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Abstract

In this paper, we classify 2-closed (in Wielandt’s sense) permutation groups
which contain a normal regular cyclic subgroup and prove that for each such group
G, there exists a circulant Γ such that Aut(Γ) = G.

1 Introduction

In 1969, Wielandt [15] introduced the concept of the 2-closure of a permutation group.
Let G be a finite permutation group on a set Ω, the 2-closure G(2) of G on Ω is the
largest subgroup of Sym(Ω) containing G that has the same orbits as G in the induced
action on Ω × Ω, and we say G is 2-closed if G = G(2). It seems impossible to classify
all 2-closed transitive permutation groups. However, certain classes of 2-closed transitive
groups have been determined. For example, in [16, 17] the author determined all 2-closed
odd-order transitive permutation groups of degree pq where p, q are distinct odd primes.
In this paper, one of our main purposes is to classify all 2-closed permutation groups with
a normal regular cyclic subgroup, see Theorem 1.2. Recall that a permutation group is
regular if it is transitive and the only element that fixes a point is the identity. And for
more information about the 2-closures of permutation groups containing a cyclic regular
subgroup, see also [7].

Another research topic of this paper is the study of the automorphism groups of
(di)graphs. The full automorphism group of a (di)graph Γ must be 2-closed since any
permutation of the vertex set that preserves the orbits of Aut(Γ) on ordered pairs preserves
adjacency. However, not every 2-closed permutation group is the full automorphism group
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of some (di)graph. Therefore, the concept of 2-closed groups is more general than the
concept of the full automorphism groups of (di)graphs, and the classification of 2-closed
groups is closely related to the study of the full automorphism groups of the corresponding
digraphs. In this paper, in order to determine 2-closed groups that contain a normal
regular cyclic subgroup, we also study circulant digraphs, that is Cayley digraphs of
cyclic groups. See Section 2 for a more detailed explanation.

Furthermore, we discuss the following representation problem. A digraph Γ with
vertex set Ω is said to represent a permutation group G 6 Sym(Ω) if Aut(Γ) = G. In
this case, we also say that the permutation group G has a digraph representation Γ.

Digraph representation problem: given a 2-closed group G, is there a digraph Γ that
represents G?

Suppose the digraph Γ represents a 2-closed group G 6 Sym(Ω). Then for any g ∈
Sym(Ω), to determine whether g lies in G we only need to test if g preserves the single
2-relation given by the arc set of Γ, instead of checking all G-invariant 2-relations. We say
a digraph Γ is arc-transitive if Aut(Γ) is transitive on the arc set of Γ. This means, the
arc set of Γ is actually a minimal Aut(Γ)-invariant 2-relation. Suppose further that the
2-closed group G can be represented by an arc-transitive digraph Γ. Then a permutation
g lies in G if and only if g leaves invariant the minimal G-invariant 2-relation given by
the arc set of Γ. We will show that there are arc-transitive digraph representations for
most 2-closed groups that contain a normal regular cyclic subgroup, see the remark after
Lemma 3.12.

Replacing digraph with graph, we obtain the graph representation problem which asks
for an undirected graph to represent a 2-closed group. These two questions have previously
appeared in the literature, see for example [1, 4]. Clearly, the graph version problem is
much more complicated than the digraph one. Since we are interested in understanding
the concept of 2-closed groups, we concentrate on the digraph representation problem in
this paper.

A regular permutation group is 2-closed, and in 1980, Babai [2] proved that with five
exceptions, every finite regular permutation group occurs as the automorphism group of a
digraph. This is the famous DRR (digraphical regular representations) problem [2]. It is
proved in [14] that for any prime power q, the semilinear group ΓL(1, q) can be represented
by an arc-transitive circulant digraph. Moreover, it is shown in [16, 17] that every 2-
closed odd-order transitive permutation group of degree pq has a tournament digraph
representation. As for graphical representation problem, see for example [3, 6, 8, 9, 10, 13].

In this paper, we will prove that every 2-closed permutation group G with a normal
regular cyclic subgroup is the full automorphism group of a circulant digraph. We may
suppose that G = ZnoG0 acting on Zn naturally where G0 6 Aut(Zn). We first describe
the necessary and sufficient condition for G0 such that G is 2-closed. For the detailed
explanation of notation, see Section 2 and Section 3.3.1.

Conditions 1.1. Let n = 2d1pd2
2 · · · pdtt , d1 > 0, d2, . . . , dt > 1, t > 1 where p2, . . . , pt are

distinct odd primes (also write p1 = 2). And let Aut(Zn) = Aut(Z2d1 )×· · ·×Aut(Z
p
dt
t

) =

D1D2 · · ·Dt, where Di is the direct factor subgroup of Aut(Zn) that fixes each component
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of the elements of Zn except for the i-th component. So Di
∼= Aut(Z

p
di
i

) for each i. In fact

Di induces a faithful action on the subgroup Z
p
di
i

. Note that the induced action D1 on the

subgroup Z2d1 is permutation isomorphic to 〈(−1)∗〉×〈5∗〉(d1 > 3), the multiplicative group
of units of the ring Z2d1 acting on the additive group Z2d1 , let φ : 〈(−1)∗〉 × 〈(5)∗〉 → D1

be the corresponding group isomorphism.
Let G0 6 Aut(Zn).

(i) if i > 2, di = 1 and pi > 5, then Di 
 G0.

(ii) if i > 2 and di > 2, then Di ∩G0 6 Zpi−1.

(iii) if d1 = 3, then D1 
 G0.

(iv) if d1 > 4, then either |D1 ∩G0| 6 2 or |D1 ∩G0| = 4 and D1 ∩G0 
 〈φ(5∗)〉.

The main result of this paper is the following theorem.

Theorem 1.2. Suppose G = ZnoG0 acting on Zn naturally where G0 6 Aut(Zn). Then
G is 2-closed if and only if G0 satisfies Conditions 1.1. Moreover, if G is 2-closed then
G can be represented by a circulant digraph.

2 Preliminary results and notation

First we introduce some concepts and notation concerning Cayley digraphs. Given a finite
group H, and a subset S ⊂ H\{1}, the Cayley digraph Γ = Cay(H,S) with respect to S is
defined as the directed graph with vertex set H and arc set AΓ = {(g, sg) | g ∈ H, s ∈ S}.
Moreover, a Cayley digraph of a cyclic group is called a circulant. It is easy to check
that the right regular representation Ĥ is contained in Aut(Γ). In fact, a digraph is
a Cayley digraph if and only if its automorphism group contains a regular subgroup.
Moreover let Aut(H,S) = {σ ∈ Aut(H) | Sσ = S}, then each element in Aut(H,S)
induces an automorphism of the Cayley digraph Γ = Cay(H,S). It is proved in [10] that
the normalizer of Ĥ in Aut(Γ) is ĤoAut(H,S). We say a Cayley digraph Γ = Cay(H,S)
is normal if Ĥ is normal in Aut(Γ), that is, Aut(Γ) = Ĥ o Aut(H,S), see [10, 18]. So
the automorphism group of a normal circulant must be a 2-closed group that contains a
normal regular cyclic group. Conversely, we will show that each such 2-closed group is
the automorphism group of some normal circulant.

Throughout the rest of this paper, let Zn be an abstract cyclic group of order n and let
G 6 Sym(Zn) be a transitive permutation group which contains a normal regular cyclic
group Ẑn where

Ẑn = {ĝ : x→ xg ∀x ∈ Zn| g ∈ Zn}. (1)

Therefore G is a semidirect product Ẑn o G0 for some subgroup G0 6 Aut(Zn) acting
naturally on Zn. Since Ẑn ∼= Zn, we may also write G = Zn oG0 directly. Our goal is to
determine all such 2-closed groups.
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The mail tool used in this paper is the Kovács-Li classification of arc-transitive cir-
culants [11, 12]. Praeger and the author [14] refined the Kovács-Li classification and
obtained the following theorem.

Theorem 2.1. [14, Theorem 1.1] Let G = Zn oG0 6 Zn o Aut(Zn) acting naturally on
Zn. Then, up to isomorphism, there is a unique connected Zn-circulant Γ on which G
acts arc-transitively. Moreover either Aut(Γ) = G or one of the following holds.

(a) n = p > 5 is prime, Γ = Kp, and G = AGL(1, p);

(b) n = bm > 4, where b > 2, p divides m for each prime p dividing b, Γ = Σ[Kb];

(c) n = pm, where p is prime, 5 6 p < n, and gcd(m, p) = 1, Γ = Σ[Kp] − p.Σ,
G0 = Aut(Zp) × H 6 Aut(Zp) × Aut(Zm), and Σ is a connected (Zm o H)-arc-
transitive Zm-circulant.

We point out that up to isomorphism, in the above theorem Γ can be defined as
Cay(Zn, z

G0) where z is a generator of Zn and zG0 is the orbit of z under G0. Moreover,
if case (b) happens, then the group Zn has a subgroup Y of order b, and Γ = Cay(Zn, S)
where S is a union of Y -cosets each consisting of generators for Z.

As a simple application of Theorem 2.1, we determine the 2-closed transitive permu-
tation groups of degree p where p is a prime.

Corollary 2.2. Let p be a prime. Let G 6 Sym(Ω) be a 2-closed transitive permutation
group of degree p. Then there exists a digraph representing G. Moreover, G is one of the
following.

1. The symmetric group Sp (p > 2) which is 2-transitive on Ω.

2. An affine subgroup Zp o Zk where p > 3, 1 6 k < (p− 1) and k|(p− 1).

Conversely, each group of the above two types is 2-closed.

Proof. Suppose G is a 2-closed transitive permutation group of degree p. By a classical
result of Burnside, G is either 2-transitive or is affine. If G is 2-transitive, then G = G(2) =
Sp and p > 2. If G is not 2-transitive, then G = Zp o Zk where p > 3, 1 6 k < (p − 1)
and k|(p− 1).

For the converse, note that Sp is the full automorphism group of the complete graph
Kp and so Sp is indeed 2-closed. Next, let G = ZpoZk where p > 3, 1 6 k < (p− 1) and
k|(p− 1). By Theorem 2.1, there is a connected arc-transitive circulant Γ of order p such
that Aut(Γ) = G, and so G is 2-closed.

Remark: If p = 2, 3 then Sp = ZpoAut(Zp) is 2-closed; and if p > 5 then ZpoAut(Zp)
is not 2-closed.

We also need the following theorem.

Theorem 2.3. [5, Theorem 5.1] Let G1 6 Sym(Ω1) and G2 6 Sym(Ω2) be transitive
permutation groups. Consider the natural product action of G1 × G2 on Ω1 × Ω2. Then
(G1 ×G2)(2) = G

(2)
1 ×G

(2)
2 .
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Finally, we fix the following notation. Let A 6 Sym(Ω). Suppose that AB is the
setwise stabilizer of B ⊆ Ω and g ∈ AB, we denote ABB to be the induced permutation
group on B by AB and denote gB to be the induced permutation on B by g.

3 2-closed groups containing a normal regular cyclic group

In this section we classify 2-closed groups G that contain a normal regular cyclic group
Zn. With notation in Section 2, we may suppose that G = ZnoG0 6 ZnoAut(Zn) acting
naturally on Zn. We first handle the special case that n is a prime power in Subsection
3.1 and Subsection 3.2. The notation needed for the statement of Theorem 1.2 is given
in Subsection 3.3.1 and the proof is given in Subsection 3.3.2.

3.1 The case n = pd with p an odd prime

Let n = pd where p is an odd prime and d > 2 is an integer. Then Aut(Zn) = Z(p−1)×Zpd−1

is a cyclic group. We take α ∈ Aut(Zn) such that o(α) = p, then there exists γ ∈ Aut(Zn)
with order pd−1 such that α = γp

d−2
. We first look at the action of α on Zn.

Let H = Zpd−1 be the unique subgroup of Zn of order pd−1. Let N = Zn o Aut(Zn).
Then the cosets ofH form a block system B ofN on Zn. Denote B = {B1 = H,B2, . . . , Bp}.
Since the elements in B2, . . . , Bp are of order pd, γ fixes each block setwise and γBi is a
pd−1−cycle for each i > 2. However, γ fixes the point 1 ∈ H = B1, so the order of γB1 is
strictly less than pd−1. It then follows that α fixes B1 pointwise and is fixed point free on
each Bi for i > 2.

On the other hand, let NBi
Bi

be the induced permutation group of the setwise stabilizer

NBi
on Bi. Then NBi

Bi
= Ẑpd−1 oKi and Ki

∼= Aut(Zpd−1), (Ẑpd−1 is defined in equation

(1)). For each i > 2, since γBi is fixed point free, we have that γBi = ŷBi
i τ where 1 6= yi ∈

H 6 Zn and τ ∈ Ki. Since τ normalizes Ẑpd−1 , (γBi)2 = ŷBi
i (τ ŷBi

i τ
−1)ττ = ai2τ

2 where ai2
is some element in Ẑpd−1 . By induction, we have that for each k > 1, (γBi)k = aikτ

k where

aik is some element in Ẑpd−1 . Since γBi is of order pd−1 and Ẑpd−1 ∩ Ki = {1}, we have

that τ p
d−1

= 1. Since τ ∈ Aut(Zpd−1) = Zp−1 × Zpd−2 , τ p
d−2

= 1. Recall that α = γp
d−2

, it

then follows that αBi is x̂Bi
i for some xi ∈ Zn with order p. Note that xi may not equal

xj for 2 6 i < j 6 p, but they are all of order p. We have proved the following lemma.

Lemma 3.1. Let α ∈ Aut(Zpd) with order p. Let B = {B1 = H,B2, . . . , Bp} be the cosets
of the subgroup H where H < Zpd is of order pd−1. Then α fixes B1 = H pointwise and

for each i > 2, αBi is x̂Bi
i for some xi ∈ Zn with order p.

Corollary 3.2. Let n = pd and Zn = 〈z〉. Let Zp 6 Zn be the subgroup of order p.
Suppose that G = Zn oG0 where G0 6 Aut(Zn). Then the coset zZp ⊆ zG0 if and only if
p||G0|.

Remark: Let S = zG0 and Γ = Cay(Zn, S). If case (b) of Theorem 2.1 occurs for Γ, then
zZp ⊆ zG0 . That is why we consider this corollary.
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Proof. Let Aut(Zpd) = 〈µ〉 × 〈γ〉 = Zp−1 × Zpd−1 and α = γp
d−2

. Then p||G0| if and only
if α ∈ G0.

Let B = {B1 = H,B2, . . . , Bp} be the cosets of the subgroup H where H < Zpd is of
order pd−1. Then it is easy to show that µ fixes B1 setwise, and permutes B2, . . . , Bp as
a (p− 1)-cycle.

By Lemma 3.1, if α ∈ G0 then zZp ⊆ zG0 . Conversely, suppose that zZp ⊆ zG0 . Note
that the generator z ∈ Bk for some k > 2 and zZp ⊆ Bk. By the action of µ and γ, we
conclude that α ∈ G0.

Proposition 3.3. Let n = pd where p is an odd prime and d > 2. Let G = Zn o G0 6
Zn o Aut(Zn) acting naturally on Zn. Then G is 2-closed if and only if G0 6 Zp−1.
Moreover, if G is 2-closed then G can be represented by an arc-transitive circulant.

Proof. As defined at the beginning of Subsection 3.1, let α ∈ Aut(Zpd) be an element of
order p. Let B = {B1 = H,B2, . . . , Bp} be the cosets of the subgroup H where H < Zpd
is of order pd−1.

Suppose first that G0 66 Zp−1, that is p||G0|, then α ∈ G0. By Lemma 3.1, α fixes
B1 = H pointwise and for each i > 2, αBi is x̂Bi

i for some xi ∈ Zn with order p.
Let 1 6= β ∈ Sym(Zn) such that β fixes every element of B1, . . . , Bp−1 and βBp = αBp .

That means βBp = x̂
Bp
p , (recall that x̂ : z 7→ zx for any z ∈ Zn). We claim that

β ∈ (Zpd o 〈α〉)(2) and so β ∈ G(2). Take any pair (y1, y2) ∈ Zn × Zn. If both y1 and y2

belong to Bp, then (y1, y2)β = (y1xp, y2xp) is in the orbital (y1, y2)G. Suppose next that
exactly one of {y1, y2} lies in Bp, say y2 ∈ Bp. Since the stabilizer Gy1 is the conjugate

of G0 in G by an element in Ẑn, a conjugate of α, say ρ, is in Gy1 . Therefore βBp

equals (ρj)Bp for some j ∈ {1, . . . , p− 1}, and so (y1, y2)β ∈ (y1, y2)G. It then follows that
β ∈ (Zpdo〈α〉)(2) 6 G(2). However, since β fixes B1 and B2 pointwise, β /∈ ZpdoAut(Zpd),
and so β /∈ G and G is not 2-closed.

Suppose next that G0 6 Zp−1. Let S = zG0 where z ∈ Zpd is an element of order pd

and let Γ = Cay(Zn, S). Since (p, |G0|) = 1, p - |S| and so S is not a union of cosets of
any subgroup of Zn. By Theorem 2.1, Aut(Γ) = G and so G is 2-closed. This completes
the proof.

Remark: In above proof, note that β is in (Zpd o 〈α〉)(2). Hence we actually proved that
(Zpd o 〈α〉)(2) � Zpd o Aut(Zpd) where α ∈ Aut(Zpd) is of order p.

3.2 The case n = 2d for d > 2

Notation: For convenience, in this subsection we write Zn additively as the group Zn of
integers modulo n, so in this case

Ẑn = Ẑn = {x̂ : g → g + x | x ∈ Zn}.

Moreover Aut(Zn) is the multiplicative group Z∗n so that i∗ ∈ Aut(Zn) denotes the map
j 7→ ij.
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3.2.1 d = 2:

In this case, Aut(Z4) = 〈(−1)∗〉 ∼= Z2. We have the following result.

Lemma 3.4. Suppose that Ẑ4 6 G 6 Ẑ4 o 〈(−1)∗〉 ∼= D8. Then G is 2-closed and is the
full automorphism group of an arc-transitive circulant.

Proof. Either G ∼= Z4 is regular or G ∼= D8. Note that Aut(Cay(Z4, {1})) = Z4 and
Aut(Cay(Z4, {1,−1})) = D8 = Z4 o Z2, this proves the lemma.

Remark: By [14, Lemma 2.3], a connected arc-transitive circulant Γ is both normal
and of lexicographic product form if and only if Γ = Cay(Z4, {1,−1}) and Aut(Γ) =
Z4 o Aut(Z4). In this case the orbit 1Aut(Z4) = {1, 3} = 1 + Z2 is a coset of Z2.

3.2.2 d > 3:

In this case, Aut(Zn) = 〈(−1)∗〉 × 〈5∗〉 ∼= Z2×Z2d−2 . Denote N = ẐnoZ∗n. Let H be the
unique subgroup of Zn with order 2d−2. Let B0 = H,B1 = 1 +H,B2 = 2 +H,B3 = 3 +H
be the cosets of H, then B = {B0, B1, B2, B3} forms a complete block system of N on Zn.

We first study the action of 5∗. By computation 5∗ preserves each block Bi, we
determine the induced permutation (5∗)Bi next. Since B1 ∪B3 consists of all elements of
order 2d, (5∗)B1 and (5∗)B3 are 2d−2-cycles. As B0 = 〈4〉 = Z2d−2 and B0 ∪ B2 = 〈2〉 =
Z2d−1 , it is easy to deduce that (5∗)B2 is a product of two 2d−3-cycles (if d = 3, then (5∗)B2

is trivial). Therefore the orders of (5∗)B1 and (5∗)B3 are 2d−2, the order of (5∗)B2 is 2d−3,
and the order of (5∗)B0 is 2d−4 (if d = 3, then the order is 1).

Case 1: d = 3
In this case, n = 8 and Aut(Z8) = 〈(−1)∗〉× 〈5∗〉 ∼= Z2×Z2. By computation, 5∗ fixes

B0 and B2 pointwise, and the induced action (5∗)B1 = 4̂B1 and (5∗)B3 = 4̂B3 . The element
(−1)∗ fixes B0 pointwise and ((−1)∗)B2 = 4̂B2 .

Lemma 3.5. Let Z8 = 〈z〉. Suppose that G = Z8 oG0 where G0 6 Aut(Z8) = 〈(−1)∗〉 ×
〈5∗〉. Then the coset z + Z2 ⊆ zG0 if and only if 5∗ ∈ G0 where Z2 = 〈4〉 is the subgroup
of order 2.

Proof. Note that both z and z + Z2 are contained in B1 or B3 and (−1)∗ interchanges
two blocks B1 and B3. The result follows from the analysis of the actions of (−1)∗ and
5∗ easily.

Proposition 3.6. With above notation, let G = Z8oG0 where G0 6 Aut(Z8) = 〈(−1)∗〉×
〈5∗〉. Then

1. if G0 = Aut(Z8) then G is not 2-closed.
2. if G0 � Aut(Z8) and G0 6= 〈5∗〉, then G is 2-closed and can be represented by an

arc-transitive circulant.
3. if G0 = 〈5∗〉, then G is 2-closed and can be represented by a circulant.
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Proof. (1) Suppose first that G0 = Aut(Z8). Let β ∈ S8 such that β fixes B0, B1 and
B3 pointwise and βB2 = 4̂B2 . Take any pair (y1, y2) ∈ Z8 × Z8. If both y1 and y2

belong to B2, then (y1, y2)β = (y1, y2)4̂ is in the orbital (y1, y2)G. Suppose next that
exactly one of {y1, y2} belongs to B2, say y2 ∈ B2. It is straightforward to check that
(y1, y2)β = (y1, y2)(−1)∗ if y1 ∈ B0. Let G1 be the point stabilizer of point 1, then G1 is the
conjugate of G0 by 1̂ ∈ Ẑn. Let α1 be the corresponding conjugate of 5∗ in G1. It follows
that (y1, y2)β = (y1, y2)α1 if y1 ∈ B1 ∪B3. Hence β ∈ G(2). However since β fixes 0 and 1,
β /∈ G and so G is not 2-closed.

(2) In this case, 5∗ /∈ G0. Let S = 1G0 and let Γ = Cay(Z8, S). It follows from Lemma
3.5 and Theorem 2.1 that G = Aut(Γ) and is 2-closed.

(3) Finally we show that Z8o〈5∗〉 is 2-closed. Let S1 = 1〈5
∗〉 = {1, 5} and S2 = 2〈5

∗〉 =
{2}. Let Γ = Cay(Z8, S1 ∪ S2). By [12, Theorem 1.3], it is easy to deduce that Γ is not
arc-transitive. Suppose g ∈ Aut(Γ) such that g fixes 0 and 1, it is straightforward to
check that g = 1. We conclude that Aut(Γ) = Z8 o 〈5∗〉 as required.

Case 2: d > 4
Let α = (5∗)2d−4

be an element of order 4 in 〈5∗〉. By the analysis of action of 5∗, we
deduce that α fixes B0 pointwise and o(αB2) = 2, o(αB1) = o(αB3) = 4.

Suppose first that d = 4, then α = 5∗. By direct computation, αB2 = 8̂B2 , αB1 = 4̂B1

and αB3 = −̂4
B3

.
Next suppose d > 5. Denote N = Ẑn o Z∗n. Note that NBi

Bi

∼= Ẑ2d−2 o Ki where
Ki
∼= Aut(Z2d−2) for each i ∈ {1, 2, 3}. Since (5∗)Bi is fixed point free on Bi for i = 1, 2, 3,

(5∗)Bi = ŷBi
i τi where 0 6= yi ∈ Zn and τi ∈ Ki. Since τi normalizes Ẑ2d−2 , ((5∗)Bi)2 =

ŷBi
i (τiŷ

Bi
i τ
−1
i )τiτi = ai2τ

2
i where ai2 is some element in Ẑ2d−2 . By induction, we have that

for each k > 1, ((5∗)Bi)k = aikτ
k
i where aik is some element in Ẑ2d−2 . Since τi ∈ Aut(Z2d−2)

and d > 5, τ 2d−4

i = 1. By the order of αBi , we have that αBi = x̂Bi
i , where x1, x3 ∈ Zn are

of order 4 and x2 = 2d−1 is the unique involution in Zn. In addition, 2x1 = 2x3 = 2d−1.
Therefore we have proved the following lemma.

Lemma 3.7. Suppose d > 4. With above notation, let α = (5∗)2d−4
be an element of

order 4 in 〈5∗〉. Then α fixes B0 pointwise, αB2 = (2̂d−1)B2, αB1 = x̂B1
1 for some x1 ∈ Zn

with order 4 and αB3 = x̂B3
3 for some x3 ∈ Zn with order 4.

Corollary 3.8. Let n = 2d for d > 4 and let Zn = 〈z〉. Suppose that G = Zn oG0 where
G0 6 Aut(Zn) = 〈(−1)∗〉 × 〈5∗〉. Let α ∈ 〈5∗〉 be of order 4. Then

1. the coset z+Z4 ⊆ zG0 if and only if α ∈ G0 where Z4 6 Zn is the subgroup of order
4.

2. the coset z + Z2 ⊆ zG0 if and only if α2 ∈ G0 where Z2 6 Zn is the subgroup of
order 2.

Proof. By Lemma 3.7, we have that z +Z4 ⊆ zG0 if α ∈ G0 and z +Z2 ⊆ zG0 if α2 ∈ G0.
With the notation in Lemma 3.7, suppose that z +Z4 ⊆ zG0 . Note that z ∈ B1 or B3

and z + Z4 ⊆ B1 or B3 respectively. Since (−1)∗ interchanges B1 and B3, it is easy to
deduce that α ∈ G0. Similarly, if z + Z2 ⊆ zG0 then α2 ∈ G0.
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Proposition 3.9. With above notation, let G = Zn oG0 6 Zn o Aut(Zn) where n = 2d

for d > 4. If α = (5∗)2d−4 ∈ G0, then (Zn o 〈α〉)(2) � Zn o Aut(Zn). In particular, G is
not 2-closed on Zn.

Proof. Let 1 6= β ∈ Sym(Z2d) such that β fixes B0, B2, B3 pointwise and βB1 = (̂2d−1)
B1

is of order 2. Therefore βB1 = (α2)B1 . We will show next that β ∈ (Z2d o 〈α〉)(2) 6 G(2).
Take any pair (y1, y2) ∈ Zn × Zn. If both y1 and y2 belong to B1, then (y1, y2)β =

(y1, y2)2̂d−1
is in the orbital (y1, y2)G. Suppose next that exactly one of {y1, y2} belongs

to B1, say y2 ∈ B1. By Lemma 3.7, (y1, y2)β = (y1, y2)α
2

if y1 ∈ B0 or B2. Let G3 be
the point stabilizer of point 3, then G3 is the conjugate of G0 by 3̂ ∈ Ẑn. Let α3 be the
corresponding conjugate of α in G3, it follows from Lemma 3.7 that (y1, y2)β = (y1, y2)α3

if y1 ∈ B3. Thus β ∈ (Z2d o 〈α〉)(2) 6 G(2). However since β fixes B0 and B3 pointwise,
β /∈ Z2d o Aut(Z2d) and so (Z2d o 〈α〉)(2) � Z2d o Aut(Z2d). In particular G is not
2-closed.

Next we will show that if α /∈ G0 then G is 2-closed. Note that α /∈ G0 is equivalent
to the condition that either |G0| 6 2 or |G0| = 4 and G0 
 〈5∗〉.

We first discuss the case that α2 /∈ G0.

Lemma 3.10. With above notation, let n = 2d for d > 4. Let G = Zn o G0. Suppose
α2 /∈ G0. Then G is the full automorphism group of an arc-transitive circulant and so G
is 2-closed.

Proof. Let S = 1G0 be the orbit of 1 under G0, and let Γ = Cay(Zn, S). Since α2 /∈ G0,
it follows from corollary 3.8 that S is not a union of cosets of any subgroup of Zn. By
Theorem 2.1, Aut(Γ) = G as required.

It remains to show that if G = Zn oG0 where α2 ∈ G0 but α /∈ G0 then G is the full
automorphism group of some circulant. We will prove this in Proposition 3.15 when we
handle the more general case.

3.3 The general case.

3.3.1 The notation for the main theorem.

We explain Conditions 1.1 in more detail first.
Let

n = 2d1pd2
2 · · · pdtt , d1 > 0, d2, . . . , dt > 1, t > 1

where p2, . . . , pt are distinct odd primes. For convenience, we also write p1 = 2. In
addition, the notion pdii ||n means pdii |n but pdi+1

i - n.
Let G = Ẑn o G0 acting on Zn naturally where G0 6 Aut(Zn). In order to reduce

the proof in the general case to the prime power case, we choose the product action form
to describe G. Let Zm be the unique subgroup of Zn of order m for m|n. Then we may
write

Zn = Z2d1 × Zpd2
2
× · · · × Z

p
dt
t

= {(z1, . . . , zt) = z1z2 · · · zt|zi ∈ Zpdii , where p1 = 2}.
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For any g = (g1, . . . , gt) ∈ Zn, we have ĝ : (z1, . . . , zt) 7→ (z1g1, . . . , ztgt). Moreover,

Aut(Zn) = Aut(Z2d1 )× · · · × Aut(Z
p
dt
t

) = D1D2 · · ·Dt,

where Di is the direct factor subgroup of Aut(Zn) that fixes each component of the
elements of Zn except for the i-th component. So Di

∼= Aut(Z
p
di
i

).

In fact Di induces a faithful action on the subgroup Z
p
di
i

. With notation in §3.2,

if d1 > 3 then the induced action D1 on the subgroup Z2d1 is permutation isomorphic
to 〈(−1)∗〉 × 〈5∗〉(d1 > 3), the multiplicative group of units of the ring Z2d1 acting on
the additive group Z2d1 . Let φ : 〈(−1)∗〉 × 〈(5)∗〉 → D1 be the corresponding group
isomorphism.

The normalizer of Ẑn in Sym(Zn) is

N = Ẑn o Aut(Zn) = (Ẑ2d1 o Aut(Z2d1 ))× · · · × (Ẑ
p
dt
t
o Aut(Z

p
dt
t

))

acting on Zn by the natural product action. Therefore G = ẐnoG0 6 N has the natural
product action.

We need the following two easy observations in the proof below.
(1) Note that when i > 2, Aut(Z

p
di
i

) = Zp−1 × Zpdi−1
i

. Conditions 1.1 [ii] is equivalent to

αi /∈ G0 where αi ∈ Di
∼= Zpi−1 × Zpdi−1

i
is of order pi.

(2) When i = 1 and d1 > 4, denote α1 = φ((5∗)2d1−4
) ∈ D1, then the order of α1 is 4.

Conditions 1.1 [iv] is equivalent to α1 /∈ G0.

3.3.2 The proof of Theorem 1.2.

Lemma 3.11. With notation in Subsection 3.3.1, suppose G = Ẑn o G0 where G0 6
Aut(Zn). If G0 fails to satisfy one of conditions 1.1, then G is not 2-closed.

Proof. If condition (i) does not hold, then there exists an odd prime pi > 5 where i > 2
such that pi||n and Di 6 G0. In this case we take K = Ẑpi oDi. By hypothesis, K is the
subgroup ofG which fixes each component of elements of Zn except for the i-th component.
Hence the action of K on Zn is the product action of K̄ × {1} on Zn = Zpi × Z n

pi
where

K̄ ∼= K acts on Zpi naturally. It follows from Theorem 2.3 that K(2) = (K)(2) × {1}. By
the remark after Corollary 2.2, (K)(2) * Zpi oAut(Zpi). Since G(2) > K(2), we have that
G is not 2-closed in this case.

If condition (ii) does not hold, then there exists an odd prime pi where i > 2 such that
pdii ||n and di > 2. Since αi ∈ G0 in this case, we take K = Ẑ

p
di
i
o 〈αi〉 6 G. Hence the

action of K on Zn is the product action of K̄ × {1} on Zn = Z
p
di
i
× Z n

p
di
i

where K̄ ∼= K

acts on Z
p
di
i

naturally. By the remark after Proposition 3.3, (K)(2) * Z
p
di
i
o Aut(Z

p
di
i

).

The same argument as above proves that G is not 2-closed in this case either.
Suppose 2d1||n and d1 > 3, suppose also that either condition (iii) or (iv) fails. Take

K = Ẑ8 o D1 if d1 = 3 and take K = Ẑ2d1 o 〈α1〉 if d1 > 4. By the same argument as
above, it follows from Proposition 3.6(1) and Proposition 3.9 that G is not 2-closed.
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Lemma 3.12. With notation in Subsection 3.3.1, suppose G = Ẑn o G0 where G0 6
Aut(Zn) and G0 satisfies Conditions 1.1. Let S = zG0 where Zn = 〈z〉, and let Γ =
Cay(Zn, S). Then exactly one of the following holds.

1. G is the full automorphism group of Γ and so G is 2-closed and can be represented
by an arc-transitive circulant.

2. 2d1||n, d1 > 4, and α2
1 ∈ G0 ∩D1.

3. 23||n, and D1 ∩G0 = 〈φ(5∗)〉 ∼= Z2.

4. n = 4m where m > 1 is odd. D1 ∩G0 = D1
∼= Z2, that is G0 = Aut(Z4)×K where

K 6 Aut(Zm).

Moreover, in the latter three cases, Γ = Σ[K2] is a lexicographic product and the pointwise
stabilizer of {1, z} in Aut(Γ) preserves each coset of Z2.

Proof. Suppose that G is not the full automorphism group of Γ. By the condition (i),
for any odd prime pi > 5 such that pi||n, we have G0 6= Aut(Zpi) × H for some H 6
Aut(Zn/pi). It then follows from Theorem 2.1 that case (b) of Theorem 2.1 occurs for Γ.
That is n = bk > 4 where b > 2 and Γ = Σ[Kb]. Moreover, the group Zn has a subgroup
Y of order b and S is a union of Y -cosets each consisting of generators for Zn.

Recall that n = 2d1pd2
2 · · · pdtt . Suppose that pj|b for some j ∈ {1, . . . , t}. Then

zZpj ⊆ S where Zpj is the subgroup of order pj and dj > 2 by Theorem 2.1 (b). Let
z = (z1, . . . , zt) where zi is a generator of Z

p
di
i

for each i. Thus zZpj ⊆ S = zG0 implies

that zjZpj ⊆ z
Dj∩G0

j in the j-th component. By Corollary 3.2, the condition (ii) implies

that b = 2l is a power of 2. Similarly, by Corollary 3.8, Lemma 3.5 and the action of
Aut(Z4), the condition (iii) and (iv) imply that b must be 2 and one of cases 2-4 happens.

Suppose next that one of cases 2-4 occurs. Thus Γ = Σ[K2] where Σ = Cay(Zn/Z2, S)
and S = {sZ2|s ∈ S}. Moreover, by [14, Lemma 2.3], the set {xZ2|x ∈ Zn} forms a block
system of Aut(Γ), and so Aut(Γ) = Z2 o Aut(Σ).

Let G0 = G0/〈α2
1〉 in case 2, and let G0 = G0/(D1 ∩ G0) in case 3 or 4. Then

G0 6 Aut(Zn/Z2) and S = (zZ2)G0 . Note that G0 satisfies Conditions 1.1, it follows that
S is not the union of cosets of any subgroup of Zn/Z2. By Theorem 2.1, Σ is normal and
Aut(Σ) = (Zn/Z2)oG0. Therefore the pointwise stabilizer of {1, z} in Aut(Γ) preserves
each coset of Z2.

Remark: Suppose G satisfies Conditions 1.1. By the above lemma, G can be represented
by an arc-transitive circulant if and only if G does not arise in any of the cases 2-4 of
Lemma 3.12.

Next we will show that if one of cases 2-4 occurs then there exists a circulant Γ which
is not arc-transitive such that Aut(Γ) = G. We discuss case 4 first.

Lemma 3.13. Suppose n = 4m where m > 1 is odd and G = Z4m o G0 where G0 =
Aut(Z4)×K and K 6 Aut(Zm). Suppose further that G0 satisfies Conditions 1.1. Then
G is 2-closed and can be represented by a circulant.
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Proof. Let z = z1z2 ∈ Z4m where z1 is a generator of Z4 and z2 is a generator of Zm. Let
S1 = zG0 and Γ1 = Cay(Z4m, S1). By Lemma 3.12, S1 is the union of some cosets of Z2 =
〈z2

1〉. Let S2 = zG0
2 ⊆ Zm and Γ2 = Cay(Z4m, S2). Thus B0 = Zm, B1 = zZm, B2 = z2Zm

and B3 = z3Zm are the connected components of Γ2.
Let S = S1 ∪ S2 and Γ = Cay(Z4m, S). Suppose first that Γ is arc-transitive. Note

that S1 consists of elements of order 4m and S2 contains elements of order m. We observe
that S is not the union of cosets of any subgroup. By [12, Theorem 1.3], Γ = Σ[Kb]− b.Σ
where n = br, 4 6 b < n and gcd(b, r) = 1. Thus writing Zn = Y ×M with Y ∼= Zb and
M ∼= Zr, we have that S = Y \{1}×T and T ⊆M \{1}. Analyzing the orders of elements
of S, we have that b = pi is prime, pi > 5 and pi||m as (b, r) = 1. As zG0 ⊂ Y \ {1} × T ,
Di
∼= Aut(Zpi) ⊆ G0, contradicting the condition (i). Thus Γ is not arc-transitive.
Let P be the point stabilizer of Aut(Γ) on vertex 1. Since P > G0, P has two orbits

S1 and S2 and so Aut(Γ) = Aut(Γ1) ∩ Aut(Γ2)
Assume that g ∈ Aut(Γ) fixing 1 ∈ B0 and z ∈ B1. Consider z2 ∈ B2 ∩ zS1 which

is adjacent to z. It follows from Lemma 3.12 that g fixes each coset of Z2 = 〈z2
1〉.

Hence (z2)g ∈ {z2, z2z2
1} = z2Z2 and g fixes both z ∈ B1 and zz2

1 ∈ B3. Moreover, as
g ∈ Aut(Γ2), we conclude that g must fix B0, B1, B2 and B3 setwise. Therefore, g fixes
z2. Continuing in this fashion, we conclude that g fixes z3, z4, . . . and so on. Thus g = 1
and P = G0. It follows that Aut(Γ) = G as required.

It remains to handle case 2 and case 3 in Lemma 3.12. By Lemma 3.12, we may
suppose that 8|n and G = Ẑn o G0 where G0 6 Aut(Zn). Let S1 = zG0 where Zn = 〈z〉
and let S2 = (z2)G0 ⊆ Zn/2 = 〈z2〉. We construct Γ = Cay(Zn, S1∪S2). We will show that
Γ can represent G in both case 2 and case 3. In order for proving this, let Γ1 = Cay(Zn, S1)
and Γ2 = Cay(Zn, S2) we need to study Γ1 and Γ2. Note that Γ1 has been studied in
Lemma 3.12. We study Γ2 in the following lemma.

Lemma 3.14. Suppose that case 2 or 3 of Lemma 3.12 occurs. With above notation,
we have that Γ2 = 2.Cay(〈z2〉, S2). Let A3 = Aut(Cay(〈z2〉, S2)) and A2 = Aut(Γ2).
Then A2 = A3 o Z2. Moreover, Cay(〈z2〉, S2) is a normal arc-transitive circulant and

A3 = 〈z2〉oG
〈z2〉
0 .

Proof. Let ∆1 = 〈z2〉 and ∆2 = z〈z2〉. Then Γ2 = 2.Cay(〈z2〉, S2) such that ∆1 and ∆2

are two connected components of Γ2. Thus A2 = A3 o Z2.
Let G0 = G0/〈α2

1〉 in case 2, and let G0 = G0/(D1 ∩ G0) in case 3. Note that G0

preserves ∆1, it is easy to check that the induced permutation group G∆1
0
∼= G0 and

G∆1
0 6 Aut(〈z2〉). Also S2 = (z2)G

∆1
0 is an orbit of G∆1

0 . Since G0 satisfies conditions
in Theorem 1.2, S2 is not the union of cosets of any subgroup of 〈z2〉. By Theorem 2.1
and Conditions 1.1, we conclude that Cay(〈z2〉, S2) is normal and Aut(Cay(〈z2〉, S2)) =
〈z2〉oG∆1

0 .

Proposition 3.15. With notation in Subsection 3.3.1, suppose G = Ẑn o G0 where
G0 6 Aut(Zn) and G0 satisfies Conditions 1.1. Suppose further that case 2 or 3 of Lemma
3.12 occurs. Let S1 = zG0 where Zn = 〈z〉 and let S2 = (z2)G0. Let Γ = Cay(Zn, S1 ∪ S2)
and let P be the point stabilizer of vertex 1 in Aut(Γ). Then
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1. Γ is not arc-transitive, and S1, S2 are two orbits of P .

2. For any g ∈ Aut(Γ) such that g fixes 1 and z, we have that g = 1.

3. Aut(Γ) = G = Zn oG0. So Γ is normal and G is 2-closed.

Proof. (1) Suppose, to the contrary, that Γ is arc-transitive. Note that S1 consists of
elements of order n and S2 contains elements of order n/2 6= n. Also observe that S is
not the union of cosets of any subgroup. By [12, Theorem 1.3], Γ = Σ[Kb] − b.Σ, where
n = br, 4 6 b < n and gcd(b, r) = 1. Thus writing Zn = Y ×M with Y ∼= Zb and M ∼= Zr,
we have that S = Y \ {1} × T and T ⊆ M \ {1}. Analyzing the orders of elements of S,
by conditions (i)(ii) we have that b = 4. As (b, r) = 1, 4||n, contradicting the fact that
8|n. Thus Γ is not arc-transitive. As P > G0, S1, S2 are two orbits of P .

(2) Let Γ1 = Cay(Zn, S1), Γ2 = Cay(Zn, S2) and A1 = Aut(Γ1), A2 = Aut(Γ2). It
follows from (1) that Aut(Γ) = A1 ∩ A2.

Let g ∈ Aut(Γ) such that g fixes 1 and z. By Lemma 3.12, g preserves each coset
of Z2 and so (z2)g ∈ {z2, z2zn/2}. Moreover, since z2 ∈ S2 and g preserves S2, we have
(z2)g ∈ S2. By the proof of Lemma 3.14, we have that z2Z2 * S2 and so z2zn/2 /∈ S2.
Thus g fixes z2. Let ∆1 = 〈z2〉 and ∆2 = z〈z2〉 be two connected components of Γ2. By
Lemma 3.14, g∆1 ∈ Aut(〈z2〉) fixes ∆1 pointwise. Now g fixes z and z2 and consider (z3)g.
Using the same argument we deduce that g fixes ∆2 pointwise and so g = 1.

(3) It follows from (2) that P = G0 and so A = G = Ẑn oG0. Therefore Γ is normal
and G is 2-closed on Zn.

Theorem 1.2 now follows from Lemma 3.11, Lemma 3.12, Lemma 3.13 and Proposition
3.15.
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