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Abstract

We present a simple, explicit orthogonal basis of eigenvectors for the Johnson
and Kneser graphs, based on Young’s orthogonal representation of the symmetric
group. Our basis can also be viewed as an orthogonal basis for the vector space of
all functions over a slice of the Boolean hypercube (a set of the form {(x1, . . . , xn) ∈
{0, 1}n :

∑
i xi = k}), which refines the eigenspaces of the Johnson association

scheme; our basis is orthogonal with respect to any exchangeable measure. More
concretely, our basis is an orthogonal basis for all multilinear polynomials Rn → R
which are annihilated by the differential operator

∑
i ∂/∂xi. As an application of the

last point of view, we show how to lift low-degree functions from a slice to the entire
Boolean hypercube while maintaining properties such as expectation, variance and
L2-norm.

As an application of our basis, we streamline Wimmer’s proof of Friedgut’s
theorem for the slice. Friedgut’s theorem, a fundamental result in the analysis of
Boolean functions, states that a Boolean function on the Boolean hypercube with
low total influence can be approximated by a Boolean junta (a function depending
on a small number of coordinates). Wimmer generalized this result to slices of
the Boolean hypercube, working mostly over the symmetric group, and utilizing
properties of Young’s orthogonal representation. Using our basis, we show how the
entire argument can be carried out directly on the slice.

∗The paper was written while the author was a member of the Institute for Advanced Study at
Princeton, NJ. This material is based upon work supported by the National Science Foundation under
agreement No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors, and do not necessarily reflect the views of the National Science
Foundation.

the electronic journal of combinatorics 23(1) (2016), #P1.23 1



1 Introduction

Functions over the Boolean hypercube {0, 1}n are often studied using the tools of Fourier
analysis (see O’Donnell’s excellent recent monograph [19]). The crucial idea is to study
functions from the point of view of the Fourier basis, an orthonormal basis of functions
over the Boolean hypercube. In this work, we consider functions on a different domain,
a slice of the Boolean hypercube

(
[n]
k

)
= {(x1, . . . , xn) ∈ {0, 1}n :

∑
i xi = k}; we always

assume that k 6 n/2. Such functions arise naturally in coding theory, in the context
of constant-weight codes, and have recently started appearing in theoretical computer
science as well. In this work we provide an explicit orthogonal basis for the vector space
of functions on a slice.

The slice has been studied in algebraic combinatorics under the name Johnson associ-
ation scheme, and in spectral graph theory in relation to the Johnson and Kneser graphs.
Our basis is the analog of the Fourier basis for the scheme, and it refines the decomposi-
tion induced by the primitive idempotents. Our basis is also an orthogonal basis for the
eigenvectors of the Johnson and Kneser graphs, and any other graph belonging to the
Bose–Mesner algebra of the Johnson association scheme. Such (weighted) graphs arise
in Lovász’s proof of the Erdős–Ko–Rado theorem [16], and in Wilson’s proof [25] of a
t-intersecting version of the theorem.

Despite the name, it is perhaps best to view the slice
(

[n]
k

)
as the set of cosets of

Sk × Sn−k inside Sn. This point of view suggests “lifting” an orthogonal basis from the
symmetric group to the slice. Following Bannai and Ito [1], the relevant representations
of the symmetric group are those corresponding to partitions (n− d) + d for d 6 k. Our
basis arises from Young’s orthogonal representation of the symmetric group. However,
we present the basis and prove its properties without reference to the symmetric group
at all. One feature that is inherited from the symmetric group is the lack of a canonical
basis: our basis relies on the ordering of the coordinates.

Dunkl [2] showed that the space of functions over the slice
(

[n]
k

)
can be identified with

the space of multilinear polynomials in n variables x1, . . . , xn which are annihilated by
the differential operator

∑n
i=1 ∂/∂xi; the input variable xi is an indicator variable for the

event that i belongs to the input set. Functions annihilated by this operator were termed
harmonic by Dunkl [4]. Our basis forms an orthogonal basis for the space of harmonic
multilinear polynomials for every exchangeable measure (a measure invariant under the
action of Sn). As a consequence, we show how to lift a low-degree function from the slice(

[n]
k

)
to the Boolean cube (under an appropriate measure) while maintaining some of its

properties such as expectation, variance and L2-norm.

Wimmer [26] recently generalized a fundamental theorem of Friedgut [9] from the
Boolean hypercube to the slice. Friedgut’s theorem, sometimes known as Friedgut’s junta
theorem, states that a Boolean function on the Boolean hypercube with low total influ-
ence is close to a Boolean junta (a function depending on a small number of variables).
Although Wimmer’s main theorem is a statement about functions on the slice, Wimmer
lifts the given function to the symmetric group, where most of his argument takes place,
exploiting essential properties of Young’s orthogonal representation. Eventually, a hyper-
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contractive property of the slice (due to Lee and Yau [15]) is invoked to complete the
proof. As an application of our basis, we give a streamlined version of Wimmer’s proof
in which our basis replaces the appeal to the symmetric group and to Young’s orthogonal
representation.

Note added in proof

Since writing this paper, we have learned that the same basis has been constructed by
Srinivasan [23] in a beautiful paper. Srinivasan in fact constructs an extended basis for
the entire Boolean cube {0, 1}n, which he identifies with the canonical Gelfand–Tsetlin
basis [24], and shows that it is orthogonal with respect to all exchangeable measures.
However, he provides neither an explicit description of the basis elements, nor even a
canonical indexing scheme for the basis elements. Instead, he gives a recursive algorithm
that constructs the basis. We believe that both approaches have merit.

Related work

Apart from Friedgut’s theorem, several other classical results in the area known as Fourier
analysis of Boolean functions have recently been generalized to the slice. O’Donnell and
Wimmer [21, 22] generalized the Kahn–Kalai–Linial theorem [12] to the slice, and deduced
a robust version of the Kruskal–Katona theorem. Filmus [5] generalized the Friedgut–
Kalai–Naor theorem [10] to the slice.

Filmus, Kindler, Mossel and Wimmer [6] and Filmus and Mossel [7] generalized the
invariance principle [17] to the slice. The invariance principle on the slice compares
the behavior of low-degree harmonic multilinear polynomials on a slice

(
[n]
k

)
and on the

Boolean hypercube {0, 1}n with respect to the corresponding product measure µk/n. If
the harmonic multilinear polynomial f has degree d and unit variance, then the invariance
principle states that for any Lipschitz functional ϕ,

|E
σ

[ϕ(f)]− E
µp

[ϕ(f)]| = Õ

(√
d√

p(1− p)n

)
,

where σ is the uniform distribution on the slice. The invariance principle can be used to
lift results such as the Kindler–Safra theorem [13, 14] and Majority is Stablest from the
Boolean hypercube to the slice.

Filmus and Mossel also give basis-free proofs for some of the results appearing in
this paper. For example, they give a basis-free proof for the fact that the L2-norm of a
low-degree harmonic multilinear polynomial on the slice is similar to its L2-norm on the
Boolean cube under the corresponding product measure.

Synopsis

We describe the space of harmonic multilinear polynomials in Section 2. Our basis is
defined in Section 3, in which we also compute the norms of the basis elements. We
show that our basis forms a basis for functions on the slice in Section 4, in which we also
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show how to lift low-degree functions from the slice to the entire hypercube, and explain
why our basis is an orthogonal basis of eigenvectors for the Johnson and Kneser graphs.
Section 5 and Section 6 are devoted to the proof of the Wimmer–Friedgut theorem.

Notation

We use the notation [n] = {1, . . . , n}. The cardinality of a set S is denoted |S|. If S ⊆ [n]
and π ∈ Sn (the symmetric group on [n]) then Sπ = {π(x) : x ∈ S}. We use the same
notation in other similar circumstances. We compose permutations from right to left, so
βα means apply α then β. We use the falling power notation: nk = n(n−1) · · · (n−k+1)
(the number of terms is k). For example,

(
n
k

)
= nk/k!. A function is Boolean if its values

are in {0, 1}.

2 Harmonic multilinear polynomials

We construct our basis as a basis for the vector space of harmonic multilinear polynomials
over x1, . . . , xn, a notion defined below. For simplicity, we only consider polynomials over
R, but the framework works just as well over any field of characteristic zero.

Definition 1. A polynomial P ∈ R[x1, . . . , xn] is multilinear if all monomials of P are
squarefree (not divisible by any x2

i ).
A multilinear polynomial P ∈ R[x1, . . . , xn] is harmonic if

n∑
i=1

∂P

∂xi
= 0.

We denote the vector space of harmonic multilinear polynomials over x1, . . . , xn by Hn.
The degree of a non-zero multilinear polynomial is the maximal number of variables

in any monomial. We denote the subspace of Hn consisting of polynomials of degree at
most d by Hn,d.

A polynomial has pure degree d if all its monomials have degree d. We denote the
subspace of Hn consisting of polynomials of degree exactly d by H′n,d.

The following lemma calculates the dimension of the vector space of harmonic multi-
linear polynomials of given degree.

Lemma 2. All polynomials in Hn have degree at most n/2. For d 6 n/2,

dimHn,d =

(
n

d

)
, dimH′n,d =

(
n

d

)
−
(

n

d− 1

)
,

where
(
n
−1

)
= 0.
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Proof. We start by proving the upper bound on the degree of polynomials in Hn. Let
P ∈ Hn have degree degP = d. The pure degree d part of P is also in Hn, and so we
can assume without loss of generality that P has pure degree d. For any y = y1, . . . , yn,
the univariate polynomial P (t1 + y) (where 1 is the constant vector) doesn’t depend on
t, since

dP (y + t1)

dt
=

n∑
i=1

∂P

∂xi
(y + t1) = 0.

In particular, if M is any monomial in P with coefficient α 6= 0 and y is the vector with
yi = −1 whenever xi appears in M and yi = 0 otherwise, then P (v + 1) = P (v) =
(−1)dα 6= 0, showing that P must contain some monomial supported on variables not
appearing in M , since yi = 1 only for xi not appearing in M . In particular, 2d 6 n.

We proceed with the formula forH′n,d; the formula forHn,d easily follows. When d = 0,
the formula clearly holds, so assume d > 1. The vector space of all multilinear polynomial
of pure degree d over x1, . . . , xn has dimension

(
n
d

)
. Denote by cf(P,M) the coefficient of

the monomial M in P . Harmonicity is the set of conditions∑
i∈[n]:
xi /∈M

cf(P, xiM) = 0 for all monomials M of degree d− 1.

There are
(
n
d−1

)
conditions, showing that dimH′n,d >

(
n
d

)
−
(
n
d−1

)
. In order to prove

equality, we need to show that the conditions are linearly independent. We do this by
showing that there is a polynomial P having pure degree d satisfying all but one of them,
that is

n∑
i=1

∂P

∂xi
= x1 · · ·xd−1.

Such a polynomial is given by

P =
1

d

d∑
t=1

(−1)t+1

(
d

t

)
E

A∈[d−1] : |A|=d−t
B∈[n]\[d−1] : |B|=t

xAxB,

using the notation xS =
∏

i∈S xi. Indeed,

n∑
i=1

∂P

∂xi
= x1 · · ·xd−1 +

1

d

d∑
t=2

[
t · (−1)t+1

(
d

t

)
+ (d− t+ 1) · (−1)t

(
d

t− 1

)]
×

E
A∈[d−1] : |A|=d−t

B∈[n]\[d−1] : |B|=t−1

xAxB

= x1 · · ·xd−1.

Frankl and Graham [8] gave a basis for Hn.
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Definition 3. For d 6 n/2, a sequence of length d is a sequence S = s1, . . . , sd of distinct
numbers in [n]. The set of all sequence of length d is denoted by Sn,d, and the set of all
sequences is denoted by Sn.

For any two disjoint sequences A,B ∈ Sn,d we define

χA,B =
d∏
i=1

(xai − xbi).

The basis functions will be χA,B for appropriate A,B.

Definition 4. For d 6 n/2, let A,B ∈ Sn,d be disjoint. We say that A is smaller than
B, written A < B, if ai < bi for all i ∈ [d]. Similarly, we say that A is at most B, written
A 6 B, if ai 6 bi for all i ∈ [d].

A sequence B ∈ Sn is a top set if B is increasing and for some disjoint sequence A of
the same length, A < B. The set of top sets of length d is denoted by Bn,d, and the set
of all top sets is denoted by Bn.

The following lemma is mentioned without proof in [8].

Lemma 5. For 0 6 d 6 n/2, |Bn,d| =
(
n
d

)
−
(
n
d−1

)
, where

(
n
−1

)
= 0.

Proof. We encode each sequence B ∈ Sn,d as a ±1 sequence β0, . . . , βd as follows. We put
β0 = 1, and for i ∈ [d], βi = 1 if i /∈ B and βi = −1 if i ∈ B. It is not hard to check that B
is a top set iff all running sums of β are positive. Each sequence β is composed of d entries
−1 and n − d + 1 entries 1. The probability that such a sequence has all running sums
positive is given by the solution to Bertrand’s ballot problem: it is (n−d+1)−d

n+1
. Therefore

the total number of top sets is

(n− d+ 1)− d
n+ 1

(
n+ 1

d

)
=
n− d+ 1

n+ 1

(
n+ 1

n− d+ 1

)
− d

n+ 1

(
n+ 1

d

)
=

(
n

n− d

)
−
(

n

d− 1

)
.

We can now give Frankl and Graham’s basis, which is given in [8] without proof.

Lemma 6. For each B ∈ Bn, let φ(B) ∈ Sn,|B| be any sequence satisfying φ(B) < B. The
set {χφ(B),B : B ∈ Bn} is a basis for Hn. Moreover, for d 6 n/2, the set {χφ(B),B : B ∈
Bn,d} is a basis for H′n,d.

Proof. It is clearly enough to prove that Xd = {χφ(B),B : B ∈ Bn,d} is a basis for H′n,d.
In view of Lemma 2 and Lemma 5, it is enough to prove that all functions in Xd belong
to H′n,d, and that Xd is linearly independent. Clearly all functions in Xd are multilinear
polynomial of pure degree d. To show that they are harmonic, notice that if A < B,
where |A| = |B| = d, then

n∑
i=1

∂χA,B
∂xi

=
d∑
j=1

(
∂χA,B
∂xaj

+
∂χA,B
∂xbj

)
=

d∑
j=1

(1− 1)
χA,B

xaj − xbj
= 0.
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It remains to prove that Xd is linearly independent. For an increasing sequence S ∈
Sn,d, let Π(S) be the monomial Π(S) =

∏d
i=1 xsi . If Π(S) appears in χφ(B),B then S 6 B.

Consider now the matrix representing Xd in the basis {Π(S) : S ∈ Sn,d} arranged in an
order compatible with the partial order of Sn,d. The resulting matrix is in echelon form
and so has full rank, showing that Xd is a linearly independent set.

We comment that dimH′n,d =
(
n
d

)
−
(
n
d−1

)
is the dimension of the irreducible repre-

sentation of Sn corresponding to the partition (n− d) + d, as easily calculated using the
hook formula. This is not a coincidence: indeed, the set of standard Young tableaux of
shape (n − d), d is in bijection with Bn,d by identifying the top sets with the contents of
the second row of each such tableau (the tableau can be completed uniquely).

3 Young’s orthogonal basis

In this section we will construct an orthogonal basis for Hn, and calculate the norms of
the basis elements. Our basis will be orthogonal with respect to a wide class of measures.

Definition 7. A probability distribution over the variables x1, . . . , xn is exchangeable if
it is invariant under permutations of the indices. Given an exchangeable distribution µ,
we define an inner product on Hn by

〈f, g〉 = E
µ

[fg].

The norm of f ∈ Hn is ‖f‖ =
√
〈f, f〉.

We are now ready to define the basis.

Definition 8. For B ∈ Bn,d, define

χB =
∑

A∈Sn,d :
A<B

χA,B.

For d 6 n/2, we define

χd = χ2,4,...,2d = χ1,3,...,2d−1;2,4,...,2d =
d∏
i=1

(x2i−1 − x2i).

Young’s orthogonal basis for Hn is

Yn = {χB : B ∈ Bn}.

Young’s orthogonal basis for H′n,d is

Yn,d = {χB : B ∈ Bn,d}.
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We stress that the sequences A in the definition of χB need not be increasing.
The following theorem justifies the name “orthogonal basis”.

Theorem 9. The set Yn is an orthogonal basis for Hn with respect to any exchangeable
measure. The set Yn,d is an orthogonal basis for H′n,d with respect to any exchangeable
mesure. In particular, the subspaces H′n,d for different d are mutually orthogonal.

Proof. Lemma 6 shows that each χB ∈ Yn,d lies in H′n,d. The technique used in proving
the lemma shows that Yn,d is a basis for H′n,d, but this will also follow from Lemma 2 once
we prove that the functions in Yn,d are pairwise orthogonal. In fact, we will prove the
following more general claim: if B1, B2 ∈ Bn and B1 6= B2 then χB1 , χB2 are orthogonal.
This will complete the proof of the theorem.

Consider any B1 ∈ Bn,d1 and B2 ∈ Bn,d2 , where B1 6= B2. Our goal is to prove that
〈χB1 , χB2〉 = 0. We have

〈χB1 , χB2〉 =
∑
A1<B1
A2<B2

E[χA1,B1χA2,B2 ].

We call each of the terms χA1,B1χA2,B2 appearing in this expression a quadratic product.
We will construct a sign-flipping involution among the quadratic products, completing the
proof. The involution is also allowed to have fixed points; in this case, the expectation of
the corresponding quadratic product vanishes.

Consider a quadratic product

χA1,B1χA2,B2 =

d1∏
i=1

(xa1,i − xb1,i)
d2∏
j=1

(xa2,j − xb2,j).

We can represent this quadratic product as a directed graph G on the vertex set A1 ∪
A2∪B1∪B2. For each factor xi−xj in the quadratic product, we draw an edge from i to
j; all edges point in the direction of the larger vertex (the vertex having a larger index).
We further annotate each edge with either 1 or 2, according to which of χA1,B1 , χA2,B2 it
corresponds to. Every variable xi appears in at most two factors, and so the total degree
of each vertex is at most 2. Therefore the graph decomposes as an undirected graph into
a disjoint union of paths and cycles. The annotations on the edges alternate on each
connected component. Every directed graph in which edges point in the direction of the
larger vertex, the total degree of each vertex is at most 2, and the annotations on the edges
alternate in each connected component, is the graph corresponding to some quadratic
product χA′

1,B
′
1
χA′

2,B
′
2
. The value of A′1, B

′
1, A

′
2, B

′
2 can be read using the annotations on

the edges.
Since B1 6= B2, some connected component must have a vertex with in-degree 1.

Choose the connected component C satisfying this property having the largest vertex.
We construct a sequence of intervals inside C, with the property that the endpoints of
each interval are either endpoints of C or are connected to the rest of C with outgoing
edges. Furthermore, each interval, other than possibly the last one, contains some vertex
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with in-degree 1. The sequence terminates with an interval containing an odd number of
edges.

When C is a path, the first interval I0 is the entire path. When C is a cycle with
maximal vertex M , the first interval I0 is the path obtained by removing M from C.
Given an interval It with an even number of edges, we can break it into two (possibly
empty) subintervals terminating at the maximal point Mt of It: It = Jt → Mt ← Kt.
Note that not both Jt, Kt can be empty since It contains some vertex with in-degree 1.
If Jt is empty then we define It+1 = Kt, which terminates the sequence. Similarly, if
Kt is empty then we define It+1 = Jt, which terminates the sequence. If both Jt, Kt are
non-empty then at least one of them has a vertex with in-degree 1. We let It+1 be the
sub-interval among Jt, Kt with the larger maximal point.

Since the intervals decrease in size, the sequence eventually terminates at some interval
It having an odd number of edges. Let C ′ be the component obtained by reversing It, and
let G′ be the graph obtained by replacing C with C ′. We claim that G′ is the graph of
some quadratic product χA′

1,B1
χA′

2,B2
(which could be the same as the original quadratic

product). Indeed, the property of the endpoints of It guarantees that in G′, edges always
point in the direction of the larger vertex. Since It has an odd number of edges, the
annotations on the edges still alternate in C ′. Clearly every vertex has total degree at
most 2, and so G′ is the graph of some quadratic product. Furthermore, the annotations of
the edges pointing at each vertex are the same, again using the property of the endpoints
of It. Therefore G′ is indeed the graph of some quadratic product χA′

1,B1
χA′

2,B2
. Moreover,

if we apply the same algorithm on the graph G′ then we will obtain the graph G, so the
algorithm is an involution on the quadratic products χ·,B1χ·,B2 , possibly having fixed
points.

Let v1, . . . , v` be the vertices of It, and consider the permutation π which maps vi to
v`+1−i and fixes all other points in [n]. If we apply π on G and flip all edges in It, then we
obtain the graph G′. Since the measure is exchangeable and the number of edges in It is
odd, this shows that E[χA1,B1χA2,B2 ] = −E[χA′

1,B1
χA′

2,B2
]. We conclude that the mapping

χA1,B1χA2,B2 ⇒ χA′
1,B1

χA′
2,B2

is a sign-flipping involution, completing the proof.

In order to complete the picture, we need to evaluate the norms of the basis elements
χB, which necessarily depend on the measure.

Theorem 10. Let B ∈ Bn,d. The squared norm of χB is ‖χB‖2 = cB‖χd‖2 with respect
to any exchangeable measure, where

cB =
d∏
i=1

(bi − 2(i− 1))(bi − 2(i− 1)− 1)

2
.

(Recall that χd = χ2,4,...,2d.)

Proof. We consider first the case in which the exchangeable measure is the measure νp
for some p ∈ [0, 1]. Under this measure, the variables x1, . . . , xn are independent, with
Pr[xi = −p] = 1 − p and Pr[xi = 1 − p] = p. The expectation of each xi is E[xi] =
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(1− p)(−p) + p(1− p) = 0, while the variance is E[x2
i ] = (1− p)p2 + p(1− p)2 = p(1− p).

The squared norm of χB is

‖χB‖2 = 〈χB, χB〉 =
∑

A1,A2∈Sd :
A1,A2<B

E[χA1,BχA2,B].

In the proof of Theorem 9 we associated a directed graph with each quadratic product
χA1,BχA2,B: the vertices are A1 ∪ A2 ∪ B, and the edges point from a1,i and a2,i to bi for
each i ∈ [d], annotated by 1 or 2 according to whether they came from χA1,B or from
χA2,B. Since each vertex appears at most twice, the graph decomposes as a sum of paths
and cycles. The edges point from A1, A2 to B, and so each vertex either has in-degree 0
(if it is in A1 ∪A2) or in-degree 2 (if it is in B). Therefore the paths and cycles have the
following forms, respectively:

α1 → β1 ← α2 → β2 ← · · · ← α` → β` ← α`+1,

α1 → β1 ← α2 → β2 ← · · · ← α` → β` ← α1.

Here the αi belong to A1 ∪ A2, and the βi belong to B. The corresponding factors of
χA1,BχA2,B are, respectively:

(xα1 − xβ1)(xα2 − xβ1)(xα2 − xβ2) · · · (xα` − xβ`)(xα`+1
− xβ`),

(xα1 − xβ1)(xα2 − xβ1)(xα2 − xβ2) · · · (xα` − xβ`)(xα1 − xβ`).

We proceed to calculate the expectation of each of these factors under νp. The expecta-
tion of a monomial is zero unless each variable appears exactly twice, in which case the
expectation is (p(1 − p))` (since each monomial has total degree 2`). In the case of a
path, there is exactly one such monomial, namely x2

β1
x2
β2
· · ·x2

β`
. In the case of a cycle,

there are two such monomials: x2
β1
x2
β2
· · ·x2

β`
and x2

α1
x2
α2
· · ·x2

α`
. Both monomials appear

with unit coefficient. Notice that ` is the size of the subset of B appearing in the path
or cycle. Hence the expectation of the entire quadratic product is 2C(p(1 − p))d, where
C = C(A1, A2) is the number of cycles. In total, we get

‖χB‖2
νp =

∑
A1,A2∈Sd :
A1,A2<B

2C(A1,A2)(p(1− p))d.

We proceed to show that

∑
A1,A2∈Sd :
A1,A2<B

2C(A1,A2) = 2dcB =
d∏
i=1

(bi − 2(i− 1))(bi − 2(i− 1)− 1).

The quantity on the right enumerates the sequences α1,1, α2,1, α1,2, α2,2, . . . , α1,d, α2,d ∈
Sn,2d in which α1,i, α2,i 6 bi for all i ∈ [d], which we call legal sequences. We show how to
map legal sequences into quadratic products in such a way that χA1,BχA2,B has exactly
2C(A1,A2) preimages.
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Let α1,1, α2,1, α1,2, α2,2, . . . , α1,d, α2,d ∈ Sn,2d be a legal sequence. We construct a
quadratic product χA1,BχA2,B alongside its associated directed graph. We maintain the
following invariant: after having processed α1,i, α2,i (and so adding bi to the graph), all
vertices belonging to cycles have appeared in the sequence, and out of each path, exactly
one vertex (from B) has not appeared previously in the sequence. Furthermore, the end-
points of each path do not belong to B (and so have incoming edges) and have different
annotations.

We start with the empty product and graph. At step i we process α1,i, α2,i. Suppose

first that α1,i, α2,i 6= bi. If α1,i /∈ B, then we set a1,i = αi and add the edge αi
1−→ bi. If

α1,i ∈ B then necessarily α1,i < bi, and so it appears in some component C. We locate

the endpoint x whose incoming edge is labelled 2, set a1,i = x and add the edge x
1−→ bi.

Note that the other endpoint of C is labelled 1. We do the same for α2,i. It is routine to
check that we have maintained the invariant.

Suppose next that one of α1,i, α2,i equals bi, say α2,i = bi. We process α1,i as in the
preceding step. Let x be the other endpoint of the path containing bi. We set a2,i = x
and connect x to bi, completing the cycle. This completes the description of the mapping.

We proceed to describe the multivalued inverse mapping, from a quadratic product
to a legal sequence. We process the quadratic product in d steps, updating the graph
by removing each vertex mentioned in the legal sequence. We maintain the invariant
that each original path remains a path, and each original cycle either remains a cycle or
disappears after processing the largest vertex. Furthermore, each edge still points at the
larger vertex, the annotations alternate, a vertex bi not yet processed has two incoming
edges, and other vertices have no incoming edges.

At step i, we process bi. Let x1, x2 be the neighbors of bi labelled 1, 2, respectively.
Suppose first that x1 6= x2. We put α1,i = x1 and α2,i = x2, and remove the vertices x1, x2.
The other neighbors of x1, x2, if any, are connected to bi with edges pointing away from bi
with annotations 2, 1, respectively. These neighbors had incoming edges and so are bj, bk
for j, k > i. It follows that the invariant is maintained. The case x1 = x2 corresponds to
a cycle whose largest vertex is bi. We either put α1,i = x1 and α2,i = bi or α1,i = bi and
α2,i = x2, deleting the entire cycle in both cases.

It is routine to check that the two mappings we have described are inverses. Further-
more, the multivalued mapping from quadratic products to legal sequences has valency
2C(A1,A2) when processing χA,B1χA,B2 . This completes the proof of the formula for 2dcB.

Having considered the measure νp, we consider a related measure µp. Under this
measure the xi are independent, Pr[xi = 0] = 1 − p, and Pr[x1 = 1] = p. Note that
(x1 − p, . . . , xn − p) ∼ νp. Since (xi − p)− (xj − p) = xi − xj, we conclude that

‖χB‖2
µp = ‖χB‖2

νp = (2p(1− p))dcB.

Consider now a general exchangeable measure m. Exchangeability implies that for
some integers γ0, . . . , γd,

‖χB‖2
m =

d∑
k=0

γk E
m

[
d−k∏
i=1

x2
i

2k∏
i=1

xd−k+i

]
,
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since all monomials in E[χ2
B] have total degree 2d. Substituting the measure µp, which

satisfies E[xi] = E[x2
i ] = p, we obtain

d∑
k=0

γkp
d+k = ‖χB‖2

µp = (2p(1− p))dcB.

Reading off the coefficient of γk, we deduce

γk = (−1)k
(
d

k

)
2dcB,

and so

‖χB‖2
m = 2dcBNd, Nd =

d∑
k=0

(−1)k
(
d

k

)
E
m

[
d−k∏
i=1

x2
i

2k∏
i=1

xd−k+i

]
.

In order to evaluate Nd, we consider B = 2, 4, . . . , 2d. In this case, bi = 2i and so

cB =
d∏
i=1

(bi − 2(i− 1))(bi − 2(i− 1)− 1)

2
= 1.

We conclude that 2dNd = ‖χd‖2, and the theorem follows.

Having verified that Yn is a basis for Hn, we can define the corresponding expansion.

Definition 11. Let f ∈ Hn. The Young–Fourier expansion of f is the unique represen-
tation

f =
∑
B∈Bn

f̂(B)χB.

The following simple lemma gives standard properties of this expansion.

Lemma 12. Let f ∈ Hn. The following hold with respect to any exchangeable measure.
For each B ∈ Bn, we have f̂(B) = 〈f, χB〉/‖χB‖2. The mean, variance and L2 norm of
f are given by

E[f ] = f̂(∅), V[f ] =
∑

B∈Bn :
B 6=∅

f̂(B)2cB‖χ|B|‖2, E[f 2] =
∑
B∈Bn

f̂(B)2cB‖χ|B|‖2,

where ∅ is the empty sequence.

In particular, if f ∈ Hn then for every exchangeable measure π we can write E[f 2] =∑
d ‖χd‖2Wd[f ], where Wd[f ] =

∑
|B|=d cB f̂(B)2 depends only on f . Filmus and Mos-

sel [7] give a basis-free proof of this important fact.
The familiar Fourier basis for the Boolean hypercube gives a simple criterion for a

function to depend on a variable. The matching criterion in our case is also simple but
not as powerful.
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Lemma 13. Let f ∈ Hn, and for m ∈ [n] let g = Eπ∈Sm [fπ] be the result of averaging f
over all permutations of the first m coordinates. Then

g =
∑

B∈Bn :
B∩[m]=∅

f̂(B)χB.

In particular, f is invariant under permutation of the first m coordinates iff f̂(B) = 0
whenever B intersects [m].

Proof. It is enough to prove the formula for basis functions f ∈ Yn. If f = χB where
B ∩ [m] = ∅ then fπ = f for all π ∈ Sm since A < B iff Aπ < B, and so g = f . Suppose
next that f = χB where B intersects [m], say bj ∈ [m]. For a < bj not belonging to B,
define

χa,B =
∑

A∈Sn,|B| :
A<B,aj=a

χA,B.

Since χB =
∑

a∈[bj ]\B χa,B, it is enough to show that Eπ∈Sm [χπa,B] vanishes. Since the

mapping π 7→ (a bj)π is an involution on Sm, it is enough to notice that E[χ
(a bj)π
a,B ] =

−E[χπa,B].

4 Slices of the Boolean hypercube

Harmonic multilinear polynomials appear naturally in the context of slices of the Boolean
hypercube.

Definition 14. Let n be an integer and let k 6 n/2 be an integer. The (n, k) slice of the
Boolean hypercube is (

[n]

k

)
= {(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi = k}.

We also identify
(

[n]
k

)
with subsets of [n] of cardinality k. We endow the slice

(
[n]
k

)
with

the uniform measure, which is clearly exchangeable.
A function over the slice is a function f :

(
[n]
k

)
→ R. Every function f : Rn → R can

be interpreted as a function on the slice in the natural way.

We proceed to show that Yn,0 ∪ · · · ∪ Yn,k is an orthogonal basis for the slice
(

[n]
k

)
.

Theorem 15. Let n and k 6 n/2 be integers, and put p = k/n. The set {χB : B ∈
Bn,d for some d 6 k} is an orthogonal basis for the vector space of functions on the slice,
and for B ∈ Bn,d,

‖χB‖2 = cB2d
kd(n− k)d

n2d
= cB(2p(1− p))d

(
1±Op

(
d2

n

))
.
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Proof. We prove the formula and estimate for ‖χB‖2 below. When d 6 k, the formula
shows that ‖χB‖2 6= 0 and so χB 6= 0 as a function on the slice. Hence the set {χB :
B ∈ Bn,d for some d 6 k} consists of non-zero mutually orthogonal vectors. Lemma 5
shows that the number of vectors in this set is

(
n
k

)
, matching the dimension of the vector

space of functions on the slice. Hence this set constitutes a basis for the vector space of
functions on the slice.

In order to prove the formula for ‖χB‖2, we need to compute

‖χd‖2 = E

[
d∏
i=1

(x2i−1 − x2i)
2

]
.

The quantity
∏d

i=1(x2i−1 − x2i)
2 is non-zero for a subset S ∈

(
[n]
k

)
if S contains exactly

one out of each pair {x2i−1, x2i}, in which case the quantity has value 1. Therefore

‖χd‖2 = Pr
S∈([n]

k )
[|S ∩ {x2i−1, x2i}| = 1 for all i ∈ [d]]

= 2d Pr
S∈([n]

k )
[x1, x3, . . . , x2d−1 ∈ S and x2, x4, . . . , x2d /∈ S]

= 2d
(
n−2d
k−d

)(
n
k

) = 2d
(n− 2d)!k!(n− k)!

(k − d)!(n− k − d)!n!
= 2d

kd(n− k)d

n2d
.

This yields the formula for ‖χB‖2. We can estimate this expression as follows:

2d
kd(n− k)d

nd
= (2p(1− p))d

(
1− 1

k

)
· · ·
(
1− d−1

k

)
·
(
1− 1

n−k

)
· · ·
(
1− d−1

n−k

)(
1− 1

n

)
· · ·
(
1− 2d−1

n

)
= (2p(1− p))d

(
1− O(d2)

k

)(
1− O(d2)

n−k

)
(

1− O(d2)
n

) ,

implying the stated estimate.

The theorem shows that every function on
(

[n]
k

)
can be represented uniquely as a

harmonic multilinear polynomial of degree at most k (see Filmus and Mossel [7] for a
basis-free proof). The quantity (2p(1 − p))d is the squared norm of χd under the µp
measure (defined below) over the entire Boolean hypercube, and this allows us to lift low-
degree functions from the slice to the entire Boolean hypercube while preserving properties
such as the expectation and variance.

Theorem 16. Let n and k 6 n/2 be integers, and put p = k/n. Let f :
(

[n]
k

)
→ R be

a function whose representation as a harmonic multilinear polynomial has degree d, and
define f̃ : {0, 1}[n] → R by interpreting this polynomial over {0, 1}[n].

If we endow {0, 1}[n] with the measure µp given by µp(x1, . . . , xn) = p
∑n
i=1 xi(1 −

p)
∑n
i=1(1−xi) then

E[f̃ ] = E[f ], ‖f̃‖2 = ‖f‖2

(
1±Op

(
d2

n

))
, V[f̃ ] = V[f ]

(
1±Op

(
d2

n

))
.
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Proof. The definition of f̃ directly implies that for all B ∈ Bn, ˆ̃f(B) = f̂(B), and fur-

thermore f̂(B) = 0 for |B| > d. According to Lemma 12, E[f̃ ] = ˆ̃f(∅) = f̂(∅) = E[f ].
In order to prove the estimate on the norms, we compute the squared norm of χ` with
respect to µp:

‖χ`‖2
µp = E

µp

[∏̀
i=1

(x2i−1 − x2i)
2

]
= (2p(1− p))`.

Denoting by σ the uniform measure on
(

[n]
k

)
, Lemma 12 and Theorem 15 imply that

‖f̃‖2 =
∑
B∈Bn

ˆ̃f(B)‖χ|B|‖2
µp =

∑
B∈Bn

f̂(B)(2p(1− p))|B|,

‖f‖2 =
∑
B∈Bn

f̂(B)‖χ|B|‖2
σ =

∑
B∈Bn

f̂(B)(2p(1− p))|B|
(

1±Op

(
d2

n

))
,

implying the estimate on the norms. The estimate on the variance follows analogously.

Johnson association scheme

The Johnson association scheme is an association scheme whose underlying set is
(

[n]
k

)
.

Instead of describing the scheme itself, we equivalently describe its Bose–Mesner algebra.

Definition 17. Let n, k be integers such that k 6 n/2. A square matrix M indexed by(
[n]
k

)
belongs to the Bose–Mesner algebra of the (n, k) Johnson association scheme if MS,T

depends only on |S ∩ T |.

While it is not immediately obvious, the Bose–Mesner algebra is indeed an algebra
of matrices, that is, it is closed under multiplication. Furthermore, it is a commutative
algebra, and so all matrices have common eigenspaces. In particular, the algebra is
spanned by a basis of primitive idempotents J0, . . . , Jk. As the following lemma shows,
these idempotents correspond to the bases Yn,0, . . . ,Yn,k.

Lemma 18. Let n, k be integers such that k 6 n/2, and let M belong to the Bose–
Mesner algebra of the (n, k) Johnson association scheme. The bases Yn,0, . . . ,Yn,k span
the eigenspaces of M .

Proof. Since all matrices in the Bose–Mesner algebra have the same eigenspaces, it is
enough to consider a particular matrix in the algebra which has k+1 distinct eigenvalues.
Let M be the matrix corresponding to the linear operator

M : f 7→
∑

16i<j6n

f (i j).

More explicitly, it is not hard to calculate that M(S, S) =
(
k
2

)
+
(
n−k

2

)
, M(S, T ) = 1 if

|S∩T | = k−1, and M(S, T ) = 0 otherwise. In particular, M belongs to the Bose–Mesner
algebra. Lemma 24, which we prove in Section 5, shows that for d 6 k, the subspace
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spanned by Yn,d is an eigenspace ofM corresponding to the eigenvalue
(
n
2

)
−d(n+1−d). All

eigenvalues are distinct (since the maximum of the parabola d(n+1−d) is at d = (n+1)/2),
completing the proof.

As an immediate corollary, we deduce that Yd is an orthogonal basis for the dth
eigenspace in the (n, k) Johnson graph and (n, k) Kneser graph, as well as any other
graph on

(
[n]
k

)
in which the weight on an edge (S, T ) depends only on |S ∩ T |. In the

Johnson graph, two sets are connected if their intersection has size k − 1, and in the
Kneser graph, two sets are connected if they are disjoint.

The slice
(

[n]
k

)
can be identified as the set of cosets of Sk × Sn−k inside Sn. Bannai

and Ito [1], following Dunkl [3, 4], use this approach to determine the idempotents of the
Johnson association scheme from the representations of the symmetric group Sn. They
obtain the idempotent Jd from the representation corresponding to the partition (n−d)+d.
The basis Yn,d can be derived from Young’s orthogonal representation corresponding to
the partition (n− d) + d, but we do not develop this connection here; such a construction
appears in Srinivasan [23].

5 Influences

Throughout this section, we fix some arbitrary exchangeable measure. All inner products
and norms are with respect to this measure.

One of the most important quantities arising in the analysis of functions on the hy-
percube is the influence. In this classical case, influence is defined with respect to a single
coordinate. In our case, the basic quantity is the influence of a pair of coordinates.

Definition 19. Let f ∈ Hn. For i, j ∈ [n], define a function f (i j) ∈ Hn by f (i j)(x) =
f(x(i j)), where x(i j) is obtained by switching xi and xj. The influence of the pair (i, j) is

Infij[f ] = 1
2
‖f (i j) − f‖2.

The mth total influence of the function is

Infm[f ] =
1

m

∑
16i<j6m

Infij[f ].

When m = n, we call the resulting quantity the total influence, denoted Inf[f ].

We start with a triangle inequality for influences (cf. [26, Lemma 5.4] for the Boolean
case, in which the constant 9

2
can be improved to 3

2
).

Lemma 20. Let f ∈ Hn. For distinct i, j, k ∈ [n] we have

Infij[f ] 6 9
2
(Infik[f ] + Infjk[f ]).
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Proof. The Cauchy–Schwartz inequality implies that (a+ b+ c)2 6 3(a2 + b2 + c2). Since
(i j) = (i k)(j k)(i k),

Infij[f ] = 1
2
‖f − f (i k)(j k)(i k)‖2

6 3(1
2
‖f − f (i k)‖2 + 1

2
‖f (i k) − f (j k)(i k)‖2 + 1

2
‖f (j k)(i k) − f (i k)(j k)(i k)‖2

= 6 Infik[f ] + 3 Infjk[f ].

The lemma is obtained by averaging with the similar inequality Infij[f ] 6 6 Infjk[f ] +
3 Infik[f ] obtained using (i j) = (j k)(i k)(j k).

As a consequence of the triangle inequality, we can identify a set of “important”
coordinates for functions with low total influence (cf. [26, Proposition 5.3]).

Lemma 21. Let f ∈ Hn. For every τ > 0 there exists a set S ⊆ [n] of size O(Inf[f ]/τ)
such that Infij[f ] < τ whenever i, j /∈ S.

Proof. Construct a graph G on the vertex set [n] in which two vertices i, j are connected
if Infij[f ] > τ . Let M be a maximal matching in G. For each (i, j) ∈ M , Lemma 20
shows that for all k 6= i, j, Infik[f ] + Infjk[f ] = Ω(τ). Summing over all edges in M we
obtain Inf[f ] = Ω(τ |M |) and so |M | = O(Inf[f ]/τ). The endpoints of M form a vertex
cover S in G of size 2|M | = O(Inf[f ]/τ). Since S is a vertex cover, whenever Infij[f ] > τ
then (i, j) is an edge and so either i ∈ S or j ∈ S (or both). It follows that Infij[f ] < τ
whenever i, j /∈ S.

Our goal in the rest of this section is to give a formula for Infm[f ]. Our treatment
closely follows Wimmer [26]. We start with a formula for f (m m+1).

Lemma 22. Let f ∈ Hn. For m ∈ [n− 1],

f (m m+1) =
∑

B∈Bn :
m,m+1/∈B or
m,m+1∈B

f̂(B)χB

+
∑

B∈Bn :
bi+1=m,m+1/∈B

(
1

m− 2i
f̂(B) +

m− 2i+ 1

m− 2i
f̂(B(m m+1))

)
χB

+
∑

B∈Bn :
bi+1=m+1,m/∈B

(
− 1

m− 2i
f̂(B) +

m− 2i− 1

m− 2i
f̂(B(m m+1))

)
χB.

It might happen that B ∈ Bn but B(m m+1) /∈ Bn, but in that case, the coefficient in front
of f̂(B(m m+1)) vanishes.

Proof. For brevity, define π = (m m + 1). We start by showing that if B ∈ Bn but
Bπ /∈ Bn then the coefficient in front of f̂(Bπ) vanishes. Clearly, this case can happen
only if m+1 ∈ B, say bi+1 = m+1, and m /∈ B. Since B ∈ Bn, m−i = |[m+1]\B| > i+1.
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Since Bπ /∈ Bn, m− 1− i = |[m] \Bπ| 6 i. We conclude that m = 2i+ 1, and indeed the
corresponding coefficient is m−2i−1

m−2i
= 0.

Similarly, if bi+1 ∈ {m,m+ 1} for some B ∈ Bn then bi+1− i− 1 = |[bi+1] \B| > i+ 1,
and in particular m− 2i > bi+1 − 1− 2i > 1. This shows that the expressions appearing
in the expansion of fπ are well-defined.

Consider some B ∈ Bn. If m,m+ 1 /∈ B then A < B iff Aπ < B, and so

χπB =
∑
A∈Sn :
A<B

χAπ ,B =
∑
A∈Sn :
Aπ<B

χA,B = χB.

If m,m + 1 ∈ B, say bi = m and bi+1 = m + 1, then χπA,B = χA′,B, where A′ is obtained
from A by switching ai and ai+1. Again A < B iff A′ < B, and so χπB = χB as in the
preceding case.

Finally, consider some set B ∈ Bn,d such that Bπ ∈ Bn, bi+1 = m and m + 1 /∈ B.
The set B doesn’t necessarily belong to Bn, and in that case we define χB = 0; under this
convention, the formula χB =

∑
A<B χA,B still holds (vacuously). We define a function φ

which maps a sequence A < B to a sequence φ(A) < Bπ so that the following equation
holds:

χπA,B − χA,B = χφ(A),Bπ . (1)

The function φ is given by

φ(A) =

{
a1, . . . , ai,m, ai+2, . . . , ad if m+ 1 /∈ A,
a1, . . . , ai,m, ai+2, . . . , aj, ai+1, aj+2, . . . , ad if aj+1 = m+ 1.

Since bi+1 = m and A < B, in the second case necessarily j > i. It is not hard to verify
that indeed φ(A) < Bπ.

We proceed to verify equation (1). Suppose first that m+ 1 /∈ A. Then

χπA,B − χA,B =
i∏

k=1

(xak − xbk)× [(xai+1
− (m+ 1))− (xai+1

−m)]×
d∏

k=i+2

(xak − xbk)

=
i∏

k=1

(xak − xbk)× (m− (m+ 1))×
d∏

k=i+2

(xak − xbk) = χφ(A),Bπ .

Suppose next that aj+1 = m+ 1. Then

χπA,B−χA,B =
n∏
k=1

k 6=i+1,j+1

(xak−xbk)×[(xai+1
−(m+1))(m−xbj+1

)−(xai+1
−m)(m+1−xbj+1

)].

Using (α− 1)β − α(β + 1) = −α− β,

(xai+1
− (m+ 1))(m− xbj+1

)− (xai+1
−m)(m+ 1− xbj+1

) =

− (xai+1
−m)− (m− xbj+1

) = −(xai+1
− xbj+1

).
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Therefore

χπA,B − χA,B =
n∏
k=1

k 6=i+1,j+1

(xak − xbk)× (m− (m+ 1))× (xai+1
− xbj+1

) = χφ(A),Bπ .

This completes the proof of equation (1).
Every sequence in A ∈ imφ satisfies ai+1 = m. Let A < Bπ be any sequence satisfying

ai+1 = m. We proceed to determine |φ−1(A)|. For every t ∈ [m−1]\(A∪B), the sequence
a1, . . . , ai, t, ai+2, . . . , ad is in φ−1(A). For each j > i such that aj+1 < m, another sequence
in φ−1(A) is a1, . . . , ai, aj+1, ai+2, . . . , aj,m + 1, aj+2, . . . , ad. If the number of such latter
indices is J , then |[m− 1] \ (A ∪ B)| = m− 1− 2i− J . In total, |φ−1(A)| = m− 1− 2i.
We conclude that

χπB − χB = (m− 2i− 1)
∑
A∈imφ

χA,Bπ . (2)

We proceed to calculate χBπ − χB. If A < B then clearly Aπ < Bπ. Conversely, if
Aπ < Bπ then A < B unless aπi+1 = m, in which case Aπ ∈ imφ. The preceding paragraph
shows that every Aπ < Bπ satisfying aπi+1 = m belongs to imφ, and so

χBπ − χB =
∑

A∈Sn,d :
A<B

(χAπ ,Bπ − χA,B) +
∑
A∈imφ

χA,Bπ

=
∑

A∈Sn,d :
A<B

(χπA,B − χA,B) +
∑
A∈imφ

χA,Bπ = (m− 2i)
∑
A∈imφ

χA,Bπ , (3)

using equation (2). Combining equations (2),(3) together, we deduce

χπB = χB +
m− 2i− 1

m− 2i
(χBπ − χB) =

1

m− 2i
χB +

m− 2i− 1

m− 2i
χBπ .

Applying π to both sides of equations (2),(3), we get

χB − χπB = (m− 2i− 1)
∑
A∈imφ

χπA,Bπ , χπBπ − χπB = (m− 2i)
∑
A∈imφ

χπA,Bπ .

Therefore

χπBπ = χπB +
m− 2i

m− 2i− 1
(χB − χπB)

=
m− 2i

m− 2i− 1
χB −

1

m− 2i− 1
χπB = − 1

m− 2i
χBπ +

m− 2i+ 1

m− 2i
χB.

Lemma 22 allows us to come up with a remarkable formula for
∑

16i<m f
(i m), showing

that the basis vectors χB are eigenvectors of this operator (cf. [26, Proposition 4.2], in
which λm(B) is the content of m in the Young tableau of shape n−|B|, |B| having bottom
row B).
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Lemma 23. Let f ∈ Hn. For m ∈ [n],∑
16i<m

f (i m) =
∑
B∈Bn

λm(B)f̂(B)χB, where λm(B) =

{
i− 2 if bi = m,

m− i if bi−1 < m < bi,

using the conventions b0 = −∞ and bd+1 =∞ for B ∈ Bn,d.
Proof. The proof is by induction on m. When m = 1, the sum in question vanishes, and
so we need to prove that λ1(B) = 0 for all B ∈ Bn. Indeed, b1 > 2 for all B ∈ Bn and so
λ1(B) = 0. Suppose now that the formula holds for some m. Let π = (m m + 1). Since
(i m+ 1) = π(i m)π, ∑

16i<m+1

f (i m+1) =

( ∑
16i<m

(fπ)(i m)

)π
+ fπ.

Lemma 22 shows that

fπ =
∑

B∈Bn :
m,m+1/∈B or
m,m+1∈B

f̂(B)χB

+
∑

Bπ∈Bn :
bi+1=m,m+1/∈B

(
1

m− 2i
f̂(B) +

m− 2i+ 1

m− 2i
f̂(Bπ)

)
χB

+

(
− 1

m− 2i
f̂(Bπ) +

m− 2i− 1

m− 2i
f̂(B)

)
χBπ .

The induction hypothesis implies that∑
16i<m

(fπ)(i m) =
∑

B∈Bn :
m,m+1/∈B or
m,m+1∈B

λm(B)f̂(B)χB

+
∑

Bπ∈Bn :
bi+1=m,m+1/∈B

(i− 1)

(
1

m− 2i
f̂(B) +

m− 2i+ 1

m− 2i
f̂(Bπ)

)
χB

+(m− i− 1)

(
− 1

m− 2i
f̂(Bπ) +

m− 2i− 1

m− 2i
f̂(B)

)
χBπ .

Another application of Lemma 22 gives( ∑
16i<m

(fπ)(i m)

)π
=

∑
B∈Bn :

m,m+1/∈B or
m,m+1∈B

λm(B)f̂(B)χB

+
∑

Bπ∈Bn :
bi+1=m,m+1/∈B

[
(m− 2i)(m− i− 1)− 1

m− 2i
f̂(B)− m− 2i+ 1

m− 2i
f̂(Bπ)

]
χB

+

[
−m− 2i− 1

m− 2i
f̂(B) +

(m− 2i)(i− 1) + 1

m− 2i
f̂(Bπ)

]
χBπ .
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We conclude that∑
16i<m+1

f (i m+1) =

( ∑
16i<m

(fπ)(i m)

)π
+ fπ

=
∑

B∈Bn :
m,m+1/∈B or
m,m+1∈B

(λm(B) + 1)f̂(B)χB

+
∑

Bπ∈Bn :
bi+1=m,m+1/∈B

(m− i− 1)f̂(B)χB + (i− 1)f̂(Bπ)χBπ .

It remains to verify that these coefficients match λm+1(B). If m,m+1 /∈ B then λm(B) =
m − i, where bi−1 < m < bi. Since m + 1 /∈ B, also bi−1 < m + 1 < bi, and so
λm+1(B) = m+ 1− i = λm(B) + 1. If m,m+ 1 ∈ B, say bi = m and bi+1 = m+ 1, then
λm+1(B) = (i + 1) − 2 = (i − 2) + 1 = λm(B) + 1. Finally, suppose that bi+1 = m and
m+1 /∈ B. In this case, bi+1 < m+1 < bi+2 and so λm+1(B) = (m+1)−(i+2) = m−i−1,
while bπi+1 = m+ 1 and so λm+1(Bπ) = (i+ 1)−2 = i−1. All cases match the coefficients
in the displayed formula, completing the proof.

Lemma 23 shows that the elements of Yn are eigenvectors of the operators f 7→∑
16i<m f

(i m) for all m. In the terminology of Vershik and Okounkov [24], this makes Yn
a Gelfand–Tsetlin basis. Srinivasan [23] shows that the Gelfand–Tsetlin basis is unique
in our setting, and so the basis he constructs, which is also a Gelfand–Tsetlin basis, is the
same as Yn.

Lemma 23 allows us to give a formula for the mth total influence of a function (cf. [26,
Definition 4.3]).

Lemma 24. Let f ∈ Hn. For m ∈ [n],∑
16i<j6m

f (i j) =
∑
B∈Bn

τm(B)χB, where τm(B) =
m(m− 1)

2
−|B∩ [m]|(m+1−|B∩ [m]|).

Moreover,

Infm[f ] =
∑
B∈Bn

|B ∩ [m]|(m+ 1− |B ∩ [m]|)
m

f̂(B)2cB‖χ|B|‖2.

In particular,

Inf[f ] =
∑
B∈Bn

|B|(n+ 1− |B|)
n

f̂(B)2cB‖χ|B|‖2.

Proof. Lemma 23 proves the first formula with τm(B) =
∑m

k=2 λk(B). We can write
λk(B) = λ′k(B) + λ′′k(B), where λ′k(B) is non-zero when k ∈ B, and λ′′k(B) is non-zero
when k /∈ B. It follows from the definition that

λ′b1(B), λ′b2(B), . . . , λ′b|B|
(B) = −1, 0, . . . , |B| − 2.
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In particular,
m∑
i=1

λ′i(B) = −1 + · · ·+ (|B ∩ [m]| − 2) =
|B ∩ [m]|(|B ∩ [m]| − 3)

2
.

Consider the sequence λ′′1(B), . . . , λ′′n(B), in which we omit λ′′k(B) for all k ∈ B. The
sequence starts at λ′′1(B) = 1−1 = 0. Let λ′′k(B) = k−i, where bi−1 < k < bi. If bi 6= k+1
then λ′′k+1(B) = (k+ 1)− i = λ′′k(B) + 1. If bi = k+ 1, . . . , bi+`−1 = k+ ` and k+ `+ 1 6 n
then λ′′k+1(B) = · · · = λ′′k+` = 0 and λ′′k+`+1(B) = (k + ` + 1) − (i + `) = λ′′k(B) + 1. In
other words,

λ′′1(B), . . . , λ′′n(B) = 0, 1, . . . , n− |B| − 1.

In particular,
m∑
i=1

λ′′i (B) = 0 + · · ·+ (m− |B ∩ [m]| − 1) =
(m− |B ∩ [m]|)(m− |B ∩ [m]| − 1)

2
.

In total,

τm(B) =
|B ∩ [m]|(|B ∩ [m]| − 3) + (m− |B ∩ [m]|)(m− |B ∩ [m]| − 1)

2

=
m(m− 1)

2
− |B ∩ [m]|(m+ 1− |B ∩ [m]|),

completing the proof of the first formula.
In order to compute the mth total influence, notice that

Infij[f ] = 1
2
‖f (i j) − f‖2 = 1

2
‖f‖2 + 1

2
‖f (i j)‖2 − 〈f, f (i j)〉 = ‖f‖2 − 〈f, f (i j)〉,

using the exchangeability of the measure. Therefore

Infm[f ] =
1

m

(
m(m− 1)

2
‖f‖2 −

〈
f,

∑
16i<j6m

f (i j)

〉)
.

The formula for Infm[f ] now immediately follows from the orthogonality of the basis
(Theorem 9) and the norms stated in Theorem 10.

As a simple corollary, we obtain a version of Poincaré’s inequality.

Lemma 25. For any f ∈ Hn,d we have

V[f ] 6 Inf[f ] 6 dV[f ].

Proof. Lemma 12 and Lemma 24 give the formulas

V[f ] =
∑

B∈Bn :
B 6=∅

f̂(B)2cB‖χ2,...,2|B|‖2,

Inf[f ] =
∑

B∈Bn :
B 6=∅

|B|(n+ 1− |B|)
n

f̂(B)2cB‖χ2,...,2|B|‖2.

The left inequality follows from |B|(n + 1 − |B|) > n, and the right inequality from
n+ 1− |B| 6 n.
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6 Wimmer–Friedgut theorem

For a Boolean function f on the Boolean hypercube {0, 1}n, the influence of variable i is

Infi[f ] = Pr
x1,...,xn∈{0,1}n

[f(x1, . . . , xn) 6= f(x1, . . . , 1− xi, . . . , xn)],

under the uniform distribution over the hypercube. The total influence of the function is
Inf[f ] =

∑n
i=1 Infi[f ]. Friedgut [9] proved that for every ε > 0, every Boolean function f

is ε-close to a function g depending on 2O(Inf[f ]/ε) coordinates, that is, Prx∈{0,1}n [f(x) 6=
g(x)] 6 ε.

Friedgut’s theorem can be seen as an “inverse theorem” corresponding to the easy fact
that a Boolean function depending on d coordinates has total influence at most d. Since
the total influence is bounded by the degree, Friedgut’s theorem can also be seen as a
strengthening of the result of Nisan and Szegedy [18] that a Boolean function of degree d
depends on at most d2d−1 coordinates.

Wimmer [26] proved an analog of Friedgut’s theorem for functions on a slice of the
Boolean cube. His proof takes place mostly on the symmetric group, and uses properties of
Young’s orthogonal representation. We rephrase his proof in terms of Young’s orthogonal
basis for the slice.

The proof relies crucially on a hypercontractivity property due to Lee and Yau [15].
Before stating the property, we need to define the noise operator.

Definition 26. The Laplacian operator on functions f ∈ Hn is given by

Lf = f − 1(
n
2

) ∑
16i<j6n

f (i j).

The noise operator Ht is given by Ht = e−tL.

The Laplacian corresponds to the Markov chain applying a random transposition (i j).
Moreover, L = I − K where K is the transition matrix of the Markov chain. We can
expand the noise operator as

Ht = et(K−I) = e−t
∞∑
`=0

t`

`!
K`.

In words, Ht corresponds to applying P (t) many random transpositions (i j), where P (t)
is the Poisson distribution with mean t.

Lemma 24 gives a formula for Lf and Htf .

Lemma 27. Let f ∈ Hn. For every t,

Lf =
∑
B∈Bn

2|B|(n+ 1− |B|)
n(n− 1)

f̂(B)χB,

Htf =
∑
B∈Bn

exp

(
−t2|B|(n+ 1− |B|)

n(n− 1)

)
f̂(B)χB.
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The hypercontractivity result of Lee and Yau [15] gives for all p < q a value of t such
that ‖Htf‖q 6 ‖f‖p.

Proposition 28. Let n, k be integers such that 1 6 k 6 n− 1. The log-Sobolev constant
ρ of the Markov chain corresponding to the Laplacian L is given by

ρ−1 = Θ

(
n log

n2

k(n− k)

)
.

Consequently, for every t > 0 and 1 6 p 6 q 6 ∞ satisfying q−1
p−1

6 exp(2ρt) and all

f ∈ Hn, ‖Htf‖q 6 ‖f‖p.

Proof. The first result is [15, Theorem 5]. Their parameter t is scaled by a fraction of
n. Furthermore, their log-Sobolev constant is the reciprocal of ours. The second result is
due to Gross [11], and is quoted from [20, Theorem 2.4].

We can now state and prove the Wimmer–Friedgut theorem [26, Theorem 1.3].

Definition 29. A function f ∈ Hn depends (only) on a set S ⊆ [n] if f = f (i j) whenever
i, j /∈ S.

Theorem 30. Let n, k be integers such that 1 6 k 6 n/2, and define p = k/n. For every
Boolean function f on the slice and any ε > 0 there exists a Boolean function g depending
on O(p−O(Inf[f ]/ε)) coordinates such that Pr[f 6= g] 6 ε.

Proof. Let τ > 0 be a parameter to be determined. Lemma 21 shows that there exists a
set S ⊆ [n] of size m = O(Inf[f ]/τ) such that Infij[f ] < τ whenever i, j /∈ S. Without loss
of generality, we can assume that S = {n−m+ 1, . . . , n}. Let h be the function obtained
from f by averaging over all permutations of [n−m], and let g be the Boolean function
obtained from rounding h to {0, 1}. Note that h and g both depend only on the last m
coordinates. Lemma 13 shows that the Young–Fourier expansion of h is obtained from
that of f by dropping all terms f̂(B)χB for which B ∩ [n−m] 6= ∅. Therefore Lemma 12
shows that

Pr[f 6= g] = ‖f − g‖2 6 2‖f − h‖2 = 2
∑

B∈Bn :
B∩[n−m]6=∅

f̂(B)2cB‖χ|B|‖2.

We bound the sum on the right-hand side by considering separately large sets and
small sets. Let d 6 n/2 be a parameter to be determined. For the large sets, we have∑

B∈Bn :
|B|>d

f̂(B)2cB‖χ|B|‖2 6
n

d(n+ 1− d)

∑
B∈Bn :
|B|>d

|B|(n+ 1− |B|)
n

cB‖χ|B|‖2

=
n

d(n+ 1− d)
Inf[f ],

using Lemma 24.
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In order to bound the part corresponding to small sets, we need to apply hypercontrac-
tivity. Choose (p, q) = (4

3
, 2) in Proposition 28 to deduce that for t = Θ(n log n2

k(n−k)
) =

Θ(n log p−1) we have ‖HtF‖2 6 ‖F‖4/3 = ‖F‖3/2
2 for every function F on the slice which

takes the values 0,±1. In particular, choosing F = f − f (i j) we obtain (2 Infij[Htf ])1/2 6
(2 Infij[f ])3/4 and so Infij[Htf ] 6

√
2 Infij[f ]3/2. Therefore

Infn−m[Htf ] 6

√
2

n−m
∑

16i<j6n−m

Infij[f ]3/2 6

√
2n

n−m
√
τ Inf[f ].

On the other hand, Lemma 24 and Lemma 27 show that

Infn−m[Htf ] =
∑
B∈Bn

exp

(
−t2|B|(n+ 1− |B|)

n(n− 1)

)
×

|B ∩ [n−m]|(n−m+ 1− |B ∩ [n−m]|)
n−m

f̂(B)2cB‖χ|B|‖2

>
∑

B∈Bn :
|B|<d

B∩[n−m] 6=∅

exp

(
−t2d(n+ 1− d)

n(n− 1)

)
f̂(B)2cB‖χ|B|‖2

=
∑

B∈Bn :
|B|<d

B∩[n−m] 6=∅

pΘ(d)f̂(B)2cB‖χ|B|‖2.

Altogether, ∑
B∈Bn :
|B|<d

B∩[n−m] 6=∅

f̂(B)2cB‖χ|B|‖2 6
√

2p−Θ(d) n

n−m
√
τ Inf[f ].

Putting both bounds together, we deduce

Pr[f 6= g] 6 2
n

d(n+ 1− d)
Inf[f ] + 2

√
2p−Θ(d) n

n−m
√
τ Inf[f ].

We now choose d = Inf[f ]/(8ε) and τ = pCd for an appropriate constant C > 0, so
that m = O(Inf[f ]p−O(Inf[f ]/ε)) = O(p−O(Inf[f ]/ε)). We can assume that d,m 6 n/2, since
otherwise the theorem is trivial. We can choose C so that

Pr[f 6= g] 6
ε

2
+O(pCd/3 Inf[f ]) =

ε

2
+O(2−Cd/3 Inf[f ]) =

ε

2
+O(2−Cd/3d)

ε

2
.

For an appropriate choice of C, the second term is at most ε/2, completing the proof.
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