On edge-transitive graphs of square-free order

Cai Heng Li*
School of Mathematics and Statistics
The University of Western Australia
Crawley, WA 6009, Australia

cai.heng.li@uwa.edu.au

Zai Ping Lu^{\dagger}
Center for Combinatorics
LPMC-TJKLC, Nankai University
Tianjin 300071, P. R. China
lu@nankai.edu.cn

Gai Xia Wang ${ }^{\ddagger}$

Department of Applied Mathematics
Anhui University of Technology
Maanshan 243002, P. R. China
wgx075@163.com
Submitted: Aug 4, 2014; Accepted: Aug 7, 2015; Published: Aug 14, 2015
Mathematics Subject Classifications: 05C25, 20B25

Abstract

We study the class of edge-transitive graphs of square-free order and valency at most k. It is shown that, except for a few special families of graphs, only finitely many members in this class are basic (namely, not a normal multicover of another member). Using this result, we determine the automorphism groups of locally primitive arc-transitive graphs with square-free order.

Keywords: edge-transitive graph; arc-transitive graph; stabilizer; quasiprimitive permutation group; almost simple group

1 Introduction

For a graph $\Gamma=(V, E)$, the number of vertices $|V|$ is called the order of Γ. A graph $\Gamma=(V, E)$ is called edge-transitive if its automorphism group Aut Γ acts transitively on the edge set E. For convenience, denote by $\operatorname{ETSQF}(k)$ the class of connected edge-transitive graphs with square-free order and valency at most k.

The study of special subclasses of ETSQF (k) has a long history, see for example [1, 4, $5,17,18,21,22,23]$ for those graphs of order being a prime or a product of two primes.

[^0]Recently, several classification results about the class ETSQF (k) were given. Feng and Li [9] gave a classification of one-regular graphs of square-free order and prime valency. By Li et al. $[12,14]$, one may obtain a classification of vertex-transitive and edge-transitive tetravalent graphs of square-free order. By Li et al. [13] and Liu and Lu [16], one may deduce an explicitly classification of ETSQF(3). In this paper, we give a characterization about the class ETSQF (k).

A typical method for analyzing edge-transitive graphs is to take normal quotient. Let $\Gamma=(V, E)$ be a connected graph such that a subgroup $G \leqslant A u t \Gamma$ acts transitively on E. Let N be a normal subgroup of G, denoted by $N \triangleleft G$. Then either N is transitive on V, or each N-orbit is an independent set of Γ. Let V_{N} be the set of all N-orbits on V. The normal quotient Γ_{N} (with respect to G and N) is defined as the graph with vertex set V_{N} such that distinct vertices $B, B^{\prime} \in V_{N}$ are adjacent in Γ_{N} if and only if some $\alpha \in B$ and some $\alpha^{\prime} \in B^{\prime}$ are adjacent in Γ. We call Γ_{N} non-trivial if $N \neq 1$ and $\left|V_{N}\right| \geqslant 3$. It is well-known and easily shown that Γ_{N} is an edge-transitive graph. Moreover, if all N-orbits have the same length (which is obvious if G is transitive on V), then Γ_{N} is a regular graph of valency a divisor of the valency of Γ; in this case, Γ is called a normal multicover of Γ_{N}.

A member in $\operatorname{ETSQF}(k)$ is called basic if it has no non-trivial normal quotients. Then every member in $\operatorname{ETSQF}(k)$ is a multicover of some basic member, or has a non-regular normal quotient (which might occur for vertex-intransitive graphs). Thus, to a great extent, basic members play an important role in characterizing the graphs in $\operatorname{ETSQF}(k)$. The first result of this paper shows that, except for a few special families of graphs, there are only finitely many basic members in $\operatorname{ETSQF}(k)$.

Theorem 1. Let $\Gamma=(V, E)$ be a connected graph of square-free order and valency $k \geqslant 3$. Assume that $G \leqslant A u t \Gamma$ acts transitively on E and that each non-trivial normal subgroup of G has at most 2 orbits on V. Then one of the following holds:
(1) Γ is a complete bipartite graph, and G is described in (1) and (5) of Lemma 13;
(2) G is one of the Frobenius groups $\mathbb{Z}_{p}: \mathbb{Z}_{k}$ and $\mathbb{Z}_{p}: \mathbb{Z}_{2 k}$, where p is a prime;
(3) $\operatorname{soc}(G)=\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}$ or J_{1};
(4) $G=\mathrm{A}_{n}$ or S_{n} with $n<3 k$;
(5) $G=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$;
(6) $\operatorname{soc}(G)=\operatorname{PSL}\left(2, p^{f}\right)$ with $f \geqslant 2$ and $p^{f}>9$, and either k is divisible by p^{f-1} or $f=2$ and k is divisible by $p+1$;
(7) $\operatorname{soc}(G)=\operatorname{Sz}\left(2^{f}\right)$ and k is divisible by $2^{2 f-1}$;
(8) G is of Lie type defined over $\mathrm{GF}\left(p^{f}\right)$ with $p \leqslant k$, and either
(i) $\left[\frac{d}{2}\right] f<k$, and G is a d-dimensional classical group with $d \geqslant 3$; or
(ii) $2 f<k$, and $\operatorname{soc}(G)=\mathrm{G}_{2}\left(p^{f}\right),{ }^{3} \mathrm{D}_{4}\left(p^{f}\right), \mathrm{F}_{4}\left(p^{f}\right),{ }^{2} \mathrm{E}_{6}\left(p^{f}\right)$, or $\mathrm{E}_{7}\left(p^{f}\right)$.

Remark 2 (Remarks on Theorem 1). For a finite group G, the $\operatorname{socle} \operatorname{soc}(G)$ of G is the subgroup generated by all minimal normal subgroups of G. A finite group is called almost simple if $\operatorname{soc}(G)$ is a non-abelian simple group.
(a) The groups G in case (1) are known except for G being almost simple.
(b) The vertex-transitive graphs in case (5) are characterized in Theorem 27.
(c) Some properties about the graphs in cases (6)-(7) are given in Lemmas 14 and 15, respectively.

It would be interest to give further characterization for some special cases.
Problem 3. (i) Characterize edge-transitive graphs of square-free order which admits a group with socle $\operatorname{PSL}(2, q), \mathrm{Sz}(q), \mathrm{A}_{n}$ or a sporadic simple group.
(ii) Classify edge-transitive graphs of square-free order of small valencies.

For a graph $\Gamma=(V, E)$ and $G \leqslant$ Aut Γ, the graph Γ is called G-locally primitive if, for each $\alpha \in V$, the stabilizer of α in G induces a primitive permutation group on the neighbors of α in Γ. The second result of this paper determines, on the basis of Theorem 1 , the automorphism groups of locally primitive arc-transitive graphs of square-free order.

Theorem 4. Let $\Gamma=(V, E)$ be a connected G-locally primitive graph of square-free order and valency $k \geqslant 3$. Assume that G is transitive on V and that Γ is not a complete bipartite graph. Then one of the following statements is true.
(1) $G=\mathrm{D}_{2 n}: \mathbb{Z}_{k}, 2 n k$ is square-free, k is the smallest prime divisor of $n k$, and Γ is a bipartite Cayley graph of the dihedral group $\mathrm{D}_{2 n}$;
(2) $G=M: X$, where M is of square-free order, X is almost simple with socle T descried as in (3)-(6) and (8) of Theorem 1 such that $M T=M \times T, T$ has at most two orbits on V and Γ is T-edge-transitive; in particular, if $T=\operatorname{PSL}(2, p)$, then M, T_{α} and k are listed in Table 3, where $\alpha \in V$.

2 Preliminaries

Let $\Gamma=(V, E)$ be a graph without isolated vertices, and let $G \leqslant A u t \Gamma$. The graph Γ is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V or E, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. The graph Γ is called G-arc-transitive if G acts transitively on the set of arcs of Γ. For a vertex $\alpha \in V$, we denote by $\Gamma(\alpha)$ the set of neighbors of α in Γ, and by G_{α} the stabilizer of α in G. Then it is easily shown that Γ is G-arc-transitive if and only if Γ is G-vertex-transitive and, for $\alpha \in V$, the vertex-stabilizer G_{α} acts transitively on $\Gamma(\alpha)$.

Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph. Note that each edge of Γ gives two arcs. Then either Γ is G-arc-transitive or G has exactly two orbits (of the same size $|E|$) on the arc set of Γ. If Γ is not G-vertex-transitive then Γ is a bipartite graph and, for $\alpha \in V$, the stabilizer G_{α} acts transitively on $\Gamma(\alpha)$. If Γ is G-arc-transitive, then there exists $g \in G \backslash G_{\alpha}$ such that $(\alpha, \beta)^{g}=(\beta, \alpha)$ and, since Γ is connected, $\left\langle g, G_{\alpha}\right\rangle=G$; obviously, this g can be chosen as a 2-element in $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $g^{2} \in G_{\alpha \beta}$, where $G_{\alpha \beta}=G_{\alpha} \cap G_{\beta}$. Suppose that Γ is G-vertex-transitive but not G-arc-transitive. Then the arc set of Γ is partitioned into two G-orbits Δ and Δ^{*}, where $\Delta^{*}=\{(\alpha, \beta) \mid(\beta, \alpha) \in \Delta\}$. Thus, for $\alpha \in V$, the set $\Gamma(\alpha)$ is partitioned into two G_{α}-orbits $\Delta(\alpha)=\{\beta \mid(\alpha, \beta) \in \Delta\}$ and $\Delta^{*}(\alpha)=\{\beta \mid(\beta, \alpha) \in \Delta\}$, which have equal size. Then we have the next lemma.

Lemma 5. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph, and $\{\alpha, \beta\} \in E$. Then one of the following holds.
(1) The stabilizer G_{α} is transitive on $\Gamma(\alpha),|\Gamma(\alpha)|=\left|G_{\alpha}: G_{\alpha \beta}\right|$, and either
(i) G is intransitive on V; or
(ii) $G=\left\langle g, G_{\alpha}\right\rangle$ for a 2-element $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right) \backslash G_{\alpha}$ with $(\alpha, \beta)^{g}=(\beta, \alpha)$ and $g^{2} \in G_{\alpha \beta}$.
(2) Γ is G-vertex-transitive, G_{α} has exactly two orbits on $\Gamma(\alpha)$ of the same size $\mid G_{\alpha}$: $G_{\alpha \beta} \mid ;$ in particular, $|\Gamma(\alpha)|=2\left|G_{\alpha}: G_{\alpha \beta}\right|$.
Let $\Gamma=(V, E)$ be a regular graph and $G \leqslant \operatorname{Aut} \Gamma$. For $\alpha \in V$, the stabilizer G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$ (on $\left.\Gamma(\alpha)\right)$. Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha} / G_{\alpha}^{[1]}$. Considering the actions of Sylow subgroups of $G_{\alpha}^{[1]}$ on V, it is easily shown that the next lemma holds, see [7] for example.

Lemma 6. Let $\Gamma=(V, E)$ be a connected regular graph, $G \leqslant$ Aut Γ and $\alpha \in V$. Assume that $G_{\alpha} \neq 1$. Let p be a prime divisor of $\left|G_{\alpha}\right|$. Then $p \leqslant|\Gamma(\alpha)|$. If further Γ is G-vertextransitive, then p divides $\left|G_{\alpha}^{\Gamma(\alpha)}\right|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $\left|G_{\alpha \beta}\right|$ is less than $|\Gamma(\alpha)|$.

A permutation group G on a set Ω is semiregular if $G_{\alpha}=1$ for each $\alpha \in \Omega$. A transitive permutation group is regular if further it is semiregular.

Lemma 7. Let Γ be a connected G-vertex-transitive graph, $N \triangleleft G \leqslant$ Aut Γ and $\alpha \in V$. Assume that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$. Then $N_{\alpha}^{[1]}=1$.

Proof. Let $\beta \in \Gamma(\alpha)$. Then $\beta=\alpha^{x}$ for some $x \in G$, and hence $N_{\beta}=N_{\alpha^{x}}=N \cap$ $G_{\alpha^{x}}=\left(N \cap G_{\alpha}\right)^{x}=\left(N_{\alpha}\right)^{x}$. It follows that $N_{\beta}^{\Gamma(\beta)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are permutation isomorphic; in particular, $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$. Thus $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]}=N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ, hence $N_{\alpha}^{[1]}=1$.
Lemma 8. Let $\Gamma=(V, E)$ be a connected graph, $N \triangleleft G \leqslant$ Aut Γ and $\alpha \in V$. Assume that either N is regular on V, or Γ is a bipartite graph such that N is regular on both the bipartition subsets of Γ. Then $G_{\alpha}^{[1]}=1$.

Proof. Set $X=N G_{\alpha}^{[1]}$. Then $X_{\alpha}=G_{\alpha}^{[1]}$ and $X_{\alpha}^{[1]}=G_{\alpha}^{[1]}$, and hence $X_{\alpha}^{\Gamma(\alpha)}=1$.
Assume first that N is regular on V. Then $G=N G_{\alpha}$. It follows that X is normal in G. Thus our results follows from Lemma 7 .

Now assume that Γ is a bipartite graph with bipartition subsets U and W, and that N is regular on both U and W. Without loss of generality, we assume that $\alpha \in U$. Then $\Gamma(\alpha) \subseteq W$, and $X_{\alpha}=X_{\beta}$ for $\beta \in \Gamma(\alpha)$. Let $\gamma \in \Gamma(\beta)$. Then $\gamma \in U$. Set $E_{0}=\left\{\{\gamma, \beta\}^{x} \mid x \in X\right\}$. Then $\Sigma=\left(V, E_{0}\right)$ is a spanning subgraph of Γ, and X acts transitively on E_{0}. Thus Σ is a regular graph, and X_{α} is transitive on $\Sigma(\alpha)$. Noting $\Sigma(\alpha) \subseteq \Gamma(\alpha)$, it follows that $|\Sigma(\alpha)|=1$, and hence Σ is a matching. In particular, $X_{\beta}=X_{\gamma}$. It follows that $G_{\alpha}^{[1]}=X_{\alpha}=X_{\beta}=X_{\gamma}$. Since all vertices in U are equivalent under X, we have X_{γ} acts trivially on $\Gamma(\gamma)$. Then a similar argument as above leads to $G_{\alpha}^{[1]}=X_{\gamma}=X_{\delta}=X_{\theta}$ for any $\delta \in \Gamma(\gamma)$ and $\theta \in \Gamma(\delta)$. Then, by the connectedness, we conclude that $G_{\alpha}^{[1]}$ fixes each vertex of Γ. Thus $G_{\alpha}^{[1]}=1$.

We end this section by quoting a known result.
Lemma 9 ([12]). Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph, $N \triangleleft G \leqslant$ Aut Γ and $\alpha \in V$. Then all N_{α}-orbits on $\Gamma(\alpha)$ have the same length.

3 Complete bipartite graphs

We first list a well-known result in number theory. For integers $a>0$ and $n>0$, a prime divisor of $a^{n}-1$ is called primitive if it does not divide $a^{i}-1$ for any $0<i<n$.

Theorem 10 (Zsigmondy). For integers $a, n \geqslant 2$, if $a^{n}-1$ does not have primitive prime divisors, then either $(a, n)=(2,6)$, or $n=2$ and $a+1$ is a power of 2 .

Let G be a permutation group on V, and let x be a permutation on V which centralizes G. If x fixes some point $\alpha \in V$, then x fixes α^{g} for each $g \in G$. Thus the next simple result follows.

Lemma 11. Let G be a permutation group on V. Assume that N is a normal transitive subgroup of G. Then the centralizer $\mathbf{C}_{G}(N)$ is semiregular on V, and $\mathbf{C}_{G}(N)=N$ if further N is abelian.

Recall that a transitive permutation group G is quasiprimitive if each non-trivial normal subgroup of G is transitive. Let G be a quasiprimitive permutation group on V, and let \mathcal{B} be a G-invariant partition on V. Then G induces a permutation group $G^{\mathcal{B}}$ on \mathcal{B}. Assume that $|\mathcal{B}| \geqslant 2$. Since G is quasiprimitive, G acts faithfully on \mathcal{B}. Then $G^{\mathcal{B}} \cong G$, and so $\operatorname{soc}\left(G^{\mathcal{B}}\right) \cong \operatorname{soc}(G)$.

Lemma 12. Let G be a quasiprimitive permutation group of square-free degree. Then $\operatorname{soc}(G)$ is simple, so either G is almost simple or $G \leqslant \operatorname{AGL}(1, p)$ for a prime p.

Proof. Let G be a quasiprimitive permutation group on V of square-free degree. Let \mathcal{B} be a G-invariant partition on V such that $|\mathcal{B}| \geqslant 2$ and $G^{\mathcal{B}}$ is primitive. Noting that $|\mathcal{B}|$ is
square-free, by [15], $\operatorname{soc}\left(G^{\mathcal{B}}\right)$ is simple. Thus $\operatorname{soc}(G) \cong \operatorname{soc}\left(G^{\mathcal{B}}\right)$ is simple, and the result follows.

Let G be a permutation group on V. For a subset $U \subseteq V$, denote by G_{U} and $G_{(U)}$ the subgroups of G fixing U set-wise and point-wise, respectively. For $X \leqslant G$ and an X-invariant subset U of V, denote by X^{U} the restriction of X on U. Then $X^{U} \cong X / X_{(U)}$.

We now prove a reduction lemma for Theorem 1.
Lemma 13. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geqslant 3$, where $G \leqslant$ Аut Γ. Assume that each minimal normal subgroup of G has at most two orbits on V. Then one of the following holds:
(1) $\Gamma \cong \mathrm{K}_{k, k}, k$ is an odd prime, $G \cong\left(\mathbb{Z}_{k}^{2}: \mathbb{Z}_{l}\right) \cdot \mathbb{Z}_{2}$ and Γ is G-vertex-transitive, where l is a divisor of $k-1$;
(2) $|V|=p$ with $p \geqslant 3$ prime, k is even, $G \cong \mathbb{Z}_{p}: \mathbb{Z}_{k}$ and Γ is G-vertex-transitive;
(3) $|V|=2 p$ with $p \geqslant 3$ prime, and G is isomorphic to one of $\mathbb{Z}_{p}: \mathbb{Z}_{k}$ and $\mathbb{Z}_{p}: \mathbb{Z}_{2 k}$;
(4) G is almost simple;
(5) $\Gamma \cong \mathrm{K}_{k, k}, \Gamma$ is G-vertex-transitive, $\operatorname{soc}(G)$ is the unique minimal normal subgroup of $G, \operatorname{soc}(G) \cong T^{2}$ for a nonabelian simple group T and, for $\alpha \in V$, either
(i) $\operatorname{soc}(G)_{\alpha} \cong H \times T$ for a subgroup H of T with $k=\mid T$: $H \mid$; or
(ii) $k=105, T \cong \mathrm{~A}_{7}$ and $\operatorname{soc}(G)_{\alpha} \cong \mathrm{A}_{6} \times \operatorname{PSL}(3,2)$.

Proof. Let N be a minimal normal subgroup of G. Then N is a directed product of isomorphic simple groups. Since Γ has valency $k \geqslant 3$, we know that $|V|>3$. Since $|V|$ is square-free and N has at most two orbits on V, we conclude that N is not an elementary abelian 2-group. In particular, N has no a subgroup of index 2.

Case 1. Assume first that G has two distinct minimal normal subgroups N and M. Then $N \cap M=1$, and hence $N M=N \times M$.

Suppose that both N and M are transitive on V. By Lemma 11, N and M are regular on V; in particular, $|N|=|M|=|V|$. Thus N and M are soluble, it implies that $N \cong M \cong \mathbb{Z}_{p}$ for an odd prime p. Again by Lemma $11, N=M$, a contradiction.

Without loss of generality, we assume that N is intransitive on V. Then Γ is a bipartite graph, whose bipartition subsets are N-orbits, say U and $V \backslash U$. A similar argument as above paragraph yields that M has no subgroups of index 2 . It follows that M fixes both U and $V \backslash U$ set-wise, and hence U and $V \backslash U$ are two M-orbits on V.

Let $X=N M$ and $\Delta=U$ or $V \backslash U$. By Lemma 11, both N^{Δ} and M^{Δ} are regular subgroups of X^{Δ}. Set $N \cong T^{i}$, where T is a simple group. Then $N_{(\Delta)} \cong T^{j}$ for some $j<i$, and so $N^{\Delta} \cong N / N_{(\Delta)} \cong T^{i-j}$. It follows that $|\Delta|=\left|N^{\Delta}\right|=|T|^{i-j}$. Since T is simple and $|\Delta|$ is square-free, $i-j=1$ and $N^{\Delta} \cong T \cong \mathbb{Z}_{p}$, where $p=|\Delta|$ is an odd prime. Similarly, $M^{\Delta} \cong \mathbb{Z}_{p}$, and so M is abelian. In particular, $X=N \times M$ is abelian and $|X|$ is a power of p. It implies that $X^{\Delta} \cong \mathbb{Z}_{p}$. Then, by Lemma $11, N^{\Delta}=M^{\Delta}=X^{\Delta}$. Thus
$N \times M=X \leqslant X^{\Delta} \times X^{V \backslash \Delta} \cong \mathbb{Z}_{p}^{2}$. Then $X \cong \mathbb{Z}_{p}^{2}$, and hence $N \cong M \cong \mathbb{Z}_{p}$. Moreover, $X_{(\Delta)} \cong \mathbb{Z}_{p}$.

Let $\alpha \in \Delta$. Then $G_{\alpha} \geqslant X_{(\Delta)}$. By Lemma $6, k=|\Gamma(\alpha)| \geqslant p$, and so $\Gamma \cong \mathrm{K}_{p, p}$. Noting that N is regular on Δ and $V \backslash \Delta$, by Lemma $8, G_{\alpha}$ acts faithfully on $\Gamma(\alpha)$, and so G_{α} is isomorphic to a subgroup of the symmetric group S_{p}. Noting that G_{α} has a normal subgroup $X_{(\Delta)} \cong \mathbb{Z}_{p}$, it follows that G_{α} is isomorphic to a subgroup of the Frobenius group $\mathbb{Z}_{p}: \mathbb{Z}_{p-1}$. Write $G_{\alpha} \cong \mathbb{Z}_{p}: \mathbb{Z}_{l}$, where l is a divisor of $p-1$. Then $G_{\Delta}=N G_{\alpha} \cong \mathbb{Z}_{p}^{2}: \mathbb{Z}_{l}$.

Clearly, $X_{(\Delta)}$ has at least $p+1$ orbits on V. Then, by the assumptions of this lemma, $X_{(\Delta)}$ is not normal in G. On the other hand, $\left(X_{(\Delta)}\right)^{g}=\left(X^{g}\right)_{\left(\Delta^{g}\right)}=X_{(\Delta)}$ for each $g \in G_{\Delta}$, yielding $X_{(\Delta)} \triangleleft G_{\Delta}$. It follows that $G \neq G_{\Delta}$, and hence G is transitive on V. Note that $\left|G: G_{\Delta}\right| \leqslant 2$. Then part (1) of this lemma follows.

Case 2. Assume that $N:=\operatorname{soc}(G)$ is the unique minimal normal subgroup of G.
Assume that N is simple. If N is nonabelian then (4) occurs. Assume that $N \cong \mathbb{Z}_{p}$ for some odd prime p. Then N is regular on each N-orbit on V. Thus G_{α} is faithful on $\Gamma(\alpha)$ by Lemma 8 , where $\alpha \in V$. Noting that $\mathbf{C}_{G}(N)$ is normal in G, we conclude that $\mathbf{C}_{G}(N)=N$. Thus $G / N=\mathbf{N}_{G}(N) / \mathbf{C}_{G}(N) \lesssim \operatorname{Aut}(N) \cong \mathbb{Z}_{p-1}$, and so $G \lesssim \operatorname{AGL}(1, p)$. Set $G \cong \mathbb{Z}_{p}: \mathbb{Z}_{m}$, where m is a divisor of $p-1$. Let $\alpha \in U$. Then $G_{\alpha} \cong N G_{\alpha} / N \leqslant$ $G / N \cong \mathbb{Z}_{m}$; in particular, G_{α} is cyclic. Recalling that G_{α} is faithful on $\Gamma(\alpha)$, it implies that $G_{\alpha} \cong \mathbb{Z}_{k}$. Thus one of (2) and (3) occurs by noting that $\left|G:\left(N G_{\alpha}\right)\right| \leqslant 2$.

In the following we assume that $N \cong T^{l}$ for an integer $l \geqslant 2$ and a simple group T. If N is transitive on V then G is quasiprimitive on V, and hence $\operatorname{soc}(G)=N$ is simple by Lemma 12, a contradiction. If G is intransitive on V, then G is faithful on each of its orbits, and then N is simple by Lemma 12, again a contradiction. Thus, in the following, we assume further that Γ is G-vertex-transitive and N has two orbits U and W on V. Note that $|U|=|W|=\frac{|V|}{2}$ is odd and square-free.

Since Γ is G-vertex-transitive, $\left|G: G_{U}\right|=2$. Let $x \in G \backslash G_{U}$. Then $G=G_{U}\langle x\rangle$, $x^{2} \in G_{U}, U^{x}=W$ and $W^{x}=U$. Let \mathcal{B} be a G_{U}-invariant partition of U such that $\left(G_{U}\right)^{\mathcal{B}}$ is primitive. Set $\mathcal{C}=\left\{B^{x} \mid B \in \mathcal{B}\right\}$. Then $\left(G_{U}\right)^{\mathcal{C}}$ is also primitive. By [15], both $\operatorname{soc}\left(\left(G_{U}\right)^{\mathcal{B}}\right)$ and $\operatorname{soc}\left(\left(G_{U}\right)^{\mathcal{C}}\right)$ are simple. Then $\operatorname{soc}\left(\left(G_{U}\right)^{\mathcal{B}}\right) \cong \operatorname{soc}\left(\left(G_{U}\right)^{\mathcal{C}}\right) \cong T$. Let K be the kernel of G_{U} acting on \mathcal{B}. Then K^{x} is the kernel of G_{U} acting on \mathcal{C}, and $K^{x^{2}}=K$. Since $K, K^{x} \triangleleft G_{U}$, we have $K \cap K^{x} \triangleleft G_{U}$. Noting that $\left(K \cap K^{x}\right)^{x}=K \cap K^{x}$, it follows that $K \cap K^{x} \triangleleft G$. Since $K \cap K^{x}$ has at least $2|\mathcal{B}|>2$ orbits on V, we have $K \cap K^{x}=1$. Then $G_{U} \lesssim G_{U} / K \times G_{U} / K^{x} \cong\left(G_{U}\right)^{\mathcal{B}} \times\left(G_{U}\right)^{\mathcal{C}}$, yielding $N \cong T^{2}$.

We claim that T is a nonabelian simple group. Suppose that $T \cong \mathbb{Z}_{p}$ for some (odd) prime p. Then $\left(G_{U}\right)^{\mathcal{B}} \cong\left(G_{U}\right)^{\mathcal{C}} \lesssim \mathbb{Z}_{p}: \mathbb{Z}_{p-1}$, and so $G=G_{U} \cdot \mathbb{Z}_{2} \lesssim\left(\left(\mathbb{Z}_{p}: \mathbb{Z}_{p-1}\right) \times\right.$ $\left.\left(\mathbb{Z}_{p}: \mathbb{Z}_{p-1}\right)\right) . \mathbb{Z}_{2}$. Let H be a p^{\prime}-Hall subgroup of G with $x \in H$. Then $G=N: H$, $H \lesssim\left(\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}\right) \cdot \mathbb{Z}_{2}$. Moreover, H_{U} is p^{\prime}-Hall subgroup of $G_{U}, H=H_{U}\langle x\rangle$ and $H_{U} \lesssim \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$. Note that N is the unique minimal normal subgroup of G. Then H is maximal in G, and thus G can be viewed as a primitive subgroup of the affine group AGL $(2, p)$. Since H_{U} is an abelian normal subgroup of H, by [19, 2.5.10], H_{U} is cyclic. It follows that $H_{U} \lesssim \mathbb{Z}_{p-1}$. Since H_{U} has index 2 in H, by [19, 2.5.7], H_{U} is an irreducible subgroup of $\mathrm{GL}(2, p)$. Then, by $[19,2.3 .2],\left|H_{U}\right|$ is not a divisor of $p-1$, a contradiction. Therefore, T is a nonabelian simple group.

Set $N=T_{1} \times T_{2}$, where $T_{1} \cong T_{2} \cong T$. Since T_{1} and T_{2} are isomorphic nonabelian simple groups, T_{1} and T_{2} are the only non-trivial normal subgroups of N. Thus $N_{(U)} \in\left\{1, T_{1}, T_{2}\right\}$. For $g \in G_{U}$, we have $\left(N_{(U)}\right)^{g}=\left(N^{g}\right)_{\left(U^{g}\right)}=N_{(U)}$. Thus $N_{(U)} \triangleleft G_{U}$. Let $x \in G \backslash G_{U}$. Then $U^{x}=W$ and $W^{x}=U$, yielding $\left(N_{(U)}\right)^{x}=N_{(W)}$ and $\left(N_{(W)}\right)^{x}=N_{(U)}$. It follows that either $\left\{N_{(U)}, N_{(W)}\right\}=\left\{T_{1}, T_{2}\right\}$ or N is faithful on both U and W. The former case yields that $N_{(U)}$ acts transitively on W, and so (i) of part (5) follows.

Assume that N is faithful on both U and W. Then neither T_{1} nor T_{2} is transitive on U. Let \mathcal{O} be the set of T_{1}-orbits on U, and let $O \in \mathcal{O}$. Then T_{2} is transitive on \mathcal{O}. Thus T has two transitive permutation representations of degrees $|O|$ and $|\mathcal{O}|$, respectively. Then T has two primitive permutation representations of degrees n_{1} and n_{2}, where $n_{1}>1$ is a divisor of $|O|$ and $n_{2}>1$ is a divisor of $|\mathcal{O}|$. Since $|V|=2|U|=2|O||\mathcal{O}|$ is square-free, n_{1} and n_{2} are odd, square-free and coprime. Inspecting [15, Tables 1-4], we conclude that T is either an alternating group or a classical group of Lie type.

Suppose that $T=\operatorname{PSL}(d, q)$ with $d \geqslant 3$. By the Atlas [8], neither $\operatorname{PSL}(3,2)$ nor $\operatorname{PSL}(4,2)$ has maximal subgroups of coprime indices. Thus we assume that $(d, q) \neq(3,2)$ or $(4,2)$. Then, by [15, Table 3],

$$
\left\{n_{1}, n_{2}\right\} \subseteq\left\{\left.\frac{\prod_{j=0}^{i-1}\left(q^{m-j}-1\right)}{\prod_{j=1}^{i}\left(q^{j}-1\right)} \right\rvert\, 1 \leqslant i<d\right\} \cup\left\{\left.\frac{\prod_{j=0}^{2 i-1}\left(q^{m-j}-1\right)}{\left(\prod_{j=1}^{i}\left(q^{j}-1\right)\right)^{2}} \right\rvert\, 1 \leqslant i<\frac{d}{2}\right\}
$$

If $q^{d}-1$ has a primitive prime divisor r, then both n_{1} and n_{2} are divisible by r, which is not possible. Thus $q^{d}-1$ has no primitive prime divisor, and so $(q, d)=(2,6)$ by Theorem 10. Computation of n_{1} and n_{2} shows that this is not the case.

Similarly, we exclude other classes of classical groups of Lie type except for $\operatorname{PSL}\left(2, p^{f}\right)$, where p is a prime. By the Atlas [8], we exclude $\operatorname{PSL}\left(2, p^{f}\right)$ while $p^{f} \leqslant 31$. Suppose that $T=\operatorname{PSL}\left(2, p^{f}\right)$ with $p^{f} \geqslant 32$. By [15, Table 3], one of n_{1} and n_{2} is $p^{f}+1$ and the other one is divisible by p. This is not possible since one of $p^{f}+1$ and p is even.

Now let $T=\mathrm{A}_{c}$ for some $c \geqslant 5$. By the above argument, we may assume that A_{c} is not isomorphic to a classical simple group of Lie type. Then $c \neq 5,6$ or 8 . Note that for $c \geqslant 5$ and $a<b<\frac{c}{2}$, the binomial coefficient $\binom{c}{b}=\binom{c}{a}\binom{c-a}{b-a} /\binom{b}{b-a}$. It is easily shown that $\binom{c}{a}>\binom{b}{b-a}=\binom{b}{a}$; in particular, $\binom{c}{a}$ is not a divisor of $\binom{b}{b-a}$. Thus $\binom{c}{a}$ and $\binom{c}{b}$ are not comprime, and so at most one of n_{1} and n_{2} equals to a binomial coefficient. Checking the actions listed in [15, Table 1] implies that either $c=7$, or $c=2 a$ for $a \in\{6,9,10,12,36\}$. Suppose the later case occurs. Then one of n_{1} and n_{2} is $\frac{1}{2}\left({ }_{a}^{a a}\right)$ and the other one is a binomial coefficient, say $\left({ }_{b}^{2 a}\right)$. But computation shows that such two integers are not coprime, a contradiction. Therefore, $T=\mathrm{A}_{7}$.

Checking the subgroups of A_{7}, we conclude that $\left\{n_{1}, n_{2}\right\}=\{|O|,|\mathcal{O}|\}=\{7,15\}$. Take $\alpha \in O$. Recall that Γ is G-vertex-transitive. Then there is an element $x \in G \backslash G_{U}$ such that $\left\{\alpha, \alpha^{x}\right\} \in E, U^{x}=W$ and $W^{x}=U$. Since $N=T_{1} \times T_{2}$ is the unique minimal normal subgroup of G, we know that $T_{1}^{x}=T_{2}$ and $T_{2}^{x}=T_{1}$. It follows O^{x} is a T_{2}-orbit on W, and so $\mathcal{O}^{x}:=\left\{O^{h x} \mid h \in G_{U}\right\}$ is the set of T_{2}-orbits on W. Moreover, T_{1} acts transitively on \mathcal{O}^{x}. Note that $|O|=\left|O^{x}\right|$ and $|\mathcal{O}|=\left|\mathcal{O}^{x}\right|$. Thus, without loss of generality, we may assume that $|O|=7$ and $|\mathcal{O}|=15$. Then $\left(T_{2}\right)_{O} \cong \operatorname{PSL}(3,2)$ and $\left(T_{1}\right)_{\alpha} \cong \mathrm{A}_{6}$, where $\alpha \in O$. Recall
that T_{2} is intransitive on V. Since $T_{2} \triangleleft N$ and N is transitive on U, we conclude that each T_{2}-orbit on U has size 15. It follows that $\left(T_{2}\right)_{O}=\left(T_{2}\right)_{\alpha}$. Then $N_{\alpha} \geqslant\left(T_{1}\right)_{\alpha} \times\left(T_{2}\right)_{\alpha}$, and so $N_{\alpha}=\left(T_{1}\right)_{\alpha} \times\left(T_{2}\right)_{\alpha} \cong \mathrm{A}_{6} \times \operatorname{PSL}(3,2)$ as $\left|N: N_{\alpha}\right|=|U|=|O||\mathcal{O}|=105$. Note that $N_{\alpha^{x}}=\left(N_{\alpha}\right)^{x}=\left(\left(T_{1}\right)_{\alpha} \times\left(T_{2}\right)_{\alpha}\right)^{x}=\left(T_{2}\right)_{\alpha^{x}} \times\left(T_{1}\right)_{\alpha^{x}}$. Then it is easily shown that $N_{\alpha} \cap N_{\alpha^{x}}=\left(\left(T_{1}\right)_{\alpha} \cap\left(T_{1}\right)_{\alpha^{x}}\right) \times\left(\left(T_{2}\right)_{\alpha} \cap\left(T_{2}\right)_{\alpha^{x}}\right) \cong \mathrm{S}_{4} \times \mathrm{S}_{4}$. By the choice of x, we conclude that $|\Gamma(\alpha)| \geqslant\left|N_{\alpha}:\left(N_{\alpha} \cap N_{\alpha^{x}}\right)\right| \geqslant 105$. Thus $\Gamma=\mathrm{K}_{105,105}$, and hence (ii) of part (5) occurs.

4 Graphs associated with $\operatorname{PSL}\left(2, p^{f}\right)$ and $\mathrm{Sz}\left(2^{f}\right)$

Let $\Gamma=(V, E)$ be a connected graph of square-free order and valency k. Assume that $G \leqslant$ Aut Γ is almost simple with socle T. Assume further that G is transitive on E and that T has at most two orbits on V. Let $\{\alpha, \beta\} \in E$. Then $\left|T_{\alpha}\right|=\left|T_{\beta}\right|$ as Γ is a regular graph. Then $\left|T_{\beta}: T_{\alpha \beta}\right|=\left|T_{\alpha}: T_{\alpha \beta}\right|$ and, by Lemma $9,\left|T_{\alpha}: T_{\alpha \beta}\right|$ is a divisor of $k=|\Gamma(\alpha)|$. Moreover, since $|V|$ is square-free, it is easily shown that $T_{\alpha} \neq T_{\beta}$.

Lemma 14. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency k. Assume that $\operatorname{soc}(G)=\operatorname{PSL}\left(2, p^{f}\right)$ with $f \geqslant 2$ and $p^{f}>9$, and that $\operatorname{soc}(G)$ has at most two orbits on V. Then one of the following statements holds:
(i) $f=2, T_{\alpha}=\operatorname{PGL}(2, p)$ or $\operatorname{PSL}(2, p)$, and k is divisible by p or $p+1$;
(ii) $T_{\alpha}=\mathbb{Z}_{p}^{f-1}: \mathbb{Z}_{l}$ for a divisor l of $p-1$, and k is divisible by p^{f-1}; further, if Γ is G-locally primitive then $k=p^{f-1}$;
(iii) $T_{\alpha}=\mathbb{Z}_{p}^{f}: \mathbb{Z}_{l}$ for a divisor l of $p^{f}-1$, and k is divisible by p^{f}; further, if Γ is G-locally primitive then $k=p^{f}$.

Proof. Let $T=\operatorname{soc}(G)$. Take $\alpha \in V$ and a maximal subgroup M of T with $T_{\alpha} \leqslant M$. Then both $|T: M|$ and $\left|M: T_{\alpha}\right|$ are square-free as $\left|T: T_{\alpha}\right|$ is square-free. By [15], either $M=\mathbb{Z}_{p}^{f}: \mathbb{Z}_{\frac{p^{f}-1}{(2, p-1)}}$ and $|T: M|=p^{f}+1$, or $f=2, M=\operatorname{PGL}(2, p)$ and $|T: M|=\frac{p\left(p^{2}+1\right)}{2}$.

Assume that T_{α} is insoluble. Then $f=2$ and $T_{\alpha}=\operatorname{PGL}(2, p)$ or $\operatorname{PSL}(2, p)$. Let $\beta \in \Gamma(\alpha)$. Recall that $T_{\alpha} \neq T_{\beta}$ and $\left|T_{\beta}: T_{\alpha \beta}\right|=\left|T_{\alpha}: T_{\alpha \beta}\right|$ is a divisor of k. If $T_{\alpha}=\operatorname{PSL}(2, p)$ then, by [11, II.8.27], $\left|T_{\alpha}: T_{\alpha \beta}\right|$ is divisible by p or $p+1$. Suppose that $T_{\alpha}=\mathrm{PGL}(2, p)$. Then T_{α} is maximal in T, and so $T=\left\langle T_{\alpha}, T_{\beta}\right\rangle$. Thus $\left|T_{\beta}: T_{\alpha \beta}\right|>2$ as T is simple; in particular, $\operatorname{PSL}(2, p) \neq T_{\alpha \beta}$. Checking the subgroups of T_{α} which do not contain $\operatorname{PSL}(2, p)$ (refer to [3]), we conclude that $\left|T_{\alpha}: T_{\alpha \beta}\right|$ is divisible by p or $p+1$. Thus part (i) occurs.

In the following, we assume that T_{α} is soluble. Since p^{2} is not a divisor of $\left|T: T_{\alpha}\right|$, each Sylow p-subgroup of T_{α} has p^{f} or p^{f-1}. Then, inspecting the subgroups of T, we conclude that $T_{\alpha} \cong T_{\beta}$ for $\beta \in \Gamma(\alpha)$, and that T_{α} has a unique Sylow p-subgroup.

Let Q be a Sylow p-subgroup of $T_{\alpha \beta}$. Then Q is normal in $T_{\alpha \beta}$. Suppose that $Q \neq 1$. Let P_{1} and P_{2} be the Sylow p-subgroups of T_{α} and T_{β}, respectively. Then $P_{1} \cap P_{2}=Q \neq 1$. By [11, II.8.5], any two distinct Sylow p-subgroups of T intersect trivially. It follows P_{1}
and P_{2} are contained the same Sylow p-subgroup, say P of T. In particular, $P_{1}=P_{\alpha}$ and $P_{2}=P_{\beta}$. For $\gamma \in \Gamma(\beta)$, since Γ is G-edge-transitive, we have $\left|T_{\alpha \beta}\right|=\left|T_{\beta \gamma}\right|$. A similar argument implies that P_{γ} is the Sylow p-subgroup of T_{γ}. It follows from the connectedness of Γ that P_{δ} is the Sylow p-subgroup of T_{δ} for any $\delta \in V$. Thus P contains a normal subgroup $\left\langle P_{\delta} \mid \delta \in V\right\rangle \neq 1$ of G, a contradiction. Thus, $T_{\alpha \beta}$ is of order coprime to p, and so $\left|T_{\alpha}: T_{\alpha \beta}\right|$ is divisible by $\left|P_{1}\right|=p^{f-1}$ or p^{f}. Thus, by Lemma $9, k$ is divisible by p^{f-1} or p^{f}, respectively.

If $M=\operatorname{PGL}(2, p)$ then, inspecting the subgroups of M, we conclude that $T_{\alpha}=\mathbb{Z}_{p}: \mathbb{Z}_{l}$, where l is a divisor of $p-1$ and divisible by 4 . Assume that $M=\mathbb{Z}_{p}^{f}: \mathbb{Z}_{\frac{p^{f}-1}{(2, p-1)}}$. Then $T_{\alpha}=\mathbb{Z}_{p}^{f}: \mathbb{Z}_{l}$ or $\mathbb{Z}_{p}^{f-1}: \mathbb{Z}_{l}$ with l dividing $\frac{p^{f}-1}{(2, p-1)}$. Suppose that $T_{\alpha}=\mathbb{Z}_{p}^{f-1}: \mathbb{Z}_{l}$. Noting that M is a Frobenius group, T_{α} is also a Frobenius group. It follows that l is a divisor of $p^{f-1}-1$, and so l divides $p-1$.

Assume further that Γ is G-locally primitive. Then $T_{\alpha}^{\Gamma(\alpha)}$ is a normal transitive soluble subgroup of the primitive permutation group $G_{\alpha}^{\Gamma(\alpha)}$ of degree k. Since k is divisible by $\left|P_{1}\right|$, we have $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathbb{Z}_{p}^{t}$ for some integer $t \geqslant 1$ such that $k=p^{t} \geqslant\left|P_{1}\right|$. It follows $T_{\alpha}^{\Gamma(\alpha)} \cong \mathbb{Z}_{p}^{t}: \mathbb{Z}_{l^{\prime}}$, where l^{\prime} is a divisor of l. Since P_{1} is the Sylow p-subgroup of T_{α}, we have $p^{t} \leqslant\left|P_{1}\right|$. Then $k=\left|P_{1}\right|=p^{f-1}$ or p^{f}. Thus one of (ii) and (iii) follows.

The following lemma gives a characterization of graphs admitting Suzuki groups.
Lemma 15. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency k. Assume that $\operatorname{soc}(G)=\mathrm{Sz}\left(2^{f}\right)$ with odd $f \geqslant 3$, and that $\operatorname{soc}(G)$ has at most two orbits on V. Then k is divisible by $2^{2 f-1}$ and Γ is not G-locally primitive.

Proof. Let $\alpha \in V$ and $\beta \in \Gamma(\alpha)$. Since $\left|T: T_{\alpha}\right|$ is square-free, 4 does not divide $\left|T: T_{\alpha}\right|$, and hence $2^{2 f-1}$ divides $\left|T_{\alpha}\right|$. Then, inspecting the subgroups of T (see [20]), we get $T_{\alpha}=\left[2^{n}\right]: \mathbb{Z}_{l}$, where $n=2 f$ or $2 f-1$, and l is a divisor of $2^{f}-1$. So T_{α} has a unique Sylow 2-subgroup. By [20], for a Sylow 2-subgroup Q of T, all involutions of Q are contained in the center of Q. Noting that any two distinct conjugations of Q generate T, it follows any two distinct Sylow 2-subgroups of T intersect trivially. Thus, by a similar argument as in the above lemma, we know that $T_{\alpha \beta}$ has odd order. Thus $k=|\Gamma(\alpha)|$ is divisible by $n=2^{2 f}$ or $2^{2 f-1}$.

Finally, suppose that $G_{\alpha}^{\Gamma(\alpha)}$ is a primitive group. Let Q_{1} be the Sylow 2-subgroup of T_{α}, and Q be a Sylow 2-subgroup of $T=\operatorname{Sz}\left(2^{f}\right)$ with $Q \geqslant Q_{1}$. Then $Q=Q_{1}$ or $Q_{1} \cdot \mathbb{Z}_{2}$. By a similar argument as in the above lemma, we conclude that Q_{1} is isomorphic to $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right)$. It follows that Q_{1} is an elementary abelian 2-group. By [20], Q_{1} lies in the center of Q, and so Q is abelian, which is impossible. Then this lemma follows.

5 Proof of Theorem 1

Let $\Gamma=(V, E)$ be a connected graph of square-free order and valency k. Assume that a subgroup $G \leqslant$ Aut Γ acts transitively on E and that each non-trivial normal subgroup of G has at most 2 orbits on V. By Lemma 13, to complete the proof of the theorem, we
may assume that G is almost simple. Let $T=\operatorname{soc}(G)$ and $\alpha \in V$. Then T is transitive or has exactly two orbits on V, and every prime divisor of $\left|T_{\alpha}\right|$ is at most k.

Let U be a T-orbit, and let \mathcal{B} be a T-invariant partition on U such that $|\mathcal{B}| \geqslant 2$ and $T^{\mathcal{B}}$ is primitive. Noting that $|\mathcal{B}|$ is square-free, T is listed in [15, Tables 1-4]. In particular, if T is one of sporadic simple groups then part (3) of Theorem 1 follows.

Assume that $T=\mathrm{A}_{n}$, where $n \geqslant 5$. Suppose that $n \geqslant 3 k$. By [15], there exists a prime p such that $k<p<3 k / 2$, and thus p^{2} divides $|T|$, and p divides $\left|T_{\alpha}\right|$. So $p \leqslant k$, which is a contradiction. Therefore, $n<3 k$, as in part (4) of Theorem 1.

We next deal with the classical groups and the exceptional groups of Lie type. If $T=\operatorname{PSL}\left(2, p^{f}\right)$ or $\mathrm{Sz}\left(2^{f}\right)$ then, by Lemmas 14 and 15 , one of parts (5), (6) and (7) of Theorem 1 follows. Thus the following two lemmas will fulfill the proof of Theorem 1.
Lemma 16. Let T be a d-dimensional classical simple group of Lie type over $\mathrm{GF}\left(p^{f}\right)$, where p is a prime. Then either $T=\mathrm{PSL}(2, p)$, or $p \leqslant k$ and one of the following holds:
(i) $T=\operatorname{PSL}\left(2, p^{f}\right)$ with $f \geqslant 2$;
(ii) $\left[\frac{d}{2}\right] f<k$; if further $T=\operatorname{PSU}\left(d, p^{f}\right)$ then $2\left[\frac{d}{2}\right] f<k$ and $\left[\frac{d}{2}\right]$ is odd.

Proof. Let $\alpha \in V$. Then $\left|T: T_{\alpha}\right|$ is square-free and, by Lemma 6, each prime divisor of $\left|T_{\alpha}\right|$ is at most k. Assume that $T \neq \operatorname{PSL}(2, p)$. Let P be a Sylow p-subgroup of T. Then p^{2} divides $|P|$. Since $\left|T: T_{\alpha}\right|$ is square-free, p divides $\left|T_{\alpha}\right|$, and so $p \leqslant k$.

Assume that $d \geqslant 3$. Let $d_{0}=\left[\frac{d}{2}\right]$, the largest integer no more than $\frac{d}{2}$. Check the orders of classical simple groups of Lie type, see [2, Section 47] for example. We conclude that either
(1) $\left(p^{2 d_{0} f}-1\right)\left(p^{d_{0} f}-1\right)$ divides $\left(d, p^{f}-1\right)|T|$; or
(2) $T=\operatorname{PSU}\left(d, p^{f}\right)$ with d_{0} odd, and $\left(p^{2 d_{0} f}-1\right)\left(p^{d_{0} f}+1\right)$ divides $\left(d, p^{f}+1\right)|T|$.

Consider part (1) first. Suppose that $p^{d_{0} f}-1$ has a primitive prime divisor r. Then $r>d_{0} f$, and hence either $r=d=3$ and $f=1$, or r^{2} divides $|T|$. For the former, $T=\operatorname{PSL}(3, p)$, and so $\left[\frac{d}{2}\right] f=1<k$. For the latter, r divides $\left|T_{\alpha}\right|$, and so $d_{0} f<r \leqslant k$. Suppose that $p^{d_{0} f}-1$ has no primitive prime divisor. By Theorem 10, either $d_{0} f=2$ and $p+1$ is a power of 2 , or $\left(p, d_{0} f\right)=(2,6)$. For the former, $\left[\frac{d}{2}\right] f=d_{0} f=2<k$. Assume that $\left(p, d_{0} f\right)=(2,6)$. Then $\left(d_{0}, f\right)=(1,6),(2,3),(3,2)$, or $(6,1)$. It follows that $(d, f)=(3,6),(4,3),(5,3),(6,2),(7,2),(12,1)$ or $(13,1)$. Thus $|T|$ is divisible by 7^{2}, and so $\left|T_{\alpha}\right|$ is divisible by 7 . Then $\left[\frac{d}{2}\right] f=d_{0} f=6<7 \leqslant k$ by Lemma 6 .

Now assume that $T=\operatorname{PSU}\left(d, p^{f}\right)$ with $d_{0}=\left[\frac{d}{2}\right]$ odd. Then $\left(p^{2 d_{0} f}-1\right)\left(p^{d_{0} f}+1\right)$ divides $\left(d, p^{f}+1\right)|T|$. A similar argument shows that either $p^{2 d_{0} f}-1$ has no primitive prime divisor, or $2 d_{0} f<k$. Assume that $p^{2 d_{0} f}-1$ has no primitive prime divisor. Then either $2 d_{0} f=2$, or $\left(p, 2 d_{0} f\right)=(2,6)$. For the former, $2 d_{0} f=2<k$. Suppose that $\left(p, 2 d_{0} f\right)=(2,6)$. Then $d_{0} f=3$, and so $\left(d, p^{f}\right)=\left(3,2^{3}\right),(6,2)$ or $(7,2)$. Thus $|T|$ is divisible by 7^{2}, and so $2 d_{0} f=6<7 \leqslant k$.

Finally we consider the exceptional simple groups of Lie type.

Lemma 17. Let T be an exceptional simple group of Lie type defined over $\mathrm{GF}\left(p^{f}\right)$ with p prime. Then $p \leqslant k$, and one of the following holds:
(i) $T=\mathrm{Sz}\left(2^{f}\right)$;
(ii) $T=\mathrm{G}_{2}\left(p^{f}\right)$ or ${ }^{3} \mathrm{D}_{4}\left(p^{f}\right), p^{f} \neq 2^{3}$ and $2 f<k$;
(iii) $T=\mathrm{F}_{4}\left(p^{f}\right),{ }^{2} \mathrm{E}_{6}\left(p^{f}\right)$ or $\mathrm{E}_{7}\left(p^{f}\right), p^{f} \neq 2$ and $6 f<k$.

Proof. Note that T has order divisible by p^{2}. Then p divides $\left|T_{\alpha}\right|$, and so $p \leqslant k$. By [15, Table 4], T is one of $\mathrm{Sz}\left(2^{f}\right), \mathrm{G}_{2}\left(p^{f}\right),{ }^{3} \mathrm{D}_{4}\left(p^{f}\right), \mathrm{F}_{4}\left(p^{f}\right),{ }^{2} \mathrm{E}_{6}\left(p^{f}\right)$ and $\mathrm{E}_{7}\left(p^{f}\right)$.

For $T=\mathrm{G}_{2}\left(p^{f}\right)$ or ${ }^{3} \mathrm{D}_{4}\left(p^{f}\right)$, the order $|T|$ is divisible by $\left(p^{f}+1\right)^{2}$ and $\left|T: T_{\alpha}\right|$ is divisible by $p^{f}+1$. If $p^{2 f}-1$ has a primitive prime divisor r, then $|T|$ is divisible by r^{2}, and $\left|T_{\alpha}\right|$ is divisible by r, hence $2 f<r \leqslant m$. Assume that $p^{2 f}-1$ has no primitive prime divisor. Then either $f=1$ and $2 f=2<k$, or $(p, 2 f)=(2,6)$. For the latter, $T=\mathrm{G}_{2}(8)$ or ${ }^{3} \mathrm{D}_{4}(8)$, and so 9 is a divisor of $\left|T: T_{\alpha}\right|$, which contradicts that $\left|T: T_{\alpha}\right|$ is square-free. Thus T is described as in part (ii) of this lemma.

Assume that T is one of $\mathrm{F}_{4}\left(p^{f}\right),{ }^{2} \mathrm{E}_{6}\left(p^{f}\right)$ and $\mathrm{E}_{7}\left(p^{f}\right)$. Then $|T|$ is divisible by $\left(p^{6 f}-1\right)^{2}$ and $\left|T: T_{\alpha}\right|$ is divisible by $\frac{p^{6 f}-1}{p^{f}-1}$. If $p^{6 f}-1$ has a primitive divisor r say, then r divides $\left|T_{\alpha}\right|$, and hence $6 f<r \leqslant k$. If $p^{6 f}-1$ has no primitive prime divisor, then $p=2$ and $f=1$, and so $\left|T: T_{\alpha}\right|$ is not square-free as it is divisible by 9 , and hence T is described as in part(iii) of this lemma.

6 Graphs associated with $\operatorname{PSL}(2, p)$

In this section, we investigate vertex- and edge-transitive graphs associated with $\operatorname{PSL}(2, p)$, and then give a characterization for such graphs.

6.1 Examples

It is well-known that vertex- and edge-transitive graphs can be described as coset graphs. Let G be a finite group and H be a core-free subgroup of G, where core-free means that $\cap_{g \in G} H^{g}=1$. Let $[G: H]=\{H x \mid x \in G\}$, the set of right cosets of H in G. For an element $g \in G \backslash H$, define the coset graph $\Gamma:=\operatorname{Cos}\left(G, H, H\left\{g, g^{-1}\right\} H\right)$ on $[G: H]$ such that ($H x, H y$) is an arc of Γ if and only if $y x^{-1} \in H\left\{g, g^{-1}\right\} H$. Then Γ is a well-defined regular graph, and G induces a subgroup of Aut Γ acting on $[G: H]$ by right multiplication. The next lemma collects several basic facts on coset graphs.

Lemma 18. Let G be a finite group and H a core-free subgroup of G. Take $g \in G \backslash H$ and set $\Gamma=\operatorname{Cos}\left(G, H, H\left\{g, g^{-1}\right\} H\right)$. Then Γ is G-vertex-transitive and G-edge-transitive. Moreover,
(1) Γ is G-arc-transitive if and only if $H\left\{g, g^{-1}\right\} H=H x H$ for some 2-element $x \in$ $\mathbf{N}_{G}\left(H \cap H^{g}\right) \backslash H$ with $x^{2} \in H \cap H^{g}$;
(2) Γ is connected if and only if $\langle H, g\rangle=G$.

Now we construct several examples.
Example 19. Let $T=\operatorname{PSL}(2, p), \mathbb{Z}_{p}: \mathbb{Z}_{l} \cong H<T$ and $\mathbb{Z}_{l} \cong K<H$, where l is an even divisor of $\frac{p-1}{2}$ with $\frac{p-1}{2 l}$ odd. Then $\mathbf{N}_{T}(K) \cong \mathrm{D}_{p-1}$. Set $\mathbf{N}_{T}(K)=\langle a\rangle:\langle b\rangle$. It is easily shown that $\langle b, H\rangle=T$. Then $\operatorname{Cos}(T, H, H b H)$ is a connected T-arc-transitive graph of valency p.

Example 20. Let $T=\operatorname{PSL}(2, p)$ and H a dihedral subgroup of T.
(1) Let $\mathbb{Z}_{2} \cong K<H \cong \mathrm{D}_{2 r}$ for an odd prime r such that $|T: H|$ is square-free. Let $\epsilon= \pm 1$ such that 4 divides $p+\epsilon$. Then $\mathbf{N}_{T}(K)=K \times\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{2} \times \mathrm{D}_{\frac{p+\epsilon}{}} \cong \mathrm{D}_{p+\epsilon}$, where b is an involution and, if r divides $p+\epsilon$, we may choose b such that b centralizes H. Then, for $1 \leqslant i<\frac{p+\epsilon}{2}$, the coset graph $\operatorname{Cos}\left(T, H, H a^{i} b H\right)$ is a connected T-arctransitive graph of valency r.
(2) Let $G=T$ or $\operatorname{PGL}(2, p)$ and $\mathbb{Z}_{2}^{2} \cong K<H \cong \mathrm{D}_{4 r}$ for an odd prime r with $|G: H|$ square-free. Suppose that G contains a subgroup isomorphic to S_{4}. Then $\mathbf{N}_{G}(K)=$ $K:\langle y, z\rangle \cong \mathrm{S}_{4}$, where z is an involution with $y^{z}=y^{-1}$. Then $\operatorname{Cos}\left(G, T_{\alpha}, T_{\alpha} y z T_{\alpha}\right)$ is a G-arc-transitive graph of valency r.

Example 21. Let $\mathrm{A}_{4} \cong H<T=\operatorname{PSL}(2, p)<G=\operatorname{PGL}(2, p)$ with $|T: H|$ squarefree and $\mathbb{Z}_{3} \cong K<H$. Let $\epsilon= \pm 1$ with 3 dividing $p+\epsilon$. Then $\mathbf{N}_{T}(K) \cong \mathrm{D}_{p+\epsilon}$ and $\mathbf{N}_{G}(K) \cong \mathrm{D}_{2(p+\epsilon)}$. Moreover,
(1) $\operatorname{Cos}(T, H, H x H)$ is a connected $(T, 2)$-arc-transitive graph of valency 4 , where $x \in$ $\mathbf{N}_{T}(K) \backslash \mathbf{N}_{T}(H)$ is an involution;
(2) $\operatorname{Cos}(G, H, H x H)$ is a connected $(G, 2)$-arc-transitive graph of valency 4, where $x \in$ $\mathbf{N}_{G}(K) \backslash\left(T \cup \mathbf{N}_{G}(H)\right)$ is an involution.

Example 22. Let $\mathrm{S}_{4} \cong H<T=\operatorname{PSL}(2, p)$ with $|T: H|$ square-free.
(1) Let $\mathrm{D}_{8} \cong K<H$, and $X=T$ or $\operatorname{PGL}(2, p)$ such that $|X: H|$ is square-free and X has a Sylow 2-subgroup isomorphic to D_{16}. Then $\mathrm{D}_{16} \cong \mathbf{N}_{X}(K)=K:\langle z\rangle$ for an involution $z \in X \backslash H$, and $\operatorname{Cos}(X, H, H z H)$ is a connected ($X, 2$)-arc-transitive graph of valency 3 .
(2) Let $\mathrm{S}_{3} \cong K<H$ and $G=\operatorname{PGL}(2, p)$, and $\epsilon= \pm 1$ with 3 dividing $p+\epsilon$. Then $\mathbf{N}_{G}(K)=\langle o\rangle \times K$ for an involution o. Set $X=\langle o, H\rangle$. Then $X=T$ or $\operatorname{PGL}(2, p)$ depending on whether or not 12 divides $p+\epsilon$. Thus $\operatorname{Cos}(X, H, H o H)$ is a connected $(X, 2)$-arc-transitive graph of valency 4 .

Example 23. Let $\mathrm{A}_{5} \cong H<T=\operatorname{PSL}(2, p)<G=\operatorname{PGL}(2, p)$ and $K<H$ with $K \cong \mathrm{~A}_{4}$, D_{10} or S_{3}. Then $\mathbf{N}_{G}(K)=K:\langle z\rangle \cong \mathrm{S}_{4}, \mathrm{D}_{20}$ or D_{12}, respectively, where $z \in G \backslash H$ is an involution. Set $X=\langle z, H\rangle$. Then $X=T$ or $\operatorname{PGL}(2, p)$, and $\operatorname{Cos}(X, H, H z H)$ is either a connected ($X, 2$)-arc-transitive graph of valency 5 or 6 , or a connected X-locally primitive graph of valency 10 .

6.2 A characterization

Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geqslant 3$, where $G \leqslant \operatorname{Aut} \Gamma$. Assume that $T:=\operatorname{soc}(G)=\operatorname{PSL}(2, p)$ for a prime $p \geqslant 5$, and that G acts transitively on V.

Let $\alpha \in V$. Then $\left|T: T_{\alpha}\right|$ is square-free; in particular, T_{α} has even order. Since $|G: T| \leqslant 2$, either T is transitive on V, or T has two orbits on V of the same length $\frac{|V|}{2}$. Thus $|V|=\left|T: T_{\alpha}\right|$ or $2\left|T: T_{\alpha}\right|$.

Note that the subgroups of T are known, refer to [11, II.8.27]. We next analyze one by one the possible candidates for T_{α}.

Lemma 24. Assume that T_{α} is cyclic. Then $T_{\alpha} \cong \mathbb{Z}_{m}$ for an even divisor m of $\frac{p \pm 1}{2}, T$ is transitive on V, Γ is not G-locally-primitive, and one of the following holds:
(i) Γ is T-edge-transitive, and $k=m$ or $2 m$;
(ii) $G=\mathrm{PGL}(2, p), G_{\alpha} \cong \mathbb{Z}_{2 m}$ or $\mathrm{D}_{2 m}$, and $k=2 m$ or $4 m$.

Proof. Note T_{α} is a cyclic group of even order. By Lemma $7, T_{\alpha}$ is faithful and semiregular on $\Gamma(\alpha)$. It is easy to check that no primitive group contains a normal semiregular cyclic subgroup of even order. Thus Γ is not G-locally-primitive. By [11, II.8.5], T_{α} is contained in a subgroup conjugate to $\mathbb{Z}_{\frac{p \pm 1}{2}}$ in T. Thus $T_{\alpha} \cong \mathbb{Z}_{m}$ for an even divisor m of $\frac{p \pm 1}{2}$. Then $p(p \mp 1)$ is a divisor of $\left|T: T_{\alpha}\right|^{2}$, and so $\left|T: T_{\alpha}\right|$ is even. It follows that T is transitive on V. Note that $\left|G_{\alpha}\right|=m$ or $2 m$. It follows that Γ has valency $m, 2 m$ or $4 m$. Then (i) or (ii) is associated with the case that T is transitive or intransitive on E, respectively.

Lemma 25. Assume that $\left|T_{\alpha}\right|$ is divisible by p. Then $T_{\alpha} \cong \mathbb{Z}_{p}: \mathbb{Z}_{l}, T$ is transitive on V and Γ has valency divisible by p, where l is an even divisor of $\frac{p-1}{2}$ with $\frac{p-1}{2 l}$ odd. If Γ is G-locally primitive, then Γ is isomorphic to the graph in Example 19.

Proof. By [11, II.8.27], recalling that T_{α} has even order, $T_{\alpha} \cong \mathbb{Z}_{p}: \mathbb{Z}_{l}$ for an even divisor l of $\frac{p-1}{2}$. Since $\left|T: T_{\alpha}\right|=\frac{p^{2}-1}{2 l}=(p+1) \frac{p-1}{2 l}$ is even and square-free, $\frac{p-1}{2 l}$ is odd and T is transitive on V. By Lemma 7 , noting that T_{α} is a Frobenius group, T_{α} acts faithfully on $\Gamma(\alpha)$. In particular, each T_{α}-orbit on $\Gamma(\alpha)$ has size divisible by p.

Assume that Γ is G-locally primitive. Then T_{α} is transitive on $\Gamma(\alpha)$ as $T_{\alpha} \triangleleft G_{\alpha}$. It implies that Γ has valency p and Γ is T-arc-transitive. Then $\Gamma \cong \operatorname{Cos}\left(T, T_{\alpha}, T_{\alpha} x T_{\alpha}\right)$ for some $x \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $x^{2} \in T_{\alpha \beta}$ and $\left\langle x, T_{\alpha}\right\rangle=T$, where $\beta \in \Gamma(\alpha)$. Note that $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \cong \mathrm{D}_{p-1}$. We write $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=\langle a\rangle:\langle b\rangle$. Let M be a maximal subgroup of T with $T_{\alpha} \leqslant M \cong \mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}$. Then $\mathbb{Z}_{\frac{p-1}{2}} \cong \mathbf{N}_{M}\left(T_{\alpha \beta}\right) \leqslant \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$. Thus $a \in M$. Write $\frac{p-1}{2}=i j$, where i is odd and j is a power of 2 . Then $\langle a\rangle=\left\langle a^{i}\right\rangle \times\left\langle a^{j}\right\rangle$. Since $T_{\alpha \beta} \cong \mathbb{Z}_{l}$ and $\frac{p-1}{2 l}$ is odd, we have $a^{i} \in T_{\alpha \beta} \leqslant T_{\alpha}$. Since l is even, $j \neq 1$. It follows from $\left\langle x, T_{\alpha}\right\rangle=T$ that $x=a^{s i} a^{t j} b$ for some s and t. Then $T_{\alpha} x T_{\alpha}=T_{\alpha} a^{t j} b T_{\alpha}=\left(T_{\alpha} b T_{\alpha}\right)^{-\frac{t j}{2}}$. Noting that $a^{-\frac{t j}{2}}$ normalizes T_{α}, we have $\Gamma \cong \operatorname{Cos}\left(T, T_{\alpha}, T_{\alpha} x T_{\alpha}\right) \cong \operatorname{Cos}\left(T, T_{\alpha}, T_{\alpha} b T_{\alpha}\right)$ as constructed in Example 19.

Lemma 26. Assume that $T_{\alpha} \cong \mathrm{D}_{2 m}$ with $m>1$ coprime to p. Then m is a divisor of $\frac{p \pm 1}{2}$, and Γ has valency divisible by $\frac{m}{2}$ or m. If Γ is G-locally-primitive, then Γ has odd prime valency $r, T_{\alpha} \cong \mathrm{D}_{2 r}$ or $\mathrm{D}_{4 r}$, and Γ is isomorphic to one of the graphs given in Example 20.

Proof. The first part follows from that $\left|T_{\alpha}\right|$ is a divisor of $|T|=\frac{p\left(p^{2}-1\right)}{2}$.
Let $\{\alpha, \beta\}$ be an edge of Γ. Suppose that $T_{\alpha \beta}$ contains a cyclic subgroup C of order no less than 3. Then C is the unique subgroup of order $|C|$ in both T_{α} and T_{β}. For an arbitrary edge $\{\gamma, \delta\}$, since Γ is G-edge-transitive, $\{\gamma, \delta\}=\{\alpha, \beta\}^{x}$ for $x \in G$, so $T_{\gamma \delta}=T_{\alpha^{x} \beta^{x}}=T \cap G_{\alpha^{x} \beta^{x}}=T \cap\left(G_{\alpha \beta}\right)^{x}=\left(T_{\alpha \beta}\right)^{x}$. Then C^{x} is the unique subgroup of order $|C|$ in both T_{γ} and T_{δ}. So $C \leqslant T_{\gamma}$ for $\gamma \in \Gamma(\alpha) \cup \Gamma(\beta)$. Since Γ is connected, C fixes each vertex of Γ, and so $C=1$ as $C \leqslant \operatorname{Aut} \Gamma$, a contradiction. Thus $\left|T_{\alpha \beta}\right|$ is a divisor of 4 , and hence Γ has valency divisible by $\frac{m}{2}$ or m.

Assume that Γ is G-locally primitive. Then $T_{\alpha}^{\Gamma(\alpha)}$ contains a transitive normal cyclic subgroup. Thus $|\Gamma(\alpha)|=r$ is an odd prime, and $T_{\alpha}^{\Gamma(\alpha)} \cong T_{\alpha} / T_{\alpha}^{[1]} \cong\left(T_{\alpha} G_{\alpha}^{[1]}\right) / G_{\alpha}^{[1]} \cong \mathrm{D}_{2 r}$. Note that $T_{\alpha}^{[1]}$ is a normal cyclic subgroup of T_{α}. By the argument in above paragraph, $\left|T_{\alpha}^{[1]}\right| \leqslant 2$. It follows that $T_{\alpha} \cong \mathrm{D}_{2 r}$ or $\mathrm{D}_{4 r}$.

Let $T_{\alpha} \cong \mathrm{D}_{2 r}$. Then $\left|T: T_{\alpha}\right|$ is even, so T is transitive on V, and hence Γ is T -arc-transitive. Then $\Gamma \cong \operatorname{Cos}\left(T, T_{\alpha}, T_{\alpha} x T_{\alpha}\right)$ for some $x \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $x^{2} \in T_{\alpha \beta}$ and $\left\langle x, T_{\alpha}\right\rangle=T$. Let $\epsilon= \pm 1$ such that 4 divides $p+\epsilon$. Then $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=T_{\alpha \beta} \times\langle a\rangle:\langle b\rangle \cong$ $\mathbb{Z}_{2} \times \mathrm{D}_{\frac{p+\epsilon}{2}} \cong \mathrm{D}_{p+\epsilon}$. It implies that x is an involution. If r does not divides $p+\epsilon$, then $x=a^{i} b$ for some $1 \leqslant i \leqslant \frac{p+\epsilon}{2}$. Assume that r is a divisor of $p+\epsilon$. Then T_{α} is contained in a maximal subgroup $M \cong \mathrm{D}_{p+\epsilon}$ of T, and $\mathbf{N}_{M}\left(T_{\alpha \beta}\right) \cong \mathbb{Z}_{2}^{2}$ contains the center of M. Without loss of generality, we choose b in the center of M, and so $x=a^{i} b$ for $1 \leqslant i<\frac{p+\epsilon}{2}$. Thus Γ is isomorphic to a graph given in Example 20 (1).

Now let $T_{\alpha} \cong \mathrm{D}_{4 r}$. Then $T_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$. If T is not transitive on $V \Gamma$, then $G=\operatorname{PGL}(2, p)$, Γ is a bipartite graph, and $T_{\alpha}=G_{\alpha}$. Thus we set $X=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ depending respectively on whether or not T is is transitive on $V \Gamma$. Then $\Gamma \cong \operatorname{Cos}\left(X, T_{\alpha}, T_{\alpha} x T_{\alpha}\right)$ for some $x \in \mathbf{N}_{X}\left(T_{\alpha \beta}\right) \backslash T_{\alpha \beta}$ with $x^{2} \in T_{\alpha \beta}$; in particular, $\mathbf{N}_{X}\left(T_{\alpha \beta}\right) / T_{\alpha \beta}$ is of even order It implies that $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \cong \mathrm{S}_{4}$. Let M be the maximal subgroup of X with $T_{\alpha} \leqslant M$. Then 8 divides $|M|$, and $\mathbf{N}_{M}\left(T_{\alpha \beta}\right) \cong \mathrm{D}_{8}$. Take $\mathrm{D}_{8 r} \cong M_{1} \geqslant T_{\alpha}$. Then $\mathbf{N}_{M}\left(T_{\alpha \beta}\right)=$ $\mathbf{N}_{M_{1}}\left(T_{\alpha \beta}\right)$. We write $\mathbf{N}_{X}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}:(\langle y\rangle:\langle z\rangle)$, where $z \in \mathbf{N}_{M}\left(T_{\alpha \beta}\right)$ and $\langle y\rangle:\langle z\rangle \cong \mathrm{S}_{3}$. Noting that $x \notin \mathbf{N}_{M}\left(T_{\alpha \beta}\right)$ and x is of even order, we have $x=x_{1} y^{i} z$ for some $x_{1} \in T_{\alpha \beta}$ and $i=1$ or 2 . Noting that z normalizes T_{α} and $y^{z}=y^{-1}$, we have $\operatorname{Cos}\left(X, T_{\alpha}, T_{\alpha} x T_{\alpha}\right)=$ $\operatorname{Cos}\left(X, T_{\alpha}, T_{\alpha} y^{i} z T_{\alpha}\right) \cong \operatorname{Cos}\left(X, T_{\alpha}, T_{\alpha} y z T_{\alpha}\right)$. Thus Γ is isomorphic to the graph given in Example 20 (2).

Theorem 27. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geqslant 3$, where $G \leqslant \operatorname{Aut} \Gamma$. Assume that $\operatorname{soc}(G)=\operatorname{PSL}(2, p)$ for a prime $p \geqslant 5$, and that G is transitive on V. Then, for $\alpha \in V$, the pair $\left(\operatorname{soc}(G)_{\alpha}, k\right)$ lies in Table 1. Further, if Γ is G-locally primitive, then $\left(\operatorname{soc}(G)_{\alpha}, k\right)$ lies in Table 2.

$\operatorname{soc}(G)_{\alpha}$	k	remark
\mathbb{Z}_{m}	$m, 2 m, 4 m$	m is an even divisor of $\frac{p \pm 1}{2}$
$\mathbb{Z}_{p}: \mathbb{Z}_{l}$	$p m, 2 p m, 4 p m$	$\frac{(p-1)}{2 l}$ is odd, $m \mid l$
$\mathrm{D}_{2 m}$	$\frac{m}{2}, m, 2 m, 4 m$	m divides $\frac{p \pm 1}{2}$
$\mathrm{~A}_{4}$	$l, 2 l$	$l \in\{4,6,12\}, 32 \backslash p^{2}-1, T^{E}$ is transitive
	$2 l, 4 l$	$p \equiv \pm 3(\bmod 8), G=\mathrm{PGL}(2, p)$
S_{4}	$l, 2 l$	$l \geqslant 3, l \mid 24, p \equiv \pm 1(\bmod 8), G_{\alpha}=T_{\alpha}$
A_{5}	$l, 2 l$	$l \geqslant 5, l \mid 60, p \equiv \pm 1(\bmod 10), G_{\alpha}=T_{\alpha}$

Table 1:

$\operatorname{soc}(G)_{\alpha}$	k	Γ	remark
$\mathbb{Z}_{p}: \mathbb{Z}_{l}$	p	Example 19	$(p-1) / 2 l$ is odd
$\mathrm{D}_{4 r}$	r	Example 20 (1)	prime $r \neq p, 32 \Lambda\left(p^{2}-1\right)$
$\mathrm{D}_{2 r}$	r	Example 20 (2)	prime $r \neq p, 16 \backslash\left(p^{2}-1\right)$
A_{4}	4	Example 21	$32 \Lambda\left(p^{2}-1\right)$
S_{4}	3,4	Example 22	$p \equiv \pm 1(\bmod 8)$
A_{5}	$5,6,10$	Example 23	$p \equiv \pm 1(\bmod 10)$

Table 2:

Proof. Let $\Gamma=(V, E)$ be a connected G-edge-transitive graph of square-free order and valency $k \geqslant 3$, where $G \leqslant \operatorname{Aut} \Gamma$. Assume that $T:=\operatorname{soc}(G)=\operatorname{PSL}(2, p)$ for a prime $p \geqslant 5$, and that G acts transitively on V. Let $\{\alpha, \beta\} \in E$.

Noting that $\left|G: G_{\alpha}\right|=\left|T: T_{\alpha}\right|$ or $2\left|T: T_{\alpha}\right|$, we have $\left|G_{\alpha}: T_{\alpha}\right|=1$ or 2 . Then T_{α} has at most two orbits on each G_{α}-orbits on $\Gamma(\alpha)$. By Lemma 9 , we have $k=|\Gamma(\alpha)|=l, 2 l$ or $4 l$, where $l=\left|T_{\alpha}: T_{\alpha \beta}\right|$. By Lemmas 24, 25 and 26, we need only consider the remaining case: $T_{\alpha} \cong \mathrm{A}_{4}, \mathrm{~S}_{4}$ or A_{5}.

Let $T_{\alpha} \cong \mathrm{S}_{4}$ or A_{5}. Checking the maximal subgroups of PGL $(2, p)$ (see [3], for example), we know that PGL $(2, p)$ has no subgroups of order $2\left|T_{\alpha}\right|$. It follows that $G_{\alpha}=T_{\alpha}$. Then $k=l$ or $2 l$ depending whether or not $T_{\alpha}^{\Gamma(\alpha)}$ is transitive. If $T_{\alpha} \cong \mathrm{S}_{4}$, then $T_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{S}_{3}$ or S_{4}, which implies that $l \geqslant 3$ and l divides 24 . If $T_{\alpha} \cong \mathrm{A}_{5}$, Then $l \geqslant 5$ is a divisor of 60 .

Let $T_{\alpha} \cong \mathrm{A}_{4}$. Assume that T is transitive on E. Then $k=l$ or $2 l$, where $l=\left|T_{\alpha}: T_{\alpha \beta}\right|$ for $\alpha \in \Gamma(\alpha)$. By Lemma $7, l \neq 3$. Thus $l \in\{4,6,12\}$. Assume that T is intransitive on E. Then $G=\operatorname{PGL}(2, p)$ and $G_{\alpha} \cong \mathrm{S}_{4}$, and hence $p \equiv \pm 3(\bmod 8)$ by checking the maximal subgroups of G. By Lemma 7 , we conclude that $T_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{A}_{4}$ and $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{S}_{4}$. It follows that $k=2 l$ or $4 l$ for $l \in\{4,6,12\}$.

Further, if Γ is G-locally primitive, then $k=4$ for $T_{\alpha} \cong \mathrm{A}_{4}, k=3$ or 4 for $T_{\alpha} \cong \mathrm{S}_{4}$, and $k=5,6$ or 10 for $T_{\alpha} \cong \mathrm{A}_{5}$. Next we determine the G-locally primitive graphs.

Let $T_{\alpha} \cong \mathrm{A}_{4}$. Then $T_{\alpha \beta} \cong \mathbb{Z}_{3}$, and Γ is $(G, 2)$-arc-transitive and of valency 4. Let $X=$ T or PGL $(2, p)$ depending T is transitive or intransitive on V. Then $\mathbf{N}_{X}\left(T_{\alpha \beta}\right) \cong \mathrm{D}_{t(p+\epsilon)}$, where $t=|X: T|$ and $\epsilon= \pm 1$ such that 3 divides $p+\epsilon$. Let $x \in \mathbf{N}_{X}\left(T_{\alpha \beta}\right)$ with $x^{2} \in T_{\alpha \beta}$ and $\left\langle x, T_{\alpha}\right\rangle=X$. Then x is either an involution or of order 6 , and $x y$ is an involution

M	T_{α}	k	T-orbits	remark
\mathbb{Z}_{m}	$\mathbb{Z}_{p}: \mathbb{Z}_{l}$	p	1	m and $(p-1) / 2 m l$ are odd
1	$\mathrm{D}_{4 r}$	r	1,2	prime $r \neq p, 32 \Lambda\left(p^{2}-1\right)$
1	$\mathrm{D}_{2 r}$	r	1,2	prime $r \neq p, 16 \Lambda\left(p^{2}-1\right)$
1	$\mathrm{~A}_{4}$	4	1,2	$32 \backslash\left(p^{2}-1\right)$
\mathbb{Z}_{3}	\mathbb{Z}_{2}^{2}	4	1,2	$32 \backslash\left(p^{2}-1\right)$
$\mathbb{Z}_{6}, \mathrm{~S}_{3}$	\mathbb{Z}_{2}^{2}	4	2	$16 \backslash\left(p^{2}-1\right)$
1	$\mathrm{~S}_{4}$	3,4	1,2	$p \equiv \pm 1(\bmod 8)$
\mathbb{Z}_{2}	$\mathrm{~A}_{4}$	4	1	$32 \Lambda\left(p^{2}-1\right)$
S_{3}	\mathbb{Z}_{2}^{2}	4	1	$32 \backslash\left(p^{2}-1\right)$
\mathbb{Z}_{2}	$\mathrm{~S}_{4}$	4	2	$32 \backslash\left(p^{2}-1\right)$
1	$\mathrm{~A}_{5}$	$5,6,10$	1	$p \equiv \pm 1(\bmod 10)$
\mathbb{Z}_{2}	$\mathrm{~A}_{5}$	6,10	2	$p \equiv \pm 1(\bmod 10), 16 \backslash\left(p^{2}-1\right)$

Table 3:
for some $y \in T_{\alpha \beta}$. Note that $T_{\alpha} x T_{\alpha}=T_{\alpha} x y T_{\alpha}$. Thus, writing Γ as a coset graph, Γ is isomorphic to one of the graphs in Example 21.

Let $T_{\alpha} \cong \mathrm{S}_{4}$. Then $G_{\alpha}=T_{\alpha}$. If Γ has valency 3 , then Γ is isomorphic the graph given in Example 22 (1). If Γ has valency 4, then $G_{\alpha \beta} \cong S_{3}$ and $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\mathbb{Z}_{2} \times S_{3}$, it follows that Γ is isomorphic the graph given in Example 22 (2).

Finally, if $T_{\alpha}=\mathrm{A}_{5}$ then $G_{\alpha}=T_{\alpha}$ and $G_{\alpha \beta} \cong \mathrm{A}_{4}, \mathrm{D}_{10}$ or S_{3}, and thus Γ is isomorphic one of the graphs given in Example 23.

7 Locally primitive arc-transitive graphs

In this section we give a proof of Theorem 4. We first prove a technical lemma.
Lemma 28. Let G be a transitive permutation group on V of square-free degree and let M be a normal subgroup of G. Assume that M is semiregular on V and G / M acts faithfully on the M-orbits. Then there is $X \leqslant G$ such that $G=M: X$.

Proof. The result is trivial if $M=1$. Thus we assume that $M \neq 1$. Note that M has square-free order. Let p be the largest prime divisor of $|M|$ and P be the Sylow p-subgroup of M. Then P is cyclic and is normal in G. Let $\alpha \in V$ and B be the P-orbit with $\alpha \in B$. Let V_{P} be the set of P-orbits. Then $|B|=p$ is coprime to $\left|V_{P}\right|$. Then $G_{B}=P: G_{\alpha}$ contains a Sylow p-subgroup $P \times Q$ of G, where Q is a Sylow p-subgroup of G_{α}. It follows from $[2,10.4]$ that the extension $G=P .(G / P)$ splits over P. Thus $G=P: H$ for some $H<G$ with $H \cap P=1$. If $M=P$, then the result follows. We assume $M \neq P$ in the following.

Let K be the kernel of G acting on V_{P}. Noting that each M-orbit on V consists of several P-orbits, we know that K fixes each M-orbits set-wise. It follows from the assumptions that $K \leqslant M$. Then, considering the action of M on its an orbit, we conclude that $K=P$. Thus H is faithful and transitive on V_{P}. Further, $M=M \cap P H=P(M \cap H)$
implies that $M \cap H$ is semiregular on V_{P}. It is easily shown that $H /(M \cap H)$ acts faithfully on the $(M \cap H)$-orbits on V_{P}. Noting that $\left|V_{P}\right|<|V|$, we may assume by induction that $H=(M \cap H) X$ with $X \cap(M \cap H)=1$. Then $G=P((M \cap H) X)=M X$, and $M \cap X \leqslant M \cap H$ yielding $M \cap X \leqslant M \cap H \cap X=1$, hence our result follows.

Let $\Gamma=(V, E)$ be a connected G-locally primitive graph. Suppose that G has a normal subgroup N which has at least three orbits on V. Then either the quotient graph Γ_{N} is a star, or Γ is a normal cover of Γ_{N}, refer to [10, Theorem 1.1]. Then following lemma is easily shown.

Lemma 29. Let $\Gamma=(V, E)$ be a connected G-locally primitive and G-symmetric graph. Let N be a normal subgroup of G. If N is not semiregular on V, then N is transitive on E and has at most two orbits on V.

Theorem 30. Let $\Gamma=(V, E)$ be a connected G-locally primitive graph of square-free order and valency $k>2$. Let $M \triangleleft G$ be maximal subject to that M has at least three orbits on V. Assume further that Γ_{M} is not a star. Then one of the following holds.
(1) $M=1, \Gamma$ and G are described as in (1) or (5) of Lemma 13;
(2) Γ is a bipartite graph, $G \cong \mathrm{D}_{2 n}: \mathbb{Z}_{k}, \mathbb{Z}_{n}: \mathbb{Z}_{k}$ or $\mathbb{Z}_{\frac{n}{k}}: \mathbb{Z}_{k}^{2}$, and k is the smallest prime divisor of $n k$;
(3) $G=M: X, M \operatorname{soc}(X)=M \times \operatorname{soc}(X)$ and $\operatorname{soc}(X)$ is a simple group descried in (3)-(6) and (8) of Theorem 1.

Proof. Since Γ_{M} is not a star, Γ is a normal cover of Γ_{M}, hence M is semiregular on V; in particular, $|M|$ is coprime to $\left|V_{M}\right|$. By the choice of M, we know that G / M is faithful on either V_{M} or one of two G / M-orbits on V_{M}. Then, by Lemma 28, we have $G=M: X$. Note that Γ_{M} is G / M-locally primitive, and the pair G / M and Γ_{M} satisfies the assumptions in Theorem 1. Let $Y=\operatorname{soc}(X)$. Then, by Lemma $13, \Gamma_{M} \cong \mathrm{~K}_{k, k}$ and $Y \cong T^{2}$ for a simple group T, or Y is a minimal normal subgroup of X.

Since $|M|$ is square-free, M has soluble automorphism $\operatorname{group} \operatorname{Aut}(M)$. Noting that $G / \mathbf{C}_{G}(M)=\mathbf{N}_{G}(M) / \mathbf{C}_{G}(M) \lesssim \operatorname{Aut}(M)$, it follows that $G / \mathbf{C}_{G}(M)$ is soluble. If Y is a nonabelian simple group then $Y \leqslant \mathbf{C}_{G}(M)$, and hence $M Y=M \times Y$, and so part (3) of this theorem occurs. We next complete the proof in two cases.

Case 1. $\Gamma_{M} \cong \mathrm{~K}_{k, k}$ and $Y \cong T^{2}$ for a simple group T. In this case, by Lemma $13, X$ is transitive on V_{M}, and so Γ_{M} is X-arc-transitive. Then Γ is G-arc-transitive. Moreover, Y has exactly two orbits on V_{M} of size k. Thus $M Y$ has exactly two orbits U and W on V of length $k|M|$. Let U_{M} and W_{M} be the sets of M-orbits on U and W, respectively. Then U_{M} and W_{M} are Y-orbits on V_{M}.

Assume first that T is a nonabelian simple group. Then part (5) of Lemma 13 holds for the pair $\left(X, \Gamma_{M}\right)$. In particular, Y is the unique minimal normal subgroup of X. Let Δ be an M-orbit on V. Suppose that $T \cong \mathrm{~A}_{7}$. Then $k=105$ and $T_{\Delta} \cong \mathrm{A}_{6} \times \operatorname{PSL}(3,2)$. It is easily shown that Γ_{M} is not X-locally primitive, which is not the case. Thus Y is unfaithful on both U_{M} and W_{M}. Let K be the kernel of Y acting on U_{M}. Then $K \cong T$
and, $Y=K \times K^{x}$ for $x \in X \backslash Y$. It is easily shown that $K \cong T$ is transitive on W_{M}. Recalling that $G / \mathbf{C}_{G}(M)$ is soluble, it follows that $K \leqslant \mathbf{C}_{M K}(M)$ and so $M K=M \times K$. Considering the action of $M K$ on Δ, we conclude that K acts trivially on Δ. Then K acts trivially on U. Since K is transitive on W_{M}, we conclude that $\Gamma \cong \mathrm{K}_{k, k}$. It follows that $M=1$, and so (1) of this theorem occurs.

Now let $T \cong \mathbb{Z}_{p}$ for an odd prime p. Then $k=p$ is coprime to $|M|$, and so $|V|=2 k|M|$. Noting that Γ_{M} has odd valency k, it implies that Γ_{M} has even order, and so $|M|$ is odd. Moreover, by Lemma $13, X \cong G / M \cong\left(\mathbb{Z}_{k}^{2}: \mathbb{Z}_{l}\right) \cdot \mathbb{Z}_{2}$ is nonabelian, where l is a divisor of $k-1$. Since $|M|$ is square-free, M is soluble, and so G is soluble. Let F be the Fitting subgroup of G. Then $\mathbf{C}_{G}(F) \leqslant F \neq 1$. Suppose that F has at least three orbits on V. Since Γ is G-locally primitive and G-vertex-transitive, Γ is a normal cover of Γ_{F}; in particular, F has square-free order. Then G / F is isomorphic to a subgroup of Aut Γ_{F} acting transitively on the arcs of Γ_{F}, and so G / F is not abelian. On other hand, since $|F|$ is square-free, F is cyclic, and hence $\mathbf{C}_{G}(F)=F$ and $\operatorname{Aut}(F)$ is abelian. Since $G / F=\mathbf{N}_{G}(F) / \mathbf{C}_{G}(F) \lesssim \operatorname{Aut}(F)$, we know that G / F is abelian, a contradiction. Thus F has one or two orbits on V. Suppose that $|F|$ is even. Let Q be the Sylow 2-subgroup of F. Then $Q \triangleleft G$. Consider the quotient Γ_{Q}. Since $|V|$ is square-free and Γ is G-vertextransitive, we get a graph of odd order $k|M|$ and odd valency k, which is impossible. Then F has odd order, and hence F has exactly two orbits on V.

Assume $|F|$ is divisible by k^{2}. Let P be the Sylow k-subgroup of F. Then $\mathbb{Z}_{k}^{2} \cong Y=$ $\operatorname{soc}(X)=P \triangleleft G$. By Lemma 29, we conclude that $\Gamma \cong \mathrm{K}_{k, k}$. This implies that $M=1$, and Γ and G are described as in (1) of Lemma 13. Then (1) of this theorem occurs.

Assume that $|F|$ is not divisible by k^{2}. Then $M \neq 1$; otherwise $\mathbb{Z}_{k}^{2} \cong Y \leqslant F$, a contradiction. Since F has exactly two orbits on V, we know that $|F|$ is divisible by $k|M|$. Let P be the Sylow k-subgroup of F. Then $\mathbb{Z}_{k} \cong P \triangleleft G$. Let q be the smallest prime divisor of $|M|$, and the let N be the q^{\prime}-Hall subgroup of M. Then $N P$ is a normal subgroup of G. It is easy to see that $N P$ is intransitive on both U and W. Then the quotient graph $\Gamma_{N P}$ is bipartite and of order $2 q$ and valency k, and so $q>k$. Thus, since l is a divisor of $k-1$, each possible prime divisor of l is less than q. Note that $F M$ is a subgroup of G. Then $|G|=2 l k^{2}|M|$ is divisible by $|F M|=\frac{|F||M|}{|F \cap M|}$. Recalling that $|F|$ is divisible by $k|M|$, it follows that $M \leqslant F$. Let r be an arbitrary prime divisor of $|F|$, and let R be the Sylow r-subgroup of F. Then $R \triangleleft G$ and r is odd. Since G is transitive on V, all R-orbits on V have the same length. It implies that r is a divisor of $|V|$, and so r is a divisor of $k|M|$. The above argument yields that $|F|=k|M|$, and so $|F|$ is square-free. Then F is cyclic and semiregular on $V, \mathbf{C}_{G}(F)=F$ and $\operatorname{Aut}(F)$ is abelian. Since $G_{\alpha} \cong G_{\alpha} F / F \leqslant G / F=\mathbf{N}_{G}(F) / \mathbf{C}_{G}(F) \lesssim \operatorname{Aut}(F)$, we know that both G_{α} and G / F are abelian. By Lemma $8, G_{\alpha} \cong \mathbb{Z}_{k}$. Since $\left|G:\left(F G_{\alpha}\right)\right|=2$, we have $G=F \cdot \mathbb{Z}_{2 k}$. Thus G has a normal regular subgroup $F: \mathbb{Z}_{2}$. Then Γ is isomorphic a Cayley graph Cay $\left(F: \mathbb{Z}_{2}, S\right)$, where $S=\left\{s^{\tau^{i}} \mid 0 \leqslant i \leqslant k-1\right\}$ for an involution $s \in F: \mathbb{Z}_{2}$ and $\tau \in \operatorname{Aut}\left(F: \mathbb{Z}_{2}\right)$ of order k such that $\langle S\rangle=F: \mathbb{Z}_{2}$. Noting that $\left|F: \mathbb{Z}_{2}\right|$ is square-free, it follows that $F: \mathbb{Z}_{2}$ is a dihedral group, say $\mathrm{D}_{2 n}$. Then part (2) of this theorem occurs.

Case 2. $\operatorname{soc}(G / M) \cong \operatorname{soc}(X)=Y \cong \mathbb{Z}_{p}$. Since Γ_{M} is X-locally primitive, by Lemma 13, either $X \cong \mathbb{Z}_{p}: \mathbb{Z}_{k}$, or $X \cong \mathbb{Z}_{p}: \mathbb{Z}_{2 k}$ and X is transitive on V_{M}. Moreover,
$\left|V_{M}\right|=2 p,(p,|M|)=1, p>k$ and k is an odd prime. Let $L=M Y$. Then L is a semiregular normal subgroup of G, and L has exactly two orbits U and W on V.

Let $X \cong \mathbb{Z}_{p}: \mathbb{Z}_{k}$. Then $|G|=k p|M|=k|L|$. Assume that $|L|$ has a prime divisor q such that either a Sylow q-subgroup of L is not normal in L or q is the smallest prime divisor of $|L|$. It is easily shown that L has a unique q^{\prime}-Hall subgroup N; in particular, N is normal in L. Then N is normal in G, and N has q-orbits on each of U and W. Thus the quotient graph Γ_{N} is bipartite and of order $2 q$ and valency k. In particular, $k \leqslant q$. Further, $G / N=\mathbb{Z}_{q}: \mathbb{Z}_{k}$ is not abelain unless $q=k$. Since $|N|$ is square-free, the outer automorphism group $\operatorname{Out}(N)$ of N is abelian, refer to [12]. Note that $G /\left(N \mathbf{C}_{G}(N)\right)$ is isomorphic a quotient of a subgroup of $\operatorname{Out}(N)$. Then $G /\left(N \mathbf{C}_{G}(N)\right)$ is abelian. Thus either $q=k$, or $N \mathbf{C}_{G}(N)$ has order divisible by q. Suppose that $q>k$. Then q is not a divisor of $|N|$ as $N \leqslant L$ and $|L|$ is square-free. Note that $N \mathbf{C}_{G}(N) / N \cong \mathbf{C}_{G}(N) /\left(N \cap \mathbf{C}_{G}(N)\right)$. It follows that $\left|\mathbf{C}_{G}(N)\right|$ is divisible by q. Let Q be a Sylow q-subgroup of $\mathbf{C}_{G}(N)$. Then Q is also a Sylow q-subgroup of G, and hence $Q \leqslant L$. Moreover, $N Q / N \triangleleft G / N$, and so $N Q \triangleleft G$. Since $N Q=N \times Q$, we know that $Q \triangleleft G$, which contradicts the choice of q. Therefore, $q=k$. This says that k is the smallest prime divisor of $|G|$, and either $L \cong \mathbb{Z}_{n}$ or $L \cong \mathbb{Z}_{\frac{n}{k}}: \mathbb{Z}_{k}$, where $n=|L|$. Thus $G=\mathbb{Z}_{n}: \mathbb{Z}_{k}$ or $\mathbb{Z}_{\frac{n}{k}}: \mathbb{Z}_{k}^{2}$, and k is the smallest prime divisor of $n k$.

Now let $X \cong \mathbb{Z}_{p}: \mathbb{Z}_{2 k}$. Then G has a normal regular subgroup $R=L: \mathbb{Z}_{2}$, and Γ is isomorphic a Cayley graph $\operatorname{Cay}(R, S)$, where $S=\left\{s^{\tau^{i}} \mid 0 \leqslant i \leqslant k-1\right\}$ for an involution $s \in R$ and an automorphism $\tau \in \operatorname{Aut}(R)$ of order k such that $\langle S\rangle=R$. Noting that $|R|$ is square-free, it follows that R is a dihedral group, say $\mathrm{D}_{2 n}$. Then $G=\mathrm{D}_{2 n}: \mathbb{Z}_{k}$. Let q be the smallest prime divisor of n. Then G has a normal subgroup N with $|G: N|=2 q k$. It is easily shown that the quotient graph Γ_{N} is bipartite and of valency k and order $2 q$. Then $k \leqslant q$, and so k is the smallest prime divisor of $n k$. Thus part (2) follows.

Now we are ready to give a proof of Theorem 4.
Proof of Theorem 4. Let $\Gamma=(V, E)$ be a G-locally primitive arc-transitive graph, and let $M \triangleleft G$ be maximal subject to that M has at least three orbits on V. Then Γ is a normal cover of $\Sigma:=\Gamma_{M}$. Note that Γ and Σ has even valency if $|M|$ is even.

If G is soluble then, by Theorem 30, one of part (1) of Theorem 4 occurs. Thus we assume that G is insoluble. Then $G=M: X$, where $T:=\operatorname{soc}(X)$ is a simple group descried in (3)-(6) and (8) of Theorem 1. By Lemma 29, we conclude that either Γ is T-arc-transitive, or Γ is T-edge-transitive and T has exactly two orbits on V. We next consider the case where $T=\operatorname{PSL}(2, p)$ for a prime $p \geqslant 5$.

Let Δ be an M-orbit on V. Then either T_{Δ} is transitive on Δ; or T_{Δ} has exactly two orbits on Δ and, in this case, T is intransitive on V and $M \times T$ is transitive on V. We take a normal subgroup N of G such that $N=M$ if the first case occurs, or N is the 2^{\prime}-Hall subgroup of M if the second case occurs. Let Δ_{1} be an N-orbit contained in Δ. Then $T_{\Delta}=T_{\Delta_{1}}$ is transitive on Δ_{1} and N is regular on Δ_{1}. Considering the action of $N \times T_{\Delta}$, we conclude that $N \cong T_{\Delta} / K$, where K is the kernel of T_{Δ} on Δ_{1}. Note that T_{Δ} is known by Theorem 27, and that $|V|=\left|T: T_{\alpha}\right|$ or $2\left|T: T_{\alpha}\right|$ is square-free. Then we get Table 3 by checking possible normal subgroups of T_{Δ} with square-free index.

References

[1] B. Alspach and M. Y. Xu. $\frac{1}{2}$-transitive graphs of order 3p. J. Algebraic Combin., 3:347-355, 1994.
[2] M. Aschbacher. Finite group theory. Cambridge University Press, Cambridge, 1993.
[3] P. J. Cameron, G. R. Omidi, and B. Tayfeh-Rezaie. 3-Design from $\operatorname{PGL}(2, q)$. The Electronic J. Combin., 13:\#R50, 2006.
[4] C. Y. Chao. On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc., 158:247-256, 1971.
[5] Y. Cheng and J. Oxley. On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. B, 42:196-211, 1987.
[6] M. Conder and P. Dobcsányi. Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput., 40:41-63, 2002.
[7] M. D. Conder, C. H. Li, and C. E. Praeger. On the Weiss conjucture for finite locally primitive graphs. Pro. Edinburgh Math. Soc., 43:129-138, 2000.
[8] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker, and R. A. Wilson. Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
[9] Y. Q. Feng and Y. T. Li. One-regular graphs of square-free order of prime valency. European J. Combin., 32:165-175, 2011.
[10] M. Giudici, C. H. Li, and C. E. Praeger. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc., 356:291-317, 2004.
[11] B. Huppert. Endliche Gruppen I. Springer-Verlag, 1967.
[12] C. H. Li, Z. Liu, and Z. P. Lu. Tetravalent edge-transitive Cayley graphs of square free order. Discrete Math., 312:1952-1967, 2012.
[13] C. H. Li, Z. P. Lu, and G. X. Wang. Vertex-transitive cubic graphs of square-free order. J. Graph Theory, 75:1-19, 2014.
[14] C. H. Li, Z. P. Lu, and G. X. Wang. The vertex-transitive and edge-transitive tetravalent graphs of square-free order. J. Algebraic Combin., 42:25-50, 2015.
[15] C. H. Li and Ákos Seress. The primitive permutation groups of square free degree. Bull. London Math. Soc., 35:635-644, 2003.
[16] G. X. Liu and Z. P. Lu. On edge-transitive cubic graphs of square-free order. European J. Combin., 45:41-46, 2015.
[17] C. E. Praeger, R. J. Wang, and M. Y. Xu. Symmetric graphs of order a product of two distinct primes. J. Combin. Theory Ser. B, 58:299-318, 1993.
[18] C. E. Praeger and M. Y. Xu. Vertex-primitive graphs of order a product of two distinct primes. J. Combin. Theory Ser. B, 59:245-266, 1993.
[19] M. W. Short. The Primitive Soluble Permutation Groups of Degree less than 256. Springer-Verlag, 1992.
[20] M. Suzuki. On a class of doubly transitive groups. Ann. Math.(2), 75:105-145, 1962.
[21] R. J. Wang. Half-transitive graphs of order a product of two distinct primes. Comm. Alg., 22:915-927, 1994.
[22] R. J. Wang and M. Y. Xu. A classification of symmetric graphs of order 3p. J. Combin. Theory Ser. B, 58:197-216, 1993.
[23] J. X. Zhou and Y. Q. Feng. Tetravalent one-regular graphs of order 2pq. J. Algebraic Combin., 29:457-471, 2009.

[^0]: *Supported by ARC Grant DP1096525.
 ${ }^{\dagger}$ Supported by National Natural Science Foundation of China (11271267, 11371204).
 ${ }^{\ddagger}$ Supported by Anhui Provincial Natural Science Foundation(1408085MA04).

