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Abstract

We study maximal Kr+1-free graphs G of almost extremal size—typically, e(G) =
ex(n,Kr+1) − O(n). We show that any such graph G must have a large amount
of ‘symmetry’: in particular, all but very few vertices of G must have twins. (Two
vertices u and v are twins if they have the same neighbourhood.) As a corollary, we
obtain a new, short proof of a theorem of Simonovits on the structure of extremal
Kr+1-free graphs of chromatic number at least k for all fixed k > r > 2.

Keywords: Forbidden subgraph; stability; saturation

1 Introduction

Let Tn,r denote the Turán graph on n vertices with r partition classes of size bn/rc or dn/re
each, and put tn,r := e(Tn,r). From Turán’s theorem we know that tn,r maximises the size
of a Kr+1-free graph of order n. One of the best-known extensions of Turán’s theorem is
the Erdős–Simonovits stability theorem, which says, in particular, that a Kr+1-free graph
on n vertices and tn,r − o(n2) edges can be turned into Tn,r by adding or removing o(n2)
edges. To phrase it qualitatively, a Kr+1-free graph whose size is close to being extremal
looks essentially like the extremal graph. This behaviour has become known as stability
and has been extensively studied in various discrete structures.

In this paper we are concerned with different aspects of Turán stability. More con-
cretely, we shall study Kr+1-free graphs G with e(G) = tn,r − O(n) or e(G) = tn,r −
O(n log n). This is much closer to the Turán threshold than the range of the Erdős–
Simonovits stability theorem and makes it possible to observe different aspects of stabil-
ity. Our results can therefore be viewed as a part of a larger programme of studying the
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‘phase transition’ of Kr+1-free graphs near the Turán threshold that has been emphasized
by Simonovits.

First, in Section 2 we give a new, short proof of a theorem on the maximum size of a
Kr+1-free graph of chromatic number at least r + 1. This result was proved in the case
r = 2 by Andrásfai, Erdős, and Gallai [8]. The general case was first explicitly proved
by Brouwer [7], although implicitly it follows from earlier work of Simonovits [15]. It has
also been re-discovered several times [4, 9, 11].

Let

h(n, r) =

{
tn,r −

⌊
n
r

⌋
+ 1, n > 2r + 1,

tn,r − 2, r + 3 6 n 6 2r,
(1.1)

and note that the second case is vacuous if r = 2.

Theorem 1.1. If n > r+3, then every Kr+1-free graph of order n and size at least h(n, r)+
1 is r-colourable.

Unlike the Erdős–Simonovits theorem, which says that a Kr+1-free graph on suffi-
ciently many edges is approximately r-partite, this theorem gives a condition for a Kr+1-
free graph to actually be r-partite.

A natural generalisation of Theorem 1.1 would be to find the maximal number of edges
in a graph G with |V (G)| = n, ω(G) = r and χ(G) > k for every k > r + 1. It is easy to
see that the extremal number is of order tn,r −O(n): for instance, take the disjoint union
of a Turán graph Tn′,r and a finite order graph G′ with ω(G′) = r and χ(G′) > k. Note
that determining the constant in the linear term asymptotically as k → ∞ is essentially
equivalent to determining the asymptotic behaviour of the Ramsey numbers R(r + 1, k).
(This connection is discussed further in Remark 4.14.) We determine the constant exactly
in the first open case, k = r + 2; see Theorem 4.8.

Another interesting problem is to determine the structure of the extremal Kr+1-free
graphs of chromatic number at least k. One simple way to construct such graphs (more
efficiently than the trivial construction given above) is the following: take a finite order
graph G′ with ω(G′) = r and χ(G′) = k, and blow up an r-clique of G′ in a way that
maximises the number of edges. Let us call a graph (or, more precisely, a graph sequence)
simple if it is a blow-up of a bounded order graph. It is natural to ask whether the
extremal graph must be simple. This was answered in the affirmative by Simonovits for
r = 2 in [16] and (as part of a more general result) for arbitrary r in [17].

Theorem 1.2. For each r > 2 and each k > r, there exists m(k, r) such that if G is
an extremal Kr+1-free graph with chromatic number at least k, then G is a blow-up of a
graph G′ with |V (G′)| 6 m(k, r).

In other words, for every r and k, the sequence of extremal graphs G for ω(G) 6 r
and χ(G) > k is simple.

We shall use Theorem 1.2 to show that for any r and k, there is a quantity Λr(k) that
determines the constant in the linear term in the extremal number for Kr+1-free graphs
with chromatic number at least k. Thus, computing Λr(k) is equivalent to determining
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the size of an extremal graph up to an additive constant. Moreover, our results show that
there exists a finite time algorithm that determines the extremal size exactly.

Recall that a graph G is called maximal H-free or H-saturated if it is H-free but
adding any edge to G would create a copy of H as a subgraph. For H = Kr+1 the
corresponding saturated graphs are also called (r + 1)-saturated. In Section 3 we suggest
a new generalisation of Theorem 1.1, namely the study of Kr+1-saturated graphs on many
edges; note that the extremal Kr+1-free graph for a given chromatic number is a special
case. In the spirit of Theorem 1.2, we prove sharp bounds on how large e(G) must be in
order to guarantee that G is simple. Perhaps surprisingly, the thresholds for r = 2 and
for r > 3 are substantially different, with the proof being very short in the former case
and more involved in the latter.

Theorem 1.3. For every c > 0, there exists a constant m2(c) such that every 3-saturated
graph G on n vertices with e(G) > tn,2−cn is a blow-up of a graph on at most m2 vertices.

Let r > 3. For every ε > 0, there exists a constant mr(ε) such that every (r + 1)-
saturated graph G on n vertices with e(G) > tn,r − (2− ε)n/r is a blow-up of a graph on
at most mr vertices.

In both cases, the result is sharp—see Examples 3.5 and 3.7.
Taking this study further, we obtain a sharp threshold for a maximal Kr+1-free graph

to have a single pair of twin vertices (that is, vertices with identical neighbourhoods).
Clearly, this threshold must be lower than the bound in Theorem 1.3. We consider the
following theorem to be the main result of this paper.

Theorem 1.4. For every r > 2 there exists a constant c > 0 such that if n is sufficiently
large, then every (r + 1)-saturated graph G on n vertices with e(G) > tn,r − cn log n has
a pair of twin vertices.

This result is sharp up to the value of the constant c—see Examples 3.9 and 3.11.
Note that unlike Theorem 1.3, in this case the bounds are similar for all values of r,

though the proof is still much shorter in the case r = 2 (see Proposition 3.8). As a
corollary of Theorem 1.4, we obtain a new, short proof of Theorem 1.2.

We consider one more way in which an (r+ 1)-saturated graph may be ‘close’ to Tn,r,
namely, by having a large complete r-partite subgraph. We shall show that if r > 3
and if c is large enough, then there exist (r + 1)-saturated graphs of order n with more
than tn,r − cn edges that are not simple (see Example 3.7). However, for all c > 0, every
4-saturated graph with more than tn,3− cn edges must contain a large complete tripartite
subgraph.

Theorem 1.5. For every c > 0, every 4-saturated graph G on n vertices with e(G) >
tn,3 − cn contains a complete tripartite graph on (1− o(1))n vertices.

Let us note that the corresponding minimal degree (rather then graph size) conditions
for properties such as low chromatic number in a Kr+1-free graph have been extensively
studied. These questions will not be in the scope of our discussion. For a discussion of
these results, see, e.g., the survey [14, Section 2.4] and the references therein.
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The rest of this paper is organised as follows. In Section 2, we prove Theorem 1.1
and classify the extremal graphs. In Section 3, we prove Theorems 1.3, 1.4 and 1.5. In
Section 4, we prove Theorem 1.2. We then use this result to show that the quantity Λr(k)
mentioned above determines the size of an extremal Kr+1-free graph of chromatic number
at least k up to an additive constant. In Section 5, we state open problems arising from
our work.

2 A new proof of Theorem 1.1

In this section we prove Theorem 1.1 and classify the extremal Kr+1-free, non-r-colourable
graphs. As mentioned above, Theorem 1.1 has been proved several times. The proof that
we shall give is similar to that of Hanson and Toft [9], in that both arguments use Zykov
symmetrization (described below). However, our proof is otherwise rather different to the
one in [9], and it is shorter than any of the proofs of Theorem 1.1 of which we are aware.

The following construction shows that the bound in Theorem 1.1 is tight: take a copy
of Tn−1,r on partition classes V1, . . . , Vr. Add a new vertex u and connect it to each
vertex in V3, . . . , Vr and to one vertex from each of V1 and V2; call them v1 and v2. Lastly,
remove the edge v1v2. For n > 2r, if we take V1 and V2 to be the smallest partition
classes, this construction achieves the bound of Theorem 1.1. On the other hand, for
r > 3 and r + 3 6 n 6 2r this construction does not work, since the obtained graph will
be r-colourable. Instead, the extremal construction in this case is achieved by taking V1
and V2 to be the largest partition classes (of size 2), for a total of tn,r − 2 edges. In each
case, we call the resulting graph Gn,r. It is easy to verify that Gn,r is Kr+1-free and is not
r-colourable. Finally, for n 6 r + 2, every Kr+1-free graph on n vertices is r-colourable.
Note that in general the extremal graphs are not unique; we shall discuss this after the
proof of Theorem 1.1.

As mentioned above, in the proof of Theorem 1.1, we shall want to apply the Zykov
symmetrization, defined as follows. Given a graph G and independent vertices u, v ∈
V (G), define Zu,v(G) to be the graph obtained by replacing u with a twin of v. That
is, we delete all edges incident to u and insert edges between u and the neighbours of v
instead. Note that ‘being twins’ is an equivalence relation, giving rise to twin classes.

It is easy to see that ω(Zu,v(G)) = ω(G \ {u}) and χ(Zu,v(G)) = χ(G \ {u}), and, as
a consequence,

ω(G)− 1 6 ω
(
Zu,v(G)

)
6 ω(G) (2.1)

and
χ(G)− 1 6 χ

(
Zu,v(G)

)
6 χ(G). (2.2)

Thus, if deg(u) < deg(v), replacing G with Zu,v(G) increases e(G), does not increase ω(G)
and decreases χ(G) by at most 1. Similarly, if deg(u) = deg(v), then we may apply either
Zu,v or Zv,u, with the same effects on ω(G) and χ(G), while keeping e(G) unchanged.
Let us call the Zykov symmetrization Zu,v increasing or an IZS if deg(u) 6 deg(v). The
following lemma is due to Zykov himself [18] and leads to his well-known proof of Turán’s
theorem. For the sake of self-containment we shall recall its short proof here.
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Lemma 2.1. If ω(G) 6 r, then there exists a sequence of increasing Zykov symmetriza-
tions transforming G into a complete s-partite graph for some s 6 r.

Proof. Observe that every pair of twin classes forms either an empty or a complete bipar-
tite graph. In the former case we can repeatedly apply an IZS and merge the two classes
into one. We continue doing so until there are no missing edges between vertices from
different twin classes, after which the obtained graph G′ is complete s-partite, where s
is the number of twin classes remaining. By (2.1), ω(G′) 6 ω(G) 6 r, so we must have
s 6 r, which proves the lemma.

Proof of Theorem 1.1. We shall show that any non-r-colourable, Kr+1-free graph G must
have at most as many edges as Gn,r.

Step 1: We first use the Zykov symmetrization. Recall that the initial graph G
satisfies χ(G) > r, and by (2.2), with each IZS the chromatic number decreases by at
most 1. Therefore, by Lemma 2.1, it suffices to prove that e(G) 6 h(n, r) for every
graph G such that ω(G) 6 r, χ(G) = r + 1 and χ(Zu,v(G)) = r for some increasing Zu,v.
The latter implies that χ(G \ {u}) = r, which in turn means that G can be properly
(r + 1)-coloured such that u is the only vertex with its colour.

So from now on let us assume that V (G) can be split into r + 1 independent sets
V1, . . . , Vr, and {u}. Observe that for each i, u must have a neighbour vi ∈ Vi, for
otherwise we could add u to some Vi and so r-colour G. Furthermore, at least one edge
between some vi and vj is missing, for otherwise the vi and u would induce a copy of Kr+1.

Step 2: We now apply a series of edge switches as follows. If two neighbours of u
in different partition classes, say v ∈ Vi and w ∈ Vj, are not adjacent and u has another
neighbour in either Vi or Vj, say v′ ∈ Vi, then we remove the edge uv and add the edge vw.
At this point it does not matter what happens to χ(G). However, it is crucial that after
this switch the resulting graph G̃ is Kr+1-free. Indeed, because G [V \ {u}] is r-partite,
any copy F of Kr+1 in G̃ must contain u. This means that F cannot contain v, which
implies that a copy of Kr+1 must already be present in G, a contradiction.

Continue the switches for as long as possible; the procedure will terminate since the
degree of u decreases after each switch. Once no more switches are possible, we end up
with a graph G′ such that u has precisely one neighbour in two of the partition classes,
say v1 ∈ V1 and v2 ∈ V2, with no edge between v1 and v2.

Step 3: Now add all missing edges between every Vi and Vj with i 6= j except for
v1v2, and between u and every Vi with i > 3. The obtained graph G is (r + 1)-chromatic
and contains no Kr+1. Moreover, its size is maximised if the sizes of V1, . . . , Vr are as close
as possible, resulting in e(G) = h(n, r).

As was mentioned earlier, in general, the graph Gn,r described above is not the unique
extremal example. We shall characterise the extremal graphs. (They were also charac-
terised in some of the earlier papers cited above). We let

s = s(n, r) = bn/rc. (2.3)

Given `, 1 6 ` 6 s− 1, let G
(`)
n,r be the graph obtained from Gn,r as follows: let W ⊂ V1

with |W | = `, and, for each w ∈ W , add the edge uw and remove the edge v2w. (Note
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that Gn,r = G
(1)
n,r.) If n = kr + 2 for some k > 2, then V1 and V2 have different sizes.

Without loss of generality, let |V1| = |V2|+1 = k+1. In this case, we may also modify Gn,r

by connecting u to a set W ′ ⊂ V2 with |W ′| = ` and disconnecting v1 from all elements

of W ′. Let G
′(`)
n,r denote the resulting graph and observe that G

′(`)
n,r � G

(`)
n,r. Note that for

1 6 ` 6 s− 1, both G
(`)
n,r and G

′(`)
n,r are (r + 1)-chromatic and Kr+1-free.

Theorem 2.2. Let r > 2 and n > r + 3. Let h(n, r) and s be as in (1.1) and (2.3),
respectively. If G is a Kr+1-free graph of order n and size h(n, r) that is not r-colourable,

then there exists some 1 6 ` 6 s−1 such that G ∼= G
(`)
n,r, or, if n = kr+2 for some k > 2,

then there exists some 1 6 ` 6 s− 1 such that either G ∼= G
(`)
n,r or G ∼= G

′(`)
n,r .

In the proof of Theorem 1.1, we provided an algorithm for transforming any non-r-
colourable Kr+1-free graph into the graph Gn,r without decreasing its size. We classify
the extremal graphs by carefully examining this procedure in the case where the size of
the graph never increases. The proof of Theorem 2.2 is given in the Appendix.

3 Clique-saturated graphs

In this section we shall prove a number of stability results for (r + 1)-saturated graphs
near the Turán threshold, including Theorems 1.3, 1.4 and 1.5.

We shall make frequent use of the following result of Andrásfai, Erdős and Sós [5].

Theorem 3.1. Let r > 2. If a graph G on n vertices is Kr+1-free and not r-colourable,
then there exists v ∈ V (G) such that

deg(v) 6
3r − 4

3r − 1
n.

We shall also often use the following immediate corollary of Theorem 3.1.

Corollary 3.2. There exists a function g(r, c) such that the vertex set of every Kr+1-free
graph G of order n with e(G) > tn,r − cn can be split into a set F with |F | 6 g(r, c) and
an r-partite graph on V (G) \ F .

Proof. Take F to be the set of vertices of G with degree at most 3r−4
3r−1n. This set must be

of bounded size, otherwise e(G) 6 tn−|F |,r + 3r−4
3r−1n|F | < tn,r − cn, a contradiction. The

remaining vertices induce, by Theorem 3.1, an r-partite graph.

3.1 Finite-size reductions

Here we prove Theorem 1.3, which gives the minimum number of edges that guarantees
that an (r + 1)-saturated graph is simple.

We begin by proving Theorem 1.3 in the case r = 2.

Theorem 3.3. For every c > 0 there exists m2(c) such that every 3-saturated graph G on
n vertices with e(G) > tn,2−cn is a blow-up of a (triangle-free) graph H with |V (H)| 6 m2.
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Proof. If G is bipartite, then because it is 3-saturated, it must be complete bipartite, and
we are done. If G is not bipartite, then by Corollary 3.2 it is composed of a large bipartite
graph Gb = (U,W,Eb) and an exceptional vertex set Ve with |Ve| 6 g(2, c). Now, partition
the vertices of U and W according to their Ve-neighbourhoods: for every X ⊂ Ve, define

UX := {u ∈ U : NVe(u) = X} ,

and WX analogously. Let u ∈ U and w ∈ W , and let X = NVe(u) and Y = NVe(w),
so that u ∈ UX and w ∈ WY . If X ∩ Y = ∅, then u and w must be adjacent, since G
is 3-saturated. On the other hand, if X ∩ Y 6= ∅, there can be no edge between u and
w, as it would create a triangle. Hence, the neighbourhoods of u and w are completely
determined by their Ve-neighbourhoods, meaning that for any X ⊂ Ve, any two vertices
u1, u2 ∈ UX are twins (the same holds in WX). Since there are at most 2|Ve| possible
Ve-neighbourhoods, we conclude that G has at most |Ve|+ 2 · 2|Ve| twin classes. Thus, the
statement of the theorem holds with m2(c) = g(2, c) + 2 · 2g(2,c).

As observed earlier, extremal triangle-free, (>k)-chromatic graphs are 3-saturated. As
was mentioned in the Introduction, it is easy to construct a triangle-free, (>k)-chromatic
graph with tn,2 − ckn edges. Thus, as an immediate corollary of Theorem 3.3 we obtain
Theorem 1.2 (Simonovits’ Theorem) for r = 2.

Corollary 3.4. For each k > 2 there exists a constant m(k, 2) such that if G is an
extremal triangle-free, (> k)-chromatic graph, then G is a blow-up of a graph G′ with
|V (G′)| 6 m(k, 2).

The following construction demonstrates that the bound of Theorem 3.3 is sharp in
the following sense: given a function f(n) that tends to infinity (no matter how slowly),
there exist 3-saturated graphs G with e(G) = tn,2−nf(n), yet with an unbounded number
of twin classes.

Example 3.5. We may assume that f(n) < 1
2

log2 n. Let S be a set of f(n) vertices, let
U and W be disjoint sets of 2f(n) vertices each, and divide the rest of the vertices equally
into two sets U ′ and W ′. We give different vertices of U distinct neighbourhoods in S and
do the same for vertices in W : for each I ⊂ S, let uI be the vertex in U with NS(uI) = I,
and define wI similarly. Join uI and wJ if and only if I and J are disjoint. Finally, add all
edges between U ′ and W ′, between U ′ and W , and between U and W ′. It is not hard to
see that the resulting graph G is 3-saturated. Also, G has at least 2f(n)+1 + f(n) distinct
neighbourhoods.

Since f(n) < 1
2

log2 n, we obtain

e(G) > |U ′||W ′|+ |U ′||W |+ |U ||W ′| > tn−f(n),2 − 22f(n)

> tn,2 −
nf(n)

2
− 22f(n) > tn,2 − nf(n),

as claimed.
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Now we prove Theorem 1.3 for all r > 3.

Theorem 3.6. For every r > 3 and every ε > 0 there exists mr(ε) such that every (r+1)-
saturated graph G on n vertices with e(G) > tn,r− (2−ε)n/r is a blow-up of a (Kr+1-free)
graph H with |V (H)| 6 mr.

Proof. Let F be the set of vertices of G with degree at most (1− 1/r− ε/(2r2 + 3))n. By
arguing as in the proof of Corollary 3.2, we find that F has bounded size and G[V \ F ]
is r-partite; call its partition classes V1, . . . , Vr. We claim that for any set X ⊂ F with
k 6 r − 2 vertices, the common neighbourhood of the vertices in X contains at least
εn/(r2 + 1) vertices from each of some r− k− 1 partition classes. Indeed, if X ⊂ F does
not satisfy the claim, then∑

x∈X

deg(x) 6 kn− (k + 2)

(
n

r
− εn

r2 + 1

)
+O(1).

Because there are at most
(
k
2

)
= O(1) edges between vertices of X and k 6 r−2, we have

e(G \X) > tn,r −
2− ε
r

n− k(r − 1)− 2

r
n− k + 2

r2 + 1
εn+O(1)

= tn,r −
k(r − 1)

r
n+

r2 + 1− r(k + 2)

r(r2 + 1)
εn+O(1)

> tn−k,r,

a contradiction.
Given X ⊂ F with k 6 r − 2 vertices, call the k + 1 partition classes in which the

vertices of X have the smallest number of common neighbours X-small and the remaining
ones X-big. By the assumption on degrees in V \ F , if v1 and v2 are vertices in X-small
classes that are both in the common neighbourhood of X, then they cannot be adjacent:
v1 and v2 have at most 2εn/(2r2 + 3) +O(1) < εn/(r2 + 1) total non-neighbours in each
X-big class Vi, so they must have a common neighbour in NVi(X). Thus, if v1 and v2
were adjacent, then v1, v2, the vertices of X and their common neighbour in each of the
r − k − 1 X-big classes would induce a copy of Kr+1.

Now consider two arbitrary non-adjacent vertices in different partition classes, say
v1 ∈ V1 and v2 ∈ V2. Let J = NF (v1) ∩ NF (v2). We shall show that any two vertices
w1 ∈ V1 and w2 ∈ V2 with NF (w1) ∩ NF (w2) = J are also not adjacent. This will imply
that the neighbourhood of every vertex in V \ F is determined by its F -neighbourhood,
resulting in a finite number of twin classes.

Since G is (r+1)-saturated, adding the edge v1v2 would create a copy of Kr+1. Hence,
there exist sets X ⊂ F and Y ⊂ V \ F such that if the edge v1v2 were present, then
{v1, v2}∪X∪Y would induce a copy of Kr+1. If |X| = r−1, then we are done immediately,
as adding the edge w1w2 would, using X, also create a copy of Kr+1. So we may assume
that |X| = k 6 r − 2 and apply the above split into X-big and X-small classes.

Denote the vertices of Y by v3, . . . , vr−k+1; different vertices must lie in different Vi.
Since the number of big classes is r− k− 1, two of the vertices v1, . . . , vr−k+1 must be in
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small classes. As shown above, these two vertices cannot be adjacent, and the only way
this can happen is if v1 and v2 are in small classes. In this case, w1 and w2 are also in
X-small classes, and are therefore not adjacent, as claimed.

The following construction shows that Theorem 3.6 is sharp up to a o(n) error term,
which means that the thresholds for an (r + 1)-saturated graph to be simple are truly
different in the cases r = 2 and r > 3.

Example 3.7. Let n ∈ N, let m = (1/2) log2 n and let M =
(
m
m/2

)
; note that M <

√
n.

Take the Turán graph Tn−1,r and let V1, . . . , Vr denote its partition classes. Let W1 ⊂ V1,
W2 ⊂ V2 and W3 ⊂ V3 with |W1| = M and |W2| = |W3| = m. Add a new vertex v to G
and join it to all of the vertices of the Wi and to all of the vertices of Vj for j /∈ {1, 2, 3}.
Remove all edges between different Wi. The resulting graph G′ satisfies

e(G′) > tn−1,r − 2mM −m2 +

⌊
r − 3

r
(n− 1)

⌋
+M + 2m = tn,r −

2n

r
+ o(n).

Now we add a matching between W2 and W3. Also, for each w ∈ W1 we select a
subset Uw ⊂ W2 of size m/2 such that different vertices of W1 correspond to distinct
subsets. We then join w to Uw in W2 and to W3 \NW3(Uw) in W3. (Observe that we have
added only m+mM = o(n) edges.)

It is easy to check that the obtained graph G is (r+1)-saturated. Moreover, no vertices
in W1 are twins, so G has an unbounded number of twin classes.

3.2 Twin-free saturated graphs

Now we prove Theorem 1.4, which gives an upper bound on the number of edges in a
twin-free, (r + 1)-saturated graph.

We begin by proving Theorem 1.4 in the case r = 2.

Proposition 3.8. For each ε > 0, if n is sufficiently large, then every 3-saturated graph G
of order n with e(G) > n2/4− (1/20− ε)n log2 n contains a pair of twins.

Proof. The argument is similar to the proof of Theorem 3.3. Let G be as in the state-
ment of the proposition. By Theorem 3.1, we can produce a bipartite subgraph of G by
iteratively removing a set F of m vertices of degree at most 2n/5 = n/2− n/10. Hence,
each vertex removed increases the average degree of the remaining graph by 1/10 + o(1).
As G \ F is triangle-free, it has average degree at most |V (G) \ F |/2, and so the bound
on e(G) implies that m < (1− ε′) log2 n, i.e., that (n−m)/2 > 2m.

Let V1 and V2 be the partition classes of G \ F . By the same argument as in the
proof of Theorem 3.3, the neighbourhoods of vertices in V1 and V2 are determined by
their neighbourhoods in F . Then the bound on m implies that two vertices of the larger
partition class will have the same F -neighbourhood, which means that they are twins.

Now we show that Proposition 3.8 is best possible up to a constant factor in the
n log2 n-term.
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Example 3.9. Fix m and let n = 2m + 4 log2m. We build a graph G on n vertices as
follows. Let S1, S2, U1, U2, B1 and B2 be pairwise disjoint sets of vertices with |Bi| = m
and |Si| = |Ui| = log2m for i = 1, 2. Add all edges between S1 and S2, between U1 and U2

and between B1 and B2. Give different vertices of B1 distinct neighbourhoods in S2, and
similarly for B2 and S1. Place matchings between U1 and S1 and between U2 and S2.
Finally, if u1 ∈ U1 and s1 ∈ S1 are adjacent, then we join u1 to all vertices of B2 \NB2(s1),
and similarly for each u2 ∈ U2 and its neighbour s2 ∈ S2.

It is easy to see that G is twin-free and 3-saturated. Furthermore, each vertex in
B := B1 ∪B2 has m neighbours in B and log2m neighbours outside. Thus,

e(G) > m2 + 2m log2m = tn,2 −
(
1 + o(1)

)
n log2 n.

Next we prove Theorem 1.4 for every r > 3.

Proof of Theorem 1.4. Let G be an (r + 1)-saturated graph on n vertices with no twins.
Our aim is to show that, provided n is sufficiently large, e(G) 6 tn,r − c′n log n for some
constant c′(r) ¿ 0.

We may assume that G is not r-partite: as observed earlier, if G is r-partite, then it
must be complete r-partite, which implies that every vertex has a twin. Let F1 be the
set of vertices of degree at most (3r − 4)n/(3r − 1) given by Theorem 3.1. Note that
G[V \ F1] is r-partite and |F1| 6 c1 log n for any constant c1 > 0 (otherwise e(G) 6
tn−|F1|,r + 3r−4

3r−1n|F1| 6 tn,r − c2n log n for some positive constant c2 and we are done). In
particular, we may assume that ∣∣F1

∣∣ 6 1

2(r − 2)
log2 n. (3.1)

Let V1, . . . , Vr be the colour classes of G[V \ F1]; each of the Vi must have (1/r − o(1))n
vertices, or else e(G) < tn,r − ω(n2), and we are done.

We partition the vertices of V1 according to their neighbourhoods in F1. Let W1 be
an arbitrary partition class and let A1 ⊂ F1 denote the common neighbourhood of the
vertices of W1. If |W1| > 1, we may assume that A1 6= ∅, for otherwise, if w ∈ W1 and
v ∈ Vi for some i 6= 1, then we may add the edge wv to G without creating a copy
of Kr+1. However, G is assumed to be (r+ 1)-saturated, which means that all such edges
are already present; consequently, all vertices in W1 are twins, a contradiction.

Let H1 be the (r − 1)-uniform hypergraph with vertex set V2 ∪ · · · ∪ Vr consisting of
all cliques (v1, . . . , vr−1) such that v1, . . . , vr−1 are all adjacent to some a ∈ A1. Let C1

be a minimum vertex cover of H1. If |C1| > 1
r2

log2|W1|, then we stop. Otherwise, we set
F2 = A1 ∪ C1 and partition the vertices of W1 according to their neighbourhoods in F2.

We continue the process inside each partition class as follows. After the jth partition,
we consider sets Wj, each of which has common neighbourhood Aj ⊂ Fj. Once again, if
|Wj| > 1, then we may assume that Aj 6= ∅. We let Hj be the (r− j)-uniform hypergraph
with vertex set V2 ∪ · · · ∪ Vr consisting of all cliques (v1, . . . , vr−j) such that v1, . . . , vr−j
form an r-clique with some a1, . . . , aj ∈ Aj. We let Cj be a minimum vertex cover of Hj.
If |Cj| < 1

r2
log2|Wj|, then we set Fj+1 = Aj ∪ Cj and continue. Otherwise, we stop.

the electronic journal of combinatorics 22(3) (2015), #P3.9 10



We shall show that this process must stop after at most r − 2 steps. Observe that
Hr−2 is a graph. Suppose for a contradiction that |Cr−2| < 1

r2
log2|Wr−2|. (In fact, our

argument shows that |Cr−2| > log2|Wr−2|.) We have assumed that none of the vertices in
Wr−2 are twins, but our assumption on |Cr−2| means that there must exist w1, w2 ∈ Wr−2
such that NCr−2(w1) = NCr−2(w2). Hence, there exists s /∈ Cr−2 such that sw1 ∈ E(G)
but sw2 /∈ E(G). Because G is (r + 1)-saturated, there exists a set K of r − 1 vertices
such that if we added the edge sw2 to G, then s, w2, and the vertices of K would induce
a copy of Kr+1. Observe that Ar−2 contains exactly r − 2 vertices of K. Indeed, if
|Ar−2 ∩K| 6 r − 3, then some edge of Hr−3 would be disjoint from Fr−2, contradicting
the definition of Fr−2. On the other hand, if Ar−2 contained all r − 1 vertices of K, then
{s, w1} ∪K would induce a copy of Kr+1 in G, which is again a contradiction.

Let s′ be the vertex of K that is not contained in Ar−2. Note that this implies that
s′w1 /∈ E(G). Then the fact that w2 is adjacent to s′ ∈ K and our assumption that
NCr−2(w1) = NCr−2(w2) mean that s′ /∈ Cr−2. However, the definition of s′ also implies
that ss′ is an edge in Hr−2 with no vertices in Cr−2, a contradiction.

Thus, for some j 6 r − 2, we have τ(Hj) > 1
r2

log2|Wj|, where τ denotes the size
of a minimum vertex cover. It is well known that if H is a t-uniform hypergraph, then
τ(H) 6 tν(H) (simply remove the vertices of a maximum matching), which means that we
have ν(Hj) > c log2|Wj|. Let M be a maximum matching of Hj and let (v1, . . . , vr−j) ∈M .
For each w ∈ Wj, one of the edges wv1, . . . , wvr−j is absent from G, because by the
definition of Hj, there exist vertices a1, . . . , aj ∈ Aj that form a clique of size r with the
vi. Thus, there are at least c|Wj| log2|Wj| non-edges between Wj and V (Hj).

The procedure above defines a partition W of V1. In view of the argument above, we
wish to bound

∑
W∈W |W | log2|W | from below. We begin by observing that, by Jensen’s

inequality, ∑
W∈W

|V1|
|W |

log2

|V1|
|W |

> − log2|W|,

which is equivalent to the inequality∑
W∈W

|W | log2|W | > |V1| log2

|V1|
|W|

. (3.2)

Because |V1| = (1/r − o(1))n, in order to obtain the claimed upper bound on e(G), it is
therefore enough to show that there exists ε > 0 such that |W| 6 n1−ε.

Recall that at each step j of the partition process, we refined Wj−1 by considering
vertices with the same neighbourhood in Fj := Aj−1 ∪ Cj−1. Thus, for all j > 1, we have

|Fj| = |Aj−1|+ |Cj−1| 6 |Fj−1|+ |Cj−1|. (3.3)

If W ∈ W is such that we do not partition W after step j, then |Cj−1| < 1
r2

log2|Wj−1|.
Thus, if we iterate the upper bound on |Fj| in (3.3) and apply (3.1), we find that

|W| 6 2
∑r−2

i=1 |Fi| 6 2(r−2)|F1|+
∑r−3

i=1 (r−2−i)|Ci| < 2
1
2
log2 n+

(r−2)2

2r2
log2 n 6 n1−ε, (3.4)
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which is what we wanted.
It follows from (3.2) and (3.4) that

e(G) 6 tn,r − c|V1| log2

|V1|
|W|

6 tn,r − c′εn log2 n,

as claimed. This completes the proof.

Observe that in the proof of Theorem 1.4, we did not need to assume that G was
twin-free, only that it contained a twin-free independent set of size cn for some c > 0.
Thus, Theorem 1.4 (or, more precisely, its proof) has the following corollary.

Corollary 3.10. For every ε > 0 there exists δ > 0 such that if G is an (r+ 1)-saturated
graph of order n and e(G) > tn,r − δn log n, then at least n− εn vertices of G have twins.

When we apply Corollary 3.10, we shall only use that if G is (r+ 1)-saturated and has
a twin-free set of size cn, then e(G) 6 tn,r − nf(n), where f(n) tends to infinity with n.

Now we show that Theorem 1.4 is best possible up to the value of the constant c.

Example 3.11. The construction is similar to Example 3.7. For n sufficiently large, we
construct a twin-free, (r + 1)-saturated graph on n vertices as follows. Let H be the
disjoint union of Tn−r,r and r isolated vertices u1, . . . , ur. Let V1, . . . , Vr denote the
colour classes of the copy of Tn−r,r.

Let m be a quantity to be defined later and let M =
(
m
m/2

)
. We partition V1 ∪ · · · ∪ Vr

into three families of sets
{
W

(i)
1

}r
i=1

,
{
W

(i)
2

}r
i=1

and
{
W

(i)
3

}r
i=1

such that for each i, we

have W
(i)
1 ⊂ Vi, W

(i)
2 ⊂ Vi+1 and W

(i)
3 ⊂ Vi+2 (where the addition is modulo r), as well as

that
∣∣W (i)

1

∣∣ = M and
∣∣W (i)

2

∣∣ =
∣∣W (i)

3

∣∣ = m. It follows that

n = r(M + 2m+ 1). (3.5)

Because m = o(M), (3.5) implies that

M ∼ n/r, (3.6)

which in turn implies that
m ∼ log2 n. (3.7)

Now we modify H in order to make it twin-free and maximally Kr+1-free. For each i,

i = 1, . . . , r, we modify H[W
(i)
1 ∪W

(i)
2 ∪W

(i)
3 ] as in Example 3.7. Then we connect ui to

all vertices of W
(i)
1 ∪W

(i)
2 ∪W

(i)
3 and to all vertices of each Vk, k /∈ {i, i+1, i+2} (mod r).

Finally, we add a maximal set of edges among the ui in order to saturate the graph.
Let G denote the resulting graph. It is easy to check that G is both (r+ 1)-saturated

and twin-free. Moreover,

e(G) = tn−r,r−r(2Mm+m2−Mm−m)+r
(r − 3

r
(n−r)+2m+M

)
+e
(
G[{u1, . . . , ur}]

)
.
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It then follows from (3.5), (3.7) and (3.6) that

e(G) = tn,r − r(Mm+m2 −m) +O(n) = tn,r − rMm+O(n) = tn,r − n log2 n+O(n),

which is what we wanted to show.

The results of this subsection show that the threshold for the property that an (r+1)-
saturated graph G has a pair of twins is e(G) = tn,r−Θ(n log2 n). We have not attempted
to locate the threshold precisely, and leave this as an open problem.

3.3 Large complete r-partite subgraphs

In this section, we prove Theorem 1.5, which says that if c > 0, then every 3-saturated
graph of order n with at least tn,3 − cn edges contains an almost-spanning complete
tripartite subgraph. We shall need two basic facts.

Lemma 3.12. If G is triangle-free tripartite graph on (m,m,m) vertices then e(G) 6
t3m,3 − 1

4
m2.

Proof. Observe that if G has average degree at most 3m/2, then we are done. So, letting
V1, V2 and V3 denote the colour classes of G, we may assume that there exists a vertex,
say v ∈ V1, with at least m/2 neighbours in each of V2 and V3. As G is triangle-free, N(v)
must be an independent set, and so e(G) 6 t3m,3 − 1

4
m2, as claimed.

As an immediate consequence, we obtain:

Lemma 3.13. If G is triangle-free tripartite graph on (a, b, c) vertices, where a 6 b 6 c,
then e(G) 6 ta+b+c,3 − 1

4

⌊
b
a

⌋
a2.

Proof. Simple observe that Ta+b+c,3 contains bb/ac edge-disjoint copies of T3a,3 and apply
Lemma 3.12.

(Let us note that the maximum size of a triangle-free tripartite graph is studied in
detail in [6].)

Now we are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. By Corollary 3.2, we may assume that there exists a set Ve ⊂ V
with |Ve| 6M = M(c) such that G[V \Ve] is tripartite. Let V1, V2 and V3 be the partition
classes of V \ Ve. For each v ∈ Ve, define Av, Bv and Cv to be its neighbourhoods in V1,
V2 and V3 such that |Av| 6 |Bv| 6 |Cv|.

First note that for every v ∈ Ve, G[Av∪Bv∪Cv] is triangle-free and tripartite. It follows
from Lemma 3.12 that |A(v)| = O(

√
n), for otherwise e(G) 6 tn,3−ω(n), a contradiction.

Next we pick a (large) constant C and split Ve into ‘small’ and ’large’ vertices: that
is, we set Ve = Vs ∪ V`, where v ∈ Vs if |Av| < C and v ∈ V` otherwise. Notice that if
v ∈ V`, then by Lemma 3.13 we have |Bv| 6 c′n, where

c′ =

(
4c

C
+ o(1)

)
.
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Now consider the set

W := V \

(
Ve ∪

⋃
v∈Ve

Av ∪
⋃
v∈V`

Bv

)
.

Putting Wi := W ∩ Vi, we have that |Wi| > n(1/3 − c′M) + o(n) for each i. Let U =
Ve ∪

⋃
v∈Vs Av and note that |U | 6 (C + 1)M . We now partition the vertices of W

into a finite number of classes according to their neighbourhoods in U . Let w1 ∈ W1

and w2 ∈ W2. We claim that whether w1 and w2 are adjacent depends solely on their
neighbourhoods in U . If NU(w1)∩NU(w2) is not independent, then w1 6∼ w2, for otherwise
we would have a copy of K4. On the other hand, if NU(w1) ∩NU(w2) is independent but
w1 and w2 are not adjacent, then there exist v ∈ Ve and u ∈ V3 such that w1, w2, v and
u would induce a copy of K4 if the edge w1w2 were added. By the definition of W , this
can only happen if v ∈ Vs and u ∈ Av. But then u, v ∈ U , so NU(w1) ∩ NU(w2) is not
independent, a contradiction. This proves the claim.

To summarise, W can be split into at most 3 · 2|U | 6 3 · 2(C+1)M classes such that
each pair of classes induces either an empty or a complete bipartite graph. Now consider
only those classes in each Wi that are of size at least 2

√
(M + c)n. Each pair of them

belonging to different Wi must form a complete bipartite graph, otherwise e(G) 6 tn,3−cn,
a contradiction. Hence, their union forms a complete tripartite graph with at least

|Wi| − 2(C+1)M · 2
√

(M + c)n > n(1/3− c′M) + o(n)

vertices in each colour class. Since C was arbitrary and c′ → 0 as C → ∞, this gives a
complete tripartite graph on (1− o(1))n vertices, which is what we wanted.

We do not have corresponding results for Kr+1-saturated graphs with r > 4, and so
we leave this as an open problem.

4 Extremal Graphs for the Chromatic Turán Problem

In this section we shall apply Theorem 1.4 to give a new proof of Theorem 1.2 for r > 3
that is much shorter than the original proof by Simonovits [17]. Recall that for r = 2
this result was proved in Corollary 3.4. Before we embark on the proof of Theorem 1.2
for arbitrary r, we need to introduce some notation.

Let G be a graph with ω(G) = r and let C be an r-clique in G such that the quantity∑
v∈C

deg(v)

is maximised. Define
Λr(G) := (r − 1)|V (G)| −

∑
v∈C

deg(v). (4.1)
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The above expression can also be written as

Λr(G) =
∑

v∈V (G)

(
r − 1− degC(v)

)
. (4.2)

Due to our assumption that G is Kr+1-free, the right hand side of (4.2) is non-negative,
whereby it has a well-defined minimum over all graphs G with ω(G) = r and χ(G) > k:

Λr(k) := min
ω(G)=r,χ(G)>k

Λr(G).

We define Ck,r to be the minimal order of a graph realising Λr(k).
Recall from Section 2 that if u, v ∈ V (G) then the Zykov symmetrization Zu,v(G)

replaces u with a twin of v. In Section 2, we required that u and v not be adjacent. Here
we extend the notion of Zu,v to the case when u and v are adjacent as follows: we make
u a twin of v and remove the edge uv.

Proof of Theorem 1.2. Let G be an extremal Kr+1-free graph on n vertices with chromatic
number at least k. Suppose for a contradiction that, as n→∞, the number of twin classes
in G also tends to infinity.

As was pointed out in the Introduction, it is immediate that there exists a constant c =
c(k, r) > 0 such that e(G) > tn,r − cn. Thus, by Corollary 3.2, G can be made r-partite
by removing a set F of Ok,r(1) vertices. Let V1, . . . , Vr be the partition classes of the
remaining subgraph; each of them must be of size (1 + o(1))n/r, or else we would have
e(G) 6 tn,r − ω(n2), a contradiction.

Note that G is (r+ 1)-saturated. Let Ti ⊂ Vi denote the subset of vertices with twins.
Since e(G) exceeds the bound of Corollary 3.10, each Ti has size ti := |Ti| = (1+o(1))n/r.

Claim 4.1. We may assume that each Ti forms a single twin class, that each pair (Ti, Tj)
induces a complete bipartite graph, and that there exists c > 0 such that for all i and j,

r∑
i=1

|Vi \ Ti| > c|ti − tj|. (4.3)

Proof of Claim 4.1. First, it is easy to see that if u, v ∈ Ti, then deg(u) = deg(v): if
not, then either Zu,v(G) or Zv,u(G) is Kr+1-free, is (>k)-chromatic and has strictly more
edges than G, a contradiction. So, by applying Zykov symmetrization within each Vi, we
may assume that each Ti is a single twin class. (Note that because we only symmetrize
vertices that have twins, this process will not decrease χ(G).)

Therefore, for all i and j, G[Ti ∪ Tj] is either empty or complete bipartite. Because
ti = (1 + o(1))n/r for all i, we must have E(Ti, Tj) 6= ∅ for all i and j: otherwise,
e(G) 6 tn,r − ω(n2) a contradiction. Hence, for all i and j, G[Ti ∪ Tj] must be complete
bipartite.

It remains to show that (4.3) holds. Since, by assumption, the number of twin classes
in G is unbounded, so must be the left hand side of (4.3). Hence, if (4.3) does not hold,
then there exist i and j such that ti − tj = f(n), where f(n) tends to infinity with n. In
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this case we have
∑r

i=1 |Vi\Ti| = o(f(n)). Then the fact that all edges are present between
different Ti implies that if vi ∈ Ti and vj ∈ Tj, then deg(vj) − deg(vi) > (1 − o(1))f(n).
Therefore, if we replace vi with a twin of vj, then we obtain a graph with strictly more
edges than G that is Kr+1-free and (because we have symmetrized vertices that have
twins) is still (>k)-chromatic, which is a contradiction. This proves the claim.

Let
T = max

i
ti and t = min

i
ti.

Let G′ be the graph obtained by identifying t of the vertices of each Ti. Then G′ has
n′ := n− r(t− 1) vertices; moreover, n′ is at least the number of twin classes in G, so by
assumption n′ tends to infinity with n.

We want to show that G′ has a large twin-free independent set. Indeed, observe that
n′ 6 r(T − t) +

∑r
i=1 |Vi \ Ti|. It follows from Claim 4.1 that there exists c′ > 0 such that

for some i, we have |Vi \ Ti| > c′n′. The set Vi \ Ti is twin-free by definition, so, if n (and
hence n′) is large enough, Corollary 3.10 implies that

e(G′) 6 tn′,r − Cn′

for some large constant C.
Let H ′′ be a Kr+1-free, k-chromatic graph on ` = Ck,r vertices such that Λr(H

′′) =
Λr(k) (recall that Ck,r was defined as the smallest order of such a graph). Let K ⊂ V (H ′′)
be a clique that achieves the value of Λr(H

′′) and let H ′ be the graph on n′ vertices
obtained from H ′′ by blowing up each vertex of K by a factor of (n′ − `)/r + 1. Observe
that

e(H ′) > tn′,r − cn′

for some small constant c and that

Λr(H
′) = Λr(H

′′) = Λr(k),

where the value of Λr(H
′) = Λr(k) is realised in H ′ by the same clique K. In particular,

we have
e(H ′) > e(G′) (4.4)

and
Λr(H

′) 6 Λr(G
′). (4.5)

For each i, let vi ∈ V (G′) denote the vertex obtained by identifying the t vertices
of Ti. Thus, we obtain G from G′ by blowing up each vi by a factor of t. Let H be the
graph on n vertices obtained by blowing up each v ∈ K ⊂ H ′ by a factor of t. Denote
C = {v1, . . . , vr} ⊂ V (G′). It follows from (4.1), (4.4) and (4.5) that

e(G) = e(G′) + (t− 1)
∑

v∈V (G′)

degC(v) + (t− 1)2
(
r

2

)

6 e(G′) + (t− 1)
(
(r − 1)n′ − Λr(G

′)
)

+ (t− 1)2
(
r

2

)
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< e(H ′) + (t− 1)
(
(r − 1)n′ − Λr(H

′)
)

+ (t− 1)2
(
r

2

)
= e(H),

contradicting the extremality of G.

Remark 4.2. As mentioned in the Introduction, Theorem 1.2 is only a special case of
Simonovits’s result in [17]. Theorem 1.2 was first proved in the more general setting of
‘chromatic conditions’—properties that are natural generalizations of statements such as
‘G has chromatic number at least k’. (For a precise statement, see [17, Definition 1.5].)
It is not hard to verify that our proof of Theorem 1.2 extends to Kr+1-free graphs that
satisfy these more general conditions. Simonovits’s result also extends to a larger class of
forbidden subgraphs than the class of complete graphs.

With Theorem 1.2 at our disposal, it is straightforward to derive a formula for the
asymptotics of the extremal numbers for Kr+1-free, (>k)-chromatic graphs. In fact, the
coefficient in the linear term can be conveniently described using the quantity Λr(k).

Theorem 4.3. Let r > 2 and let k > r + 1. If G is a Kr+1-free, (>k)-chromatic graph
maximising e(G) over all such graphs of order n, then

e(G) = tn,r −
Λr(k)

r
· n+Ok,r(1). (4.6)

Given a graph H of order ` with ω(H) = r, the following lemma tells us which of its
blow-ups to order n maximises e(G).

Lemma 4.4. Let H be a graph on ` vertices with ω(H) = r and let G be a blow-up of H
with |V (G)| = n. For large n, e(G) is maximised up to O(1) by letting C be an r-clique
in H for which the quantity ∑

v∈C

deg(v)

is maximised and by blowing up each v ∈ C by a factor of (n− `)/r + 1.

The proof of the lemma is a variant of the proof Turán’s theorem due to Motzkin and
Straus [13] (see also [1]). Nevertheless, we include the details of the argument.

Proof. Observe that up to a O(1) error term, maximising e(G) is equivalent to determining

max

{
2

∑
vivj∈E(H)

xixj :
∑̀
i=1

xi = n, xi > 1 for all i

}
.

Letting yi = xi − 1, this is equivalent to determining

max

{
2

( ∑
vivj∈E(H)

yiyj +
∑̀
i=1

yi deg(vi) + e(H)

)
:
∑̀
i=1

yi = n− `, yi > 0 for all i

}
. (4.7)
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Thus, given y ∈ R`, we define

f(y) = 2
∑

vivj∈E(H)

yiyj + 2
∑̀
i=1

yi deg(vi) + 2e(H).

By compactness, the maximum in (4.7) is achieved. Suppose that y is a vector that
achieves the maximum in (4.7) with the minimum number of non-zero entries and let C =
{i : yi > 0}. We claim that C corresponds to a clique in H. Suppose to the contrary that
i1, i2 ∈ C but v1v2 /∈ E(H) and, for t with −y1 6 t 6 y2, let yt = (y1 + t, y2− t, y3, . . . , y`).
If deg(v1) 6= deg(v2), then it is easy to see that there exists t 6= 0 such that f(yt) > f(y),
a contradiction. Otherwise, by assumption, f(yt) achieves its maximum value on the
interval −y1 6 t 6 y2 at t = 0. Because v1v2 /∈ E(H), f(yt) is linear in t, and because it
achieves its maximum on the interior of the interval, it is a constant function of t. Thus,
if we let t = y2, then we obtain a vector with fewer non-zero entries than y that also
achieves the maximum in (4.7), a contradiction.

We may thus assume that C corresponds to a clique. Now we observe that

(n− `)2 = (y1 + · · ·+ y`)
2 = 2

∑
i,j∈C

yiyj +
∑
i∈C

y2i = f(y)− 2
∑
i∈C

yi deg(vi)− 2e(H) +
∑
i∈C

y2i .

It follows that f(y) is maximised when the quantity∑
i∈C

(
y2i − 2yi deg(vi)

)
(4.8)

is minimised. Recalling the assumption that
∑

i∈C yi = n−` and computing the Lagrange
multipliers, we find that the quantity in (4.8) is minimised when

yi − deg(i) = yj − deg(j)

for all i and j, which shows that the yi must differ by constants (with respect to n).
Observe that if we shift constant weights in order to make all weights in C equal to (n−
`)/|C|, then we change f , and hence e(G), only by a constant. For this choice of y, we
have

f(y) = (n− `)2
(

1− 1

|C|

)
+ 2(n− `)

∑
i∈C

deg(vi),

which is maximised when |C| = r and
∑

i∈C deg(vi) is maximal. This completes the
proof.

The next result follows from Lemma 4.4 by straightforward calculations.

Corollary 4.5. Let H be a graph on ` vertices with ω(H) = r. If a graph G of order n
is a blow-up of H with the maximum number of edges, then

e(G) = tn,r −
Λr(H)

r
· n+O(1).
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It is now a short step to complete the proof of Theorem 4.3.

Proof of Theorem 4.3. Corollary 3.4 (for r = 2) or Theorem 1.2 (in general) implies that
G is a blow-up of a fixed size graph. The result then follows from Corollary 4.5.

Remark 4.6. With additional work, one can show that there exists a finite time algorithm
that, for each r and k, determines the extremal size of a Kr+1-free, (>k)-chromatic graph
exactly. Indeed, by Theorem 1.2, it suffices to consider blow-ups of finitely many graphs.
The extremal value is determined by analysing the quadratic programming argument in
the proof of Lemma 4.4 more carefully. We omit further details. We also note that
Simonovits [16] observed that such an algorithm exists for r = 2.

Remark 4.7. Theorem 4.3 also holds for graphs that satisfy the chromatic conditions
discussed in Remark 4.2. (If A is a chromatic condition, then (4.6) holds with Λr(k)
replaced by Λr(A), which we define to be the minimum value of Λr(H) over all Kr+1-free
graphs H satisfying A.)

Recall that Theorem 1.1 gives the largest number of edges in a Kr+1-free, (> k)-
chromatic graph where k = r + 1. As an application of Theorem 4.3, we shall establish
the analogous result for k = r + 2, up to a O(1) error term.

Theorem 4.8. Let G be a Kr+1-free, (>r+2)-chromatic graph that maximises e(G) over
all such graphs of order n. If r = 2, then

e(G) = tn,2 −
3n

2
+O(1),

and if r > 3, then

e(G) = tn,r −
2n

r
+Or(1).

By Theorem 4.3, in order to prove Theorem 4.8, it is enough to determine Λr(r + 2)
for all r > 2.

Lemma 4.9. We have Λ2(4) = 3.

Let us note that Lemma 4.9 was also proved in [16].

Proof. Let H be a triangle-free graph and let v and w be adjacent vertices of H such
that |V (H)| −deg(v)−deg(w) = Λ2(H) (cf. (4.1)). Let S denote the set of common non-
neighbours of v and w. Because v and w are adjacent and H is triangle-free, |V (H)| −
deg(v)− deg(w) is exactly |S|. We claim that if |S| 6 2, then H is 3-colourable.

First, suppose that |S| = 1 and let S = {x}. Then, because N(v) and N(w) are
independent sets, we may give colour 1 to each vertex in N(w) (including v), colour 2 to
each vertex in N(v) (including w), and colour 3 to x.

Second, suppose that |S| = 2 and let S = {x, y}. If x and y are not adjacent, then we
may give colour 3 to both of them. Otherwise, we modify the colouring above: we give
colour 3 to x, colour 1 to y and colour 3 to all vertices of N(y) ∩N(w). Because x and y
are adjacent, they have no common neighbours, and so we have properly 3-coloured H.

It follows that Λ2(4) > 3. Finally, Λ2(4) = 3 is realised when H is the Grötzsch graph
and v and w are adjacent vertices whose degree sum is 8.
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Now we establish a relation between extremal numbers for different values of r and k.

Lemma 4.10. We have Λr(k) 6 Λr−1(k − 1).

Proof. Take a graph H that realises Λr−1(k−1) and add a new vertex u adjacent to every
vertex of H. Then Λr(H ∪ {u}) = Λr−1(H) = Λr−1(k − 1), and the result follows.

Next, we give a lower bound on Λr(k).

Lemma 4.11. We have Λr(k) > k − r.

Proof. Let H be a graph with ω(H) = r and χ(H) > k and let C ⊂ V (H) be an r-clique
that achieves the value of Λr(H). Let S = {v /∈ C : degC(v) = r − 1}. We observe
that H[C ∪ S] is r-colourable: after properly colouring C, give each v ∈ S the colour of
its non-neighbour in C, and observe that because ω(H) = r, if u, v ∈ S have the same
non-neighbour in C, then they are independent. Because χ(H) > k, it follows that H
must contain at least k− r vertices not in C ∪S, and our assumption that H is Kr+1-free
means that each such vertex is adjacent to at most r−2 vertices of C. It follows from (4.2)
that each such vertex contributes at least 1 to Λr(H), which proves the lemma.

In order to prove Theorem 4.8, it remains to compute Λr(r+2) for all r > 3. However,
it turns out to be enough to determine Λ3(5), which we now do.

Lemma 4.12. We have Λ3(5) = 2.

Proof. Lemma 4.11 implies that Λ3(5) > 2. To show that equality holds, we define a
graph H as follows. Let v1, v2 and v3 be the vertices of a triangle. Let a12 and b12 be
adjacent to v1 and v2, let b23 and c23 be adjacent to v2 and v3, and let a13, b13 and c13 be
adjacent to v1 and v3. Let x be adjacent to v1 and to both of the aij, let y be adjacent
to v3 and to both of the cij, and let x and y be adjacent to each other and to all of the
bij. Finally, if (i, j) 6= (k, `), let aij be adjacent to ck`.

By inspection, H is K4-free and Λ3(H) = 2. We shall show that H is not 4-colourable.
Let f : V (H) → N be a proper colouring of H and, for each i, let f(vi) = i. We shall
show that no matter what colours we give to x and y, some vertex must receive colour 5.
If we let f(x) = 3 and f(y) = 1, then neither a12 nor c23 can receive colours 1, 2 or 3,
which means that one of them must receive colour 5. In the same way, if we let f(x) = 3
and f(y) = 2, then either a12 or c13 must receive colour 5, and if we let f(x) = 2 and
f(y) = 1, then either a13 or c23 must receive colour 5. Finally, if we give colour 4 to either
x or y, then no matter what colour we give to the other, some bij must receive colour 5.

It follows that Λ3(5) = Λ3(H) = 2, as claimed.

Proof of Theorem 4.8. The result for r = 2 follows from Lemma 4.9 and Theorem 4.3. If
r > 3, then Lemmas 4.10, 4.11 and 4.12 imply that Λr(r+ 2) = 2. The result then follows
from Theorem 4.3.

It is possible to determine Λ2(k) for other small values of k, as in the following case.

Proposition 4.13. We have Λ2(5) = 6.
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We omit the proof; the argument is similar to the proofs of Lemmas 4.9 and 4.12.

Remark 4.14. Using results from Ramsey theory, it is possible to give good asymptotic
bounds on Λ2(k). (We note that this connection was also observed in [16].)

First, letting f2(k) denote the minimum order of a triangle-free graph with chromatic
number at least k, it is not hard to show that there exist constants C1, C2 > 0 such that

C1k
2 log k 6 f2(k) 6 C2k

2 log k. (4.9)

Indeed, Ajtai, Komlós and Szemerédi [2, 3] and Kim [12] proved that there exist constants
c1, c2 > 0 such that for every t > 2, the Ramsey number R(3, t) satisfies

c1
t2

log t
6 R(3, t) 6 c2

t2

log t
.

In other words, every triangle-free graph on n vertices has an independent set of size at
least c3

√
n log n, while there exist triangle-free graphs on n vertices with no independent

set of size more than c4
√
n log n. The upper bound in (4.9) then follows from the fact

that any graph G satisfies |V (G)| 6 α(G)χ(G). The lower bound can be derived using
a greedy algorithm: we repeatedly colour a largest independent set with a single colour
and then remove it from the graph. As the resulting graph is still triangle-free, we may
recursively apply the lower bound on α(G) to obtain the claimed upper bound on χ(G).
(See [10, pp. 124–125] for details.)

It follows from (4.9) that there exist constants c5, c6 > 0 such that

c5k
2 log k 6 Λ2(k) 6 c6k

2 log k.

To see this, let H be a triangle-free, k-chromatic graph on at most c6k
2 log k vertices. We

have
Λ2(k) 6 Λ2(H) 6 |V (H)| 6 c6k

2 log k.

On the other hand, given a triangle-free, k-chromatic graph H with vertices v and w
realising Λ2(H), put F = H \ (N(v) ∪N(w)). Since χ(F ) > k − 2, (4.1) and (4.9) imply
that

Λ2(H) = |V (F )| > C1(k − 2)2 log(k − 2) > c5k
2 log k,

for a suitably chosen constant c5. Since this holds for every H, we conclude that Λ2(k) >
c5k

2 log k, as claimed.
It is possible to derive asymptotic bounds on Λr(k) for fixed r > 3 in a similar fashion.

However, the existing bounds on R(r + 1, t) for fixed r > 3 are too far apart to give
matching upper and lower bounds on Λr(k).

5 Open Problems

For the convenience of the reader, in this section we state precisely the open questions
mentioned at various points in the paper. The first two relate to Theorem 1.4 and its
consequences. The latter two concern generalizations of Theorem 1.5.
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Problem 5.1. For r > 2, determine the supremum of all values c such that if n is
sufficiently large, then every (r + 1)-saturated graph G on n vertices with e(G) > tn,r −
cn log2 n has a pair of twins.

Remark 5.2. Let cr be the supremum defined in Problem 5.1. Observe that Proposition 3.8
and Example 3.9 imply that 1/20 6 c2 6 1. For r > 3, Example 3.11 implies that cr 6 1.
On the other hand, following the proof of Theorem 1.4 while being a little more careful
about the calculations gives the lower bound cr > 1/r(r − 2).

The next question asks for the best possible result along the lines of Corollary 3.10.

Question 5.3. Let r > 2 and let c 6 cr. For n sufficiently large, if G is an (r + 1)-
saturated graph on n vertices with at least tn,r − cn log2 n edges, what is the smallest
number of vertices with twins that G may contain?

The proof Theorem 1.5 shows that a 3-saturated graph of order n with enough edges
must contain a complete tripartite subgraph of order n − O(

√
n), but we do not know

whether this is best possible.

Question 5.4. What is the smallest function f such that given c > 0, every 4-saturated
graph G of order n with e(G) > tn,3 − cn contains a complete tripartite graph on at
least n− f(c, n) vertices?

The final question asks whether Theorem 1.5 extends to larger values of r.

Question 5.5. Given r > 4 and c > 0, does every (r+1)-saturated graph of order n with
at least tn,r − cn edges contain a complete r-partite subgraph on (1− o(1))n vertices?
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Appendix

Proof of Theorem 2.2. Let G be as in the statement of the theorem. Because e(G) is
maximal, we may assume that no edges were added to G during Step 3 of the algorithm
described in the proof of Theorem 1.1. Let us therefore consider Step 2 of the construction.
Because we did not add any edges to G in Step 3, we may assume that the graph G′

obtained from having performed the switches in Step 2 is isomorphic to Gn,r. Now, if
G was transformed into G′ by switches, then we can transform G′ into G by a series of
inverse switches. To perform an inverse switch, we need a pair (v, w) with v ∈ Vi and
w ∈ Vj, i 6= j, such that uv, vw ∈ E(G′) and uw /∈ E(G′).

By the definition of Gn,r, we must have w ∈ V1 \ {v1} or w ∈ V2 \ {v2}. If we let
v = v2 and repeatedly choose w ∈ V1 \ {v1}, then after each inverse switch, we obtain the

graph G
(`)
n,r for some `. Similarly, if we let v = v1 and repeatedly choose w ∈ V2 \ {v2},
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then we obtain either G
(`)
n,r or (if n = kr+ 2 for some k > 2) G

′(`)
n,r for some `. This means

that throughout this process, the graph remains Kr+1-free and is not r-colourable.
Now we show that performing any other inverse switch creates a graph that does not

satisfy the hypotheses of the theorem. First, we may not join u to vertices in both V1\{v1}
and V2 \ {v2}: if, for some w1 ∈ V1 \ {v1} and w2 ∈ V2 \ {v2}, we added the edges uw1

and uw2 and removed the edges v1w2 and v2w1, then for j = 3, . . . , r, there exist vj ∈ Vj
such that {u,w1, w2, v3, . . . , vr} would induce a copy of Kr+1. Second, we may not join u
to all of V1 (respectively, to all of V2), because the resulting graph would be r-colourable:
we could give colour 2 to u and give colour 1 to v2 (respectively, to v1).

Finally, we may not have v ∈ Vj for any j > 3. Indeed, suppose that for some
w ∈ V1 \ {v1} and v ∈ V3, say, we added the edge uw and removed the edge wv. If V3
contains a vertex x besides v (as must be the case if n > 2r+ 1), then there exist vertices
vi ∈ Vi, i = 4, . . . , r, such that {u,w, v2, x, v4, . . . , vr} would induce a copy of Kr+1. If
|V3| = 1, then n 6 2r, and in particular, |V1| = |V2| = 2. In this case, the resulting graph
would be r-colourable: letting y ∈ V2 with y 6= v2, we could give colour 1 to u and y,
colour 2 to v and w, colour 3 to v1 and v2, and, for i = 4, . . . , r, colour i to all vertices
of Vi.

Hence we may assume that G can be transformed into some G
(`)
n,r or some G

′(`)
n,r (where

1 6 ` 6 s− 1) by a series of IZS’s in Step 1 of the algorithm. In what follows, we assume

that G can be transformed into G′′ ∼= G
(`)
n,r for some `; the other case is nearly identical.

Observe that because e(G) is maximal, each IZS leaves the number of edges unchanged,
meaning that at each step we symmetrize two vertices of equal degrees. Again, reversing
the procedure, G′′ can be transformed into G by a series of inverse symmetrizations: take
two twins x and y, remove x and add a new vertex x′ such that deg(x′) = deg(y), x′ 6∼ y
and N(x′) 6= N(y). Letting W = NG′′(u) ∩ V1, it is easy to see that the only twins in G′′

are pairs of vertices from W , pairs of vertices from V1 \W , pairs of vertices from V2 \{v2},
and pairs of vertices from some class Vi with i > 3. (If |V1| = |V2| = 1, then v1 and v2 are
twins, but this contradicts our assumption that n > r + 3.)

If x, y ∈ V1 \ W and x′ is a twin of some w ∈ W , then the resulting graph G is

isomorphic to G
(`+1)
n,r . Similarly, if x, y ∈ W and x′ is a twin of some w ∈ V1 \W , then

G ∼= G
(`−1)
n,r . (In this case, if ` = 2 and x′ is a twin of v2, then G is isomorphic either to

G
(2)
n,r or to G

′(2)
n,r .) Any other inverse symmetrization would create a copy of Kr+1: in all

other cases, either x′ has pairwise adjacent neighbours in all of the Vj, or x′ is adjacent
to u and to vertices in all but one of the Vj, all of which are adjacent to one another and
to u.

Thus, our extremal graph G must be either of the form G
(`)
n,r or of the form G

′(`)
n,r for

some 1 6 ` 6 s− 1. This completes the proof.
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