# Digraph representations of 2-closed permutation groups with a normal regular cyclic subgroup 

Jing Xu*<br>Department of Mathematics<br>Capital Normal University<br>Beijing 100048, China<br>xujing@cnu.edu.cn

Submitted: Mar 30, 2015; Accepted: Nov 13, 2015; Published: Nov 27, 2015
Mathematics Subject Classifications: 05C25, 20B25


#### Abstract

In this paper, we classify 2 -closed (in Wielandt's sense) permutation groups which contain a normal regular cyclic subgroup and prove that for each such group $G$, there exists a circulant $\Gamma$ such that $\operatorname{Aut}(\Gamma)=G$.


## 1 Introduction

In 1969, Wielandt [15] introduced the concept of the 2 -closure of a permutation group. Let $G$ be a finite permutation group on a set $\Omega$, the 2 -closure $G^{(2)}$ of $G$ on $\Omega$ is the largest subgroup of $\operatorname{Sym}(\Omega)$ containing $G$ that has the same orbits as $G$ in the induced action on $\Omega \times \Omega$, and we say $G$ is 2 -closed if $G=G^{(2)}$. It seems impossible to classify all 2-closed transitive permutation groups. However, certain classes of 2-closed transitive groups have been determined. For example, in $[16,17]$ the author determined all 2-closed odd-order transitive permutation groups of degree $p q$ where $p, q$ are distinct odd primes. In this paper, one of our main purposes is to classify all 2-closed permutation groups with a normal regular cyclic subgroup, see Theorem 1.2. Recall that a permutation group is regular if it is transitive and the only element that fixes a point is the identity. And for more information about the 2 -closures of permutation groups containing a cyclic regular subgroup, see also [7].

Another research topic of this paper is the study of the automorphism groups of (di)graphs. The full automorphism group of a (di)graph $\Gamma$ must be 2-closed since any permutation of the vertex set that preserves the orbits of $\operatorname{Aut}(\Gamma)$ on ordered pairs preserves adjacency. However, not every 2 -closed permutation group is the full automorphism group

[^0]of some (di)graph. Therefore, the concept of 2-closed groups is more general than the concept of the full automorphism groups of (di)graphs, and the classification of 2-closed groups is closely related to the study of the full automorphism groups of the corresponding digraphs. In this paper, in order to determine 2-closed groups that contain a normal regular cyclic subgroup, we also study circulant digraphs, that is Cayley digraphs of cyclic groups. See Section 2 for a more detailed explanation.

Furthermore, we discuss the following representation problem. A digraph $\Gamma$ with vertex set $\Omega$ is said to represent a permutation group $G \leqslant \operatorname{Sym}(\Omega)$ if $\operatorname{Aut}(\Gamma)=G$. In this case, we also say that the permutation group $G$ has a digraph representation $\Gamma$.

Digraph representation problem: given a 2 -closed $\operatorname{group} G$, is there a digraph $\Gamma$ that represents $G$ ?

Suppose the digraph $\Gamma$ represents a 2 -closed group $G \leqslant \operatorname{Sym}(\Omega)$. Then for any $g \in$ $\operatorname{Sym}(\Omega)$, to determine whether $g$ lies in $G$ we only need to test if $g$ preserves the single 2 -relation given by the arc set of $\Gamma$, instead of checking all $G$-invariant 2-relations. We say a digraph $\Gamma$ is arc-transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the arc set of $\Gamma$. This means, the arc set of $\Gamma$ is actually a minimal $\operatorname{Aut}(\Gamma)$-invariant 2-relation. Suppose further that the 2-closed group $G$ can be represented by an arc-transitive digraph $\Gamma$. Then a permutation $g$ lies in $G$ if and only if $g$ leaves invariant the minimal $G$-invariant 2 -relation given by the arc set of $\Gamma$. We will show that there are arc-transitive digraph representations for most 2-closed groups that contain a normal regular cyclic subgroup, see the remark after Lemma 3.12.

Replacing digraph with graph, we obtain the graph representation problem which asks for an undirected graph to represent a 2 -closed group. These two questions have previously appeared in the literature, see for example [1, 4]. Clearly, the graph version problem is much more complicated than the digraph one. Since we are interested in understanding the concept of 2-closed groups, we concentrate on the digraph representation problem in this paper.

A regular permutation group is 2-closed, and in 1980, Babai [2] proved that with five exceptions, every finite regular permutation group occurs as the automorphism group of a digraph. This is the famous DRR (digraphical regular representations) problem [2]. It is proved in [14] that for any prime power $q$, the semilinear group $\Gamma \mathrm{L}(1, q)$ can be represented by an arc-transitive circulant digraph. Moreover, it is shown in $[16,17]$ that every 2 closed odd-order transitive permutation group of degree $p q$ has a tournament digraph representation. As for graphical representation problem, see for example [3, 6, 8, 9, 10, 13].

In this paper, we will prove that every 2 -closed permutation group $G$ with a normal regular cyclic subgroup is the full automorphism group of a circulant digraph. We may suppose that $G=Z_{n} \rtimes G_{0}$ acting on $Z_{n}$ naturally where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$. We first describe the necessary and sufficient condition for $G_{0}$ such that $G$ is 2-closed. For the detailed explanation of notation, see Section 2 and Section 3.3.1.

Conditions 1.1. Let $n=2^{d_{1}} p_{2}^{d_{2}} \cdots p_{t}^{d_{t}}, \quad d_{1} \geqslant 0, d_{2}, \ldots, d_{t} \geqslant 1, t \geqslant 1$ where $p_{2}, \ldots, p_{t}$ are distinct odd primes (also write $p_{1}=2$ ). And let $\operatorname{Aut}\left(Z_{n}\right)=\operatorname{Aut}\left(Z_{2^{d_{1}}}\right) \times \cdots \times \operatorname{Aut}\left(Z_{p_{t}^{d_{t}}}\right)=$ $D_{1} D_{2} \cdots D_{t}$, where $D_{i}$ is the direct factor subgroup of $\operatorname{Aut}\left(Z_{n}\right)$ that fixes each component
of the elements of $Z_{n}$ except for the $i$-th component. So $D_{i} \cong \operatorname{Aut}\left(Z_{p_{i}{ }_{i}}\right)$ for each $i$. In fact $D_{i}$ induces a faithful action on the subgroup $Z_{p_{i}^{d_{i}}}$. Note that the induced action $D_{1}$ on the subgroup $Z_{2^{d_{1}}}$ is permutation isomorphic to $\left\langle(-1)^{*}\right\rangle \times\left\langle 5^{*}\right\rangle\left(d_{1} \geqslant 3\right)$, the multiplicative group of units of the ring $\mathbb{Z}_{2^{d_{1}}}$ acting on the additive group $\mathbb{Z}_{2^{d_{1}}}$, let $\phi:\left\langle(-1)^{*}\right\rangle \times\left\langle(5)^{*}\right\rangle \rightarrow D_{1}$ be the corresponding group isomorphism.

Let $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$.
(i) if $i \geqslant 2, d_{i}=1$ and $p_{i} \geqslant 5$, then $D_{i} \nless G_{0}$.
(ii) if $i \geqslant 2$ and $d_{i} \geqslant 2$, then $D_{i} \cap G_{0} \leqslant Z_{p_{i}-1}$.
(iii) if $d_{1}=3$, then $D_{1} \nless G_{0}$.
(iv) if $d_{1} \geqslant 4$, then either $\left|D_{1} \cap G_{0}\right| \leqslant 2$ or $\left|D_{1} \cap G_{0}\right|=4$ and $D_{1} \cap G_{0} \nless\left\langle\phi\left(5^{*}\right)\right\rangle$.

The main result of this paper is the following theorem.
Theorem 1.2. Suppose $G=Z_{n} \rtimes G_{0}$ acting on $Z_{n}$ naturally where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$. Then $G$ is 2-closed if and only if $G_{0}$ satisfies Conditions 1.1. Moreover, if $G$ is 2-closed then $G$ can be represented by a circulant digraph.

## 2 Preliminary results and notation

First we introduce some concepts and notation concerning Cayley digraphs. Given a finite group $H$, and a subset $S \subset H \backslash\{1\}$, the Cayley digraph $\Gamma=\operatorname{Cay}(H, S)$ with respect to $S$ is defined as the directed graph with vertex set $H$ and $\operatorname{arc} \operatorname{set} A \Gamma=\{(g, s g) \mid g \in H, s \in S\}$. Moreover, a Cayley digraph of a cyclic group is called a circulant. It is easy to check that the right regular representation $\hat{H}$ is contained in $\operatorname{Aut}(\Gamma)$. In fact, a digraph is a Cayley digraph if and only if its automorphism group contains a regular subgroup. Moreover let $\operatorname{Aut}(H, S)=\left\{\sigma \in \operatorname{Aut}(H) \mid S^{\sigma}=S\right\}$, then each element in $\operatorname{Aut}(H, S)$ induces an automorphism of the Cayley digraph $\Gamma=\operatorname{Cay}(H, S)$. It is proved in [10] that the normalizer of $\hat{H}$ in $\operatorname{Aut}(\Gamma)$ is $\hat{H} \rtimes \operatorname{Aut}(H, S)$. We say a Cayley digraph $\Gamma=\operatorname{Cay}(H, S)$ is normal if $\hat{H}$ is normal in $\operatorname{Aut}(\Gamma)$, that is, $\operatorname{Aut}(\Gamma)=\hat{H} \rtimes \operatorname{Aut}(H, S)$, see [10, 18]. So the automorphism group of a normal circulant must be a 2 -closed group that contains a normal regular cyclic group. Conversely, we will show that each such 2-closed group is the automorphism group of some normal circulant.

Throughout the rest of this paper, let $Z_{n}$ be an abstract cyclic group of order $n$ and let $G \leqslant \operatorname{Sym}\left(Z_{n}\right)$ be a transitive permutation group which contains a normal regular cyclic group $\hat{Z}_{n}$ where

$$
\begin{equation*}
\hat{Z}_{n}=\left\{\hat{g}: x \rightarrow x g \forall x \in Z_{n} \mid g \in Z_{n}\right\} . \tag{1}
\end{equation*}
$$

Therefore $G$ is a semidirect product $\hat{Z}_{n} \rtimes G_{0}$ for some subgroup $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$ acting naturally on $Z_{n}$. Since $\hat{Z}_{n} \cong Z_{n}$, we may also write $G=Z_{n} \rtimes G_{0}$ directly. Our goal is to determine all such 2-closed groups.

The mail tool used in this paper is the Kovács-Li classification of arc-transitive circulants [11, 12]. Praeger and the author [14] refined the Kovács-Li classification and obtained the following theorem.

Theorem 2.1. [14, Theorem 1.1] Let $G=Z_{n} \rtimes G_{0} \leqslant Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$ acting naturally on $Z_{n}$. Then, up to isomorphism, there is a unique connected $Z_{n}$-circulant $\Gamma$ on which $G$ acts arc-transitively. Moreover either $\operatorname{Aut}(\Gamma)=G$ or one of the following holds.
(a) $n=p \geqslant 5$ is prime, $\Gamma=K_{p}$, and $G=\operatorname{AGL}(1, p)$;
(b) $n=b m>4$, where $b \geqslant 2$, $p$ divides $m$ for each prime $p$ dividing $b, \Gamma=\Sigma\left[\bar{K}_{b}\right]$;
(c) $n=p m$, where $p$ is prime, $5 \leqslant p<n$, and $\operatorname{gcd}(m, p)=1, \Gamma=\Sigma\left[\bar{K}_{p}\right]-p \cdot \Sigma$, $G_{0}=\operatorname{Aut}\left(Z_{p}\right) \times H \leqslant \operatorname{Aut}\left(Z_{p}\right) \times \operatorname{Aut}\left(Z_{m}\right)$, and $\Sigma$ is a connected $\left(Z_{m} \rtimes H\right)$-arctransitive $Z_{m}$-circulant.

We point out that up to isomorphism, in the above theorem $\Gamma$ can be defined as $\operatorname{Cay}\left(Z_{n}, z^{G_{0}}\right)$ where $z$ is a generator of $Z_{n}$ and $z^{G_{0}}$ is the orbit of $z$ under $G_{0}$. Moreover, if case (b) happens, then the group $Z_{n}$ has a subgroup $Y$ of order $b$, and $\Gamma=\operatorname{Cay}\left(Z_{n}, S\right)$ where $S$ is a union of $Y$-cosets each consisting of generators for $Z$.

As a simple application of Theorem 2.1, we determine the 2 -closed transitive permutation groups of degree $p$ where $p$ is a prime.

Corollary 2.2. Let $p$ be a prime. Let $G \leqslant \operatorname{Sym}(\Omega)$ be a 2-closed transitive permutation group of degree $p$. Then there exists a digraph representing $G$. Moreover, $G$ is one of the following.

1. The symmetric group $S_{p}(p \geqslant 2)$ which is 2-transitive on $\Omega$.
2. An affine subgroup $Z_{p} \rtimes Z_{k}$ where $p \geqslant 3,1 \leqslant k<(p-1)$ and $k \mid(p-1)$.

Conversely, each group of the above two types is 2-closed.
Proof. Suppose $G$ is a 2-closed transitive permutation group of degree $p$. By a classical result of Burnside, $G$ is either 2-transitive or is affine. If $G$ is 2-transitive, then $G=G^{(2)}=$ $S_{p}$ and $p \geqslant 2$. If $G$ is not 2 -transitive, then $G=Z_{p} \rtimes Z_{k}$ where $p \geqslant 3,1 \leqslant k<(p-1)$ and $k \mid(p-1)$.

For the converse, note that $S_{p}$ is the full automorphism group of the complete graph $K_{p}$ and so $S_{p}$ is indeed 2-closed. Next, let $G=Z_{p} \rtimes Z_{k}$ where $p \geqslant 3,1 \leqslant k<(p-1)$ and $k \mid(p-1)$. By Theorem 2.1, there is a connected arc-transitive circulant $\Gamma$ of order $p$ such that $\operatorname{Aut}(\Gamma)=G$, and so $G$ is 2 -closed.

Remark: If $p=2,3$ then $S_{p}=Z_{p} \rtimes \operatorname{Aut}\left(Z_{p}\right)$ is 2-closed; and if $p \geqslant 5$ then $Z_{p} \rtimes \operatorname{Aut}\left(Z_{p}\right)$ is not 2-closed.

We also need the following theorem.
Theorem 2.3. [5, Theorem 5.1] Let $G_{1} \leqslant \operatorname{Sym}\left(\Omega_{1}\right)$ and $G_{2} \leqslant \operatorname{Sym}\left(\Omega_{2}\right)$ be transitive permutation groups. Consider the natural product action of $G_{1} \times G_{2}$ on $\Omega_{1} \times \Omega_{2}$. Then $\left(G_{1} \times G_{2}\right)^{(2)}=G_{1}^{(2)} \times G_{2}^{(2)}$.

Finally, we fix the following notation. Let $A \leqslant \operatorname{Sym}(\Omega)$. Suppose that $A_{B}$ is the setwise stabilizer of $B \subseteq \Omega$ and $g \in A_{B}$, we denote $A_{B}^{B}$ to be the induced permutation group on $B$ by $A_{B}$ and denote $g^{B}$ to be the induced permutation on $B$ by $g$.

## 3 2-closed groups containing a normal regular cyclic group

In this section we classify 2 -closed groups $G$ that contain a normal regular cyclic group $Z_{n}$. With notation in Section 2, we may suppose that $G=Z_{n} \rtimes G_{0} \leqslant Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$ acting naturally on $Z_{n}$. We first handle the special case that $n$ is a prime power in Subsection 3.1 and Subsection 3.2. The notation needed for the statement of Theorem 1.2 is given in Subsection 3.3.1 and the proof is given in Subsection 3.3.2.

### 3.1 The case $\boldsymbol{n}=\boldsymbol{p}^{d}$ with $\boldsymbol{p}$ an odd prime

Let $n=p^{d}$ where $p$ is an odd prime and $d \geqslant 2$ is an integer. Then $\operatorname{Aut}\left(Z_{n}\right)=Z_{(p-1)} \times Z_{p^{d-1}}$ is a cyclic group. We take $\alpha \in \operatorname{Aut}\left(Z_{n}\right)$ such that $o(\alpha)=p$, then there exists $\gamma \in \operatorname{Aut}\left(Z_{n}\right)$ with order $p^{d-1}$ such that $\alpha=\gamma^{p^{d-2}}$. We first look at the action of $\alpha$ on $Z_{n}$.

Let $H=Z_{p^{d-1}}$ be the unique subgroup of $Z_{n}$ of order $p^{d-1}$. Let $N=Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$. Then the cosets of $H$ form a block system $\mathcal{B}$ of $N$ on $Z_{n}$. Denote $\mathcal{B}=\left\{B_{1}=H, B_{2}, \ldots, B_{p}\right\}$. Since the elements in $B_{2}, \ldots, B_{p}$ are of order $p^{d}$, $\gamma$ fixes each block setwise and $\gamma^{B_{i}}$ is a $p^{d-1}$-cycle for each $i \geqslant 2$. However, $\gamma$ fixes the point $1 \in H=B_{1}$, so the order of $\gamma^{B_{1}}$ is strictly less than $p^{d-1}$. It then follows that $\alpha$ fixes $B_{1}$ pointwise and is fixed point free on each $B_{i}$ for $i \geqslant 2$.

On the other hand, let $N_{B_{i}}^{B_{i}}$ be the induced permutation group of the setwise stabilizer $N_{B_{i}}$ on $B_{i}$. Then $N_{B_{i}}^{B_{i}}=\hat{Z}_{p^{d-1}} \rtimes K_{i}$ and $K_{i} \cong \operatorname{Aut}\left(Z_{p^{d-1}}\right),\left(\hat{Z}_{p^{d-1}}\right.$ is defined in equation (1)). For each $i \geqslant 2$, since $\gamma^{B_{i}}$ is fixed point free, we have that $\gamma^{B_{i}}=\hat{y}_{i}^{B_{i}} \tau$ where $1 \neq y_{i} \in$ $H \leqslant Z_{n}$ and $\tau \in K_{i}$. Since $\tau$ normalizes $\hat{Z}_{p^{d-1}},\left(\gamma^{B_{i}}\right)^{2}=\hat{y}_{i}^{B_{i}}\left(\tau \hat{y}_{i}^{B_{i}} \tau^{-1}\right) \tau \tau=a_{i 2} \tau^{2}$ where $a_{i 2}$ is some element in $\hat{Z}_{p^{d-1}}$. By induction, we have that for each $k \geqslant 1$, $\left(\gamma^{B_{i}}\right)^{k}=a_{i k} \tau^{k}$ where $a_{i k}$ is some element in $\hat{Z}_{p^{d-1}}$. Since $\gamma^{B_{i}}$ is of order $p^{d-1}$ and $\hat{Z}_{p^{d-1}} \cap K_{i}=\{1\}$, we have that $\tau^{p^{d-1}}=1$. Since $\tau \in \operatorname{Aut}\left(Z_{p^{d-1}}\right)=Z_{p-1} \times Z_{p^{d-2}}, \tau^{p^{d-2}}=1$. Recall that $\alpha=\gamma^{p^{d-2}}$, it then follows that $\alpha^{B_{i}}$ is $\hat{x}_{i}^{B_{i}}$ for some $x_{i} \in Z_{n}$ with order $p$. Note that $x_{i}$ may not equal $x_{j}$ for $2 \leqslant i<j \leqslant p$, but they are all of order $p$. We have proved the following lemma.

Lemma 3.1. Let $\alpha \in \operatorname{Aut}\left(Z_{p^{d}}\right)$ with order $p$. Let $\mathcal{B}=\left\{B_{1}=H, B_{2}, \ldots, B_{p}\right\}$ be the cosets of the subgroup $H$ where $H<Z_{p^{d}}$ is of order $p^{d-1}$. Then $\alpha$ fixes $B_{1}=H$ pointwise and for each $i \geqslant 2$, $\alpha^{B_{i}}$ is $\hat{x}_{i}^{B_{i}}$ for some $x_{i} \in Z_{n}$ with order $p$.

Corollary 3.2. Let $n=p^{d}$ and $Z_{n}=\langle z\rangle$. Let $Z_{p} \leqslant Z_{n}$ be the subgroup of order $p$. Suppose that $G=Z_{n} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$. Then the coset $z Z_{p} \subseteq z^{G_{0}}$ if and only if $p\left|\left|G_{0}\right|\right.$.

Remark: Let $S=z^{G_{0}}$ and $\Gamma=\operatorname{Cay}\left(Z_{n}, S\right)$. If case (b) of Theorem 2.1 occurs for $\Gamma$, then $z Z_{p} \subseteq z^{G_{0}}$. That is why we consider this corollary.

Proof. Let $\operatorname{Aut}\left(Z_{p^{d}}\right)=\langle\mu\rangle \times\langle\gamma\rangle=Z_{p-1} \times Z_{p^{d-1}}$ and $\alpha=\gamma^{p^{d-2}}$. Then $p \| G_{0} \mid$ if and only if $\alpha \in G_{0}$.

Let $\mathcal{B}=\left\{B_{1}=H, B_{2}, \ldots, B_{p}\right\}$ be the cosets of the subgroup $H$ where $H<Z_{p^{d}}$ is of order $p^{d-1}$. Then it is easy to show that $\mu$ fixes $B_{1}$ setwise, and permutes $B_{2}, \ldots, B_{p}$ as a ( $p-1$ )-cycle.

By Lemma 3.1, if $\alpha \in G_{0}$ then $z Z_{p} \subseteq z^{G_{0}}$. Conversely, suppose that $z Z_{p} \subseteq z^{G_{0}}$. Note that the generator $z \in B_{k}$ for some $k \geqslant 2$ and $z Z_{p} \subseteq B_{k}$. By the action of $\mu$ and $\gamma$, we conclude that $\alpha \in G_{0}$.

Proposition 3.3. Let $n=p^{d}$ where $p$ is an odd prime and $d \geqslant 2$. Let $G=Z_{n} \rtimes G_{0} \leqslant$ $Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$ acting naturally on $Z_{n}$. Then $G$ is 2-closed if and only if $G_{0} \leqslant Z_{p-1}$. Moreover, if $G$ is 2-closed then $G$ can be represented by an arc-transitive circulant.

Proof. As defined at the beginning of Subsection 3.1, let $\alpha \in \operatorname{Aut}\left(Z_{p^{d}}\right)$ be an element of order $p$. Let $\mathcal{B}=\left\{B_{1}=H, B_{2}, \ldots, B_{p}\right\}$ be the cosets of the subgroup $H$ where $H<Z_{p^{d}}$ is of order $p^{d-1}$.

Suppose first that $G_{0} \nless Z_{p-1}$, that is $p \| G_{0} \mid$, then $\alpha \in G_{0}$. By Lemma 3.1, $\alpha$ fixes $B_{1}=H$ pointwise and for each $i \geqslant 2, \alpha^{B_{i}}$ is $\hat{x}_{i}^{B_{i}}$ for some $x_{i} \in Z_{n}$ with order $p$.

Let $1 \neq \beta \in \operatorname{Sym}\left(Z_{n}\right)$ such that $\beta$ fixes every element of $B_{1}, \ldots, B_{p-1}$ and $\beta^{B_{p}}=\alpha^{B_{p}}$. That means $\beta^{B_{p}}=\hat{x}_{p}^{B_{p}}$, (recall that $\hat{x}: z \mapsto z x$ for any $z \in Z_{n}$ ). We claim that $\beta \in\left(Z_{p^{d}} \rtimes\langle\alpha\rangle\right)^{(2)}$ and so $\beta \in G^{(2)}$. Take any pair $\left(y_{1}, y_{2}\right) \in Z_{n} \times Z_{n}$. If both $y_{1}$ and $y_{2}$ belong to $B_{p}$, then $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1} x_{p}, y_{2} x_{p}\right)$ is in the orbital $\left(y_{1}, y_{2}\right)^{G}$. Suppose next that exactly one of $\left\{y_{1}, y_{2}\right\}$ lies in $B_{p}$, say $y_{2} \in B_{p}$. Since the stabilizer $G_{y_{1}}$ is the conjugate of $G_{0}$ in $G$ by an element in $\hat{Z}_{n}$, a conjugate of $\alpha$, say $\rho$, is in $G_{y_{1}}$. Therefore $\beta^{B_{p}}$ equals $\left(\rho^{j}\right)^{B_{p}}$ for some $j \in\{1, \ldots, p-1\}$, and so $\left(y_{1}, y_{2}\right)^{\beta} \in\left(y_{1}, y_{2}\right)^{G}$. It then follows that $\beta \in\left(Z_{p^{d}} \rtimes\langle\alpha\rangle\right)^{(2)} \leqslant G^{(2)}$. However, since $\beta$ fixes $B_{1}$ and $B_{2}$ pointwise, $\beta \notin Z_{p^{d}} \rtimes \operatorname{Aut}\left(Z_{p^{d}}\right)$, and so $\beta \notin G$ and $G$ is not 2-closed.

Suppose next that $G_{0} \leqslant Z_{p-1}$. Let $S=z^{G_{0}}$ where $z \in Z_{p^{d}}$ is an element of order $p^{d}$ and let $\Gamma=\operatorname{Cay}\left(Z_{n}, S\right)$. Since $\left(p,\left|G_{0}\right|\right)=1, p \nmid|S|$ and so $S$ is not a union of cosets of any subgroup of $Z_{n}$. By Theorem 2.1, $\operatorname{Aut}(\Gamma)=G$ and so $G$ is 2-closed. This completes the proof.

Remark: In above proof, note that $\beta$ is in $\left(Z_{p^{d}} \rtimes\langle\alpha\rangle\right)^{(2)}$. Hence we actually proved that $\left(Z_{p^{d}} \rtimes\langle\alpha\rangle\right)^{(2)} \not \leq Z_{p^{d}} \rtimes \operatorname{Aut}\left(Z_{p^{d}}\right)$ where $\alpha \in \operatorname{Aut}\left(Z_{p^{d}}\right)$ is of order $p$.

### 3.2 The case $n=2^{d}$ for $d \geqslant 2$

Notation: For convenience, in this subsection we write $Z_{n}$ additively as the group $\mathbb{Z}_{n}$ of integers modulo $n$, so in this case

$$
\hat{Z}_{n}=\hat{\mathbb{Z}}_{n}=\left\{\hat{x}: g \rightarrow g+x \mid x \in Z_{n}\right\} .
$$

Moreover $\operatorname{Aut}\left(Z_{n}\right)$ is the multiplicative group $\mathbb{Z}_{n}^{*}$ so that $i^{*} \in \operatorname{Aut}\left(Z_{n}\right)$ denotes the map $j \mapsto i j$.

### 3.2.1 $d=2$ :

In this case, $\operatorname{Aut}\left(Z_{4}\right)=\left\langle(-1)^{*}\right\rangle \cong Z_{2}$. We have the following result.
Lemma 3.4. Suppose that $\hat{Z}_{4} \leqslant G \leqslant \hat{Z}_{4} \rtimes\left\langle(-1)^{*}\right\rangle \cong D_{8}$. Then $G$ is 2-closed and is the full automorphism group of an arc-transitive circulant.

Proof. Either $G \cong Z_{4}$ is regular or $G \cong D_{8}$. Note that $\operatorname{Aut}\left(\operatorname{Cay}\left(\mathbb{Z}_{4},\{1\}\right)\right)=Z_{4}$ and $\operatorname{Aut}\left(\operatorname{Cay}\left(\mathbb{Z}_{4},\{1,-1\}\right)\right)=D_{8}=Z_{4} \rtimes Z_{2}$, this proves the lemma.

Remark: By [14, Lemma 2.3], a connected arc-transitive circulant $\Gamma$ is both normal and of lexicographic product form if and only if $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{4},\{1,-1\}\right)$ and $\operatorname{Aut}(\Gamma)=$ $Z_{4} \rtimes \operatorname{Aut}\left(Z_{4}\right)$. In this case the orbit $1^{\operatorname{Aut}\left(\mathbb{Z}_{4}\right)}=\{1,3\}=1+Z_{2}$ is a coset of $Z_{2}$.

### 3.2.2 $\quad d \geqslant 3$ :

In this case, $\operatorname{Aut}\left(Z_{n}\right)=\left\langle(-1)^{*}\right\rangle \times\left\langle 5^{*}\right\rangle \cong Z_{2} \times Z_{2^{d-2}}$. Denote $N=\hat{\mathbb{Z}}_{n} \rtimes \mathbb{Z}_{n}^{*}$. Let $H$ be the unique subgroup of $\mathbb{Z}_{n}$ with order $2^{d-2}$. Let $B_{0}=H, B_{1}=1+H, B_{2}=2+H, B_{3}=3+H$ be the cosets of $H$, then $\mathcal{B}=\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$ forms a complete block system of $N$ on $\mathbb{Z}_{n}$.

We first study the action of $5^{*}$. By computation $5^{*}$ preserves each block $B_{i}$, we determine the induced permutation $\left(5^{*}\right)^{B_{i}}$ next. Since $B_{1} \cup B_{3}$ consists of all elements of order $2^{d},\left(5^{*}\right)^{B_{1}}$ and $\left(5^{*}\right)^{B_{3}}$ are $2^{d-2}$-cycles. As $B_{0}=\langle 4\rangle=Z_{2^{d-2}}$ and $B_{0} \cup B_{2}=\langle 2\rangle=$ $Z_{2^{d-1}}$, it is easy to deduce that $\left(5^{*}\right)^{B_{2}}$ is a product of two $2^{d-3}$-cycles (if $d=3$, then $\left(5^{*}\right)^{B_{2}}$ is trivial). Therefore the orders of $\left(5^{*}\right)^{B_{1}}$ and $\left(5^{*}\right)^{B_{3}}$ are $2^{d-2}$, the order of $\left(5^{*}\right)^{B_{2}}$ is $2^{d-3}$, and the order of $\left(5^{*}\right)^{B_{0}}$ is $2^{d-4}$ (if $d=3$, then the order is 1 ).

Case 1: $d=3$
In this case, $n=8$ and $\operatorname{Aut}\left(Z_{8}\right)=\left\langle(-1)^{*}\right\rangle \times\left\langle 5^{*}\right\rangle \cong Z_{2} \times Z_{2}$. By computation, $5^{*}$ fixes $B_{0}$ and $B_{2}$ pointwise, and the induced action $\left(5^{*}\right)^{B_{1}}=\hat{4}^{B_{1}}$ and $\left(5^{*}\right)^{B_{3}}=\hat{4}^{B_{3}}$. The element $(-1)^{*}$ fixes $B_{0}$ pointwise and $\left((-1)^{*}\right)^{B_{2}}=\hat{4}^{B_{2}}$.

Lemma 3.5. Let $\mathbb{Z}_{8}=\langle z\rangle$. Suppose that $G=\mathbb{Z}_{8} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\left\langle(-1)^{*}\right\rangle \times$ $\left\langle 5^{*}\right\rangle$. Then the coset $z+Z_{2} \subseteq z^{G_{0}}$ if and only if $5^{*} \in G_{0}$ where $Z_{2}=\langle 4\rangle$ is the subgroup of order 2.

Proof. Note that both $z$ and $z+Z_{2}$ are contained in $B_{1}$ or $B_{3}$ and $(-1)^{*}$ interchanges two blocks $B_{1}$ and $B_{3}$. The result follows from the analysis of the actions of $(-1)^{*}$ and $5^{*}$ easily.

Proposition 3.6. With above notation, let $G=Z_{8} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(Z_{8}\right)=\left\langle(-1)^{*}\right\rangle \times$ $\left\langle 5^{*}\right\rangle$. Then

1. if $G_{0}=\operatorname{Aut}\left(Z_{8}\right)$ then $G$ is not 2-closed.
2. if $G_{0} \nsupseteq \operatorname{Aut}\left(Z_{8}\right)$ and $G_{0} \neq\left\langle 5^{*}\right\rangle$, then $G$ is 2-closed and can be represented by an arc-transitive circulant.
3. if $G_{0}=\left\langle 5^{*}\right\rangle$, then $G$ is 2-closed and can be represented by a circulant.

Proof. (1) Suppose first that $G_{0}=\operatorname{Aut}\left(Z_{8}\right)$. Let $\beta \in S_{8}$ such that $\beta$ fixes $B_{0}, B_{1}$ and $B_{3}$ pointwise and $\beta^{B_{2}}=\hat{4}^{B_{2}}$. Take any pair $\left(y_{1}, y_{2}\right) \in Z_{8} \times Z_{8}$. If both $y_{1}$ and $y_{2}$ belong to $B_{2}$, then $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1}, y_{2}\right)^{\hat{4}}$ is in the orbital $\left(y_{1}, y_{2}\right)^{G}$. Suppose next that exactly one of $\left\{y_{1}, y_{2}\right\}$ belongs to $B_{2}$, say $y_{2} \in B_{2}$. It is straightforward to check that $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1}, y_{2}\right)^{(-1)^{*}}$ if $y_{1} \in B_{0}$. Let $G_{1}$ be the point stabilizer of point 1 , then $G_{1}$ is the conjugate of $G_{0}$ by $\hat{1} \in \hat{\mathbb{Z}}_{n}$. Let $\alpha_{1}$ be the corresponding conjugate of $5^{*}$ in $G_{1}$. It follows that $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1}, y_{2}\right)^{\alpha_{1}}$ if $y_{1} \in B_{1} \cup B_{3}$. Hence $\beta \in G^{(2)}$. However since $\beta$ fixes 0 and 1 , $\beta \notin G$ and so $G$ is not 2-closed.
(2) In this case, $5^{*} \notin G_{0}$. Let $S=1^{G_{0}}$ and let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{8}, S\right)$. It follows from Lemma 3.5 and Theorem 2.1 that $G=\operatorname{Aut}(\Gamma)$ and is 2 -closed.
(3) Finally we show that $\mathbb{Z}_{8} \rtimes\left\langle 5^{*}\right\rangle$ is 2-closed. Let $S_{1}=1^{\left\langle 5^{*}\right\rangle}=\{1,5\}$ and $S_{2}=2^{\left\langle 5^{*}\right\rangle}=$ $\{2\}$. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{8}, S_{1} \cup S_{2}\right)$. By [12, Theorem 1.3], it is easy to deduce that $\Gamma$ is not arc-transitive. Suppose $g \in \operatorname{Aut}(\Gamma)$ such that $g$ fixes 0 and 1, it is straightforward to check that $g=1$. We conclude that $\operatorname{Aut}(\Gamma)=\mathbb{Z}_{8} \rtimes\left\langle 5^{*}\right\rangle$ as required.

Case 2: $d \geqslant 4$
Let $\alpha=\left(5^{*}\right)^{2^{d-4}}$ be an element of order 4 in $\left\langle 5^{*}\right\rangle$. By the analysis of action of $5^{*}$, we deduce that $\alpha$ fixes $B_{0}$ pointwise and $o\left(\alpha^{B_{2}}\right)=2, o\left(\alpha^{B_{1}}\right)=o\left(\alpha^{B_{3}}\right)=4$.

Suppose first that $d=4$, then $\alpha=5^{*}$. By direct computation, $\alpha^{B_{2}}=\hat{8}^{B_{2}}, \alpha^{B_{1}}=\hat{4}^{B_{1}}$ and $\alpha^{B_{3}}=\widehat{-4}^{B_{3}}$.

Next suppose $d \geqslant 5$. Denote $N=\hat{\mathbb{Z}}_{n} \rtimes \mathbb{Z}_{n}^{*}$. Note that $N_{B_{i}}^{B_{i}} \cong \hat{Z}_{2^{d-2}} \rtimes K_{i}$ where $K_{i} \cong \operatorname{Aut}\left(Z_{2^{d-2}}\right)$ for each $i \in\{1,2,3\}$. Since $\left(5^{*}\right)^{B_{i}}$ is fixed point free on $B_{i}$ for $i=1,2,3$, $\left(5^{*}\right)^{B_{i}}=\hat{y}_{i}^{B_{i}} \tau_{i}$ where $0 \neq y_{i} \in \mathbb{Z}_{n}$ and $\tau_{i} \in K_{i}$. Since $\tau_{i}$ normalizes $\hat{Z}_{2^{d-2}},\left(\left(5^{*}\right)^{B_{i}}\right)^{2}=$ $\hat{y}_{i}^{B_{i}}\left(\tau_{i} \hat{y}_{i}^{B_{i}} \tau_{i}^{-1}\right) \tau_{i} \tau_{i}=a_{i 2} \tau_{i}^{2}$ where $a_{i 2}$ is some element in $\hat{Z}_{2^{d-2}}$. By induction, we have that for each $k \geqslant 1,\left(\left(5^{*}\right)^{B_{i}}\right)^{k}=a_{i k} \tau_{i}^{k}$ where $a_{i k}$ is some element in $\hat{Z}_{2^{d-2}}$. Since $\tau_{i} \in \operatorname{Aut}\left(Z_{2^{d-2}}\right)$ and $d \geqslant 5, \tau_{i}^{2^{d-4}}=1$. By the order of $\alpha^{B_{i}}$, we have that $\alpha^{B_{i}}=\hat{x}_{i}^{B_{i}}$, where $x_{1}, x_{3} \in Z_{n}$ are of order 4 and $x_{2}=2^{d-1}$ is the unique involution in $Z_{n}$. In addition, $2 x_{1}=2 x_{3}=2^{d-1}$. Therefore we have proved the following lemma.
Lemma 3.7. Suppose $d \geqslant 4$. With above notation, let $\alpha=\left(5^{*}\right)^{2^{d-4}}$ be an element of order 4 in $\left\langle 5^{*}\right\rangle$. Then $\alpha$ fixes $B_{0}$ pointwise, $\alpha^{B_{2}}=\left(\widehat{2^{d-1}}\right)^{B_{2}}, \alpha^{B_{1}}=\hat{x}_{1}^{B_{1}}$ for some $x_{1} \in Z_{n}$ with order 4 and $\alpha^{B_{3}}=\hat{x}_{3}^{B_{3}}$ for some $x_{3} \in Z_{n}$ with order 4 .

Corollary 3.8. Let $n=2^{d}$ for $d \geqslant 4$ and let $Z_{n}=\langle z\rangle$. Suppose that $G=Z_{n} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)=\left\langle(-1)^{*}\right\rangle \times\left\langle 5^{*}\right\rangle$. Let $\alpha \in\left\langle 5^{*}\right\rangle$ be of order 4 . Then

1. the coset $z+Z_{4} \subseteq z^{G_{0}}$ if and only if $\alpha \in G_{0}$ where $Z_{4} \leqslant Z_{n}$ is the subgroup of order 4.
2. the coset $z+Z_{2} \subseteq z^{G_{0}}$ if and only if $\alpha^{2} \in G_{0}$ where $Z_{2} \leqslant Z_{n}$ is the subgroup of order 2.

Proof. By Lemma 3.7, we have that $z+Z_{4} \subseteq z^{G_{0}}$ if $\alpha \in G_{0}$ and $z+Z_{2} \subseteq z^{G_{0}}$ if $\alpha^{2} \in G_{0}$.
With the notation in Lemma 3.7, suppose that $z+Z_{4} \subseteq z^{G_{0}}$. Note that $z \in B_{1}$ or $B_{3}$ and $z+Z_{4} \subseteq B_{1}$ or $B_{3}$ respectively. Since $(-1)^{*}$ interchanges $B_{1}$ and $B_{3}$, it is easy to deduce that $\alpha \in G_{0}$. Similarly, if $z+Z_{2} \subseteq z^{G_{0}}$ then $\alpha^{2} \in G_{0}$.

Proposition 3.9. With above notation, let $G=Z_{n} \rtimes G_{0} \leqslant Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$ where $n=2^{d}$ for $d \geqslant 4$. If $\alpha=\left(5^{*}\right)^{2^{d-4}} \in G_{0}$, then $\left(Z_{n} \rtimes\langle\alpha\rangle\right)^{(2)} \not \leq Z_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)$. In particular, $G$ is not 2-closed on $Z_{n}$.
Proof. Let $1 \neq \beta \in \operatorname{Sym}\left(Z_{2^{d}}\right)$ such that $\beta$ fixes $B_{0}, B_{2}, B_{3}$ pointwise and $\beta^{B_{1}}={\widehat{\left(2^{d-1}\right)}}^{B_{1}}$ is of order 2. Therefore $\beta^{B_{1}}=\left(\alpha^{2}\right)^{B_{1}}$. We will show next that $\beta \in\left(Z_{2^{d}} \rtimes\langle\alpha\rangle\right)^{(2)} \leqslant G^{(2)}$.

Take any pair $\left(y_{1}, y_{2}\right) \in Z_{n} \times Z_{n}$. If both $y_{1}$ and $y_{2}$ belong to $B_{1}$, then $\left(y_{1}, y_{2}\right)^{\beta}=$ $\left(y_{1}, y_{2}\right)^{2^{\widehat{d-1}}}$ is in the orbital $\left(y_{1}, y_{2}\right)^{G}$. Suppose next that exactly one of $\left\{y_{1}, y_{2}\right\}$ belongs to $B_{1}$, say $y_{2} \in B_{1}$. By Lemma 3.7, $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1}, y_{2}\right)^{\alpha^{2}}$ if $y_{1} \in B_{0}$ or $B_{2}$. Let $G_{3}$ be the point stabilizer of point 3 , then $G_{3}$ is the conjugate of $G_{0}$ by $\hat{3} \in \hat{Z}_{n}$. Let $\alpha_{3}$ be the corresponding conjugate of $\alpha$ in $G_{3}$, it follows from Lemma 3.7 that $\left(y_{1}, y_{2}\right)^{\beta}=\left(y_{1}, y_{2}\right)^{\alpha_{3}}$ if $y_{1} \in B_{3}$. Thus $\beta \in\left(Z_{2^{d}} \rtimes\langle\alpha\rangle\right)^{(2)} \leqslant G^{(2)}$. However since $\beta$ fixes $B_{0}$ and $B_{3}$ pointwise, $\beta \notin Z_{2^{d}} \rtimes \operatorname{Aut}\left(Z_{2^{d}}\right)$ and so $\left(Z_{2^{d}} \rtimes\langle\alpha\rangle\right)^{(2)} \not \leq Z_{2^{d}} \rtimes \operatorname{Aut}\left(Z_{2^{d}}\right)$. In particular $G$ is not 2-closed.

Next we will show that if $\alpha \notin G_{0}$ then $G$ is 2 -closed. Note that $\alpha \notin G_{0}$ is equivalent to the condition that either $\left|G_{0}\right| \leqslant 2$ or $\left|G_{0}\right|=4$ and $G_{0} \nless\left\langle 5^{*}\right\rangle$.

We first discuss the case that $\alpha^{2} \notin G_{0}$.
Lemma 3.10. With above notation, let $n=2^{d}$ for $d \geqslant 4$. Let $G=Z_{n} \rtimes G_{0}$. Suppose $\alpha^{2} \notin G_{0}$. Then $G$ is the full automorphism group of an arc-transitive circulant and so $G$ is 2-closed.

Proof. Let $S=1^{G_{0}}$ be the orbit of 1 under $G_{0}$, and let $\Gamma=\operatorname{Cay}\left(Z_{n}, S\right)$. Since $\alpha^{2} \notin G_{0}$, it follows from corollary 3.8 that $S$ is not a union of cosets of any subgroup of $Z_{n}$. By Theorem 2.1, $\operatorname{Aut}(\Gamma)=G$ as required.

It remains to show that if $G=Z_{n} \rtimes G_{0}$ where $\alpha^{2} \in G_{0}$ but $\alpha \notin G_{0}$ then $G$ is the full automorphism group of some circulant. We will prove this in Proposition 3.15 when we handle the more general case.

### 3.3 The general case.

### 3.3.1 The notation for the main theorem.

We explain Conditions 1.1 in more detail first.
Let

$$
n=2^{d_{1}} p_{2}^{d_{2}} \cdots p_{t}^{d_{t}}, \quad d_{1} \geqslant 0, d_{2}, \ldots, d_{t} \geqslant 1, t \geqslant 1
$$

where $p_{2}, \ldots, p_{t}$ are distinct odd primes. For convenience, we also write $p_{1}=2$. In addition, the notion $p_{i}^{d_{i}} \| n$ means $p_{i}^{d_{i}} \mid n$ but $p_{i}^{d_{i}+1} \nmid n$.

Let $G=\hat{Z}_{n} \rtimes G_{0}$ acting on $Z_{n}$ naturally where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$. In order to reduce the proof in the general case to the prime power case, we choose the product action form to describe $G$. Let $Z_{m}$ be the unique subgroup of $Z_{n}$ of order $m$ for $m \mid n$. Then we may write

$$
Z_{n}=Z_{2^{d_{1}}} \times Z_{p_{2}^{d_{2}}} \times \cdots \times Z_{p_{t}^{d_{t}}}=\left\{\left(z_{1}, \ldots, z_{t}\right)=z_{1} z_{2} \cdots z_{t} \mid z_{i} \in Z_{p_{i}^{d_{i}}} \text {, where } p_{1}=2\right\}
$$

For any $g=\left(g_{1}, \ldots, g_{t}\right) \in Z_{n}$, we have $\hat{g}:\left(z_{1}, \ldots, z_{t}\right) \mapsto\left(z_{1} g_{1}, \ldots, z_{t} g_{t}\right)$. Moreover,

$$
\operatorname{Aut}\left(Z_{n}\right)=\operatorname{Aut}\left(Z_{2^{d_{1}}}\right) \times \cdots \times \operatorname{Aut}\left(Z_{p_{t}^{d_{t}}}\right)=D_{1} D_{2} \cdots D_{t}
$$

where $D_{i}$ is the direct factor subgroup of $\operatorname{Aut}\left(Z_{n}\right)$ that fixes each component of the elements of $Z_{n}$ except for the $i$-th component. So $D_{i} \cong \operatorname{Aut}\left(Z_{p_{i}^{d_{i}}}\right)$.

In fact $D_{i}$ induces a faithful action on the subgroup $Z_{p_{i}}^{d_{i}}$. With notation in $\S 3.2$, if $d_{1} \geqslant 3$ then the induced action $D_{1}$ on the subgroup $Z_{2^{d_{1}}}$ is permutation isomorphic to $\left\langle(-1)^{*}\right\rangle \times\left\langle 5^{*}\right\rangle\left(d_{1} \geqslant 3\right)$, the multiplicative group of units of the ring $\mathbb{Z}_{2^{d_{1}}}$ acting on the additive group $\mathbb{Z}_{2^{d_{1}}}$. Let $\phi:\left\langle(-1)^{*}\right\rangle \times\left\langle(5)^{*}\right\rangle \rightarrow D_{1}$ be the corresponding group isomorphism.

The normalizer of $\hat{Z}_{n}$ in $\operatorname{Sym}\left(Z_{n}\right)$ is

$$
N=\hat{Z}_{n} \rtimes \operatorname{Aut}\left(Z_{n}\right)=\left(\hat{Z}_{2^{d_{1}}} \rtimes \operatorname{Aut}\left(Z_{2^{d_{1}}}\right)\right) \times \cdots \times\left(\hat{Z}_{p_{t}^{d_{t}}} \rtimes \operatorname{Aut}\left(Z_{p_{t}^{d_{t}}}\right)\right)
$$

acting on $Z_{n}$ by the natural product action. Therefore $G=\hat{Z}_{n} \rtimes G_{0} \leqslant N$ has the natural product action.

We need the following two easy observations in the proof below.
(1) Note that when $i \geqslant 2, \operatorname{Aut}\left(Z_{p_{i}}^{d_{i}}\right)=Z_{p-1} \times Z_{p_{i}{ }_{i}-1}$. Conditions 1.1 [ii] is equivalent to $\alpha_{i} \notin G_{0}$ where $\alpha_{i} \in D_{i} \cong Z_{p_{i}-1} \times Z_{p_{i}^{d_{i}-1}}$ is of order $p_{i}$.
(2) When $i=1$ and $d_{1} \geqslant 4$, denote $\alpha_{1}=\phi\left(\left(5^{*}\right)^{2^{d_{1}-4}}\right) \in D_{1}$, then the order of $\alpha_{1}$ is 4 . Conditions 1.1 [iv] is equivalent to $\alpha_{1} \notin G_{0}$.

### 3.3.2 The proof of Theorem 1.2.

Lemma 3.11. With notation in Subsection 3.3.1, suppose $G=\hat{Z}_{n} \rtimes G_{0}$ where $G_{0} \leqslant$ $\operatorname{Aut}\left(Z_{n}\right)$. If $G_{0}$ fails to satisfy one of conditions 1.1, then $G$ is not 2-closed.

Proof. If condition (i) does not hold, then there exists an odd prime $p_{i} \geqslant 5$ where $i \geqslant 2$ such that $p_{i} \| n$ and $D_{i} \leqslant G_{0}$. In this case we take $K=\hat{Z}_{p_{i}} \rtimes D_{i}$. By hypothesis, $K$ is the subgroup of $G$ which fixes each component of elements of $Z_{n}$ except for the $i$-th component. Hence the action of $K$ on $Z_{n}$ is the product action of $\bar{K} \times\{1\}$ on $Z_{n}=Z_{p_{i}} \times Z_{\frac{n}{p_{i}}}$ where $\bar{K} \cong K$ acts on $Z_{p_{i}}$ naturally. It follows from Theorem 2.3 that $K^{(2)}=(\bar{K})^{(2)} \times\{1\}$. By the remark after Corollary 2.2, $(\bar{K})^{(2)} \nsubseteq Z_{p_{i}} \rtimes \operatorname{Aut}\left(Z_{p_{i}}\right)$. Since $G^{(2)} \geqslant K^{(2)}$, we have that $G$ is not 2-closed in this case.

If condition (ii) does not hold, then there exists an odd prime $p_{i}$ where $i \geqslant 2$ such that $p_{i}^{d_{i}} \| n$ and $d_{i} \geqslant 2$. Since $\alpha_{i} \in G_{0}$ in this case, we take $K=\hat{Z}_{p_{i}^{d_{i}}} \rtimes\left\langle\alpha_{i}\right\rangle \leqslant G$. Hence the action of $K$ on $Z_{n}$ is the product action of $\bar{K} \times\{1\}$ on $Z_{n}=Z_{p_{i}^{d_{i}}} \times Z_{\frac{n}{p_{i}^{d_{i}}}}$ where $\bar{K} \cong K$ acts on $Z_{p_{i}^{d_{i}}}$ naturally. By the remark after Proposition $3.3,(\bar{K})^{(2)} \nsubseteq Z_{p_{i}^{d_{i}}} \rtimes \operatorname{Aut}\left(Z_{p_{i}^{d_{i}}}\right)$. The same argument as above proves that $G$ is not 2-closed in this case either.

Suppose $2^{d_{1}}| | n$ and $d_{1} \geqslant 3$, suppose also that either condition (iii) or (iv) fails. Take $K=\widehat{Z_{8}} \rtimes D_{1}$ if $d_{1}=3$ and take $K=\widehat{Z_{2^{d_{1}}}} \rtimes\left\langle\alpha_{1}\right\rangle$ if $d_{1} \geqslant 4$. By the same argument as above, it follows from Proposition 3.6(1) and Proposition 3.9 that $G$ is not 2-closed.

Lemma 3.12. With notation in Subsection 3.3.1, suppose $G=\hat{Z}_{n} \rtimes G_{0}$ where $G_{0} \leqslant$ $\operatorname{Aut}\left(Z_{n}\right)$ and $G_{0}$ satisfies Conditions 1.1. Let $S=z^{G_{0}}$ where $Z_{n}=\langle z\rangle$, and let $\Gamma=$ $\operatorname{Cay}\left(Z_{n}, S\right)$. Then exactly one of the following holds.

1. $G$ is the full automorphism group of $\Gamma$ and so $G$ is 2-closed and can be represented by an arc-transitive circulant.
2. $2^{d_{1}} \| n, d_{1} \geqslant 4$, and $\alpha_{1}^{2} \in G_{0} \cap D_{1}$.
3. $2^{3} \| n$, and $D_{1} \cap G_{0}=\left\langle\phi\left(5^{*}\right)\right\rangle \cong Z_{2}$.
4. $n=4 m$ where $m>1$ is odd. $D_{1} \cap G_{0}=D_{1} \cong Z_{2}$, that is $G_{0}=\operatorname{Aut}\left(Z_{4}\right) \times K$ where $K \leqslant \operatorname{Aut}\left(Z_{m}\right)$.
Moreover, in the latter three cases, $\Gamma=\Sigma\left[\bar{K}_{2}\right]$ is a lexicographic product and the pointwise stabilizer of $\{1, z\}$ in $\operatorname{Aut}(\Gamma)$ preserves each coset of $Z_{2}$.
Proof. Suppose that $G$ is not the full automorphism group of $\Gamma$. By the condition (i), for any odd prime $p_{i} \geqslant 5$ such that $p_{i} \| n$, we have $G_{0} \neq \operatorname{Aut}\left(Z_{p_{i}}\right) \times H$ for some $H \leqslant$ $\operatorname{Aut}\left(Z_{n / p_{i}}\right)$. It then follows from Theorem 2.1 that case (b) of Theorem 2.1 occurs for $\Gamma$. That is $n=b k>4$ where $b \geqslant 2$ and $\Gamma=\Sigma\left[\bar{K}_{b}\right]$. Moreover, the group $Z_{n}$ has a subgroup $Y$ of order $b$ and $S$ is a union of $Y$-cosets each consisting of generators for $Z_{n}$.

Recall that $n=2^{d_{1}} p_{2}^{d_{2}} \cdots p_{t}^{d_{t}}$. Suppose that $p_{j} \mid b$ for some $j \in\{1, \ldots, t\}$. Then $z Z_{p_{j}} \subseteq S$ where $Z_{p_{j}}$ is the subgroup of order $p_{j}$ and $d_{j} \geqslant 2$ by Theorem 2.1 (b). Let $z=\left(z_{1}, \ldots, z_{t}\right)$ where $z_{i}$ is a generator of $Z_{p_{i} d_{i}}$ for each $i$. Thus $z Z_{p_{j}} \subseteq S=z^{G_{0}}$ implies that $z_{j} Z_{p_{j}} \subseteq z_{j}^{D_{j} \cap G_{0}}$ in the $j$-th component. By Corollary 3.2, the condition (ii) implies that $b=2^{l}$ is a power of 2 . Similarly, by Corollary 3.8, Lemma 3.5 and the action of $\operatorname{Aut}\left(Z_{4}\right)$, the condition (iii) and (iv) imply that $b$ must be 2 and one of cases 2-4 happens.

Suppose next that one of cases 2-4 occurs. Thus $\Gamma=\Sigma\left[\bar{K}_{2}\right]$ where $\Sigma=\operatorname{Cay}\left(Z_{n} / Z_{2}, \bar{S}\right)$ and $\bar{S}=\left\{s Z_{2} \mid s \in S\right\}$. Moreover, by [14, Lemma 2.3], the set $\left\{x Z_{2} \mid x \in Z_{n}\right\}$ forms a block system of $\operatorname{Aut}(\Gamma)$, and so $\operatorname{Aut}(\Gamma)=Z_{2} \backslash \operatorname{Aut}(\Sigma)$.

Let $\bar{G}_{0}=G_{0} /\left\langle\alpha_{1}^{2}\right\rangle$ in case 2 , and let $\bar{G}_{0}=G_{0} /\left(D_{1} \cap G_{0}\right)$ in case 3 or 4. Then $\bar{G}_{0} \leqslant \operatorname{Aut}\left(Z_{n} / Z_{2}\right)$ and $\bar{S}=\left(z Z_{2}\right)^{\bar{G}_{0}}$. Note that $G_{0}$ satisfies Conditions 1.1, it follows that $\bar{S}$ is not the union of cosets of any subgroup of $Z_{n} / Z_{2}$. By Theorem $2.1, \Sigma$ is normal and $\operatorname{Aut}(\Sigma)=\left(Z_{n} / Z_{2}\right) \rtimes \bar{G}_{0}$. Therefore the pointwise stabilizer of $\{1, z\}$ in $\operatorname{Aut}(\Gamma)$ preserves each coset of $Z_{2}$.

Remark: Suppose $G$ satisfies Conditions 1.1. By the above lemma, $G$ can be represented by an arc-transitive circulant if and only if $G$ does not arise in any of the cases 2-4 of Lemma 3.12.

Next we will show that if one of cases $2-4$ occurs then there exists a circulant $\Gamma$ which is not arc-transitive such that $\operatorname{Aut}(\Gamma)=G$. We discuss case 4 first.

Lemma 3.13. Suppose $n=4 m$ where $m>1$ is odd and $G=Z_{4 m} \rtimes G_{0}$ where $G_{0}=$ $\operatorname{Aut}\left(Z_{4}\right) \times K$ and $K \leqslant \operatorname{Aut}\left(Z_{m}\right)$. Suppose further that $G_{0}$ satisfies Conditions 1.1. Then $G$ is 2 -closed and can be represented by a circulant.

Proof. Let $z=z_{1} z_{2} \in Z_{4 m}$ where $z_{1}$ is a generator of $Z_{4}$ and $z_{2}$ is a generator of $Z_{m}$. Let $S_{1}=z^{G_{0}}$ and $\Gamma_{1}=\operatorname{Cay}\left(Z_{4 m}, S_{1}\right)$. By Lemma 3.12, $S_{1}$ is the union of some cosets of $Z_{2}=$ $\left\langle z_{1}^{2}\right\rangle$. Let $S_{2}=z_{2}^{G_{0}} \subseteq Z_{m}$ and $\Gamma_{2}=\operatorname{Cay}\left(Z_{4 m}, S_{2}\right)$. Thus $B_{0}=Z_{m}, B_{1}=z Z_{m}, B_{2}=z^{2} Z_{m}$ and $B_{3}=z^{3} Z_{m}$ are the connected components of $\Gamma_{2}$.

Let $S=S_{1} \cup S_{2}$ and $\Gamma=\operatorname{Cay}\left(Z_{4 m}, S\right)$. Suppose first that $\Gamma$ is arc-transitive. Note that $S_{1}$ consists of elements of order $4 m$ and $S_{2}$ contains elements of order $m$. We observe that $S$ is not the union of cosets of any subgroup. By [12, Theorem 1.3], $\Gamma=\Sigma\left[\bar{K}_{b}\right]-b . \Sigma$ where $n=b r, 4 \leqslant b<n$ and $\operatorname{gcd}(b, r)=1$. Thus writing $Z_{n}=Y \times M$ with $Y \cong Z_{b}$ and $M \cong Z_{r}$, we have that $S=Y \backslash\{1\} \times T$ and $T \subseteq M \backslash\{1\}$. Analyzing the orders of elements of $S$, we have that $b=p_{i}$ is prime, $p_{i} \geqslant 5$ and $p_{i} \| m$ as $(b, r)=1$. As $z^{G_{0}} \subset Y \backslash\{1\} \times T$, $D_{i} \cong \operatorname{Aut}\left(Z_{p_{i}}\right) \subseteq G_{0}$, contradicting the condition (i). Thus $\Gamma$ is not arc-transitive.

Let $P$ be the point stabilizer of $\operatorname{Aut}(\Gamma)$ on vertex 1 . Since $P \geqslant G_{0}, P$ has two orbits $S_{1}$ and $S_{2}$ and so $\operatorname{Aut}(\Gamma)=\operatorname{Aut}\left(\Gamma_{1}\right) \cap \operatorname{Aut}\left(\Gamma_{2}\right)$

Assume that $g \in \operatorname{Aut}(\Gamma)$ fixing $1 \in B_{0}$ and $z \in B_{1}$. Consider $z^{2} \in B_{2} \cap z S_{1}$ which is adjacent to $z$. It follows from Lemma 3.12 that $g$ fixes each coset of $Z_{2}=\left\langle z_{1}^{2}\right\rangle$. Hence $\left(z^{2}\right)^{g} \in\left\{z^{2}, z^{2} z_{1}^{2}\right\}=z^{2} Z_{2}$ and $g$ fixes both $z \in B_{1}$ and $z z_{1}^{2} \in B_{3}$. Moreover, as $g \in \operatorname{Aut}\left(\Gamma_{2}\right)$, we conclude that $g$ must fix $B_{0}, B_{1}, B_{2}$ and $B_{3}$ setwise. Therefore, $g$ fixes $z^{2}$. Continuing in this fashion, we conclude that $g$ fixes $z^{3}, z^{4}, \ldots$ and so on. Thus $g=1$ and $P=G_{0}$. It follows that $\operatorname{Aut}(\Gamma)=G$ as required.

It remains to handle case 2 and case 3 in Lemma 3.12. By Lemma 3.12, we may suppose that $8 \mid n$ and $G=\hat{Z}_{n} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$. Let $S_{1}=z^{G_{0}}$ where $Z_{n}=\langle z\rangle$ and let $S_{2}=\left(z^{2}\right)^{G_{0}} \subseteq Z_{n / 2}=\left\langle z^{2}\right\rangle$. We construct $\Gamma=\operatorname{Cay}\left(Z_{n}, S_{1} \cup S_{2}\right)$. We will show that $\Gamma$ can represent $G$ in both case 2 and case 3. In order for proving this, let $\Gamma_{1}=\operatorname{Cay}\left(Z_{n}, S_{1}\right)$ and $\Gamma_{2}=\operatorname{Cay}\left(Z_{n}, S_{2}\right)$ we need to study $\Gamma_{1}$ and $\Gamma_{2}$. Note that $\Gamma_{1}$ has been studied in Lemma 3.12. We study $\Gamma_{2}$ in the following lemma.

Lemma 3.14. Suppose that case 2 or 3 of Lemma 3.12 occurs. With above notation, we have that $\Gamma_{2}=2 . \operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)$. Let $A_{3}=\operatorname{Aut}\left(\operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)\right)$ and $A_{2}=\operatorname{Aut}\left(\Gamma_{2}\right)$. Then $A_{2}=A_{3}\left\langle Z_{2}\right.$. Moreover, $\operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)$ is a normal arc-transitive circulant and $A_{3}=\left\langle z^{2}\right\rangle \rtimes G_{0}^{\left\langle z^{2}\right\rangle}$.

Proof. Let $\Delta_{1}=\left\langle z^{2}\right\rangle$ and $\Delta_{2}=z\left\langle z^{2}\right\rangle$. Then $\Gamma_{2}=2 . \operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)$ such that $\Delta_{1}$ and $\Delta_{2}$ are two connected components of $\Gamma_{2}$. Thus $A_{2}=A_{3} \backslash Z_{2}$.

Let $\bar{G}_{0}=G_{0} /\left\langle\alpha_{1}^{2}\right\rangle$ in case 2 , and let $\bar{G}_{0}=G_{0} /\left(D_{1} \cap G_{0}\right)$ in case 3. Note that $G_{0}$ preserves $\Delta_{1}$, it is easy to check that the induced permutation group $G_{0}^{\Delta_{1}} \cong \bar{G}_{0}$ and $G_{0}^{\Delta_{1}} \leqslant \operatorname{Aut}\left(\left\langle z^{2}\right\rangle\right)$. Also $S_{2}=\left(z^{2}\right)^{G_{0}^{\Delta_{1}}}$ is an orbit of $G_{0}^{\Delta_{1}}$. Since $G_{0}$ satisfies conditions in Theorem 1.2, $S_{2}$ is not the union of cosets of any subgroup of $\left\langle z^{2}\right\rangle$. By Theorem 2.1 and Conditions 1.1, we conclude that $\operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)$ is normal and $\operatorname{Aut}\left(\operatorname{Cay}\left(\left\langle z^{2}\right\rangle, S_{2}\right)\right)=$ $\left\langle z^{2}\right\rangle \rtimes G_{0}^{\Delta_{1}}$.
Proposition 3.15. With notation in Subsection 3.3.1, suppose $G=\hat{Z}_{n} \rtimes G_{0}$ where $G_{0} \leqslant \operatorname{Aut}\left(Z_{n}\right)$ and $G_{0}$ satisfies Conditions 1.1. Suppose further that case 2 or 3 of Lemma 3.12 occurs. Let $S_{1}=z^{G_{0}}$ where $Z_{n}=\langle z\rangle$ and let $S_{2}=\left(z^{2}\right)^{G_{0}}$. Let $\Gamma=\operatorname{Cay}\left(Z_{n}, S_{1} \cup S_{2}\right)$ and let $P$ be the point stabilizer of vertex 1 in $\operatorname{Aut}(\Gamma)$. Then

1. $\Gamma$ is not arc-transitive, and $S_{1}, S_{2}$ are two orbits of $P$.
2. For any $g \in \operatorname{Aut}(\Gamma)$ such that $g$ fixes 1 and $z$, we have that $g=1$.
3. $\operatorname{Aut}(\Gamma)=G=Z_{n} \rtimes G_{0}$. So $\Gamma$ is normal and $G$ is 2-closed.

Proof. (1) Suppose, to the contrary, that $\Gamma$ is arc-transitive. Note that $S_{1}$ consists of elements of order $n$ and $S_{2}$ contains elements of order $n / 2 \neq n$. Also observe that $S$ is not the union of cosets of any subgroup. By [12, Theorem 1.3], $\Gamma=\Sigma\left[\bar{K}_{b}\right]-b . \Sigma$, where $n=b r, 4 \leqslant b<n$ and $\operatorname{gcd}(b, r)=1$. Thus writing $Z_{n}=Y \times M$ with $Y \cong Z_{b}$ and $M \cong Z_{r}$, we have that $S=Y \backslash\{1\} \times T$ and $T \subseteq M \backslash\{1\}$. Analyzing the orders of elements of $S$, by conditions (i)(ii) we have that $b=4$. As $(b, r)=1,4 \| n$, contradicting the fact that $8 \mid n$. Thus $\Gamma$ is not arc-transitive. As $P \geqslant G_{0}, S_{1}, S_{2}$ are two orbits of $P$.
(2) Let $\Gamma_{1}=\operatorname{Cay}\left(Z_{n}, S_{1}\right), \Gamma_{2}=\operatorname{Cay}\left(Z_{n}, S_{2}\right)$ and $A_{1}=\operatorname{Aut}\left(\Gamma_{1}\right), A_{2}=\operatorname{Aut}\left(\Gamma_{2}\right)$. It follows from (1) that $\operatorname{Aut}(\Gamma)=A_{1} \cap A_{2}$.

Let $g \in \operatorname{Aut}(\Gamma)$ such that $g$ fixes 1 and $z$. By Lemma 3.12, $g$ preserves each coset of $Z_{2}$ and so $\left(z^{2}\right)^{g} \in\left\{z^{2}, z^{2} z^{n / 2}\right\}$. Moreover, since $z^{2} \in S_{2}$ and $g$ preserves $S_{2}$, we have $\left(z^{2}\right)^{g} \in S_{2}$. By the proof of Lemma 3.14, we have that $z^{2} Z_{2} \nsubseteq S_{2}$ and so $z^{2} z^{n / 2} \notin S_{2}$. Thus $g$ fixes $z^{2}$. Let $\Delta_{1}=\left\langle z^{2}\right\rangle$ and $\Delta_{2}=z\left\langle z^{2}\right\rangle$ be two connected components of $\Gamma_{2}$. By Lemma 3.14, $g^{\Delta_{1}} \in \operatorname{Aut}\left(\left\langle z^{2}\right\rangle\right)$ fixes $\Delta_{1}$ pointwise. Now $g$ fixes $z$ and $z^{2}$ and consider $\left(z^{3}\right)^{g}$. Using the same argument we deduce that $g$ fixes $\Delta_{2}$ pointwise and so $g=1$.
(3) It follows from (2) that $P=G_{0}$ and so $A=G=\hat{Z}_{n} \rtimes G_{0}$. Therefore $\Gamma$ is normal and $G$ is 2-closed on $Z_{n}$.

Theorem 1.2 now follows from Lemma 3.11, Lemma 3.12, Lemma 3.13 and Proposition 3.15 .

## References

[1] B. Alspach, On constructing the graphs with a given permutation group as their group, Proc. Fifth Southeastern Conf. Combin., Graph Theory and Computing (1974), 187-208.
[2] L. Babai, Finite digraphs with given regular automorphism groups, Periodica Mathematica Hungarica Vol. 11 (4), (1980), 257-270.
[3] L. Babai and C.D. Godsil, On the automorphism groups of almost all Cayley graphs, Europ. J. Combin. 3 (1982) 9-15.
[4] L. Babai, Automorphism groups, Isomorphism, Reconstruction, Chapter 27 of the Handbook of Combinatorics, 1447-1540, Edited by R. L. Graham, M. Grotschel and L. Lovasz, North-Holland, 1995.
[5] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič, and L. A. Nowitz, Transitive permutation groups without semiregular subgroups, $J$. London Math. Soc. 66 (2002), 325-333.
[6] E.Dobson, P.Spiga and G. Verret, Cayley graphs on abelian groups, Combinatorica (2014) in press.
[7] S.A. Evdokimov and I.N. Ponomarenko, Characterization of cyclotomic shcems and normal Schur rings over a cyclic group, (Russian), Algebra i Analiz 14(2) (2002),1155.
[8] C.D. Godsil, GRR's for non-solvable groups, Algebraic Methods in Graph Theory, Colloq. Math. Soc. J. Bolyai, 25. Szeged, 1978; North-Holland, Amsterdam, 1981; 221-239.
[9] C.D. Godsil, Neighbourhoods of transitive graphs and GRR's, J. Combin. Theory Ser. B 29 (1980), 116-140.
[10] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981), 243-256.
[11] I. Kovács, Classifying arc-transitive circulants, J. Algebraic Combin. 20 (2004), 353-358.
[12] C. H. Li, Permutation groups with a cyclic regular subgroup and arc transitive circulants, J. Algebraic Combin. 21 (2005), 131-136.
[13] J.Morris, P.Spiga and G.Verret, Automorphisms of Cayley graphs on generalised dicyclic groups, Europ. J. Combin. 43 (2015) 68-81.
[14] C. E. Praeger and J. Xu, A note on arc-transitive circulant digraphs, J. Group Theory 12 (2009) 107-117.
[15] H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lecture Notes, Ohio State University, Columbus, 1969. Also publised in Wielandt, Helmut, Mathematische Werke/Mathematical works. Vol. 1. Group theory. Walter de Gruyter \& Co., Berlin, 1994, pp.237-296.
[16] Jing Xu, Vertex-transitive tournaments of order a product of two distinct primes, $J$. Group Theory, 13 (2010), 565-576.
[17] Jing Xu, Metacirculant tournaments whose order is a product of two distinct primes, Discrete Mathematics 311 (2011) 571-576.
[18] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182 (1998), 309-319.


[^0]:    *This work was supported by NSFC (project number 10901110, 11371259).

