paths in G[V (C)].

Because m− 1 > dn/2e+ 2, we may assume that x′6, . . . , x
′
dn/2e+2 ∈ V (C)− {x′1, . . . , x′5}.

Then x′1x
′
2x
′
3y1x

′
4x
′
5y2x

′
6y3 . . . x

′
dn/2e+1ydn/2e−2x

′
dn/2e+2 is a path of order at least n in G,

a contradiction. This proves our claim that δ(G[V (C)]) 6 1. That is, there exists a
vertex of V (C) which is adjacent to at least |V (C)| − 2 vertices of V (C). Without loss of
generality, let x1 be a vertex with maximum degree in G[V (C)], and let x3 be the possible
vertex that is nonadjacent to x1. Then ux2z1x4z2x5x6 . . . xm−1 is a path of order m, which
together with x1 forms a K̂m in G, our final contradiction in Case 1.

Case 2: |V (C)| = m− 2.
We have k = d− (m− 2). Note that k > dn/2e− 1 for odd m, and k > dn/2e for even m.
Let X be the set of all vertices of V (C) that are nonadjacent to Y in G. For 1 6 i 6 m−2,
either xi ∈ X, or xi+1 ∈ X. Here, xm−1 = x1. This is because, if xi and xi+1 have a
common neigbor in Y , say y1, then by replacing xixi+1 by xiy1xi+1 in C, we obtain a
cycle longer than C, a contradiction; if xi and xi+1 are adjacent to different vertices of Y ,
say xiy1, xi+1y2 ∈ E(G), then y2xi+1xi+2 . . . xm−2x1 . . . xiy1 is a path of length m, which

together with u forms a K̂m in G, also a contradiction. Thus, at least one end of each
edge of C is nonadjacent to Y in G. Note that |X| > dn/2e and |Y | > dn/2e − 1 for
odd m and |Y | > dn/2e for even m. If m is even or n is odd, then we get a path Pn in
G[X ∪ Y ]. This implies it remains to consider the case that n is even and m is odd, with
m > n+ 3.

If |V (C) −X| > 2, say xi, xj 6∈ X, then xi+1, xj+1 ∈ X. Moreover, xi+1xj+1 6∈ E(G);
otherwise we may obtain either a cycle longer than C in F , or a path of length m in
F , which together with u forms a K̂m in G, both of which are contradictions. Now
let x′1, x

′
2, . . . , x

′
|X|−2 ∈ X − {xi+1, xj+1}. Since |X| − 2 > d|V (C)|/2e − 2 > n/2 − 1,

let P = xi+1xj+1y1x
′
1y2x

′
2 . . . yn/2−1x

′
n/2−1. Note that P is a path of order n in G, a

contradiction. Thus, m − 3 6 |X| 6 m − 2 and there exists a vertex in V (C), say x1,
such that e(V (C)− {x1}, Y ) = 0.
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Since m > n+3 > 9, we have m−3 > dn/2e+2. If there is an edge in G[V (C)−{x1}],
say xixj ∈ E(G), then G[X∪Y ] contains a path Pn, a contradiction. Thus, G[V (C)−{x1}]
is a complete graph of order m− 3.

Let z1, z2 ∈ Z. We claim that e({z1}, V (C) − {x1}) = 0 in G; otherwise, say for
z1x2 ∈ E(G), z2uz1x2y2x3y3 . . . xn/2−1yn/2−1xn/2 is a path of order n in G, a contradiction.
For the same reason, e({z2}, V (C)− {x1}) = 0 in G.

It is easy to check that x1ux3z1x4z2x5 . . . xm−2 is a path of order m, which together
with x2 forms a K̂m in G, our final contradiction in Case 2.

Case 3: |V (C)| = m− 3.
If m = n+ 2 > 8, then m and n have the same parity. In that case, R(C2b(m−1)/2c, Pn) =
2b(m− 1)/2c+ bn/2c− 1 6 2bm/2c+ dn/2e− 2 6 d. Since F contains no Pn, F contains
a C2b(m−1)/2c. This contradicts the fact that C with |V (C)| = m− 3 is a longest cycle in
F . It remains to consider the case that m > n+ 3 > 9.

We have k = d− (m− 3) > dn/2e. By Lemma 8, any two vertices of Y have at least
d(m − 3)/2e − 1 > dn/2e − 1 common nonadjacent vertices of V (C) in G. Since C is a
longest cycle in G, any vertex of Y has at least d(m−3)/2e > dn/2e nonadjacent vertices of
V (C) in G. By these observations, y1 and y2 have a common nonadjacent vertex in V (C),
say x1; for 2 6 i 6 dn/2e − 1, yi and yi+1 have a common nonadjacent vertex in V (C)−
{x1, x2, . . . , xi−1}, say xi; ydn/2e have a nonadjacent vertex in X − {x1, x2, . . . , xdn/2e−1},
say xdn/2e. Then y1x1y2x2 . . . ydn/2exdn/2e is a path of order at least n in G. This final
contradiction completes the proof of Case 3 and of Theorem 1.
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