On Erdős-Sós conjecture for trees of large size

Agnieszka Görlich and Andrzej Żak*
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland
forys@agh.edu.pl, zakandrz@agh.edu.pl

Submitted: Jul 13, 2015; Accepted: Mar 3, 2016; Published: Mar 18, 2016
Mathematics Subject Classifications: 05C35

Abstract

Erdős and Sós conjectured that every graph G of average degree greater than $k-1$ contains every tree of size k. Several results based upon the number of vertices in G have been proved including the special cases where G has exactly $k+1$ vertices (Zhou), $k+2$ vertices (Slater, Teo and Yap), $k+3$ vertices (Woźniak) and $k+4$ vertices (Tiner). We further explore this direction. Given an arbitrary integer $c \geqslant 1$, we prove Erdős-Sós conjecture in the case when G has $k+c$ vertices provided that $k \geqslant k_{0}(c)$ (here $k_{0}(c)=c^{12}$ polylog (c)). We also derive a corollary related to the Tree Packing Conjecture.

1 Introduction

A set of (simple) graphs $G_{1}, G_{2}, \ldots, G_{q}$ are said to pack into a complete graph K_{n} (in short pack) if $G_{1}, G_{2}, \ldots, G_{q}$ can be found as pairwise edge-disjoint subgraphs in K_{n}. Many classical problems in Graph Theory can be stated as packing problems. In particular, H is a subgraph of G if and only if H and the complement of G pack.

Erdős and Sós conjectured that every graph G with average degree greater than $k-1$ contains every tree with k edges. This conjecture has been restated by Woźniak [16] as follows.

Conjecture 1. Suppose that G is a graph with n vertices and T is any tree with k edges. If $|E(G)|<\frac{n(n-k)}{2}$, then G and T pack (into the complete graph K_{n}).

Ajtai, Komlós, Simonovits and Szemerédi have announced a proof of Conjecture 1 for sufficiently large k . There are many partial results concerning this conjecture. They have been obtained either for some special families of graphs [2,5,6,15] or for some

[^0]special families of trees [7,11, 12] or else for certain values of the parameters k and n. In particular, the cases where n is equal to $k+1, k+2, k+3$, or $k+4$ were proved by Zhou [17], by Slater, Teo, and Yap [13], by Woźniak [16], and by Tiner [14], respectively. We extend these results to $n=k+c$ for any c, provided k is sufficiently large.

Theorem 2. Let c be a positive integer and let $k_{0}(c)=\gamma c^{12} \ln ^{4} c$ where γ is some universal sufficiently large constant. Then for every $t=1, \ldots, c$ and for every integer $k \geqslant k_{0}(c)$ the following holds. If T is a tree with k edges and G is a graph on $k+t$ vertices with $|E(G)|<\frac{t(k+t)}{2}$, then T and G pack into K_{k+t}.

Another famous tree packing conjecture (TPC) posed by Gyárfás [9] states that any set of $n-1$ trees $T_{n}, T_{n-1}, \ldots, T_{2}$ such that T_{i} has i vertices pack into K_{n}. In [8] Bollobás suggested the following weakening of TPC

Conjecture 3. For every $c \geqslant 1$ there is an $n(c)$ such that if $n \geqslant n(c)$, then any set of c trees $T_{1}, T_{2}, \ldots, T_{c}$ such that T_{i} has $n-(i-1)$ vertices pack into K_{n}.

Bourgeois, Hobbs and Kasiraj [4] showed that any three trees T_{n}, T_{n-1}, T_{n-2} pack into K_{n}. Recently, Balogh and Palmer [3] proved that any set of $t=\frac{1}{10} n^{1 / 4}$ trees T_{1}, \ldots, T_{t} such that no tree is a star and T_{i} has $n-i+1$ vertices pack into K_{n}. We obtain the following corollary of Theorem 2 :

Corollary 4. Let c be a positive integer and let $n_{0}(c)=\gamma c^{12} \ln ^{4} c$ where γ is some universal sufficiently large constant. If $n \geqslant n_{0}(c)$, then any set of c trees $T_{1}, T_{2}, \ldots, T_{c}$, such that T_{i} has $n-2(i-1)$ vertices pack into K_{n}.

Proof. The proof is by induction on c. For $c=1$ the statement is obvious. So fix some $c>1$ and assume that the statement is true for $c-1$. Let $T_{1}, T_{2}, \ldots, T_{c}$ be any set of c trees such that T_{i} has $n-2(i-1)$ vertices. By the induction hypothesis $T_{1}, T_{2}, \ldots, T_{c-1}$ pack into K_{n}. Let G be a graph with $V(G)=V\left(K_{n}\right)$ and $E(G)=\bigcup_{i=1}^{c-1} E\left(T_{i}\right)$. Clearly,

$$
|E(G)| \leqslant(c-1) n<\frac{(2 c-1) n}{2}
$$

Furthermore, T_{c} has $n-(2 c-1)$ edges. Thus, by Theorem $2, G$ and T_{c} pack, which completes the proof of the corollary.

The notation is standard. In particular $|V(G)|$ is called the order of G and $|E(G)|$ is called the size of G. Furthermore, $d_{G}(v)$ (abbreviated to $d(v)$ if no confusion arises) denotes the degree of a vertex v in $G, \delta(G)$ and $\Delta(G)$ denote the minimum and the maximum degree of G, respectively. $N_{G}(v)$ denotes the set of neighbors of v and, for a subset of vertices $W, N_{G}(W)=\bigcup_{w \in W} N(w) \backslash W$ and $N_{G}[W]=N_{G}(W) \cup W$.

2 Preliminaries

In the proof we refine the approach of Alon and Yuster from [1]. However, we apply it in a slightly different way as we choose random subsets B_{i} (to be defined later) in a denser graph.

We write $\operatorname{Bin}(p, n)$ for the binomial distribution with n trials and success probability p. Let $X \in \operatorname{Bin}(n, p)$. We will use the following two versions of the Chernoff bound which follows from formulas (2.5) and (2.6) from [10] by taking $t=2 \mu-n p$ and $t=n p-\mu / 2$, respectively.

If $\mu \geqslant E[X]=n p$ then

$$
\begin{equation*}
\operatorname{Pr}[X \geqslant 2 \mu] \leqslant \exp (-\mu / 3) \tag{1}
\end{equation*}
$$

On the other hand, if $\mu \leqslant E[X]=n p$ then

$$
\begin{equation*}
\operatorname{Pr}[X \leqslant \mu / 2] \leqslant \exp (-\mu / 8) \tag{2}
\end{equation*}
$$

Proposition 5. Let G be a graph with n vertices and at most m edges. Let $V(G)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ with $d\left(v_{1}\right) \geqslant d\left(v_{2}\right) \geqslant \cdots \geqslant d\left(v_{n}\right)$. Then

$$
d\left(v_{i}\right) \leqslant \frac{2 m}{i}
$$

Proof. The proposition is true because

$$
2 m \geqslant \sum_{j=1}^{n} d\left(v_{j}\right) \geqslant \sum_{j=1}^{i} d\left(v_{j}\right) \geqslant i d\left(v_{i}\right)
$$

The following technical lemma is the main tool in the proof. A version of it appeared in [1].

Lemma 6. Let G be a graph with n vertices and at most m edges. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ with $d\left(v_{1}\right) \geqslant d\left(v_{2}\right) \geqslant \cdots \geqslant d\left(v_{n}\right)$. Let $A_{i}, i=1, \ldots, n$, be any subsets of $V(G)$ with the additional requirement that if $u \in A_{i}$ then $d(u)<a$. For $i=1, \ldots, n$ let B_{i} be a random subset of A_{i} where each vertex of A_{i} is independently selected to B_{i} with probability $p<1 / a$. Let

$$
\begin{aligned}
C_{i} & =\left(\bigcup_{j=1}^{i-1} B_{j}\right) \cap N\left(v_{i}\right), \\
D_{i} & =B_{i} \backslash\left(\bigcup_{j=1}^{i-1} N\left[B_{j}\right]\right) .
\end{aligned}
$$

Then

1. $\operatorname{Pr}\left[\left|C_{i}\right| \geqslant 4 m p\right] \leqslant \exp (-2 m p / 3)$ for $i=1, \ldots, n$
2. $\operatorname{Pr}\left[\left|D_{i}\right| \leqslant \frac{p\left|A_{i}\right|}{2 e}\right] \leqslant \exp \left(\frac{-p\left|A_{i}\right|}{8 e}\right)$ for $i=1, \ldots,\lfloor 1 /(a p)\rfloor$.

Proof. Fix some vertex $v_{i} \in V(G)$.
Consider the first part of the lemma. If $d\left(v_{i}\right) \leqslant 2 m p$ then the probability is zero because $\left|C_{i}\right| \leqslant\left|N\left(v_{i}\right)\right|=d\left(v_{i}\right)$. So we may assume that $d\left(v_{i}\right)>2 m p$. For $u \in N\left(v_{i}\right)$ the probability that $u \in B_{j}$ is at most p (it is either p if $u \in A_{j}$ or 0 if $u \notin A_{j}$.) Thus $\operatorname{Pr}\left[u \in C_{i}\right] \leqslant(i-1) p$. By Proposition 5, $i \leqslant 2 m / d\left(v_{i}\right)$. Hence,

$$
\operatorname{Pr}\left[u \in C_{i}\right] \leqslant \frac{2 m p}{d\left(v_{i}\right)}
$$

Observe that $\left|C_{i}\right|$ is a sum of $d\left(v_{i}\right)$ independent indicator random variables each of which has success probability at most $\frac{2 m p}{d\left(v_{i}\right)}$. Thus, the expectation of $\left|C_{i}\right|$ is at most $2 m p$. Therefore, by (1), the probability of $\left|C_{i}\right|$ being larger than $4 m p$ satisfies

$$
\operatorname{Pr}\left[\left|C_{i}\right| \geqslant 4 m p\right] \leqslant \exp (-2 m p / 3)
$$

Consider now the second part of the lemma. Observe that for $u \in A_{i}$, the probability that $u \in B_{i}$ is p. On the other hand, for any j, the probability that $u \notin N\left[B_{j}\right]$ is at least $1-a p$. Indeed, $u \in N\left[B_{j}\right]$ if and only if $u \in B_{j}$ or one of its neighbors belongs to B_{j}. Since $u \in A_{i}$, it has at most $a-1$ neighbors. Hence, the probability that $u \in N\left[B_{j}\right]$ is at most $a p$. Therefore, as long as $i \leqslant 1 /(a p)$,

$$
\operatorname{Pr}\left[u \in D_{i}\right] \geqslant p(1-a p)^{i-1} \geqslant \frac{p}{e} .
$$

Observe that $\left|D_{i}\right|$ is a sum of $\left|A_{i}\right|$ independent indicator random variables, each having success probability at least $\frac{p}{e}$. Therefore the expectation of $\left|D_{i}\right|$ is at least $\frac{p\left|A_{i}\right|}{e}$. By (2), the probability that $\left|D_{i}\right|$ falls below $\frac{p\left|A_{i}\right|}{2 e}$ satisfies

$$
\operatorname{Pr}\left[\left|D_{i}\right| \leqslant \frac{p\left|A_{i}\right|}{2 e}\right] \leqslant \exp \left(-\frac{p\left|A_{i}\right|}{8 e}\right) .
$$

3 Proof of Theorem 2

The proof is by induction on t. By Zhou's result the theorem holds for $t=1$. So fix some $t, 2 \leqslant t \leqslant c$, and assume that the statement is true for $t-1$. Let G^{\prime} be a (bipartite) graph that arises from T by adding a set I^{\prime} of $t-1$ isolated vertices. Thus $|V(G)|=\left|V\left(G^{\prime}\right)\right|$. Clearly, G^{\prime} and G pack if and only if T and G pack.

Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ where $d_{G}\left(v_{i}\right) \geqslant d_{G}\left(v_{i+1}\right)$ and $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ where $d_{G^{\prime}}\left(v_{i}^{\prime}\right) \geqslant d_{G^{\prime}}\left(v_{i+1}^{\prime}\right)$. Since $|E(G)|<t n / 2$, we have

$$
\begin{equation*}
\delta(G) \leqslant t-1 \tag{3}
\end{equation*}
$$

Suppose first that there is a vertex $v \in V(G)$ with $d_{G}(v) \geqslant t+\frac{k-1}{2}$. Clearly,

$$
|E(G-v)|=|E(G)|-d_{G}(v)<\frac{t(k+t)}{2}-t-\frac{k-1}{2}=\frac{(t-1)(k+t-1)}{2}
$$

Thus, by the induction hypothesis, $G-v$ and T pack. Therefore, G and T pack as well.
Hence, we may assume that

$$
\begin{equation*}
\Delta(G) \leqslant t-1+\frac{k}{2} \tag{4}
\end{equation*}
$$

Let $S_{i} \subset V(G) \backslash N\left[v_{i}\right]$ with the assumption that if $u \in S_{i}$ then $d_{G}(u)<5 c$.
Claim 7. $\left|S_{i}\right| \geqslant \frac{n}{4}+t$
Proof. By (4) each vertex of G has at least

$$
k+t-1-(t-1+k / 2)=k / 2
$$

non-neighbors. Suppose that α vertices of G have degree greater than or equal to $5 c$. Thus

$$
c n>2|E(G)|=\sum_{i=1}^{n} d\left(v_{i}\right) \geqslant \alpha \cdot 5 c
$$

and so $\alpha \leqslant \frac{n}{5}$. Therefore

$$
\left|S_{i}\right| \geqslant k / 2-\frac{n}{5} \geqslant n / 4+t
$$

Now, we divide the proof into two cases depending whether $\Delta(T)<60 \mathrm{cn}^{3 / 4}$ or $\Delta(T) \geqslant$ $60 c n^{3 / 4}$.

3.1 Case $\Delta(T)<60 \mathrm{cn}^{3 / 4}$

Recall that $S_{i} \subset V(G) \backslash N\left[v_{i}\right]$ with the assumption that if $u \in S_{i}$ then $d_{G}(u)<5 c$.
For $i=1, \ldots, n$ let B_{i} be a random subset of S_{i} where each vertex of S_{i} is independently selected to B_{i} with probability

$$
\begin{equation*}
p=\frac{n^{-3 / 4}}{15 \cdot 10^{2} c^{3}} \tag{5}
\end{equation*}
$$

Let

$$
\begin{aligned}
C_{i} & =\left(\bigcup_{j=1}^{i-1} B_{j}\right) \cap N\left(v_{i}\right), \\
D_{i} & =B_{i} \backslash\left(\bigcup_{j=1}^{i-1} N\left[B_{j}\right]\right) .
\end{aligned}
$$

Claim 8. The following conditions hold simultaneously with positive probability:

1. $\left|C_{i}\right| \leqslant \frac{n^{1 / 4}}{750 c^{2}}$ for $i=1, \ldots, n$
2. $\left|D_{i}\right| \geqslant 3$ for $i=1, \ldots,\left\lfloor 300 c^{2} n^{3 / 4}\right\rfloor$.

Proof. Recall that $|E(G)|<\frac{t n}{2} \leqslant \frac{c n}{2}$. Thus, by Lemma 6 ,

$$
\operatorname{Pr}\left[\left|C_{i}\right| \geqslant \frac{n^{1 / 4}}{750 c^{2}}\right] \leqslant \exp \left(\frac{-n^{1 / 4}}{4500 c^{2}}\right)<\frac{1}{2 n} .
$$

Furthermore, by Claim 7,

$$
3 \leqslant \frac{n^{1 / 4}}{12 \cdot 10^{3} e c^{3}}=\frac{n^{-3 / 4} \cdot(n / 4)}{15 \cdot 10^{2} c^{3} \cdot 2 e}<\frac{p\left|S_{i}\right|}{2 e} .
$$

Hence, by Lemma 6 (with $a=5 c$ and $A_{i}=S_{i}$), for each $i \leqslant\lfloor 1 /(a p)\rfloor=\left\lfloor 300 c^{2} n^{3 / 4}\right\rfloor$

$$
\begin{aligned}
\operatorname{Pr}\left[\left|D_{i}\right| \leqslant 3\right] & \leqslant \operatorname{Pr}\left[\left|D_{i}\right| \leqslant \frac{p\left|S_{i}\right|}{2 e}\right] \leqslant \exp \left(-\frac{p\left|S_{i}\right|}{8 e}\right) \\
& \leqslant \exp \left(-\frac{n^{1 / 4}}{48 \cdot 10^{3} e c^{3}}\right)<\frac{1}{600 c^{2} n^{3 / 4}}
\end{aligned}
$$

Thus, by the union bound, each part of the lemma holds with probability greater than $1 / 2$. Hence both hold with positive probability.

Therefore, we may fix sets B_{1}, \ldots, B_{n} satisfying all the conditions of Claim 8 with respect to the cardinalities of the sets C_{i} and D_{i}. We construct a packing $f: V(G) \rightarrow V\left(G^{\prime}\right)$ in three stages. At each point of the construction, some vertices of $V(G)$ are matched to some vertices of $V\left(G^{\prime}\right)$, while the other vertices of $V(G)$ and $V\left(G^{\prime}\right)$ are yet unmatched. Initially, all vertices are unmatched. We always maintain the packing property, that is for any $u, v \in V(G)$ if $u v \in E(G)$ then $f(u) f(v) \notin E\left(G^{\prime}\right)$.

In Stage 1 we match certain number of vertices of G that have the largest degrees. After this stage, by the assumption that $\Delta\left(G^{\prime}\right) \leqslant 60 \mathrm{cn}^{3 / 4}$, both G and G^{\prime} do not have unmatched vertices of high degree (vertices of high degree are the main obstacle in packing). This fact enables us to complete the packing in Stages 2 and 3.

Stage 1 Let x be the largest integer such that $d_{G}\left(v_{x}\right) \geqslant \frac{n^{1 / 4}}{300 c}$. Thus, by Proposition 5,

$$
\begin{equation*}
x \leqslant 300 c^{2} n^{3 / 4} \tag{6}
\end{equation*}
$$

This stage is done repeatedly for $i=1, \ldots, x$ and throughout it we maintain the following two invariants

1. At iteration i we match v_{i} with some vertex $f\left(v_{i}\right)$ of G^{\prime} such that $d_{G^{\prime}}\left(f\left(v_{i}\right)\right) \leqslant 3$.
2. Furthermore, we match all yet unmatched neighbors of $f\left(v_{i}\right)$ to some vertices of B_{i} (this way all neighbors of $f\left(v_{i}\right)$ in G^{\prime} are matched to vertices of $\bigcup_{j=1}^{2} B_{j}$).
To see that this is possible, consider the i'th iteration of Stage 1 where v_{i} is some yet unmatched vertex of G. Let Q^{\prime} be the set of all yet unmatched vertices of G^{\prime} having degree less than or equal to 3 . Note that, by Proposition 5, the number of vertices of degree less than or equal to 3 in G^{\prime} is at least $n / 2$. Hence,

$$
\left|Q^{\prime}\right| \geqslant n / 2-4(i-1) \geqslant n / 2-4 x \geqslant n / 2-1200 c^{2} n^{3 / 4} \geqslant n / 3 .
$$

Let X be the set of already matched neighbors of v_{i} and let $Y^{\prime}=N_{G^{\prime}}(f(X))$. Thus, the valid choice for $f\left(v_{i}\right)$ would be a vertex of $Q^{\prime} \backslash Y^{\prime}$. To see that such a choice is possible, it is enough to show that $\left|Q^{\prime}\right|>\left|Y^{\prime}\right|$. Let $X=X_{1} \cup X_{2}$ with $X_{1} \subseteq\left\{v_{1}, \ldots, v_{i-1}\right\}$ and $X_{2} \subseteq B_{1} \cup \cdots \cup B_{i-1}$. Hence $X_{1} \leqslant x$ and $\left|X_{2}\right|=\left|C_{i}\right|$. Thus, by the first invariant of Stage 1, and by (6) and Claim 8

$$
\begin{aligned}
\left|Q^{\prime}\right|-\left|Y^{\prime}\right| & \geqslant n / 3-3\left|X_{1}\right|-\Delta\left(G^{\prime}\right)\left|X_{2}\right| \geqslant n / 3-3 x-60 c n^{3 / 4}\left|C_{i}\right| \\
& \geqslant n / 3-900 c^{2} n^{3 / 4}-60 c n^{3 / 4} \frac{n^{1 / 4}}{750 c^{2}} \\
& =n / 3-6 n /(75 c)-900 c^{2} n^{3 / 4}>n / 4-900 c^{2} n^{3 / 4}>0
\end{aligned}
$$

In order to maintain the second invariant it remains to match the yet unmatched neighbors of $f\left(v_{i}\right)$ with vertices from B_{i}. Let R^{\prime} be the set of neighbors of $f\left(v_{i}\right)$ in G^{\prime} that are still unmatched. Recall that $\left|R^{\prime}\right| \leqslant 3$. We have to match vertices of R^{\prime} with some vertices of B_{i}. Since $D_{i}=B_{i} \backslash\left(\bigcup_{j=1}^{i-1} N\left[B_{j}\right]\right)$, a valid choice of such vertices is by taking an $\left|R^{\prime}\right|$-subset of D_{i}. By Claim 8 and by (6), $\left|D_{i}\right| \geqslant 3$ for $i=1, \ldots, x$. Furthermore, since each $v \in D_{i}$ satisfies $d_{G}(v)<5 c \leqslant d_{G}\left(v_{x}\right), D_{i} \cap\left\{v_{1}, \ldots, v_{i-1}\right\}=\emptyset$. Thus, all vertices of D_{i} are still unmatched. Hence, such a choice is possible.

Stage 2 Let M_{1} and M_{1}^{\prime} be the set of matched vertices of G and G^{\prime} after Stage 1, respectively. Clearly $\left|M_{1}\right|=\left|M_{1}^{\prime}\right| \leqslant 4 x<n / 9$. Hence $G^{\prime}-M_{1}^{\prime}$ has an independent set J^{\prime} with $\left|J^{\prime}\right| \geqslant 4 n / 9$.

In Stage 2 we match the vertices from $V\left(G^{\prime}\right) \backslash\left(M_{1}^{\prime} \cup J^{\prime}\right)$, one by one, with some $n-\left|M_{1}\right|-\left|J^{\prime}\right|$ vertices from $V(G) \backslash M_{1}$. Suppose that $v^{\prime} \in V\left(G^{\prime}\right) \backslash\left(M_{1}^{\prime} \cup J^{\prime}\right)$ is still unmatched. Let Q be the set of all yet unmatched vertices of G. Clearly, $|Q| \geqslant\left|J^{\prime}\right| \geqslant 4 n / 9$ since the vertices of J^{\prime} remain unmatched in every step of Stage 2. Let X^{\prime} be the set of already matched neighbors of v^{\prime}. Let $Y=N_{G}\left(f^{-1}\left(X^{\prime}\right)\right)$. Thus, the valid choice for $f^{-1}\left(v^{\prime}\right)$ would be a vertex of $Q \backslash Y$. To see that such a choice is possible we will prove that $|Q \backslash Y|>0$.
Recall that

$$
\left|X^{\prime}\right| \leqslant 60 c n^{3 / 4}
$$

What is more, by the second invariant of Stage 1 , the neighbors of each $f\left(v_{i}\right), i=1, \ldots, x$, are already matched. Hence,

$$
X^{\prime} \subset V\left(G^{\prime}\right) \backslash\left\{f\left(v_{1}\right), \ldots, f\left(v_{x}\right)\right\}
$$

and so

$$
f^{-1}\left(X^{\prime}\right) \subset V(G) \backslash\left\{v_{1}, \ldots, v_{x}\right\}
$$

Thus, by the definition of x, for each $u^{\prime} \in X^{\prime}$ we have

$$
\begin{equation*}
\left|N_{G}\left(f^{-1}\left(u^{\prime}\right)\right)\right| \leqslant \frac{n^{1 / 4}}{300 c} \tag{7}
\end{equation*}
$$

Therefore,

$$
|Q \backslash Y| \geqslant|Q|-\left|X^{\prime}\right| \frac{n^{1 / 4}}{300 c} \geqslant 4 n / 9-60 c n^{3 / 4} \frac{n^{1 / 4}}{300 c}>0
$$

Stage 3 Let M_{2} and M_{2}^{\prime} be the sets of matched vertices of G and G^{\prime} after Stage 2 , respectively. In order to complete a packing of G and G^{\prime}, it remains to match the vertices of $V(G) \backslash M_{2}$ with the vertices of J^{\prime}. Consider a bipartite graph B whose sides are $V(G) \backslash M_{2}$ and J^{\prime}. For two vertices $u \in V(G) \backslash M_{2}$ and $v^{\prime} \in J^{\prime}$, we place an edge $u v^{\prime} \in E(B)$ if and only if it is possible to match u with v^{\prime} (by this we mean that mapping u to v^{\prime} will not violate the packing property). Thus u is not allowed to be matched to at most $d_{G}(u) \Delta\left(G^{\prime}\right)$ vertices of J^{\prime}. Hence

$$
d_{B}(u) \geqslant\left|J^{\prime}\right|-\frac{n^{1 / 4}}{300 c} 60 c n^{3 / 4}>\left|J^{\prime}\right|-2 n / 9 \geqslant\left|J^{\prime}\right| / 2
$$

Now we will evaluate $d_{B}\left(v^{\prime}\right)$. We define X^{\prime} and Y in the same way as in Stage 2. Then (7) holds again. Hence, v^{\prime} is not allowed to be matched to at most $\Delta\left(G^{\prime}\right) \frac{n^{1 / 4}}{300 c}$ vertices of $V(G) \backslash M_{2}$. Thus,

$$
d_{B}\left(v^{\prime}\right) \geqslant\left|J^{\prime}\right|-\frac{n^{1 / 4}}{300 c} 60 c n^{3 / 4} \geqslant\left|J^{\prime}\right| / 2 .
$$

Therefore, by Hall's Theorem there is a perfect matching in B, and so a packing of G and G^{\prime}.

3.2 Case $\Delta(T) \geqslant 60 \mathrm{cn}^{3 / 4}$

In this case we will follow the ideas from the previous subsection. However, the key difference is that now both G and G^{\prime} may have vertices of high degrees. Because of this obstacle, a packing has two more stages at the beginning. After a preparatory Stage 1, in Stage 2 we match the vertices of G that have high degrees with vertices of G^{\prime} that have small degrees. Then in Stage 3, we match the vertices of G^{\prime} having high degree. This stage is very similar to Stage 1 from the previous subsection, but with the change of the role of G and G^{\prime}. Finally, we complete the packing in Stages 4 and 5, which are analogous to Stages 2 and 3 from the previous subsection.

Let

$$
\begin{equation*}
q=\frac{n^{1 / 4}}{59 c} \tag{8}
\end{equation*}
$$

Let $P^{\prime} \subseteq N_{G^{\prime}}\left(v_{1}^{\prime}\right)$ be the set of neighbors of v_{1}^{\prime} such that each vertex in P^{\prime} has degree at most q in G^{\prime}, and every neighbor different from v_{1}^{\prime} of every vertex from P^{\prime} has degree at most q in G^{\prime}.

Claim 9. $\left|P^{\prime}\right|>c n^{3 / 4}$.

Proof. Note that every vertex $v^{\prime} \in N_{G^{\prime}}\left(v_{1}^{\prime}\right) \backslash P^{\prime}$ has the property that $d_{G^{\prime}}\left(v^{\prime}\right)>q$ or v^{\prime} has a neighbor $w^{\prime} \neq v_{1}^{\prime}$ such that $d_{G^{\prime}}\left(w^{\prime}\right)>q$. Therefore,

$$
n=\left|V\left(G^{\prime}\right)\right|>\left(\Delta\left(G^{\prime}\right)-\left|P^{\prime}\right|\right) q \geqslant\left(60 c n^{3 / 4}-\left|P^{\prime}\right|\right) \frac{n^{1 / 4}}{59 c}
$$

and the statement follows.
We construct a packing $f: V(G) \rightarrow V\left(G^{\prime}\right)$ in five stages. At each point of the construction, some vertices of $V(G)$ are matched to some vertices of $V\left(G^{\prime}\right)$, while the other vertices of $V(G)$ and $V\left(G^{\prime}\right)$ are yet unmatched. Initially, all vertices are unmatched.

Stage 1. We first match v_{n} with v_{1}^{\prime}, i.e. $f\left(v_{n}\right)=v_{1}^{\prime}$. Next we match the neighbors of v_{n} with $d_{G}\left(v_{n}\right)$ vertices from I^{\prime}. This is possible since, by $(3), d_{G}\left(v_{n}\right)=\delta(G) \leqslant t-1=\left|I^{\prime}\right|$. Moreover, since I^{\prime} is a set of isolated vertices, this maping does not violate the packing property.

Stage 2. Let z be the largest integer such that $d_{G}\left(v_{z}\right) \geqslant n^{1 / 4}$. Since $|E(G)|<c n / 2$, by Proposition 5

$$
\begin{equation*}
z \leqslant c n^{3 / 4} \tag{9}
\end{equation*}
$$

This stage is done repeatedly for $i=1, \ldots, z$ and throughout it we maintain the following invariants:

1. At iteration i we match v_{i} (if it is not matched in Stage 1) with some vertex $f\left(v_{i}\right)$ of G^{\prime} such that $f\left(v_{i}\right) \in P^{\prime} \cup I^{\prime}$.
2. Furthermore, we also make sure that all neighbors of $f\left(v_{i}\right)$ in G^{\prime} are matched to vertices of $S_{i} \cup\left\{v_{n}\right\}$.

Note that because G^{\prime} is acyclic and since there are no edges (in G) between v_{i} and $S_{i} \cup\left\{v_{n}\right\}$ for those v_{i} that are non-neighbors of v_{n}, such a mapping does not violate the packing property.

To see that this mapping is possible, consider the i 'th iteration of Stage 2, where v_{i} is a vertex of G with $d_{G}\left(v_{i}\right) \geqslant n^{1 / 4} \geqslant 5 c$. In particular $v_{i} \notin \bigcup_{j=1}^{i-1} S_{j}$. Thus, if v_{i} is already matched, then it was matched in Stage 1 and so $f\left(v_{i}\right) \in I^{\prime}$. Then, the second invariant of Stage 2 is automatically preserved because $f\left(v_{i}\right)$ is isolated.

Therefore, we may assume that v_{i} is yet unmatched. In this case we may take $f\left(v_{i}\right)$ to be any vertex of P^{\prime}. Indeed, note that $\left|P^{\prime}\right| \geqslant z$ and before iteration i, the number of already matched vertices of P^{\prime} was at most $i-1$.

Furthermore, observe that since v_{1}^{\prime} is a common neighbor of all $f\left(v_{j}\right), j=1, \ldots, i$, at iteration i the overall number of matched vertices is at most

$$
\begin{equation*}
\delta(G)+1+i q \leqslant t+z q \leqslant t+n / 59 . \tag{10}
\end{equation*}
$$

Let R^{\prime} be the set of neighbors of $f\left(v_{i}\right)$ in G^{\prime} that are still unmatched. Note that R^{\prime} contains all neighbors of $f\left(v_{i}\right)$ apart from v_{1}^{\prime}. Thus, in order to maintain the second invariant, it
suffices to match vertices of R^{\prime} with some vertices of S_{i}. Note that by the choice of P^{\prime} and since v_{1}^{\prime} is already matched, $\left|R^{\prime}\right| \leqslant q-1$. Let Q be the set of yet unmatched vertices of S_{i}. By Claim 7 and formula (10),

$$
|Q| \geqslant n / 4+t-(t+n / 59) \geqslant \frac{n^{1 / 4}}{59 c}>q-1
$$

Hence, this is possible.
Before we describe Stage 3, we need some preparations. Let M_{2} be the set of all vertices of G that were matched in Stage 1 or 2 . Similarly, let M_{2}^{\prime} be the set of all vertices of G^{\prime} that were matched in Stage 1 or 2. Recall that

$$
\begin{equation*}
\left|M_{2}\right|=\left|M_{2}^{\prime}\right| \leqslant t+z q \leqslant t+n / 59 \tag{11}
\end{equation*}
$$

Let $H=G\left[V \backslash M_{2}\right]$ be a subgraph of G induced by yet unmatched vertices. Similarly let $H^{\prime}=G^{\prime}\left[V^{\prime} \backslash M_{2}^{\prime}\right]$. Note that since G^{\prime} is acyclic and by the construction of Stages 1 and 2,

$$
\begin{equation*}
d_{G^{\prime}}\left(v^{\prime}\right) \leqslant d_{H^{\prime}}\left(v^{\prime}\right)+1 \text { for each } v^{\prime} \in V^{\prime} \backslash M_{2}^{\prime} \tag{12}
\end{equation*}
$$

Let $V\left(H^{\prime}\right)=\left\{w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right\}$ with $d_{H^{\prime}}\left(w_{1}^{\prime}\right) \geqslant d_{H^{\prime}}\left(w_{2}^{\prime}\right) \geqslant \cdots \geqslant d_{H^{\prime}}\left(w_{r}^{\prime}\right)$. By (11),

$$
\begin{equation*}
r \geqslant n-(t+n / 59)>3 n / 4 \tag{13}
\end{equation*}
$$

Let y be the largest integer such that $d_{H^{\prime}}\left(w_{y}^{\prime}\right) \geqslant 360 \sqrt{n}$. Then, by Proposition 5 ,

$$
\begin{equation*}
y \leqslant \frac{2 n}{360 \sqrt{n}}=\frac{\sqrt{n}}{180} . \tag{14}
\end{equation*}
$$

For each $1 \leqslant i \leqslant r$ we define a set $S_{i}^{\prime} \subseteq V\left(H^{\prime}\right) \backslash N_{H^{\prime}}\left[w_{i}^{\prime}\right]$ to be a largest independent set of vertices but with the additional requirement that each $w^{\prime} \in S_{i}^{\prime}$ has $d_{H^{\prime}}\left(w^{\prime}\right)<180$.

Claim 10. $\left|S_{i}^{\prime}\right| \geqslant n / 10$ for $i \geqslant 1$.
Proof. Note that each w_{i}^{\prime} has at least

$$
r-d_{H^{\prime}}\left(w_{i}^{\prime}\right)-1 \geqslant r-d_{G^{\prime}}\left(w_{i}^{\prime}\right)-1 \geqslant r-d_{G^{\prime}}\left(v_{2}^{\prime}\right)-1 \geqslant r-\frac{n}{2}-1 \geqslant \frac{3}{4} n-\frac{n}{2}-1=\frac{n}{4}-1
$$

non-neighbors. Since H^{\prime} is a forest, the subgraph of H^{\prime} induced by all non-neighbors of w_{i}^{\prime} has an independent set of cardinality at least $\frac{n / 4-1}{2}>n / 9$. Let α be the number of vertices of H^{\prime} that have degree greater than or equal to 180 . Thus

$$
2 n>\sum_{j=1}^{r} d_{H^{\prime}}\left(w_{j}^{\prime}\right) \geqslant \alpha \cdot 180
$$

and so $\alpha \leqslant \frac{n}{90}$. Therefore

$$
\left|S_{i}^{\prime}\right| \geqslant n / 9-\frac{n}{90}=n / 10 .
$$

For $i=1, \ldots, r$ let B_{i}^{\prime} be a random subset of S_{i}^{\prime} where each vertex of S_{i}^{\prime} is independently selected to B_{i}^{\prime} with probability $1 / \sqrt{n}$. Let

$$
\begin{aligned}
& C_{i}^{\prime}=\left(\bigcup_{j=1}^{i-1} B_{j}^{\prime}\right) \cap N\left(w_{i}^{\prime}\right), \\
& D_{i}^{\prime}=B_{i}^{\prime} \backslash\left(\bigcup_{j=1}^{i-1} N_{H^{\prime}}\left[B_{j}^{\prime}\right]\right) .
\end{aligned}
$$

Claim 11. The following conditions hold simultaneously with positive probability:

1. $\left|C_{i}^{\prime}\right| \leqslant 4 \sqrt{n}$ for $i=1, \ldots, r$
2. $\left|D_{i}^{\prime}\right| \geqslant \frac{\sqrt{n}}{20 e}$ for $i=1, \ldots, y$.

Proof. Clearly, $\left|E\left(H^{\prime}\right)\right|<n$. By Lemma 6 (with $m=n, p=1 / \sqrt{n}$ and $A_{i}=S_{i}^{\prime}$ and $a=180$),

$$
\operatorname{Pr}\left[\left|C_{i}^{\prime}\right| \geqslant 4 \sqrt{n}\right] \leqslant \exp (-2 \sqrt{n} / 3)<\frac{1}{2 n} \leqslant \frac{1}{2 r}
$$

Furthermore, by Claim 10,

$$
\frac{\sqrt{n}}{20 e}=\frac{(1 / \sqrt{n})(n / 10)}{2 e} \leqslant \frac{p\left|S^{\prime}\right|}{2 e} .
$$

Hence, by the second part of Lemma 6 and by (14), for $i \leqslant y \leqslant\lfloor\sqrt{n} / 180\rfloor$ we have

$$
\begin{aligned}
\operatorname{Pr}\left[\left|D_{i}^{\prime}\right| \leqslant \frac{\sqrt{n}}{20 e}\right] & \leqslant \operatorname{Pr}\left[\left|D_{i}^{\prime}\right| \leqslant \frac{p\left|S_{i}^{\prime}\right|}{2 e}\right] \leqslant \exp \left(-\frac{p\left|S_{i}^{\prime}\right|}{8 e}\right) \\
& \leqslant \exp \left(-\frac{(1 / \sqrt{n})(n / 10)}{8 e}\right)=\exp \left(-\frac{\sqrt{n}}{80 e}\right)<\frac{90}{\sqrt{n}} \leqslant \frac{1}{2 y}
\end{aligned}
$$

Thus, by the union bound, each part of the lemma holds with probability greater than $1 / 2$. Hence both hold with positive probability.

Now we are in the position to describe the next stages of a packing. By Claim 11 we may fix independent sets $B_{1}^{\prime}, \ldots, B_{r}^{\prime}$ satisfying all the conditions of Claim 11 with respect to the cardinalities of the sets C_{i}^{\prime} and D_{i}^{\prime}. Let $W=\left\{v_{1}, \ldots, v_{z}\right\}$. Recall that

$$
\begin{equation*}
\Delta(G-W)<n^{1 / 4} \tag{15}
\end{equation*}
$$

Stage 3 This stage is done repeatedly for $i=1, \ldots, y$ and throughout it we maintain the following (similar to those from Stage 2) invariants

1. At iteration i we match $w_{i}^{\prime} \in V\left(H^{\prime}\right)$ with some yet unmatched vertex $u=f^{-1}\left(w_{i}^{\prime}\right)$ of H such that $d_{G}(u) \leqslant 2 c$.
2. Furthermore, we match all yet unmatched neighbors in H of $f^{-1}\left(w_{i}^{\prime}\right)$ to vertices of B_{i}^{\prime} (this way all neighbors of $f^{-1}\left(w_{i}^{\prime}\right)$ in H are matched to vertices of $\bigcup_{j=1}^{i} B_{j}^{\prime}$).

To see that this is possible, consider the i'th iteration of Stage 3 where w_{i}^{\prime} is some yet unmatched vertex of H^{\prime}. Let Q be the set of all yet unmatched vertices of G having degree less than or equal to $2 t$. Note that, by Proposition 5, the number of vertices of degree less than or equal to $2 t$ in G is at least $n / 2$. Hence, by (11) and (14), and since $t \leqslant c$,

$$
\begin{equation*}
|Q| \geqslant n / 2-\left|M_{2}\right|-2 t y \geqslant n / 2-t-n / 59-c \sqrt{n} / 90>n / 4 . \tag{16}
\end{equation*}
$$

Let X^{\prime} be the set of already matched neighbors (in G^{\prime}) of w_{i}^{\prime} and let $Y=N_{G}\left(f^{-1}\left(X^{\prime}\right)\right)$. Thus, the valid choice for $f^{-1}\left(w_{i}^{\prime}\right)$ would be a vertex of $Q \backslash Y$. Let $X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime} \cup X_{3}^{\prime}$ such that $X_{1}^{\prime} \subset M_{2}^{\prime}=V\left(G^{\prime}\right) \backslash V\left(H^{\prime}\right), X_{2}^{\prime} \subset\left\{w_{1}^{\prime}, \ldots, w_{i-1}^{\prime}\right\}$ and $X_{3}^{\prime} \subset \bigcup_{j=1}^{i-1} B_{i}^{\prime}$. By (12), $\left|X_{1}^{\prime}\right| \leqslant 1$. Moreover if $v^{\prime} \in X_{1}^{\prime}$ then, by the second invariant of Stage $2, v^{\prime} \notin N_{G^{\prime}}\left(v_{1}^{\prime}\right)$. Thus $v^{\prime}=v_{1}^{\prime}$ or v^{\prime} is at distance 2 from v_{1}^{\prime}. Hence, either $f^{-1}\left(v^{\prime}\right)=v_{n}$ or $f^{-1}\left(v^{\prime}\right)$ belongs to some set $S_{j}, j \in\{1, \ldots, z\}$. Therefore, $d_{G}\left(f^{-1}\left(v^{\prime}\right)\right) \leqslant 5 c$. Furthermore, $\left|X_{2}^{\prime}\right| \leqslant i-1$ and, by Claim 11, $\left|X_{3}^{\prime}\right| \leqslant 4 \sqrt{n}$. Hence, by (15) and by the first invariant of Stage 3,

$$
\begin{equation*}
|Y| \leqslant 5 c\left|X_{1}^{\prime}\right|+2 c\left|X_{2}^{\prime}\right|+\left|X_{3}^{\prime}\right| \cdot n^{1 / 4}<n / 4 \tag{17}
\end{equation*}
$$

Therefore, by (16), $|Q \backslash Y|>0$.
In order to maintain the second invariant we have to match yet unmatched neighbors of $f^{-1}\left(w_{i}^{\prime}\right)$ with some vertices of B_{i}^{\prime}. Let R be the set of neighbors of $f^{-1}\left(w_{i}^{\prime}\right)$ in G that are still unmatched. Recall that by the first invariant (of Stage 3) $|R| \leqslant 2 c$. Since $D_{i}^{\prime}=$ $B_{i}^{\prime} \backslash\left(\bigcup_{j=1}^{i-1} N\left[B_{j}^{\prime}\right]\right)$, a natural choice of such vertices is taking an $|R|$-subset of D_{i}^{\prime}. However, unlike in Stage 1 in the previous subsection, this subset cannot be chosen arbitrarily because of the existence of possible edges between vertices from $P^{\prime \prime}:=N_{G^{\prime}}\left(P^{\prime}\right) \backslash\left\{v_{1}^{\prime}\right\}$ and D_{i}^{\prime}. For this reason, we have to match the vertices from R carefully. We match them, one by one, with some vertices from D_{i}^{\prime} in the following way. Suppose that $v \in R$ is yet unmatched. Let D^{\prime} be the set of yet unmatched vertices of D_{i}^{\prime}. Since each $w^{\prime} \in D_{i}^{\prime}$ satisfies $d_{H^{\prime}}\left(w^{\prime}\right)<180 \leqslant 360 \sqrt{n}, D_{i}^{\prime} \cap\left\{w_{1}^{\prime}, \ldots, w_{i-1}^{\prime}\right\}=\emptyset$. Hence,

$$
\begin{equation*}
\left|D^{\prime}\right| \geqslant\left|D_{i}^{\prime}\right|-|R| \geqslant \sqrt{n} /(20 e)-2 c . \tag{18}
\end{equation*}
$$

Let X_{2} be the set of those already matched neighbors u of $v \in R$ which satisfy $f(u) \in P^{\prime \prime}$. Let $Y_{2}^{\prime}=N_{G^{\prime}}\left(f\left(X_{2}\right)\right)$. Thus, the valid choice for $f(v)$ would be a vertex from $D^{\prime} \backslash Y_{2}^{\prime}$. Recall, that by the definition of $z,\left|X_{2}\right| \leqslant d_{G}(v) \leqslant n^{1 / 4}$. Furthermore, by the definition of $P^{\prime}, N_{G^{\prime}}(f(u)) \leqslant q$. Thus, by (8) and (18),

$$
\left|D^{\prime} \backslash Y_{2}^{\prime}\right|>\sqrt{n} /(20 e)-2 c-\sqrt{n} / 59>0
$$

Thus, an appropriate choice for $f(v)$ is possible.
Stage 4 Let M_{3} be the set of matched vertices of G after Stage 3. Similarly, let M_{3}^{\prime} be the set of matched vertices of G^{\prime} after Stage 3. Note that, by (14) and (11),

$$
\begin{equation*}
\left|M_{3}\right|=\left|M_{3}^{\prime}\right| \leqslant\left|M_{2}\right|+(2 c+1) y \leqslant t+n / 59+(2 c+1) \sqrt{n} / 180<n / 4 \tag{19}
\end{equation*}
$$

Let $W^{\prime}=\left\{w_{1}^{\prime}, \ldots, w_{y}^{\prime}\right\} \cup\left\{v_{1}^{\prime}\right\}$. By (12),

$$
\begin{equation*}
\Delta\left(G^{\prime}-W^{\prime}\right) \leqslant \Delta\left(H^{\prime}-W^{\prime}\right)+1 \leqslant 360 \sqrt{n}+1 \tag{20}
\end{equation*}
$$

Furthermore, $\left|V\left(G^{\prime}\right) \backslash M_{3}^{\prime}\right| \geqslant n-n / 4=3 n / 4$. Thus $G^{\prime}-M_{3}^{\prime}$ has an independent set J^{\prime} with $\left|J^{\prime}\right| \geqslant 3 n / 8$. Let $K^{\prime}=V\left(G^{\prime}\right) \backslash\left(J^{\prime} \cup M_{3}^{\prime}\right)$.

In Stage 4 we match vertices from K^{\prime} one by one, with arbitrary yet unmatched vertices of G. Suppose that $v^{\prime} \in K^{\prime}$ is still unmatched. Let Q be the set of all yet unmatched vertices of G. Clearly, $|Q| \geqslant\left|J^{\prime}\right| \geqslant 3 n / 8$ since the vertices of J^{\prime} remain unmatched in every step of Stage 4. Let X^{\prime} be the set of already matched neighbors of v^{\prime}. Let $Y=N_{G}\left(f^{-1}\left(X^{\prime}\right)\right)$. Thus, the valid choice for $f^{-1}\left(v^{\prime}\right)$ would be a vertex of $Q \backslash Y$. By (20), $\left|X^{\prime}\right| \leqslant 360 \sqrt{n}+1$. Furthermore, by the second invariant of Stage 2,

$$
X^{\prime} \subseteq V\left(G^{\prime}\right) \backslash\left\{f\left(v_{1}\right), \ldots, f\left(v_{z}\right)\right\}
$$

and so

$$
f^{-1}\left(X^{\prime}\right) \subseteq V(G) \backslash W
$$

Hence, by (15),

$$
|Y| \leqslant\left|X^{\prime}\right| \cdot n^{1 / 4}<3 n / 8
$$

Hence

$$
|Q \backslash Y|>0
$$

and so the choice for $f^{-1}\left(v^{\prime}\right)$ is possible.
Stage 5 Let M_{4} and M_{4}^{\prime} be the sets of matched vertices of G and G^{\prime}, respectively, after Stage 4. In order to complete a packing of G and G^{\prime} it remains to match the vertices of J^{\prime} with the yet unmatched vertices of G. Consider a bipartite graph B whose sides are $V(G) \backslash M_{4}$ and J^{\prime}. For two vertices $u \in V(G) \backslash M_{4}$ and $v^{\prime} \in J^{\prime}$, we place an edge $u v^{\prime} \in E(B)$ if and only if it is possible to match u with v^{\prime} (by this we mean that mapping u to v^{\prime} will not violate the packing property). Recall that, by (15), $d_{G}(u) \leqslant n^{1 / 4}$. Moreover, by the construction of Stage 1 and by the second invariant of Stage $3, f\left(N_{G}(u)\right) \subset V\left(G^{\prime}\right) \backslash W^{\prime}$. Thus, by (20), u is not allowed to be matched to at most $n^{1 / 4}(360 \sqrt{n}+1)$ vertices of J^{\prime}. Therefore,

$$
d_{B}(u) \geqslant\left|J^{\prime}\right|-n^{1 / 4}(360 \sqrt{n}+1)>\left|J^{\prime}\right|-3 n / 16 \geqslant\left|J^{\prime}\right| / 2
$$

Similarly, by $(20), d_{G^{\prime}}\left(v^{\prime}\right) \leqslant 360 \sqrt{n}+1$. Moreover, by the second invariant of Stage 2, $f^{-1}\left(N_{G^{\prime}}\left[v^{\prime}\right]\right) \subset V(G) \backslash W$. Therefore, by (15),

$$
d_{B}\left(v^{\prime}\right) \geqslant\left|J^{\prime}\right|-n^{1 / 4}(360 \sqrt{n}+1)>\left|J^{\prime}\right| / 2 .
$$

Therefore, by Hall's Theorem there is a perfect matching in B, and so a packing of G and G^{\prime}. This completes the inductive step, and so the theorem is proved.

Acknowledgements

We thank the reviewers for carefully reading our manuscript and for giving detailed comments and suggestions that have been helpful to improve the manuscript.

References

[1] N. Alon and R. Yuster. The Turán number of sparse spanning graphs. J. Comb. Theory Ser. B, 103(3):337-343, 2013.
[2] S. Balasubramanian and E. Dobson. Constructing trees in graphs with no $K_{2, s}$. J. Graph Theory, 56:301-310, 2007.
[3] J. Balogh and C. Palmer. On the Tree Packing Conjecture. SIAM J. Discrete Math., 27(4):1995-2006, 2013.
[4] B.A. Bourgeois, A.M. Hobbs, and J. Kasiraj. Packing trees in complete graphs. Discrete Math., 67:27-42, 1987.
[5] E. Dobson. Constructing trees in graphs whose complement has no $K_{2, s}$. Combin. Probab. Comput., 11:343-347, 2002.
[6] N. Eaton and G. Tiner. On the Erdős-Sós conjecture for graphs having no path with $k+4$ vertices. Discrete Math., 313:1621-1629, 2013.
[7] G. Fan and L. Sun. The Erdős-Sós conjecture for spiders. Discrete Math., 307:30553062, 2007.
[8] R.L. Graham, M. Grötschel, and L. Lovász, Eds. Handbook of combinatorics. Vol. 1,2. Elsevier Science B.V., Amsterdam, 1995.
[9] A. Gyárfás and J. Lehel. Packing trees of different order into K_{n}. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Colloq. Math. Soc. János Bolyai, volume 18 pages 463-469, North-Holland, Amsterdam, 1978.
[10] S. Janson, T. Łuczak, and A. Ruciński. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
[11] A. McLennan. The Erdős-Sós conjecture for trees of diameter four. J. Graph Theory, 49(4):291-301, 2005.
[12] A.F. Sidorenko. Asymptotic solution for a new class of forbidden graphs. Combinatorica, 9(2):207-215, 1989.
[13] P. Slater, S. Teo, and H. Yap. Packing a Tree with a Graph of the Same Size. J. Graph Theory, 9:213-216, 1985.
[14] G. Tiner. On the Erdős-Sós Conjecture for Graphs on $n=k+3$ Vertices. Ars Combin., 95:143-150, 2010.
[15] J.F. Saclé, M. Woźniak. The Erdős-Sós Conjecture for graphs without C4. J. Combin. Theory Ser. B, 50:367-372, 1997.
[16] M. Woźniak. On the Erdős-Sós Conjecture. J. Graph Theory, 21:229-234, 1996.
[17] B. Zhou. A note on the Erdős-Sós Conjecture. Acta Math. Sci., 4:287-289, 1984.

[^0]: *The authors were partially supported by the Polish Ministry of Science and Higher Education.

