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Abstract

Let F be a set of k by k nonnegative matrices such that every “long” product
of elements of F is positive. Cohen and Sellers (1982) proved that, then, every such
product of length 2k−2 over F must be positive. They suggested to investigate the
minimum size of such F for which there exists a non-positive product of length 2k−3
over F and they constructed one example of size 2k − 2. We construct one of size
k and further discuss relevant basic problems in the framework of Boolean linear
dynamical systems. We also formulate several primitivity properties for general
discrete dynamical systems.

Keywords: discrete dynamical system, hitting time, lexicographic order, non-
homogeneous matrix product, phase space, strong primitivity, primitivity, weak
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1 Strongly primitive matrix sets

Let A be a set. A word w over A is a sequence of elements of A, say w = a1 · · · a` where
a1, . . . a` ∈ A. For any a ∈ A, we write |w|a for the number of occurrences of a in the
sequence w. We call ` the length of the word w, which surely equals

∑
a∈A |w|a and will

be denoted by |w|. We call w a nonempty word provided |w| > 0. The free semigroup
generated by A, in symbols A+, has all the nonempty words over A as its elements and
has string concatenation as the semigroup multiplication.

For any nonnegative integer k, we write [k] for the set {1, . . . , k}. Note that [0] = ∅.
Pick a positive integer k. We use the notation Matk to denote the multiplicative semigroup
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of all k× k nonnegative matrices. LetM be a set of k× k nonnegative matrices. For any
word w = w1 · · ·w` ∈M` ⊆M+, we setMw to be the product w1 · · ·w` in Matk and call
it a product overM of length `. The map fromM+ to Matk that sends w toMw is
a semigroup morphism and the image of it is called the semigroup ofM. Take a map t

from M to nonnegative integers. Define the length of t be be |t| =
∑

M∈M t(M). When
|t| > 0, the Hurwitz product ofM of type t [14] is the matrix

Mt :=
∑
w

Mw,

where the sum runs over all those sequences w ∈ M+ such that |w|M = t(M) holds for
every M ∈ M. The strong primitivity exponent of M, denoted by g(M), is the
minimum positive integer ` such that all products overM of length at least ` is positive;
the primitivity exponent ofM, denoted by g’(M), is the minimum positive integer `
such that there exists a positive product overM of length `; and the weak primitivity
exponent ofM, denoted by g”(M), is the minimum positive integer ` such that we can
find a positive Hurwitz product of length ` over M. If the relevant positive integer does
not exist, our convention is to set the exponent to be ∞. It is clear that

g(M) > g’(M) > g”(M).

We say that M is strongly primitive, primitive, or weakly primitive, respectively,
if g(M) <∞, g’(M) <∞, or g”(M) <∞.

The weak primitivity property was introduced by Fornasini and Valcher [15] and its
rich properties and applications were further developed in [3, 4, 5, 16, 30, 33]. Olesky,
Shader and Van den Driessche [30, Theorem 7] showed for every positive integer d that

max{g”(M) : M∈
(

Matk
d

)
is weakly primitive} = Θ(kd+1).

A matrix set M∈
(
Matk
d

)
is irreducible provided

∪M∈M{(i, j) ∈ ([k] \ A)× A : M(i, j) 6= 0} 6= ∅

for every A ∈ 2[k] \ {∅, [k]}. If M ∈
(
Matk
d

)
is irreducible and no matrix of M contains a

zero row, Protasov [33, Theorem 2] found a polynomial time algorithm to decide if M is
weakly primitive.

The concept of primitivity property for matrix sets was pioneered by Protasov and
Voynov [34] and has attracted quite some attention [1, 6, 34, 39]. Blondel, Jungers and
Olshevsky [6, Theorem 6] proved that recognizing primitivity is decidable but NP-hard
as soon as there are three matrices in the set. They [6, Theorem 10] also showed that
the primitivity exponent of a primitive k × k matrix set M could be superpolynomial
in the size of the instance k2|M|. A nonnegative matrix is essential if it has no zero
lines. Protasov and Voynov [34] designed a polynomial time algorithm to test if a given
irreducible set of essential matrices is primitive. Voynov discovered that the primitivity
exponent of a primitive k × k essential matrix set is O(k3) [6, 39].
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As pointed out by Cohen and Sellers [12, p. 187], a strongly primitive matrix set is the
combinatorial part of Hajnal’s [20] concept of ergodic set, and is relevant to inhomoge-
neous Markov chains, automata, mathematical demography and linear switching systems
[17, 19, 21, 22, 30, 31, 43]. It also worths mentioning that strong primitivity property plays
a crucial role in approximation theory and functional analysis such as solvability of refine-
ment functional equations with column stochastic matrices [10, 29] and the convergence
of subdivision schemes with nonnegative masks [27, 41, 47].

In 1982, Cohen and Sellers [12, Theorem 1, Theorem 2] established the following result.

Theorem 1 (Cohen-Sellers). Let M be a strongly primitive set of k × k nonnegative
matrices. Then

g(M) 6 2k − 2. (1)

Moreover, one can choose a set M of size 2k − 2 to guarantee the equality in Eq. (1).

Theorem 1 tells us that the strong primitivity exponent g(M) can grow exponentially
in dimension k. To understand the strong primitivity property, an important question
arising in this context is whether the strong primitivity exponent g(M) can grow sub-
exponentially with respect to the size of the instance k2|M|. For any k > 2, the first
main result of this paper, Theorem 2, asserts that there exists a size-k strongly primitive
set M of k × k (essential) matrices satisfying g(M) = 2k − 2, thereby giving a positive
answer to the previous question. This may be a sign that the strong primitivity property
can hardly be decided in polynomial time. Cohen and Sellers concluded the paper [12]
with the question on determining the smallest size of M for which equality is valid in
Eq. (1). Thus, our Theorem 2 is also an effort towards answering their question.

For each nonnegative matrix M , we can replace all its positive entries by 1 and thus

form a (0, 1) matrix M . For M t to be a positive matrix, it is equivalent to have M
t

to be the all ones matrix according to the Boolean algebra operation. With this in
mind, one can check that all the properties addressed above on nonnegative matrices are
indeed properties on Boolean matrices. In mathematics, especially in various kinds of
representation theory, to understand the structure of an object, we often let it act on
other objects and then turn to the study of this action. In this paper and its subsequent
work [40, 44, 45], we suggest a genetic approach to understand the structure of a Boolean
matrix set or even Boolean tensor set, in which we recast everything in the language of
phase spaces. This is to let the Boolean matrices act on Boolean row vectors and then
study the corresponding Boolean linear dynamical systems. We believe that this approach
leads us to a series of fundamental mathematics structures and problems. In particular,
this approach suggests us to consider many natural problems which, at first sight, may
look to be far away from the above primitivity problems for nonnegative matrix sets.

In §2, we address the above-mentioned question of Cohen and Sellers in the framework
of Boolean linear dynamical systems. We hope that the phase space approach adopted in
§2 will make some readers interested enough to keep reading into §3 where we set forth
our formal description of primitive discrete dynamical systems, including a definition of
phase space. In §4 we discuss several aspects of strongly primitive essential Boolean linear
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dynamical systems and try to show that it is a good playground for mathematicians. The
last section, §5, is devoted to the proofs of those results claimed in §3 and §4.

2 The question of Cohen and Sellers

A digraph D consists of its vertex set V(D) and its arc set A(D) where A(D) ⊆ V(D)×
V(D). A walk in a digraph D of length k is a sequence of vertices v1, . . . , vk+1 such that
(vi, vi+1) ∈ A(D) for all i ∈ [k]. We often write this walk as v1 → v2 → · · · → vk → vk+1

and call this walk a closed walk when v1 = vk+1. A path in a digraph is a walk without
repeated vertices. Every arc is a walk of length 1 but not necessarily a path. A digraph
D is transitive provided u → w is an arc in D whenever u → v → w is a walk in D. A
digraph D is acyclic if it has no closed walk of positive length. Recall that a partially
ordered set (poset) is just an acyclic and transitive digraph, while its arc set is typically
called a partial order on the vertex set. A totally ordered set, also known as a
linearly ordered set, is a partially ordered set where exactly one of u→ w and w → u
is an arc for every two distinct vertices u and w. The arc set of a totally ordered set is
called a total order or a linear o rder.

Fix a positive integer k. Let Setk denote 2[k] \ {∅}. We could naturally identify Setk
with the set of nonzero Boolean row vectors (binary string) of length k, viewing each
A ∈ Setk as the (0, 1) string of length k whose ith position is occupied by a 1 if and only
if i ∈ A. Let M be a set of k × k Boolean matrices. We write PM for the digraph with
vertex set Setk of which A → B is an arc if and only if {A,B} ∈

(
Setk
2

)
and there exists

a matrix M from the semigroup of M such that AM = B. Let g(M) be the length of a
longest path in PM. We call M strongly primitive provided PM is acyclic and [k] is
the unique sink vertex in PM. If M is strongly primitive, g(M) is known as the strong
primitivity exponent of M.

Take k > 2 and i ∈ [k]. We define Mk,i to be the k × k Boolean matrix whose (p, q)-
entry is 1 if and only if p = i or q = i or p = q ∈ [i− 1]. We display some examples below
to illustrate the definition.

M6,1 =


1 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

 M6,4 =


1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
1 1 1 1 1 1
0 0 0 1 0 0
0 0 0 1 0 0

 M6,6 =


1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
1 1 1 1 1 1


Let φk be the bijection from Setk to [2k − 1] that sends A ∈ Setk to the integer

φk(A) :=
∑
i∈A

2k−i. (2)

The lexicographic order on Setk is the total order πk in which the following holds:

φ−1k (1)→ φ−1k (2)→ · · · → φ−1k (2k − 1) = [k]. (3)
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The next result not only improves the bound of the matrix set size in Theorem 1 from
2k − 2 to k, but also indicates the special role of the lexicographic order πk.

Theorem 2. Take k > 2 and let Mk = {Mk,1, . . . ,Mk,k} be a size-k set of k× k Boolean
matrices. Then g(Mk) = 2k − 2 and PMk

is the lexicographic order on Setk as given in
Eq. (3).

Proof. Pick i ∈ [k] and A ∈ Setk. If i ∈ [k]\A, we can check that AMk,i = {i}∪([i−1]∩A)
and thus φk(A) < φk(AMk,i); if i ∈ A, we can check that AMk,i = [k] and thus φk(A) 6
φk(AMk,i) where equality holds if and only if A = [k]. Especially, if s ∈ [2k − 2] and
i = max{j ∈ [k] : j /∈ φ−1k (s)}, then φ−1k (s)Mk,i = φ−1k (s+ 1). We illustrate this with two
examples below.

(
∗ ∗ ∗ 0 1 1

)

1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
1 1 1 1 1 1
0 0 0 1 0 0
0 0 0 1 0 0

 =
(
∗ ∗ ∗ 1 0 0

)

(
∗ ∗ ∗ ∗ ∗ 0

)

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
1 1 1 1 1 1

 =
(
∗ ∗ ∗ ∗ ∗ 1

)

The above discussion implies that

φ−1k (1)→ φ−1k (2)→ · · · → φ−1k (2k − 1) = [k]

is a path of length 2k − 2 in PMk
and that the arcs in PMk

are all of the form φ−1k (s)→
φ−1k (t) where 1 6 s < t 6 2k − 1. This proves that g(Mk) = 2k − 2 and that PMk

is the
claimed total order, as was to be shown.

3 Discrete dynamical systems

Let S be a nonempty set and let F be a family of maps from S to S. Viewing the maps
in F as a set of time-evolution laws and S the set of possible states, the pair D = (S,F)
forms a discrete dynamical system (DDS) on the ground set S, where the dynamics
are given by iterating the maps in F and hence time changes in discrete steps. The
fundamental role of the mathematical operation of function compositions makes DDS a
very basic mathematical object which models many practical systems [13, 26].

We have used prefix notation for function values, that is, we put the function name
followed by the input name inside parentheses. When talking about the functions in a
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DDS, we will use postfix notation instead. That is, when considering the DDS (S,F),
for any f ∈ F and s ∈ S, we adopt the notation sf for the image of s under f. When s
is a row vector and f is a matrix that acts on x by multiplication on the right, we often
directly write sf as sf.

The phase space of the DDS (S,F), which encodes all the phase transitions of the
system, is the digraph with vertex set S and arc set {s → sf : s ∈ S, f ∈ F}, and will
be denoted by PSS,F or simply PSF . We call b ∈ S a black hole of (S,F) provided b is
fixed by all f ∈ F and that for every s ∈ S, every long enough walk starting from s in
PSF will end at b. A DDS D is strongly primitive if it has a black hole. Clearly, every
strongly primitive DDS D has exactly one black hole, which we often denote by 1 = 1D,
and one may imagine that the so-called ‘time’s arrow’ just points towards this black hole
1.

Example 3. Let S be the set of positive integers. Let f ∈ SS be given by

sf :=


1, if s = 1;

3s+ 1, if s is odd and s > 1;
s
2
, if s is even.

The renowned Collatz conjecture [24] just asserts that (S, f) is strongly primitive with 1
being its black hole!

For a strongly primitive DDS D = (S,F) and every s ∈ S, the longest duration for
s is the length of a longest path from s to the black hole of D and this length is denoted
by ld(D, s) or simply ld(s). Similarly, we define the shortest duration for s to be the
length of a shortest path from s to the black hole of D and write it as sd(D, s) or simply
sd(s). The transient (strong primitivity exponent) of a strongly primitive system
(S,F) is the minimum nonnegative integer T such that every length T walk in PSF ends
at the black hole of (S,F), which we denote by g(S,F) or simply g(F). The hitting
time of a strongly primitive DDS (S,F) is the minimum nonnegative integer T such that
every s ∈ S can reach the black hole in T steps in PSF , which we denote by g(D), or
g(S,F), or simply g(F). In other words,

g(F) = lims∈S ld(s), g(F) = lims∈S sd(s).

If you view each vertex as a birth place and each directed path as the journey of life of
someone with the black hole death, then g(F) is the longest life of any person while g(F)
is the minimum time elapsed in evolution until at least one person from each birth place
will have died. Clearly,

g(F) 6 g(F) 6 |S| − 1. (4)

We will thus call |S| − 1 the absolute upper bound of the life expectancy in (S,F).

Example 4. Let S be the set of all nonnegative integers and let f be the map which
sends i to max(0, i− 1). Then (S, f) is a strongly primitive DDS with infinite transient.
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A pointed discrete dynamical system D′ = (D, s) is a DDS D = (S,F) together
with a base point s ∈ S. Note that under function compositions the set SS forms
a semigroup. For any word w = w1 · · ·w` ∈ F+, Fw is the element of SS obtained
by composing functions w1, . . . , w` from left to right in this order. The map from F+

to SS that sends w ∈ F+ to Fw ∈ SS is a semigroup morphism and the image of
it is called the semigroup of F . We say that w ∈ F+ is a synchronizing word for
D′ = (D, s) if Fw maps all elements of S to s. The pointed DDS D′ is primitive provided
it has a synchronizing word and the shortest length of such synchronizing words is the
primitivity exponent of D′, denoted by g’(D′). By taking S = Setk, s = [k] and
F ⊆ Matk, since matrix multiplication is nothing but the composition of linear maps, it
is easy to see that our definition of primitivity property here is a generalization of the
primitivity property of Boolean matrix set. This viewpoint on primitivity property may
also support the observation [2] that primitivity property and synchronizing property have
close connections.

Example 5. Let S be a nonempty set with s ∈ S, let k = |S| and let F be a nonempty
subset of SS. Assume that the pointed DDS D′ = ((S,F), s) is primitive. The famous
Černý conjecture [11, 38] says that there exists s′ ∈ S such that the primitivity exponent
of ((S,F), s′) is at most (k − 1)2. If Černý conjecture can be proved true, then we can
deduce that the primitive exponent of D′ is at most (k − 1)k.

Take a positive integer k. A map f from 2[k] to 2[k] is a Boolean linear map on 2[k]

[18, 44] provided

• Af ∪Bf = (A ∪B)f for all A,B ∈ [k], and

• ∅f = ∅.

A Boolean linear dynamical system is a DDS of the form (2[k],F) where F is a set
of Boolean linear maps on 2[k]. De Morgan defined the important concept of “relation” in
mathematics. Closely related to this basic object is the hemimorphisms between Boolean
algebras [23, p. 45]. The Boolean linear dynamical system is just a place for the com-
positions of hemimorphisms and is a special case of the general tropical linear dynamical
system [9, 28].

For any positive integer k and a set of Boolean linear maps F on 2[k], let us consider
the pointed DDS D = ((2[k],F), ∅), which arises in considering the zero controllability of
positive switched systems [35]. It is NP-complete to decide if D is primitive and it is NP-
hard to calculate g’(D) [7]. The set of synchronizing words for D naturally corresponds
to paths from [k] to ∅ in the digraph PS2[k],F . This observation leads to the fact that
g’(D) 6 2k − 1 whenever D is primitive. Like the problem of Cohen and Sellers, we
define γ′k to be the smallest size of a set F of Boolean linear maps on 2[k] which ensures
g’(D) = 2k − 1 and want to determine γ′k. The next result says that g’(D) can grow
sub-exponentially with respect to the size of the instance k2|F|.

Theorem 6. It holds γ′k 6 k for every k > 2.
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There may exist many reasonable ways of extending the weak primitivity property of
nonnegative matrix sets. We illustrate one of them here. Suppose the set S is endowed
with a poset structure (S,≺) and we say that x is bigger than y whenever y ≺ x in (S,≺).
Take a map t from F to nonnegative integers and assume |t| > 0. We say that a pointed
DDS D′ = ((S,F), s) is weakly primitive of type t (with respect to ≺) if, for every
x ∈ S, the set

{xFw : w ∈ F+, |w|u = t(u),∀u ∈ S}
has s as the unique least upper bound in the poset (S,≺). The weak primitivity
exponent of a weakly primitive pointed DDS D′ with respect to the partial order ≺
is the minimum positive integer ` such that D′ is weakly primitive of type t for some
function t with |t| = `.

The next section will be mainly concerned with the strong primitivity property. Let
D = (S,F) be a strongly primitive DDS. It turns out that the construction of PM in §2
gives rise to an important poset structure now for studying strong primitivity property.
That is, we can construct a partial order ≺D on S by setting (x, y) ∈≺D, also denoted by
x ≺D y, if and only if x 6= y and there is a path leading from x to y in PSD. We write PD
to stand for this poset (S,≺D). It is not hard to see that every finite poset with a unique
maximal element will arise in this way. Recall that a linear extension of a finite poset
(S,≺) is a bijective map π from [|S|] to S such that i < j holds whenever π(i) ≺ π(j). If
it happens that g(D) = |S|−1 <∞, we will have a longest path in PSD of length |S|−1,
say

x1 → x2 → · · · → x|S|−1 → x|S| = 1,

which means that the poset PD is the total order

x1 ≺D x2 ≺D · · · ≺D x|S|−1 ≺D x|S| = 1.

Actually, when S is a finite set, g(D) = |S| − 1 if and only if PD is a total order if and
only if PD allows a unique linear extension.

4 Strongly primitive Boolean linear dynamical systems

Take a positive integer k. A map f from Setk to Setk is essential provided

• Af ∪Bf = (A ∪B)f for all A,B ∈ Setk, and

• [k]f = [k].

An essential map from Setk to Setk is the combinatorial counterpart of a k by k matrix
without zero lines. Indeed, we could think of such a map f as the k by k Boolean matrix
Mf whose (i, j)-entry is 1 if and only if j ∈ if . We thus do not distinguish between an
essential map f and the corresponding matrix Mf and so the image Af of A ∈ Setk under
the map f could be conveniently written as AMf or even just Af. For ease of illustration,

we use A
f−→ B to mean that B = Af and we do not distinguish an element i ∈ [k] and

the corresponding singleton set {i}.

the electronic journal of combinatorics 22(4) (2015), #P4.36 8



1000 0100 0010 0001

1001
1100 0110 0011

1101
1011 1110 0111 1111

1010 0101

Figure 1: PSW4;1 .

Let F be a family of essential maps on Setk. We call (Setk,F) an essential Boolean
linear dynamical system. We refer to F as a strongly primitive set of essential
maps on Setk of size t if |F| = t and (Setk,F) is strongly primitive. If (Setk,F) is strongly
primitive, it is clear that its black hole must be [k]. By identifying essential maps on Setk
with k × k Boolean matrices without zero lines, the strong primitivity concept defined
here coincides with the one given in §2. If F is a singleton set, being strongly primitive
and being primitive are the same. Thus, we call a k × k Boolean matrix M primitive if
(Setk,F) is (strongly) primitive for F = {M}.

Choose k > 2 and i ∈ [k − 1]. We adopt the notation Wk;i for the essential map f
on Setk satisfying if := i + 1 for i ∈ [k − 1] and kf := {1, 1 + i}. A Wielandt matrix
is a matrix which is permutation similar to Wk;1 [42]. In general, a Wielandt-type
matrix, as introduced in [40], is a matrix which is permutation similar to a matrix Wk;i

where gcd(k, i) = 1. One can check that g(Wk;i) = k + (k − 2)(k − i) when gcd(k, i) = 1.
We display several Wielandt-type matrices below and present the phase space of W4;1 in
Fig. 1.

W4;1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 ,W4;3 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

 ,W5;4 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 1

 .

Theorem 7 (Wielandt [42]). For every primitive matrix M of order k > 2, it holds
g(M) 6 (k − 1)2 + 1, with equality if and only if M is a Wielandt matrix.

For any positive integers k and t, let Primk be the set of all strongly primitive sets of
essential maps on Setk and let Primk,t be the set of those elements from Primk of size t.
Theorem 7 gives an upper bound for the transients of elements of Primk,1. It is natural
to wonder which kind of upper bound can be obtained when we turn to Primk,t for t > 1,
namely we are interested in the dynamical behavior of those non-homogeneous products
of matrices. Indeed, Protasov [32] explicitly suggested to estimate the parameter gk,t,
where

gk,t := max{g(F) : F ∈ Primk,t}.
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Analogously, we let
g
k,t

= max{g(F) : F ∈ Primk,t},

which is surely not greater than gk,t . We make the convention that the maximum over an
empty set equals −∞ and the minimum over an empty set is +∞. In view of Theorem 7,
we have the absolute upper bound

g
k,t

6 (k − 1)2 + 1; (5)

On the other hand, Eq. (4) gives the absolute upper bound

gk,t 6 2k − 2. (6)

Besides Eqs. (5) and (6), very little is known about gk,t and g
k,t

. Let us mention that

the effort to understand the behavior of gk,t and g
k,t

from t = 1 to t > 1 is part of a

nonparametric version of the following proposal of Hajnal [19, p. 67]:

Discussions of Markov chains . . . are generally restricted to the homoge-
neous case . . . In particular, the ergodic properties have only been established
in this case. It seems natural to consider to what extent these properties hold
for non-homogeneous chains.

As recorded in Theorem 1, Cohen and Sellers [12, Theorem 1] already found Eq. (6).
Upon this discovery, they suggested to estimate the parameter γk, where

γk := min{t : gk,t = 2k − 2}.

Due to Eq. (5), we can accordingly define

βk := max{t : g
k,t

= (k − 1)2 + 1}.

The parameters β and γ indicate the extremal size of the strongly primitive matrix sets
attaining the absolute upper bounds. In particular, the parameter γk tells you how much
freedom you will need for the possibility of living as long as the absolute upper bound for
a strongly primitive essential Boolean linear dynamical system. Pick k > 2. Cohen and
Sellers [12, Theorem 2] showed that you will need at most 2k − 2 operators to produce a
strongly primitive essential Boolean linear system on Setk where you can find someone with
a life of maximum possible length, namely γk 6 2k − 2. By Theorem 2, we can formulate
the following improvement, namely, to guarantee a lifespan achieving the absolute upper
bound, much less freedom will already do the job!

Theorem 8. For every integer k > 2, γk 6 k holds.

We can check that γ2 = 1, γ3 = 2, γ4 = 3, γ5 ∈ {2, 3, 4} [40]. It is not clear if γk 6 k−1
holds for all k > 2. We still lack some technique to yield a nontrivial lower bound of γk
and we even do not know if

γ2 6 γ3 6 γ4 6 · · ·
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is valid.
Take k > 2 and let π = (Setk, <π) be a total order on Setk . We say that a set M

of essential maps on Setk is compatible with π if for every A ∈ Setk \{[k]} and every
M ∈M, it holds

A <π AM,

namely, if π is a linear extension of the poset PM. We define MCπ to be the set of primitive
matrices of order k which are compatible with π. It is easy to see that all subsets of MCπ

belong to Primk and a set M of essential maps on Setk is compatible with π if and only
ifM⊆ MCπ. We may think of the total order π as some kind of given ranking and then
we want to understand the lifespan in a world where such a ranking is respected. This
leads us to the parameter

g(π) := g(MCπ),

which is max g(M) where M runs through all sets of essential maps on Setk which are
compatible with π, and, for any positive integer t, the parameter

gt(π) := max{g(M) : M∈
(

MCπ

t

)
}.

In addition, let
γ(π) := min{t > 1 : gt(π) = 2k − 2},

which is the minimum number of choices a linear world should possess to produce a life
trajectory π. This parameter is interesting as we have

γk = min
π
γ(π), (7)

where π runs through all total orders on Setk .
The broken Boolean lattice Bk = (Setk,() is the poset on Setk where A is said

to be less than B if and only if A is a proper subset of B, namely A ( B.

Theorem 9. Take k > 2 and let π be a total order on Setk . Then the following are
equivalent.

(i) γ(π) <∞.

(ii) π is a linear extension of the broken Boolean lattice Bk.

(iii) γ(π) 6 2k − 3.

When k = 2, Eq. (3) becomes

01→ 10→ 11,

and so π2 coincides with P{f} for

f :=

(
1 1
1 0

)
.

This means that γ(π2) = 1.
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Theorem 10. Let k be an integer greater than 2 and let πk be the lexicographic order on
Setk. Then γ(πk) = k.

To get a better bound than that of Theorem 8, by virtue of Eq. (7), we should expect
the existence of a total order τ on Setk such that γ(τ) < k holds. Theorem 10 says that
this τ , if any, could not be the lexicographic order when k > 3. Note that our proof of
Theorem 2, and hence Theorem 8, makes use of a strongly primitive matrix set compatible
with the lexicographic order on Setk and this explains the main difficulty in extending
our work here for a possible better bound. It may be interesting to determine γ(τ) for
some other natural total orders on Setk.

Given an element M from Primk, how to prolong the longest lifespan by adding
some more suitable essential maps without making someone live forever, namely without
losing the strong primitivity property? Let γ(M) be the minimum size of F such that
g(F ∪M) = 2k − 2. As illustrated by the next theorem, it turns out that we can always
enlarge a strongly primitive matrix set into a bigger one in which the longest life duration
achieves the absolute upper bound (Eq. (6)), which means that γ(M) is well-defined.

Theorem 11. Let k be an integer not less than 2 and M an element from Primk. Then
it holds γ(M) 6 2k − 3.

Theorem 11 establishes an absolute upper bound for γ(M), which implies the first
half of Theorem 1 by taking M = ∅. It will be interesting to develop some tools to get
the exact value of γ(M) for some explicitM, say some singleton setM. Recently, Wang,
Wu and Xiang [40] found that

γ(Wk;k−1) 6

(
k − 2

b(k − 2)/2c

)
for all integers k > 2, from which γ5 6 4 follows. For a set M of essential maps on Setk
and any positive integer t, let gt(M) = max{g(F) : M⊆ F , |F \M| = t}. Besides some
trivial examples, it seems that no result about gt(M) is known.

For each positive integer k, let αk = max{t : Primk,t 6= ∅}. It is obvious that αk
will never decrease when k becomes bigger. Indeed, for any strongly primitive set F of
essential maps on Setk, we can create a strongly primitive set F ′ of essential maps on
Setk+1 of equal size by putting

F ′ := {f ′ : f ∈ F},

where f ′ is the essential map on Setk+1 such that if
′

= if ∪ {k + 1} if i ∈ [k] and
(k + 1)f

′
= [k + 1] for all f ∈ F .

Theorem 12. For all positive integers k, αk > 1 +
(
2k−2
2

)
.

It is clear that Primk forms an abstract simplicial complex of dimension αk − 1. We
wonder whether or not Primk is a pure simplicial complex, i.e., whether or not all maximal
elements of Primk under the inclusion relationship are of the same size αk. Note that if
Primk is indeed a pure simplicial complex, the ensuing result will follow easily from this
fact.
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Theorem 13. It holds for every positive integer k that

gk,1 6 gk,2 6 · · · 6 gk,αk . (8)

Compared with the inequalities in (8), it is trivial to prove the following analogue for
the hitting time g:

g
k,1

6 g
k,2

6 · · · 6 g
k,αk

.

Recall that Theorem 8 means that the absolute upper bound described in Eq. (6) can be
achieved at a small t. Accordingly, regarding the absolute upper bound listed in Eq. (5),
the following theorem states that it is achievable only when the strongly primitive matrix
set is a very specific singleton set.

Theorem 14. Take k > 2 and F ∈ Primk. Then g(F) 6 (k − 1)2 + 1, with equality if
and only if F is a singleton set consisting of a Wielandt matrix. In particular, we have
βk = 1.

So far, we have been discussing the extremal behaviors of the indexes g and g for
strongly primitive set of essential Boolean linear maps. For a deeper understanding of the
two indexes, we may want to understand the four index sets defined as below:

Gk,t := {g(F) : F ∈ Primk,t};
G
k,t

:= {g(F) : F ∈ Primk,t};
Gk := {g(F) : F ∈ Primk};
G
k

:= {g(F) : F ∈ Primk}.

The community of combinatorics matrix theory has made clear the structure of the set
Gk,1 = G

k,1
[25, 37, 46]; see [8, §3.5]. Moreover, Shao determined the set Gk in his PhD

thesis [36, pp. 120–124]. We report his result below and present a proof of it in §5. Our
proof of Theorem 15 follows the same idea with that of Shao but is written in the language
of our phase space approach.

Theorem 15 (Shao). For every positive integer k, Gk = [2k − 2] holds.

We have discussed above some results about the primitivity exponent and the hitting
time of a strongly primitive essential Boolean linear dynamical system. In general, we
may ask what is the shape of PD for a strongly primitive essential binary linear system
D, what can be said on the Möbius function of this poset, and so forth. It may be
useful to develop more concepts and apparatus for thinking further about combinatorial
properties of (inhomogeneous) products of Boolean matrices. Let us end this section with
one question about the dynamics generated by a single matrix.

Pick f ∈ Primk. For every A ∈ Setk, we say that a positive integer i is a stride
length of f at A provided Af i ) A and we write StLf (A) for the least stride length of
f at A. Similarly, for every A ∈ Setk, we say that a positive integer i is a weak stride
length of f at A provided |Af i| > |A| and we write WStLf (A) for the least weak stride
length of f at A. How to find some nontrivial upper bound for maxA∈Setk \{[k]} StLf (A)
and maxA∈Setk \{[k]}WStLf (A)?
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Example 16 (Xinmao Wang). For

f =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 0 1 0 0

 ,

we have
max
A∈Set5

StLf (A) = 7, max
A∈Set5

WStLf (A) = 6

and

{2,5} → {3} → {4} → {1, 5} → {2, 3} → {3, 4} → {1,4,5} → {1,2,3,5}

is a path showing that StLf (A) = 7 and WStLf (A) = 6 for A = {2, 5}.

5 Proofs

Proof of Theorem 6. For any i ∈ [k], let Fk,i be the Boolean linear map on 2[k] such that

sFk,i :=


s, if s > i;

[i− 1], if s = i;

[k], if s < i;

for every s ∈ [k]. Let Fk = {Fk,i : i ∈ [k]}.
Recall the definition of φk in Eq. (2). Take t ∈ [2k − 2] and let j be the smallest

element of φ−1k (t+ 1). For any i ∈ [k], we can check that

(φ−1k (t+ 1))Fk,i =


φ−1k (t+ 1), if j > i;

(φ−1k (t+ 1)\{j}) ∪ [j − 1] = φ−1k (t), if j = i;

[k] = φ−1k (2k − 1), if j < i.

This implies that there exists a word w = w1 · · ·w2k−2 over Fk such that

φ−1k (2k − 1) = [k]
w1−→ φ−1k (2k − 2)

w2−→ · · ·
w

2k−2−−−→ φ−1k (1) = {1}
w

2k−1−−−→ ∅

is the unique shortest path in PSFk from [k] to ∅. Note that g’((2[k],Fk), ∅) is just the
length of the shortest path from [k] to ∅ and so the proof is finished.

The next lemma says that for every M ∈ Primk, there is a common linear extension
of Bk and PM.

Lemma 17. Take a positive integer k and a set M∈ Primk . The poset PM has a linear
extension (Setk,C) such that A C B holds for every two elements from Setk satisfying
either A ( B or A ≺M B.

the electronic journal of combinatorics 22(4) (2015), #P4.36 14



Proof. Consider the digraph D with V(D) = Setk and A(D) = A1 ∪A2, where A1 =
{A → B : A,B ∈ Setk, A ( B} and A2 = {A → B : A,B ∈ Setk, A ≺M B}. If D is
acyclic, then D possesses a linear extension and every such linear extension must be what
we wanted.

Suppose on the contrary that D is not acyclic and so, considering that both (Setk,A1)
and (Setk,A2) are transitive and acyclic digraphs, we can find a closed walk of positive
length 2p in D:

C1 ≺M B1 ( C2 ≺M B2 ( · · · ( Cp ≺M Bp ( C1.

This means that there are matrices M1, . . . ,Mp from the multiplicative semigroup gener-
ated by M such that

C1M1 = B1 ( C2, . . . , CpMp = Bp ( C1,

and hence
C1M1M2 · · ·Mp ( C1.

Consequently, starting from C1 and applying the map M1M2 · · ·Mp repeatedly we will be
always outside of the black hole [k], which contradicts the assumption thatM is strongly
primitive.

Pick a positive integer k and any two elements A,B ∈ Setk. We write f
(k)
B 7→A for the

essential map on Setk such that

Cf
(k)
B 7→A :=

{
A, if C ⊆ B;

[k], if C \B 6= ∅.
(9)

Lemma 18. Take k > 2 and p ∈ [2k − 3]. Let π be a linear extension of the broken

Boolean lattice Bk. Let Fp = {Mi : i ∈ [p]} where Mi = f
(k)
π(i)7→π(i+1) for i ∈ [p]. Then Fp

is strongly primitive, PSFp contains the path π(1) → π(2) → · · · → π(p + 1) → [k], and
g(Fp) = p+ 1.

Proof. Since π is a linear extension of Bk, from Eq. (9) we can see that

• each arc in PSFp is either of the form π(i) → π(j) where 1 6 i < j 6 p + 1, or of
the form π(i)→ π(2k − 1) for i ∈ [2k − 1]; and that

• π(1)
M1−−→ π(2)

M2−−→ · · · Mp−−→ π(p+ 1)
Mp−−→ [k] is a path of length p+ 1 in PSFp .

The claims about Fp now follow directly.

Proof of Theorem 9. The implication (iii) to (i) is a triviality.
We now prove that (i) implies (ii). From γ(π) < ∞ we obtain the existence of M ⊆

MCπ such that g(M) = 2k − 2. Note that PM is the total order

π(1) < · · · < π(2k − 2) < π(2k − 1) = [k].

By Lemma 17, this total order π has to be a linear extension of the broken Boolean lattice.
Finally, we need to establish the direction of (ii)⇒ (iii). By Lemma 18, F2k−3 ∈ MCπ

and g(F2k−3) = 2k − 2, proving the desired fact that γ(π) 6 2k − 3.

the electronic journal of combinatorics 22(4) (2015), #P4.36 15



Proof of Theorem 10. Theorem 2 means that γ(πk) 6 k. It suffices to show γ(πk) > k.
Let

ak := φ−1k (4) = {k − 2} → {k − 2, k} = φ−1k (5)

and
ai := φ−1k (2k − 2i−1 − 1) = [k] \ {i} → [i] = φ−1k (2k − 2i−1)

for i ∈ [k − 1]. They are k arcs in the Hasse diagram of the total order πk. By way
of contradiction, let us assume γ(πk) < k and thus there should be a primitive matrix
M of order k such that PSM contains two arcs ap and aq where 1 6 p < q 6 k. From
ap ∈ A(PSM) we deduce that

([k] \ {p})M ⊆ [p]. (10)

Considering that M is primitive and so [k]M = [k] holds, we reach the conclusion that

[k] \ [p] ⊆ {p}M. (11)

Case 1. q ∈ [k − 1].
We get Eq. (10) just from the fact that p ∈ [k−1]. So, we can also get from q ∈ [k−1]

that k /∈ ([k] \ {q})M and hence k /∈ {p}M , contradicting Eq. (11).

Case 2. q = k.
From aq ∈ A(PSM) we see that

{k − 2, k} = {k − 2}M. (12)

Since k ∈ {k − 2}M, Eq. (10) gives p = k − 2. Applying Eq. (11) now yields k − 1 ∈
{k − 2}M, violating Eq. (12).

Proof of Theorem 11. By Lemma 17, we can take π to be a common linear extension of
Bk and PM. Now, Theorem 9 guarantees the existence of a set F ∈

(
MCπ

t

)
for some

t 6 2k − 3 such that F ∩M = ∅ and g(F ∪M) = 2k − 2.

Proof of Theorem 12. Take any linear order π on Setk which is a linear extension of the
broken Boolean lattice Bk, say

π(1) < . . . < π(2k − 2) < π(2k − 1) = [k].

Let
F := {Mi,j : 1 6 i < j 6 2k − 2} ∪ {f (k)

[k]7→[k]}, (13)

where Mi,j = f
(k)
π(i)7→π(j) for those i, j satisfying 1 6 i < j 6 2k − 2. It follows from Eq. (9)

that PSF is the total order π and so g(F) = 2k−2. It is clear that F consists of 1+
(
2k−2
2

)
different maps and so the theorem follows.
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For every integer k > 2, Theorem 12 tells us that

αk > 1 +

(
2k − 2

2

)
> 2k − 2 > k, (14)

where the second inequality is strict for k > 3. The subsequent two lemmas determine
the values of gk,k, . . . , gk,2k−2, gk,2k−1, . . . , gk,αk .

Lemma 19. Let k be an integer greater than 1. Then gk,k = gk,k+1 = · · · = gk,2k−2 =
2k − 2.

Proof. For Mk = {Mk,1, . . . ,Mk,k}, Theorem 2 claims that g(Mk) = 2k − 2 and PMk
is

the lexicographic order πk on Setk.
Taking π = πk, we now consider the family of essential maps F as given in Eq. (13).

By Eq. (14), we have
|F \Mk| > 2k − 2− k.

The lexicographic order πk = PMk
is surely a linear extension of the broken Boolean lattice

Bk. This along with Eq. (9) tells us that g(F ′ ∪Mk) = 2k − 2 for every F ′ ⊆ F \Mk. It
follows that gk,k = gk,k+1 = · · · = gk,2k−2+k = 2k − 2, finishing the proof.

Lemma 20. Let k be an integer greater than 2. Then gk,2k−1 = · · · = gk,αk = 2k − 2.

Proof. Take A ∈ Primk,αk and, thanks to Lemma 17, pick a common linear extension of
Bk and PA, say

(Setk,C) : A1 C A2 C · · ·C A2k−1 = [k] = 1.

Let
F := {Mi : i ∈ [2k − 2]},

where Mi = f
(k)
Ai 7→Ai+1

for i ∈ [2k−2]. It follows from Eq. (9) that F∪A is strongly primitive

and so the definition of αk leads to F ⊆ A. Take an integer t satisfying 2k − 1 6 t 6 αk.
We can find a set Ft such that F ⊆ Ft ⊆ A and |Ft| = t. It is clear that Ft ∈ Primk,t

and g(Ft) = 2k − 2. Since 2k − 2 is the absolute upper bound for the strong primitivity
exponent here, we conclude that gk,t = 2k − 2, as desired.

Proof of Theorem 13. When k = 2, the primitive matrices of order k can be listed as(
1 1
1 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
.

It is thus easy to see that α2 = 2 = 22 − 2.
Combining Lemma 19 and Lemma 20, our task is now reduced to establishing

gk,1 6 · · · 6 gk,k . (15)

We will be able to obtain Eq. (15) provided, for each t ∈ [k − 1] and each A ∈ Primk,t,
we can find B ∈ Primk,t+1 such that A ⊆ B. Lemma 17 allows us to get a common linear
extension of Bk and PA, say

(Setk,C) : A1 C A2 C · · ·C A2k−1 = 1.
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Let F = {Mi : i ∈ [2k − 2]} where Mi = f
(k)
Ai 7→Ai+1

for i ∈ [2k − 2]. It follows from Eq. (9)

that F ∪A is strongly primitive. Since t+ 1 6 k 6 2k− 2, we can get F ∈ F \A. Letting
B = A ∪ {F}, it is not hard to check that B ∈ Primk,t+1 and hence we are done!

Proof of Theorem 14. Pick arbitrarily an element M from F . Theorem 7 gives g(M) 6
(k − 1)2 + 1 and the equality holds if and only if M is permutation similar to Wk;1. It is
obvious that g(F) 6 g(M) 6 (k−1)2 +1. Consequently, to complete the proof, it suffices
to demonstrate that {Wk;1,M} is not strongly primitive for every Wielandt matrix M
other than Wk;1. Let us assume that M = PWk;1P

−1, where P is a permutation matrix
which is not equal to the identity matrix.

Case 1. k
P−→ i ∈ [k − 1].

In this case, we have j ∈ [k− 1] such that k
P−→ i

Wk;1−−→ i+ 1
P−1

−−→ j, namely k
M−→ j. In

PSWk;1
, we have a path j → j + 1→ · · · → k, which, combined with the arc k → j from

PSM , gives a cycle in PSWk;1,M . This shows that {Wk;1,M} is not strongly primitive.

Case 2. k
P−→ k.

As P is not the identity matrix, we can set i = max{j : jP 6= j} ∈ [k − 1]. It follows

that i
P−→ g 6 i − 1 ∈ [k − 2]. Henceforth, i

P−→ g
Wk;1−−→ g + 1 ∈ [i]. This in turns gives

i
P−→ g

Wk;1−−→ g + 1
P−1

−−→ h < i 6 k − 1. Now, we can find the following cycle in the phase
space of {Wk;1,M}:

h
Wk;1−−→ h+ 1

Wk;1−−→ · · ·
Wk;1−−→ i

M−→ h,

proving that {Wk;1,M} is not strongly primitive, as desired.

Proof of Theorem 15. For p = 1, it is immediate that g(F) = p for F = {f (k)
[k] 7→[k]} (c.f.

Eq. (9)). If 2 6 p 6 2k − 2, it follows from Lemma 18 that p ∈ Gk. For any p > 2k − 2,
Eq. (6) tells us p /∈ Gk.
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Slovak). Matematicko-fyziklny Časopis Slovenskej Akadémie Vied, 14:208–216, 1964.

[12] J. E. Cohen and P. H. Sellers. Sets of nonnegative matrices with positive inhomoge-
neous products. Linear Algebra and its Applications, 47:185–192, 1982.

[13] O. Colón-Reyes, A. S. Jarrah, R. Laubenbacher and B. Sturmfels. Monomial dynam-
ical systems over finite fields. Complex Systems, 16:333–342, 2006.

[14] C. Fleischhack and S. Friedland. Asymptotic positivity of Hurwitz product traces:
Two proofs. Linear Algebra and its Applications, 432:1363–1383, 2010.

[15] E. Fornasini and M. Valcher. Primitivity of positive matrix pairs: algebraic charac-
terization, graph-theoretic description, and 2D systems interpretation. SIAM Journal
on Matrix Analysis and Applications, 19:71–88, 1998.

[16] E. Fornasini and M. Valcher. A polynomial matrix approach to the structural prop-
erties of 2D positive systems. Linear Algebra and its Applications, 413:458–473, 2006.

[17] E. Fornasini and M. Valcher. Reachability of a class of discrete-time positive switched
systems. SIAM Journal on Control and Optimization, 49:162–184, 2011.

[18] V. S. Grinberg. Wielandt-type bounds for primitive mappings of partially ordered
sets. Mathematical Notes, 45:450–454, 1989.

[19] J. Hajnal. The ergodic properties of non-homogeneous finite Markov chains. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 52:67–77, 1956.

[20] J. Hajnal. On products of non-negative matrices. Mathematical Proceedings of the
Cambridge Philosophical Society, 79:521–530, 1976.

the electronic journal of combinatorics 22(4) (2015), #P4.36 19



[21] D. J. Hartfiel. Nonhomogeneous Matrix Products. World Scientific, River Edge, NJ,
2002.

[22] C. C. Heyde and J. E. Cohen. Confidence intervals for demographic projections based
on products of random matrices. Theoretical Population Biology, 27:120–153, 1985.

[23] J. P. S. Kung, G.-C. Rota and C. H. Yan. Combinatorics: The Rota Way. Cambridge
University Press, 2009.

[24] J. C. Lagarias. The Ultimate Challenge: The 3x+ 1 Problem. AMS, 2010.

[25] M. Lewin and Y. Vitek. A system of gaps in the exponent set of primitive matrices.
Illinois Journal of Mathematics, 25:87–98, 1981.

[26] J. D. Louck and M. L. Stein. The (1 + 1)-Nonlinear Universe Of The Parabolic Map
And Combinatorics. World Scientific, 2015.

[27] A. A. Melkman. Subdivision schemes with non-negative masks converge always –
unless they obviously cannot? Annals of Numerical Mathematics, 4:451–460, 1997.

[28] G. Merlet, T. Nowak, H. Schneider and S. Sergeev. Generalizations of bounds on the
index of convergence to weighted digraphs. Discrete Applied Mathematics, 178:121–
134, 2014.

[29] C. A. Micchelli and H. Prautzsch. Uniform refinement of curves. Linear Algebra and
its Applications, 114/115:841–970, 1989.

[30] D. D. Olesky, B. Shader and P. van den Driessche. Exponents of tuples of nonnegative
matrices. Linear Algebra and its Applications, 356:123–134, 2002.

[31] A. Paz. Introduction to Probabilistic Automata. Academic, New York, 1971.

[32] V. Yu. Protasov. Semigroups of non-negative matrices. Communications of the
Moscow Mathematical Society, 65:1186–1188, 2010.

[33] V. Yu. Protasov. Classification of k-primitive sets of matrices. SIAM Journal on
Matrix Analysis and Applications, 34:1174–1188, 2013.

[34] V. Yu. Protasov and A. S. Voynov. Sets of nonnegative matrices without positive
products. Linear Algebra and its Applications, 437:749–765, 2012.

[35] P. Santesso and M. E. Valcher. Monomial reachability and zero controllability of
discrete-time positive switched systems. Systems & Control Letters, 57:340–347,
2008.

[36] J.-Y. Shao. On the properties of nonnegative primitive matrices, irreducible matrices
and thier associated directed graphs. Ph.D. thesis, University of Wisconsin-Madison,
1984.

[37] J.-Y. Shao. On a conjecture about the exponent set of primitive matrices. Linear
Algebra and its Applications, 65:91–123, 1985.

[38] M. V. Volkov. Synchronizing automata and the Černý conjecture. Lecture Notes in
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