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Abstract

We characterise connected cubic graphs admitting a vertex-transitive group of
automorphisms with an abelian normal subgroup that is not semiregular. We illus-
trate the utility of this result by using it to prove that the order of a semiregular
subgroup of maximum order in a vertex-transitive group of automorphisms of a
connected cubic graph grows with the order of the graph.
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1 Introduction

All the graphs and groups considered in this paper are finite. A very useful tool in the
theory of group actions on graphs is the normal quotient method (NQM). This is used to
study (and possibly classify) a family of pairs (Γ, G) having certain additional properties,
where Γ is a finite graph and G is a subgroup of the automorphism group Aut(Γ) of Γ. (For
example, the family consisting of the pairs (Γ, G) where Γ is a finite G-vertex-transitive
graph.) The NQM has an impressive pedigree (for example, see [5, 6, 11, 13, 14]). To use
this method, one generally splits the analysis into two cases, as follows:

1. every nontrivial normal subgroup of G is transitive;

2. G has a nontrivial intransitive normal subgroup N .

In case 1, G is a quasiprimitive group. These groups are classified (see [12]) and have
a very restricted structure. In many applications, this allows this case to be completely
dealt with. The difficulty usually lies in case 2. Here, one usually considers the quotient
pair (Γ/N,G/N) (see Section 1.1 for the definition). Typically, this pair still lies in the
family under consideration and, since Γ/N is smaller than Γ, it is natural to try to use
an inductive approach. However, it is often very difficult to recover information about
(Γ, G) from (Γ/N,G/N).

We now describe a variant of the NQM which is sometimes more successful, the abelian
normal quotient method (ANQM). As before, one starts with a family of pairs (Γ, G) to
study but the analysis is usually split into three cases:

1. G has no nontrivial abelian normal subgroups;

2. G has an abelian normal subgroup that is not semiregular;

3. every abelian normal subgroup of G is semiregular and G has at least one such
subgroup, say N .

The main advantage of the ANQM over the NQM lies in case 3. Just as in case 2
of the NQM, one usually considers the quotient pair (Γ/N,G/N), but the fact that N is
abelian and semiregular is often of tremendous help.

The comparative disadvantage is that cases 1 and 2 of the ANQM are potentially more
difficult than case 1 of the NQM. For some problems this is an advantageous trade-off
and many recent papers have used this approach (see for example [4, 7, 9, 17, 19]).

We now explain why cases 1 and 2 of the ANQM are often manageable. In case 1, G
has trivial soluble radical. Such a group has some well-known properties: its socle is a
direct product of nonabelian simple groups and the group acts faithfully on its socle by
conjugation. In particular, the Classification of Finite Simple Groups can be brought to
bear on the problem to obtain very detailed information.

Similarly, the situation in case 2 is surprisingly restrictive and very strong results can
often be proved under this hypothesis. Consider, for example, the following theorem due
to Praeger and Xu (the graphs which appear in the statement will be defined in Section 2):
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Theorem 1.1 ([15, Theorem 1]). Let Λ be a connected 4-valent G-arc-transitive graph.
If G has an abelian normal subgroup that is not semiregular then Λ ∼= PX(2, r, s) for some
r > 3 and 1 6 s 6 r − 1.

Clearly, Theorem 1.1 is very useful when applying the abelian normal quotient method
to 4-valent arc-transitive graphs, as it deals with case 2 as satisfactorily as one could hope
for, that is, giving a complete classification of the possible graphs. (For examples of
applications, see [9, 17, 18].)

One of our goals is to prove the following analogue of Theorem 1.1 for cubic vertex-
transitive graphs (the graphs which appear in Theorem 1.2 will be defined in Section 2):

Theorem 1.2. Let Γ be a connected cubic G-vertex-transitive graph. If G has an abelian
normal subgroup that is not semiregular then Γ is isomorphic to one of K4, K3,3, Q3 or
SPX(2, r, s) for some r > 3 and 1 6 s 6 r − 1.

Much like Theorem 1.1 with respect to 4-valent arc-transitive graphs, Theorem 1.2
will be very useful when applying the abelian normal quotient method to cubic vertex-
transitive graphs. To illustrate this usefulness, we prove the following:

Theorem 1.3. There exists a function f : N → N satisfying f(n) → ∞ as n → ∞
such that, if Γ is a connected G-vertex-transitive cubic graph of order n then G contains
a semiregular subgroup of order at least f(n).

Theorem 1.3 settles positively the conjecture posed in [2, Problem 6.3]. Note that,
contrary to what is claimed in the statement of [2, Problem 6.3], the conjecture in [1,
Problem BCC 17.12] (which also appeared in [3] as Conjecture 2) is actually stronger.
Namely, [1, Problem BCC 17.12] strengthens [2, Problem 6.3] by considering only cyclic
semiregular subgroups.

Despite the fact that [2, Problem 6.3] has a positive solution, [1, Problem BCC 17.12]
was recently shown to be false by the second author [16]. Note also that Theorem 1.3 has
appeared previously in [7], however the proof in that paper contains a critical mistake (in
the proof of Claim 2, on the last page).

In our proof of Theorem 1.3 we do not make any effort to optimise or even keep track
of the most rapidly growing function f satisfying the hypothesis. Our current proof shows
that f(n) can be taken to be log(log(n)). However, we conjecture that this is far from
best possible:

Conjecture 1.4. There exists a constant c > 0 such that in Theorem 1.3 we can take
f(n) = nc.

In some sense, Conjecture 1.4 is best possible as it was shown in [3] that f(n) 6 n1/3,
for infinitely many values of n.
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1.1 Notation and structure of the paper

The notation used throughout this paper is standard. If Γ is a graph and u and v are
adjacent vertices of Γ then u and v are neighbours of each other and (u, v) is an arc of Γ.
The set of neighbours of v is called its neighbourhood and is denoted by Γ(v).

If G 6 Aut(Γ), we say that Γ is G-vertex-transitive (respectively, G-arc-transitive) if
G acts transitively on the vertices (respectively, arcs) of Γ. The stabiliser of the vertex

v in G is denoted by Gv and G
Γ(v)
v denotes the permutation group induced by Gv in its

action on Γ(v).
Let Γ be a G-vertex-transitive graph and let N be a normal subgroup of G. For every

vertex v, the N -orbit containing v is denoted by vN . The normal quotient graph Γ/N has
the N -orbits on V(Γ) as vertices, with an edge between distinct vertices vN and wN if and
only if there is an edge of Γ between v′ and w′, for some v′ ∈ vN and some w′ ∈ wN . Note
that G has an induced transitive action on the vertices of Γ/N . Moreover, it is easily seen
that the valency of Γ/N is less or equal to the valency of Γ.

The dihedral group of order 2r is denoted by Dr. It is usually viewed as a permutation
group on the set Zr in a natural way. We also identify the regular cyclic subgroup of Dr

with Zr.
The remainder of our paper is divided as follows: in Section 2, we define the graphs

which appear in Theorems 1.1 and 1.2, prove some useful results about them, and prove
Theorem 1.2. Theorem 1.3 is proved in Section 3.

2 Praeger-Xu graphs and their split graphs

We first define the graphs PX(2, r, s) and prove some useful results about them.

Definition 2.1. Let r and s be positive integers with r > 3 and 1 6 s 6 r−1. The graph
PX(2, r, s) has vertex-set Zs

2×Zr and edge-set {{(n0, n1, . . . , ns−1, x), (n1, . . . , ns−1, ns, x+
1)} | ni ∈ Z2, x ∈ Zr}.

Here is another description of these graphs that is more geometric and sometimes easier
to work with. First, the graph PX(2, r, 1) is the lexicographic product of a cycle of length
r and an edgeless graph on two vertices. In other words, V(PX(2, r, 1)) = Z2 × Zr with
(u, x) being adjacent to (v, y) if and only if x− y ∈ {−1, 1}. Next, a path in PX(2, r, 1) is
called traversing if it contains at most one vertex from Z2×{y}, for each y ∈ Zr. Finally,
for s > 2, the graph PX(2, r, s) has vertex-set the set of traversing paths of PX(2, r, 1) of
length s− 1, with two such paths being adjacent in PX(2, r, s) if and only if their union
is a traversing path of length s in PX(2, r, 1).

It is not hard to see that this is equivalent to the original definition and that PX(2, r, s)
is a connected 4-valent graph with r2s vertices. Observe that there is a natural action of
the wreath product W := Z2 wr Dr = Zr

2 oDr as a group of automorphisms of PX(2, r, 1)
with an induced faithful arc-transitive action on PX(2, r, s), for every s ∈ {1, . . . , r −
1}. Specifically, W acts on V(PX(2, r, s)) = Zs

2 × Zr in the following way: for g =
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(g0, . . . , gr−1, h) ∈ W (with g0, . . . , gr−1 ∈ Z2 and h ∈ Dr), we have

(n0, n1, . . . , ns−1, x)g = (n0 + gx, n1 + gx+1, . . . , ns−1 + gx+s−1, x
h),

where the subscripts are taken modulo r and xh denotes the image of x under h. We will
also need the concept of an arc-transitive cycle decomposition, which was studied in some
detail in [8].

Definition 2.2. A cycle in a graph is a connected regular subgraph of valency 2. A cycle
decomposition C of a graph Λ is a set of cycles in Λ such that each edge of Λ belongs to
exactly one cycle in C. If there exists an arc-transitive group of automorphisms of Λ that
maps every cycle of C to a cycle in C then C will be called arc-transitive.

Construction 2.3 ([10, Construction 11]). The input of this construction is a pair (Λ, C),
where Λ is a 4-valent graph and C is an arc-transitive cycle decomposition of Λ. The output
is the graph Split(Λ, C), the vertices of which are the pairs (v, C) where v ∈ V(Λ), C ∈ C
and v lies on the cycle C, and two vertices (v1, C1) and (v2, C2) are adjacent if and only
if either C1 6= C2 and v1 = v2, or C1 = C2 and {v1, v2} is an edge of C1.

Note that Split(Λ, C) is a cubic graph. We now consider a very important cycle
decomposition of PX(2, r, s):

Definition 2.4. Let n = (n1, . . . , ns−1) ∈ Zs−1
2 , let x ∈ Zr and let Cn,x be the cycle of

length four of PX(2, r, s) given by

((0, n, x), (n, 0, x+ 1), (1, n, x), (n, 1, x+ 1)).

Then C := {Cn,x | n ∈ Zs−1
2 , x ∈ Zr} is a cycle decomposition of PX(2, r, s) into cycles

of length four called the natural cycle decomposition of PX(2, r, s). As the arc-transitive
action of Z2 wr Dr on PX(2, r, s) induces a transitive action on C, we see that C is arc-
transitive. The graph Split(PX(2, r, s), C) is simply denoted by SPX(2, r, s).

It is not hard to see that the graph SPX(2, r, s) can also be described in the following
way: its vertex-set is Zs

2 × Zr × {+,−} and its edge-set is

{{(n0, . . . , ns−1, x,+), (n1, . . . , ns, x+ 1,−)} | ni ∈ Z2, x ∈ Zr} ∪

{{(n0, . . . , ns−1, x,+), (n0, . . . , ns−1, x,−)} | ni ∈ Z2, x ∈ Zr}.
It is clear from this definition that the graph SPX(2, r, s) is bipartite. Note also that
if one contracts every edge of the form {(n, x,−), (n, x,+)} in SPX(2, r, s), one recovers
PX(2, r, s).

Observe that the wreath product W := Z2 wr Dr = Zr
2 o Dr has a faithful action on

V(Γ) = Zs
2 × Zr × {+,−}. Namely, for g = (g0, . . . , gr−1, h) ∈ W (with g0, . . . , gs−1 ∈ Z2

and h ∈ Dr), we have

(n0, n1, . . . , ns−1, x,±)g =

{
(n0 + gx, n1 + gx+1, . . . , ns−1 + gx+s−1, x

h,±) if h ∈ Zr,

(n0 + gx, n1 + gx+1, . . . , ns−1 + gx+s−1, x
h,∓) otherwise,

where the subscripts are taken modulo r and xh denotes the image of x under h. It is
easy to check that W is a vertex-transitive group of automorphisms of SPX(2, r, s).
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The graphs SPX(2, r, s) have appeared before in the literature, see for example [4,
Section 3] and [9, Corollary 1.5].

Lemma 2.5. Up to conjugacy in Aut(PX(2, r, s)), the natural cycle decomposition of
PX(2, r, s) is the unique arc-transitive cycle decomposition of PX(2, r, s) into cycles of
length four.

Proof. Let Λ = PX(2, r, s), let W = Zr
2 oDr and let C be an arbitrary arc-transitive cycle

decomposition of Λ into cycles of length four. We show that C is conjugate to the natural
cycle decomposition of Λ under Aut(Λ).

Suppose first that r 6= 4. In this case, we actually prove that C is the natural cycle
decomposition. By [15, Theorem 2.13], we have Aut(Λ) = W . Let π be the canonical
projection from V(Λ) = Zs

2 × Zr to Zr.
Suppose that, for every C ∈ C, we have |π(C)| = 2. Let C ∈ C and write C =

(v0, v1, v2, v3) with v0, v1, v2, v3 ∈ V(Λ). Then π(C) = {x, x + 1} for some x ∈ Zr and,
replacing (v0, v1, v2, v3) by (v1, v2, v3, v0) if necessary, we may assume that π(v0) = π(v2) =
x and π(v1) = π(v3) = x + 1. Thus v0 = (n0, n1, . . . , ns−1, x), v1 = (n1, n2, . . . , ns, x + 1),
v2 = (1−n0, n1, . . . , ns−1, x) and v3 = (n1, . . . , ns−1, 1−ns, x+1), for some n0, . . . , ns ∈ Z2.
Let n = (n1, . . . , ns−1).

There are now four cases to consider. If n0 = ns = 0 then (v0, v1, v2, v3) = Cn,x. If
n0 = 0 and ns = 1 then (v0, v3, v2, v1) = Cn,x. If n0 = 1 and ns = 0 then (v2, v1, v0, v3) =
Cn,x. Finally, if n0 = ns = 1 then (v2, v3, v0, v1) = Cn,x.

In all cases we find that C = Cn,x. Since C is an arbitrary element of C we have shown
that C is the natural cycle decomposition of Λ.

Suppose now that we have |π(C)| > 3 for some C ∈ C. In particular, C contains a
2-path P such that π(P ) = (x, x + 1, x + 2) for some x ∈ Zr. Since C is preserved by
an arc-transitive group of automorphisms of Λ, there exists g ∈ Aut(Λ) such that g acts
on C as a one-step rotation. As Aut(Λ) = W , we have g = (g0, . . . , gr−1, h), for some
g0, . . . , gr−1 ∈ Z2 and h ∈ Dr. Up to replacing g by its inverse, we may assume that
π(P g) = (x+ 1, x+ 2, x+ 3). In particular, h has order r. Since C is a 4-cycle and r 6= 4,
this is a contradiction.

If r = 4 then 1 6 s 6 3 and there are only three graphs to consider: PX(2, 4, 1),
PX(2, 4, 2) and PX(2, 4, 3). The statement can then be checked case-by-case, either by
hand or with the assistance of a computer.

We now introduce another construction which is, in some sense, an inverse to Con-
struction 2.3 (see Theorem 2.7).

Construction 2.6 ([10, Construction 7]). The input of this construction is a pair (Γ, G),

where Γ is a cubic G-vertex-transitive graph such that G
Γ(v)
v
∼= Z2. The output is a

decomposition of the edge-set of Γ into a perfect matching T (Γ, G) and a union of cycles
R(Γ, G), as well as a graph M(Γ, G) and a partition C(Γ, G) of the edges of M(Γ, G).

Clearly, Gv fixes exactly one neighbour of v, and hence each vertex u ∈ V(Γ) has a
unique neighbour (which we will denote u′) with the property that Gu = Gu′ . Observe
that, for every g ∈ G and every v ∈ V(Γ), we have v′′ = v and (v′)g = (vg)′. It follows
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that the set T (Γ, G) := {{v, v′} : v ∈ V(Γ)} is a G-edge-orbit forming a perfect matching
of Γ.

We define a new graph M(Γ, G), with vertex-set T (Γ, G) and two elements {u, u′} and
{v, v′} of T (Γ, G) adjacent if and only if there is an edge in Γ between {u, u′} and {v, v′};
that is, if and only if there is a member of {u, u′} adjacent to a member of {v, v′} in Γ.

Furthermore, since G is vertex-transitive and Gv has two orbits on Γ(v) (one of them
being {v′} and the other one being Γ(v) \ {v′}), G has exactly two arc-orbits, and, since
G is not edge-transitive, G also has exactly two edge-orbits (one of them being T (Γ, G)).
Since T (Γ, G) forms a perfect matching, the other edge-orbit (which we will call R(Γ, G))
induces a subgraph isomorphic to a disjoint union of cycles, say C1, . . . , Cn. Finally, let ι
be the map

ι : {u, v} 7→ {{u, u′}, {v, v′}}
from R(Γ, G) to the edge-set of M(Γ, G) and let C(Γ, G) = {ι(C1), . . . , ι(Cn)}.

A circular ladder graph is the Cartesian product of a cycle of length at least 3 with
a complete graph on 2 vertices. When n > 2, the Cayley graph Cay(Z2n, {1,−1, n}) is
called a Möbius ladder graph.

We collect a few results about Construction 2.6 which were proved in [10].

Theorem 2.7 ([10, Lemma 9, Theorems 10 and 12]). Let Γ be a connected cubic G-

vertex-transitive graph such that G
Γ(v)
v
∼= Z2. If Γ is not isomorphic to a circular ladder

graph or a Möbius ladder graph, then M(Γ, G) is a connected 4-valent G-arc-transitive
graph and C(Γ, G) is an arc-transitive cycle decomposition of M(Γ, G). Moreover, Γ =
Split(M(Γ, G), C(Γ, G)).

Let K4 denote the complete graph on 4 vertices, K3,3 the complete bipartite graph
with parts of size 3 and Q3 the 3-cube. We now prove Theorem 1.2, which we restate for
convenience.

Theorem 1.2. Let Γ be a connected cubic G-vertex-transitive graph. If G has an abelian
normal subgroup that is not semiregular then Γ is isomorphic to one of K4, K3,3, Q3 or
SPX(2, r, s) for some r > 3 and 1 6 s 6 r − 1.

Proof. Let v ∈ V(Γ), let N be an abelian normal subgroup of G that is not semiregular
and let p be a prime dividing |Nv|. Note that the subgroup of N generated by the elements
of order p is elementary abelian, is not semiregular and is characteristic in N , and thus
normal in G. In particular, replacing N by this subgroup, we may assume that N is an
elementary abelian p-group. Note also that, as N is abelian and not semiregular, N is
intransitive. Furthermore, since Γ is cubic and connected, Gv is a {2, 3}-group, and hence
p ∈ {2, 3}.

Suppose that p = 3. Since N is not semiregular, we have Nv 6= 1 hence |NΓ(v)
v | is

divisible by 3 and therefore N
Γ(v)
v is transitive. Let u ∈ Γ(v). Since G is transitive on

V(Γ), N
Γ(u)
u is transitive hence every neighbour of u is in vN . Thus every vertex at distance

2 from v is in vN . As N is abelian, Nv fixes vN pointwise and, since N
Γ(v)
v is transitive,

this implies that every neighbour of v has the same neighbourhood. Therefore Γ ∼= K3,3.
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Suppose that p = 2. Since N is not semiregular, we have Nv 6= 1 and hence |NΓ(v)
v | = 2.

Since N
Γ(v)
v is normal in G

Γ(v)
v this implies that G

Γ(v)
v
∼= Z2. Let T (Γ, G), R(Γ, G), M(Γ, G)

and C(Γ, G) be as in Construction 2.6. Let k be the length of the cycles in R(Γ, G) (and
thus also in C(Γ, G)).

Let {u, v} ∈ R(Γ, G), let C be the cycle of Γ−T (Γ, G) containing u and v, and observe
that C is a block of imprimitivity for G and hence also for N . Note that Nu and Nv act
on C as reflections fixing adjacent vertices. Therefore 〈Nv, Nu〉 fixes C setwise, and the
permutation group induced by 〈Nv, Nu〉 on C is either Dk (when k is odd) or Dk/2 (when
k is even). Since N is abelian, it follows that k = 4.

Suppose that Γ is a circular ladder graph of order 2n. If n = 4 then Γ ∼= Q3. We
thus assume that n 6= 4. In particular, some edges are contained in a unique 4-cycle while
others are contained in more than one 4-cycle. Call the latter rungs. Since G has two
orbits on edges and the rungs form a perfect matching, T (Γ, G) must be the set of rungs.
This implies that Γ − T (Γ, G) consists of two cycles of length n, contradicting the fact
that k = 4.

Suppose now that Γ is a Möbius ladder graph of order 2n. If n = 2 then Γ ∼= K4 and
if n = 3 then Γ ∼= K3,3. We thus assume that n > 4 and the same argument as in the last
paragraph yields again that T (Γ, G) is the set of edges that are contained in more than
one 4-cycle. The removal of these leaves a cycle of length 2n, which is a contradiction.

We may thus assume that Γ is neither a circular ladder nor a Möbius ladder graph.
By Theorem 2.7, M(Γ, G) is a connected 4-valent G-arc-transitive graph and C(Γ, G) is
an arc-transitive cycle decomposition of M(Γ, G) consisting of cycles of length k = 4.
Moreover Γ ∼= Split(M(Γ, G), C(Γ, G)).

Let {v, v′} ∈ T (Γ, G). Note that 1 < Nv 6 N{v,v′} and thus N is not semiregular on
M(Γ, G). By Theorem 1.1, M(Γ, G) ∼= PX(2, r, s) for some r > 3 and 1 6 s 6 r − 1.
By Lemma 2.5, C(Γ, G) is conjugate to the natural cycle decomposition of M(Γ, G) under
Aut(M(Γ, G)). It follows that Split(M(Γ, G), C(Γ, G)) ∼= SPX(2, r, s), which completes
the proof.

The remaining results in this section are observations about the automorphism group
of SPX(2, r, s). They will be useful in the proof of Theorem 1.3.

Lemma 2.8. Let r > 5 and let 1 6 s 6 r − 1. Then Aut(SPX(2, r, s)) = Zr
2 o Dr with

the permutation representation given in Definition 2.4.

Proof. Let Γ = SPX(2, r, s), let G = Aut(Γ) and let v be a vertex of Γ. Note that Γ is
not arc-transitive: some edges are contained in cycles of length four, others are not. Let
W = Z2 wr Dr = Zr

2 o Dr act on Γ as described in Definition 2.4. Since W 6 G and

Wv 6= 1, it follows that |GΓ(v)
v | = 2.

Let M(Γ, G) be as in Construction 2.6. Then M(Γ, G) ∼= PX(2, r, s) (see Defini-
tion 2.4). Note that not every edge of Γ is contained in a 4-cycle. In particular, Γ
is not isomorphic to a circular ladder graph or a Möbius ladder graph. It follows by
Theorem 2.7 that G acts faithfully as a group of automorphisms of M(Γ, G), that is,
G 6 Aut(M(Γ, G)) ∼= Aut(PX(2, r, s)). By [15, Theorem 2.13], Aut(PX(2, r, s)) = W and
thus W = G.
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Corollary 2.9. Let r and s be integers satisfying r > 5 and 1 6 s 6 r−1, and let G be a
vertex-transitive group of automorphisms of SPX(2, r, s). Then G contains a semiregular
element of order at least r.

Proof. Let Γ = SPX(2, r, s). We use the definition of SPX(2, r, s) from Definition 2.4 so
that V(Γ) = Zs

2 × Zr × {+,−}. By Lemma 2.8 we have that Aut(Γ) = Zr
2 o Dr. From

Definition 2.4, we see that the action of Zr
2 o Dr on V(Γ) induces a regular action of Dr

on Zr × {+,−}.
Let π : Aut(Γ)→ Dr be the natural projection. Since G acts transitively on V(Γ), we

obtain that G projects surjectively onto Dr, that is, π(G) = Dr. Therefore, G contains
an element g = (g0, . . . , gr−1, h) with g0, . . . , gr−1 ∈ Z2 and h an element of order r in Dr.
Clearly, g has order a multiple of r and, writing x = g0 + g1 + · · ·+ gr−1 one finds

g2 = (g0, g1, . . . , gr−1, h)(g0, g1, . . . , gr−1, h)

= (g0 + g1, g1 + g2, . . . , gr−1 + g0, h
2)

g3 = (g0 + g1, g1 + g2, . . . , gr−1 + g0, h
2)(g0, g1, . . . , gr−1, h)

= (g0 + g1 + g2, g1 + g2 + g3, . . . , gr−1 + g0 + g1, h
3)

...

gr = (x, . . . , x, hr) = (x, . . . , x, 1) ∈ Zr
2 o Dr.

If x = 0 then gr = 1 and g is a semiregular element of order r. If x = 1 then gr =
(1, . . . , 1, 1) is a semiregular involution and hence g is semiregular of order 2r.

3 Proof of Theorem 1.3

Theorem 1.3. There exists a function f : N → N satisfying f(n) → ∞ as n → ∞
such that, if Γ is a connected G-vertex-transitive cubic graph of order n then G contains
a semiregular subgroup of order at least f(n).

Proof. Our proof uses the abelian normal quotient method and Theorem 1.2. We argue
by contradiction and hence we begin by assuming that there exists no such function f .
This means that there exist a constant c and an infinite family F = {(Γk, Gk)}k∈N, with
Γk a connected Gk-vertex-transitive cubic graph, such that sup{|V(Γk)| | k ∈ N} = ∞
and every semiregular subgroup of Gk has order at most c.

For every k, let Mk be a normal subgroup of Gk of maximal cardinality subject to
Γk/Mk being cubic and let F∗ = {(Γk/Mk, Gk/Mk)}k∈N. Observe that Mk coincides with
the kernel of the action of Gk on Mk-orbits and that Mk is semiregular. In particular,
|Mk| 6 c and moreover, if Hk/Mk is a semiregular subgroup of Gk/Mk in its action on
V(Γk/Mk), then Hk is semiregular. It follows that Γk/Mk is a connected Gk/Mk-vertex-
transitive cubic graph such that sup{|V(Γk/Mk)| | k ∈ N} = sup{|V(Γk)|/|Mk| | k ∈ N} =
∞ and every semiregular subgroup of Gk/Mk has order at most c/|Mk| 6 c. Replacing
F by F∗, we may thus assume that for every nontrivial normal subgroup Mk of Gk, the
normal quotient Γk/Mk has valency less than three.

Replacing F by a subfamily, we may also assume that one of the following occurs:
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1. for every k, Gk has no nontrivial abelian normal subgroups;

2. for every k, Gk has an abelian normal subgroup that is not semiregular;

3. for every k, every abelian normal subgroup of Gk is semiregular and Gk has at least
one such subgroup.

Case 1. For every k, Gk has no nontrivial abelian normal subgroups.

In this case, the socle of Gk is a direct product of nonabelian simple groups, that is,
soc(Gk) = Tk,1 × · · · × Tk,tk , where Tk,1, . . . , Tk,tk are nonabelian simple groups. For every
k and j ∈ {1, . . . , tk}, by Burnside’s Theorem there exists a prime pk,j > 5 dividing |Tk,j|,
and hence there exists xk,j ∈ Tk,j with |xk,j| = pk,j. Since the stabiliser of a vertex of Γk

is a {2, 3}-group, we get that Hk = 〈xk,1〉 × · · · × 〈xk,tk〉 is a semiregular subgroup of Gk

of order
∏

j pk,j > 5tk . Thus tk 6 log5(c).
It follows by [16, Lemma 3.5] that there exists a function g : N → N satisfying

g(n) → ∞ as n → ∞ such that if T is a nonabelian simple group of order n then T
contains an element t of order at least g(n) and coprime to 6. Since Tk,j has no element
of order larger than c and coprime to 6, we get g(|Tk,j|) 6 c. It follows that there exists
a constant b such that |Tk,j| 6 b for every k and j ∈ {1, . . . , tk}.

We have shown that |soc(Gk)| 6 blog5(c) for every k. As the action of Gk on soc(Gk) by
conjugation is faithful, Gk is isomorphic to a subgroup of Aut(soc(Gk)) and hence, since
Gk is vertex-transitive, |V(Γk)| 6 |Gk| 6 |Aut(soc(Gk))| 6 (blog5(c))!. This contradicts the
fact that sup{|V(Γk)| | k ∈ N} =∞.

Case 2. For every k, Gk has an abelian normal subgroup that is not semiregular.

Replacing F by a subfamily, we may assume that |V(Γk)| > 32 for every k. By Theo-
rem 1.2, it follows that Γk is isomorphic to SPX(2, rk, sk) for some rk > 5 and 1 6 sk 6
rk − 1. Now, from Corollary 2.9 we get rk 6 c and hence |V(Γk)| = 2skrk 6 2c−1c. This
contradicts the fact that sup{|V(Γk)| | k ∈ N} =∞.

Case 3. For every k, every abelian normal subgroup of Gk is semiregular and Gk has at
least one such subgroup.

Replacing F by a subfamily, we may assume that |V(Γk)| > 2c for every k. Let Nk be
an abelian minimal normal subgroup of Gk. Note that Nk is elementary abelian and
semiregular and hence |Nk| 6 c. Since |V(Γk)| > 2c, it follows that Nk has at least three
orbits and, since Nk 6= 1, the graph Γk/Nk has valency at most two and hence is a cycle
of length `k := |V(Γk)|/|Nk| > |V(Γk)|/c.

Let Kk be the kernel of the action of Gk on Nk-orbits and let Ck be the centraliser
of Nk in Kk. As Nk is abelian, we have Nk 6 Ck. Also, as Nk and Kk are normal in
Gk, so is Ck. Since Nk is abelian and Kk preserves the Nk-orbits setwise, we must have
C∆

k = N∆
k for each Nk-orbit ∆. It follows that the commutator [Ck, Ck] fixes each Nk-

orbit pointwise and hence [Ck, Ck] = 1. Thus Ck is abelian and hence semiregular. For
v ∈ V(Γk), we have Kk = Nk(Kk)v. As Nk 6 Ck 6 Kk, this implies that Ck = Nk, that
is, CKk

(Nk) = Nk.
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Since |Nk| 6 c, we have |Gk : CGk
(Nk)| 6 |Aut(Nk)| 6 c!. Thus

|Gk/Kk : KkCGk
(Nk)/Kk| 6 c!.

Recall that Gk/Kk acts faithfully and vertex-transitively on the cycle Γk/Nk of length `k
and thus contains a rotation of order at least `k/2. Since |Gk/Kk : KkCGk

(Nk)/Kk| 6 c!,
it follows that CGk

(Nk) contains an element gk acting on Γk/Nk as a rotation of order rk
with rk > `k/(2c!).

Now, grkk ∈ Kk ∩ CGk
(Nk) = CKk

(Nk) = Nk and hence grkk is semiregular. Since
gk acts semiregularly on Γk/Nk, it follows that gk is semiregular. In particular, 〈gk〉 is
a semiregular subgroup of Gk of order at least rk > `k/(2c!) > |V(Γk)|/(2cc!). Since
sup{|V(Γk)| | k ∈ N} =∞, this is our final contradiction.
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[4] E. Dobson, A. Malnič, D. Marušič, L. A. Nowitz. Semiregular automorphisms of
vertex-transitive graphs of certain valencies. J. Combin. Theory, Ser. B 97:371–380,
2007.

[5] M. Giudici, C. H. Li, C. E. Praeger. Analysing finite locally s-arc transitive graphs.
Trans. Amer. Math. Soc. 356:291–317, 2004.

[6] M. Giudici, J. Xu. All vertex-transitive locally-quasiprimitive graphs have a semireg-
ular automorphism. J. Algebraic Combin. 25:217–232, 2007.

[7] C. H. Li. Semiregular automorphisms of cubic vertex-transitive graphs. Proc. Amer.
Math. Soc. 136:1905–1910, 2008.
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admitting composition factors of bounded rank. Proc. Amer. Math. Soc. 140:2307–
2318, 2012.

[14] C. E. Praeger, P. Spiga, G. Verret. Bounding the size of a vertex-stabiliser in a finite
vertex-transitive graph. J. Combin. Theory Ser. B 102:797–819, 2012.

[15] C. E. Praeger, M. Y. Xu. A Characterization of a Class of Symmetric Graphs of
Twice Prime Valency. European J. Combin. 10:91–102, 1989.

[16] P. Spiga. Semiregular elements in cubic vertex-transitive graphs and the restricted
Burnside problem. Math. Proc. Cambridge Phil. Soc. 157:45–61, 2014.

[17] P. Spiga, G. Verret. On the order of vertex-stabilisers in vertex-transitive graphs
with local group Cp × Cp or Cp wr C2. J. Algebra, to appear.

[18] G. Verret. On the order of arc-stabilisers in arc-transitive graphs, II. Bull. Austral.
Math. Soc. 87:441–447, 2013.

[19] G. Verret. Arc-transitive graphs of valency 8 have a semiregular automorphism. Ars
Math. Contemp. 8:29–34, 2015.

the electronic journal of combinatorics 22(3) (2015), #P3.32 12


	Introduction
	Notation and structure of the paper

	Praeger-Xu graphs and their split graphs
	Proof of Theorem 1.3

