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Abstract

The Turán density π(F) of a family F of r-graphs is the limit as n → ∞ of
the maximum edge density of an F-free r-graph on n vertices. Erdős [Israel J.
Math 2 (1964):183–190] proved that no Turán density can lie in the open interval
(0, r!/rr). Here we show that any other open subinterval of [0, 1] avoiding Turán
densities has strictly smaller length. In particular, this implies a conjecture of
Grosu [arXiv:1403.4653, 2014].

1 Introduction

Let F be a (possibly infinite) family of r-graphs (that is, r-uniform set systems). We call
elements of F forbidden. An r-graph G is F-free if no member F ∈ F is a subgraph
of G, that is, we cannot obtain F by deleting some vertices and edges from G. The Turán
function ex(n,F) is the maximum number of edges that an F -free r-graph on n vertices
can have. This is one of the central questions of extremal combinatorics that goes back
to the fundamental paper of Turán [16]. We refer the reader to the surveys of the Turán
function by Füredi [8], Keevash [12], and Sidorenko [15].

As was observed by Katona, Nemetz, and Simonovits [11], the limit

π(F) := lim
n→∞

ex(n,F)(
n
k

)
exists. It is called the Turán density of F . Let Π

(r)
∞ consist of all possible Turán densities

of r-graph families and let Π
(r)
fin be the set of all possible Turán densities when finitely
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many r-graphs are forbidden. It is convenient to allow empty forbidden families, so that
1 is also a Turán density. Clearly, Π

(r)
fin ⊆ Π

(r)
∞ . A result of Brown and Simonovits [3,

Theorem 1] implies that the topological closure cl(Π
(r)
fin ) of Π

(r)
fin contains Π

(r)
∞ while the

converse inclusion was established in [14, Proposition 1]; thus

Π(r)
∞ = cl(Π

(r)
fin ), for every integer r > 2. (1)

For r = 2, the celebrated Erdős-Stone-Simonovits Theorem [5, 6] determines the Turán
density for every family F . In particular, we have

Π
(2)
fin = Π(2)

∞ =

{
m− 1

m
: m = 1, 2, 3, . . . ,∞

}
. (2)

Unfortunately, the Turán function for hypergraphs (that is, r-graphs with r > 3) is
much more difficult to analyse and many problems (even rather basic ones) are wide open.

Fix some r > 2. A gap is an open interval (a, b) ⊆ (0, 1) that is disjoint from Π
(r)
∞

(which, by (1), is equivalent to being disjoint from Π
(r)
fin ). Here we consider gr, the maximal

possible length of a gap. In other words, gr is the maximal g such that there is a real a
with (a, a + g) ⊆ (0, 1) \Π(r)

∞ . For example, (2) implies that g2 = 1/2. Erdős [4] proved
that (0, r!/rr) is a gap; in particular, gr > r!/rr. Here we show that this is equality and
every other gap has strictly smaller length.

Theorem 1. For every r > 3, we have that gr = r!/rr and, furthermore, (0, r!/rr) is the
only gap of length r!/rr for r-graphs.

In particular we obtain the following result that was conjectured by Grosu [9, Conjec-
ture 10].

Corollary 2. The union of r-graph Turán densities over all r > 2 is dense in [0, 1], that

is, cl(∪∞r=2Π
(r)
∞ ) = [0, 1].

The question whether the set Π
(r)
∞ is a well-ordered subset of ([0, 1],6) for r > 3

was a famous $1000 problem of Erdős that was answered in the negative by Frankl and
Rödl [7]. Despite a number of results that followed [7], very little is known about other

gaps in Π
(r)
∞ for r > 3. For example, let g′r be the second largest gap length, that is,

the maximum g > 0 such that (a, a + g) ⊆ (r!/rr, 1) \ Π(r)
∞ for some a. The computer-

generated proof of Baber and Talbot [2] implies that g′3 > 0.0017. Klas Markström and
Fei Song [13] conjectured that (2/7, 8/27) is the (unique) second largest gap for 3-graphs
(and, in particular, g′3 = 2/189). However, not for a single r > 4 is it known, for example,

whether g′r is zero (i.e. whether Π
(r)
∞ is dense in [r!/rr, 1]).

This paper is organised as follows. In Section 2 we give some definitions and auxiliary
results. Theorem 1 is proved in Section 3. We give another proof of Corollary 2 in Sec-
tion 4. Although the latter proof is not strong enough to prove Theorem 1, its advantage
is that it produces explicit elements of Π

(r)
fin (as opposed to the implicit values of certain

maximisation problems returned by the proof in Section 3). So we include both proofs
here, even though the second one is longer.
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2 Preliminaries

For n ∈ N, define [n] := {1, . . . , n}. For reals a 6 b, let (a, b) and [a, b] be respectively the
open and closed interval of reals with endpoints a and b. The standard (m−1)-dimensional
simplex is

Sm := {x ∈ Rm : x1 + · · ·+ xm = 1, ∀ i ∈ [m] xi > 0}.

An r-pattern is a collection P of r-multisets on [m], for some m ∈ N. (By an r-multiset
we mean an unordered collection of r elements with repetitions allowed.) Let V1, . . . , Vm
be disjoint sets and let V = V1 ∪ · · · ∪ Vm. The profile of an r-set X ⊆ V (with respect
to V1, . . . , Vm) is the r-multiset on [m] that contains i ∈ [m] with multiplicity |X ∩ Vi|.
For an r-multiset Y on [m], let Y ((V1, . . . , Vm)) consist of all r-subsets of V whose profile
is Y . We call this r-graph the blow-up of Y (with respect to V1, . . . , Vm) and the r-graph

P ((V1, . . . , Vm)) :=
⋃
Y ∈P

Y ((V1, . . . , Vm))

is called the blow-up of P . Let the Lagrange polynomial of P be

λP (x1, . . . , xm) := r!
∑
D∈P

m∏
i=1

x
D(i)
i

D(i)!
∈ R[x1, . . . , xm],

where D(i) denotes the multiplicity of i in D. This definition is motivated by the fact
that, for every partition [n] = V1 ∪ · · · ∪ Vm, we have that

|P ((V1, . . . , Vm))| = λP

(
|V1|
n
, . . . ,

|Vm|
n

)
×
(
n

r

)
+O(nr−1), as n→∞.

For example, if r = 3, m = 3, and P consists of multisets {1, 1, 2} and {1, 2, 3}, then
P ((V1, . . . , Vm)) contains all triples that have two vertices in V1 and one vertex in V2 plus
all triples with exactly one vertex in each part; here λP (x1, x2, x3) = 3x2

1x2 + 6x1x2x3.
Let the Lagrangian of P be ΛP := max{λP (x) : x ∈ Sm}, the maximum value of

the polynomial λP on the compact set Sm. One obvious connection of this parameter to
r-graph Turán densities is that, if each blow-up of P is F -free, then π(F) > ΛP . Also, it
is not hard to show that ΛP = π(F), where F consists of all r-graphs F such that every

blow-up of P is F -free; thus ΛP ∈ Π(r)
∞ . As shown in [14, Theorem 3], we have in fact

that
ΛP ∈ Π(r)

fin , for every r-pattern P . (3)

We will use the special case of Muirhead’s inequality (see e.g. [10, Theorem 45]) which
states that, for any 0 6 i < j 6 k, we have

xk+iyk−i + xk−iyk+i 6 xk+jyk−j + xk−jyk+j, for x, y > 0. (4)
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3 Proof of Theorem 1

Let r > 3. Fix a sufficiently large integer m = m(r) so that r!
(
m
r

)
/mr > 1 − r!/rr.

Consider r-graphs G0, . . . , G(m
r ) on [m] such that G0 has no edges and, for i = 1, . . . ,

(
m
r

)
,

the r-graph Gi is obtained from Gi−1 by adding a new edge. In other words, we enumerate
all r-subsets of [m] as R1, . . . , R(m

r ) and let Gi := {R1, . . . , Ri}. Let

λi(x) := λGi
(x) = r!

∑
D∈Gi

∏
j∈D

xj,

be the Lagrange polynomial of Gi and Λi := ΛGi
be its Lagrangian, where we view Gi as

an r-pattern. Since Gi−1 ⊆ Gi, we have that Λi−1 6 Λi.
We claim that for every i ∈ [

(
m
r

)
]

Λi − Λi−1 6 r!/rr. (5)

Indeed, pick x ∈ Sm with Λi = λi(x). Let Ri = {u1, . . . , ur}. When we remove the
term r!xu1 . . . xur from λi(x), we get the evaluation of λi−1 on x ∈ Sm. By definition,
Λi−1 > λi−1(x). Also, since xu1 + · · · + xur 6 1, we have xu1 . . . xur 6 r−r by the
Geometric-Arithmetic Mean Inequality. Thus we obtain the stated bound:

Λi = λi(x) = λi−1(x) + r!xu1 . . . xur 6 Λi−1 + r!/rr.

Also, we have Λ(m
r ) > λ(m

r )( 1
m
, . . . , 1

m
) = r!

(
m
r

)
/mr > 1−r!/rr. This and (3) imply that

gr 6 r!/rr (while the above-mentioned result of Erdős [4] gives the converse inequality).
Also, if we have equality in (5), then necessarily xu1 = · · · = xur = 1/r, each other xj is
zero, and Λi−1 = λi−1(x) = 0, implying the uniqueness part of Theorem 1.

4 Alternative proof of Corollary 2

For integers r, s > 2, let Pr,s consist of ordered s-tuples (r1, . . . , rs) of non-negative integers
such that r1 > . . . > rs and r1 + · · ·+rs = r. This set admits a partial order, where x < y
if
∑k

i=1 xi >
∑k

i=1 yi for every k ∈ [s− 1]. For example, the (unique) maximal element is
(r, 0, . . . , 0) and the (unique) minimal element is (dr/se, . . . , br/sc).

Let A ⊆ Pr,s. The set A is called down-closed if y ∈ A whenever x ∈ A and
x < y. Let GA consist of all r-multisets X on [s] such that the multiplicities of X satisfy
〈X(1), . . . , X(s)〉 ∈ A, where 〈x〉 denotes the non-increasing ordering of a vector x. Also,
we use the shorthand λA := λGA

and ΛA := ΛGA
.

Lemma 3. Let r, s > 2. If A ⊆ Pr,s is down-closed, then ΛA = λA(1
s
, . . . , 1

s
).

Proof. We use induction on s.
First, we prove the base case s = 2. Let k := r/2. For h > 0, let Ih consist of all

integer translates of k whose absolute value is at most h, that is, Ih := (Z + k) ∩ [−h, h].
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Also, let I+
h := Ih ∩ [0, h]. (These definitions will allow us to deal with the cases of even

and odd r uniformly.) For example, Pr,2 = {(k + i, k − i) : i ∈ I+
k }.

Take a down-closed set A ⊆ Pr,2. It consists of pairs (k + i, k − i) with i ∈ I+
h for

some h 6 k. Then GA consists of all 2k-multisets on {1, 2} that contain 1 with multiplicity
k + i for i ∈ Ih. By the homogeneity of the polynomials involved, the required inequality
can be rewritten as∑

i∈Ih

(
2k

k + i

)(
x+ y

2

)2k

−
∑
i∈Ih

(
2k

k + i

)
xk+iyk−i > 0, for x, y > 0. (6)

We will apply the so-called bunching method where we try to write the desired in-
equality as a positive linear combination of Muirhead’s inequalities (4). If j ∈ Ih, then
the coefficient in front of xk+jyk−j in (6) is

2−2k

(
2k

k + j

)∑
i∈Ih

(
2k

k + i

)
−
(

2k

k + j

)
6 0.

If j ∈ Ik \ Ih, then the coefficient is 2−2k
(

2k
k+j

)∑
i∈Ih

(
2k
k+i

)
> 0. Thus, if we group the

left-hand side of (6) into terms xk+jyk−j + xk−jyk+j, then we get non-positive coefficients
for 0 6 j 6 h followed by non-negative coefficients for j > h. Also, the total sum of
coefficients is zero because (6) becomes equality for x = y = 1. Thus we can “bunch”
Ih-terms with (Ik \ Ih)-terms and use (4) to derive the desired inequality (6). This proves
the case s = 2.

Now, let s > 3 and suppose that we have proved the lemma for s− 1 (and all r). The
function λA is a continuous function on the compact set Ss. Let it attain its maximum on
some x ∈ Ss. If there is more than one choice, then choose x so that ∆ :=

∑
i 6=j |xi−xj| is

minimised. Suppose that ∆ 6= 0, say x1 6= x2. Note that λA is a homogeneous polynomial
of degree r, and the coefficient at xr11 . . . xrss is

(
r

r1,...,rs

)
if the ordering 〈r〉 of r is in A and

0 otherwise.
Fix j ∈ {0, . . . , r}. If we collect all terms in front of xjs, we get

∑
〈r,j〉∈A

r1+···+rs−1=r−j

(
r

r1, . . . , rs−1, j

) s−1∏
i=1

xrii =

(
r

j

)
λA\j(x1, . . . , xs−1),

where 〈y, j〉 is obtained from y by appending j and ordering the obtained sequence, while
A \ j consists of those y ∈ Pr−j,s−1 such that 〈y, j〉 ∈ A.

Let us show that A \ j ⊆ Pr−j,s−1 is down-closed. Take arbitrary z ∈ A \ j and y 4 z.
We have to show that y ∈ A \ j. Since A 3 〈z, j〉 is down-closed, it is enough to show
that 〈z, j〉 < 〈y, j〉. We have to compare the sums of the first i terms of 〈z, j〉 and of
〈y, j〉 for each i ∈ [s− 1]. A problem could arise only if the new entry j was included into
these terms for 〈y, j〉, say as the term number h 6 i, but not for 〈z, j〉. Since z < y, we
have that

∑h−1
f=1 zf >

∑h−1
f=1 yf (and these are also the initial sums for 〈z, j〉 and 〈y, j〉).
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Furthermore, each of the subsequent i− (h− 1) entries is at least j for 〈z, j〉 and at most
j for 〈y, j〉. It follows that 〈z, j〉 < 〈y, j〉. Thus A \ j is down-closed, as claimed.

By the induction assumption (and since λA\j is a homogeneous polynomial), we have
that λA\j(x1, . . . , xs−1) 6 λA\j(

1−xs

s−1
, . . . , 1−xs

s−1
). Thus

ΛA = λA(x) =
r∑

j=0

(
r

j

)
λA\j(x1, . . . , xs−1)xjs 6 λA

(
1− xs
s− 1

, . . . ,
1− xs
s− 1

, xs

)
.

Clearly, the sum
∑s−1

i=1 |xs − xi| does not increase if we replace each of x1, . . . , xs−1 by
their arithmetic mean (1 − xs)/(s − 1). Since x1 6= x2, we have found another optimal
element of Ss with strictly smaller ∆, a contradiction. The lemma is proved.

Fix some enumeration Pr,r = {R1, . . . , Rt} such that if Ri < Rj then i > j. For
j ∈ {0, . . . , t}, let Aj := {Ri : i ∈ [j]}. Thus, for example, A0 = ∅ and At = Pr,r. By (3),

Π
(r)
fin contains all of the following numbers:

0 = ΛA0 6 ΛA1 6 · · · 6 ΛAt = 1.

Let us show that max{ΛAi
− ΛAi−1

: i ∈ [t]} = o(1) as r → ∞. By definition, each
Aj ⊆ Pr,r is down-closed. Thus, by Lemma 3 the difference ΛAi

−ΛAi−1
is the probability

that, when r balls are uniformly and independently distributed into r cells, the ordered ball
distribution is given by Ri. Expose the first r−m balls, where, for example, m := blog rc.
Let k be the number of empty cells. Its expected value is r(1− 1/r)r−m = (e−1 + o(1)) r.
By Azuma’s inequality (see e.g. [1, Theorem 7.2.1]), we have whp (i.e. with probability
1 − o(1) as r → ∞) that k is in I := [r/4, 3r/4]. Assume that k ∈ I and expose
the remaining m balls. Let J be the number of balls that land inside the k cells that
were empty after the first round. The probability that J = j for any particular integer
j ∈ [m/8, 7m/8] is(

m

j

) (
k

r

)j (
r − k
r

)m−j

= (1 + o(1))

√
m

2πj(m− j)

(
mk

jr

)j (
m(r − k)

(m− j)r

)m−j

6 (1 + o(1))

√
m

2πj(m− j)
= o(1),

where we used Stirling’s formula and the Arithmetic-Geometric Mean Inequality. On
the other hand, we have whp that m/8 6 J 6 7m/8 (by Azuma’s inequality and our
assumption k ∈ I) and that the last m balls all go into different cells (since m2 = o(r)).
Once the first r − m balls are exposed and we condition on the event that the last m
balls all land into distinct cells, there is at most one value of J for which the final ball
distribution is Ri. Thus the probability of getting Ri is o(1) uniformly in i, as desired.
This finishes the second proof of Corollary 2.
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