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Abstract

The isomorphism problem of Cayley graphs has been well studied in the liter-
ature, such as characterizations of CI (DCI)-graphs and CI (DCI)-groups. In this
paper, we generalize these to vertex-transitive graphs and establish parallel results.
Some interesting vertex-transitive graphs are given, including a first example of con-
nected symmetric non-Cayley non-GI-graph. Also, we initiate the study for GI and
DGI-groups, defined analogously to the concept of CI and DCI-groups.
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1 Introduction

Throughout this paper, by (di)graph we mean finite digraph without loops or multi-
edges, and all groups are assumed to be finite. Deciding whether two graphs are iso-
morphic is fundamental for the study of graphs, especially for determining isomorphism
classes of graphs. A graph is said to be G-vertex-transitive if the subgroup G of its full
automorphism group acts transitively on the vertex set. One would expect to deter-
mine the isomorphisms between two G-vertex-transitive graphs by the information of the
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group G. For Cayley graphs, such an approach was initiated by a conjecture of Ádám
in 1967 [1], and has been extensively studied over the past decades, see for example
[2, 4, 8, 11, 13, 21, 22, 23, 24] and more references listed in the survey [15]. Since a
large number of vertex-transitive graphs are not Cayley graphs, it is natural to extend
the study from Cayley graphs to vertex-transitive graphs. The isomorphism problem for
metacirculants (not necessarily Cayley graphs) has been considered by Dobson [9].

To be precise, we need the concept of coset graphs. Let Γ = (V,E) be a G-vertex-
transitive graph, α be a vertex of Γ and S be the set of elements of G which maps α to its
(out) neighbors. Then Γ is uniquely determined by the triple (G,Gα, S) in the following
sense: writing H = Gα and identifying the vertex set V with the set [G:H] of right cosets
of H in G, the action of G on V is equivalent to the action of G on [G:H] by right
multiplication. In particular, if α is identified with H ∈ [G:H] then the neighborhood
Γ(α) consists of Hg with g ∈ S, and moreover, Hx ∼ Hy if and only if yx−1 ∈ HSH.
This defines a coset graph representation of Γ, denoted by Cos(G,H,HSH). Note that H
is core-free in G (that is, H does not contain any nontrivial normal subgroup of G) since
G is a transitive permutation group on V , and S ⊆ G \H since Γ has no loops. Clearly,
for any automorphism τ ∈ Aut(G) we have Cos(G,H,HSH) ∼= Cos(G,Hτ , HτSτHτ ).

Definition 1. The G-vertex-transitive graph Γ = Cos(G,H,HSH) is called a GI-graph
(‘GI’ stands for ‘Group automorphism inducing Isomorphism’) of G if for any graph
Σ = Cos(G,H,HTH) with T ⊆ G \ H and Γ ∼= Σ, there exists τ ∈ Aut(G) such that
Hτ = H and HSτH = HTH. A group G is called a DGI-group (‘D’ emphasizes that our
graph may be Directed) if each G-vertex-transitive graph is a GI-graph of G. A group G
is called a GI-group if each undirected G-vertex-transitive graph is a GI-graph of G.

Note that Cos(G, 1, S) is a Cayley graph of G, and the GI-graphs of G with H = 1 are
exactly the so called CI-graphs of G. If each Cayley graph of G is a CI-graph of G, then
G is called a DCI-group. If each undirected Cayley graph of G is a CI-graph of G, then
G is called a CI-group. Clearly, a DGI-group is necessarily a GI-group, and a DGI-group
(GI-group) is necessarily a DCI-group (CI-group). A small list of candidates for DCI
and CI-groups has been obtained, through the effort of many mathematicians, see [15,
Theorem 8.7] and [17, Corollary 1.5]. However, determining which groups in the list are
indeed DCI or CI-groups is not easy and largely open. As being DGI-groups (GI-groups)
is more restrictive than being DCI-groups (CI-groups), the explicit list of DGI-groups
(GI-groups) would be smaller than that of DCI-groups (CI-groups). Thus we propose the
problem:

Problem 2. Classify the finite DGI-groups (GI-groups).

In the literature, a crucial step to solve a conjecture of Babai and Frankel [5] stating
that CI-groups are solvable was to determine whether there exists a non-CI-Cayley graph
of A5. After 20 years since Babai-Frankel conjecture was posed, a non-CI-Cayley graph of
A5 of valency 29 was constructed by Li [14], thus completing the proof of the conjecture.
Although some other non-CI-Cayley graphs of A5 was later constructed in [6, 26], Li’s
graph is the only known connected symmetric non-CI-graph of A5 yet. Here a graph Γ is
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called G-symmetric for some G 6 Aut(Γ) if G acts transitively on the arc set of Γ, and Γ
is simply called symmetric if Γ is Aut(Γ)-symmetric. In general, constructing connected
symmetric non-GI-graphs is not easy. Due to the significance of non-CI-Cayley graphs of
A5, one would ask:

Problem 3. Does there exist a connected symmetric non-GI-graph of A5 other than Li’s?

The layout of this paper is as follows. After this introduction, we give the criterion for
GI-graph in Section 2, which enables us to construct GI and non-GI-graphs, respectively,
in Section 3. In particular, we prove the theorem below by Example 11.

Theorem 4. There exists a connected symmetric non-Cayley non-GI-graph of order 40
and valency 12.

Then in Section 4 we establish some results on Problem 2. The final section is devoted
to Problem 3, where it is shown that a connected A5-symmetric graph is necessarily GI
if its full automorphism group is almost simple or vertex-primitive.

2 Criterion for GI-graph

As mentioned in the introduction, G-vertex-transitive graphs can be represented as coset
graphs of G: for a core-free subgroup H of G and a subset S ⊆ G \ H, define Γ =
Cos(G,H,HSH) to be the graph with vertex set V := [G:H] such that Hx ∼ Hy if and
only if yx−1 ∈ HSH. For any g ∈ G, the right multiplication of g on the cosets in [G:H]
gives an element of Sym(V ), denoted by ĝ. Moreover, denote Ĝ = {ĝ | g ∈ G}. (The
reader should be aware that this also depends on the subgroup H although the ˆ symbol
does not indicate.) We list here some basic facts concerning coset graphs.

Lemma 5. Let Γ = Cos(G,H,HSH).

(a) Γ is undirected if and only if HSH = HS−1H, where S−1 := {s−1 | s ∈ S}.

(b) G acts faithfully and transitively on the vertex set [G:H] by right multiplication, so
Ĝ is a subgroup of Aut(Γ) isomorphic to G.

(c) Γ is connected if and only if 〈H,S〉 = G.

(d) Γ is G-symmetric if and only if HSH = HgH for some g ∈ G. In this case, the
valency of Γ is equal to |H|/|Hg ∩H|.

Let X and Y be permutation groups on Ω and ∆, respectively. We say that X is
permutation isomorphic to Y if there exist a bijection σ : Ω→ ∆ and a group isomorphism
ϕ : X → Y such that (αx)σ = (ασ)ϕ(x) for any α ∈ Ω and x ∈ X. The following folklore
theorem is an extension of the criterion for a Cayley graph to be a CI-graph [3, 4] to those
vertex-transitive graphs. The proof goes along the same lines as that of the CI-graph
criterion, so we omit it.
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Theorem 6. A G-vertex-transitive graph Γ is a GI-graph of G if and only if subgroups
of Aut(Γ) which are permutation isomorphic to Ĝ are all conjugate in Aut(Γ).

Based on Theorem 6, we establish a sufficient condition on GI-graphs as follows.

Theorem 7. Suppose that G is a finite group of odd order, p is the smallest prime divisor
of |G|, Γ is a G-vertex-transitive graph and A is the full automorphism group of Γ. For
any vertex α of Γ, if gcd(|G|, |Aα|) = 1, then Γ is a GI-graph of G. In particular, if Γ is
connected of valency less than p, then Γ is a GI-graph of G.

Proof. Since G is transitive on the vertices of Γ we have A = GAα. Assume that
gcd(|G|, |Aα|) = 1. Then G is a Hall π-subgroup of A, where π is the set of the prime
divisors of |G|. Note that π is a set of odd primes as |G| is odd. Then for any σ ∈ Sym(V )
with Gσ 6 A, one deduces from [12, Theorem A] that G and Gσ are conjugate in A as
they are Hall π-subgroups of A. Hence according to Theorem 6, Γ is a GI-graph of G.

Now assume that Γ is connected of valency less than p. It suffices to prove that
gcd(|G|, |Aα|) = 1. Suppose for a contradiction that there exists a prime number r
dividing gcd(|G|, |Aα|) and that R is a Sylow r-subgroup of Aα. Since Γ is connected,
there exist a neighbor β of α and an element x ∈ R such that βx 6= β. It follows that the
orbit of β under 〈x〉 has length at least r, contrary to our assumption that the valency of
Γ is less than p 6 r.

Below is a necessary condition for GI-graphs.

Theorem 8. If Cos(G,H,HSH) is a GI-graph of a group G, then for any embedding
ϕ : 〈H,S〉 → G such that Hϕ = H, there exists τ ∈ Aut(G) such that Hτ = H and
〈H,S〉τ = 〈H,Sϕ〉.

Proof. Note that Cos(〈H,S〉, H,HSH) and Cos(〈H,Sϕ〉, H,HSϕH) are connected com-
ponents of Cos(G,H,HSH) and Cos(G,H,HSϕH), respectively. Then

Cos(G,H,HSH) ∼= Cos(G,H,HSϕH)

if and only if Cos(〈H,S〉, H,HSH) ∼= Cos(〈H,Sϕ〉, H,HSϕH). As ϕ induces an graph
isomorphism from Cos(〈H,S〉, H,HSH) to Cos(〈H,Sϕ〉, H,HSϕH), we thus have an iso-
morphism Cos(G,H,HSH) ∼= Cos(G,H,HSϕH). Since Cos(G,H,HSH) is a GI-graph
of G, there exists τ ∈ Aut(G) such that Hτ = H and HSτH = HSϕH. Consequently,

〈H,S〉τ = 〈H,HSH〉τ = 〈H,HSτH〉 = 〈H,HSϕH〉 = 〈H,Sϕ〉,

which completes the proof.

3 Examples

First of all, the complete graphs and their complements are GI-graphs. We regard them
as trivial GI-graphs. An observation of [16] says that every finite group of order greater
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than two has non-trivial CI-graphs. Thus we know that every finite group of order greater
than two has non-trivial GI-graphs. Given a finite group G of odd order, recall that as
Theorem 7 asserts, every G-vertex-transitive graph Γ of valency less than the smallest
prime divisor of |G| is a GI-graph of G. This provides us with more examples of GI-
graphs.

A 2-arc of a graph Γ is a triple (α, β, γ) of pairwise distinct vertices of Γ such that
α ∼ β and β ∼ γ. A graph is said to be (G, 2)-arc-transitive for some G 6 Aut(Γ) if G
acts transitively on the set of 2-arcs. Recall that the socle of a group G is the product
of all its minimal normal subgroups, denoted by Soc(G). We call a group almost simple
if its socle is nonabelian simple. It is readily seen that the almost simple groups with a
given socle T are precisely those groups G satisfying T 6 G 6 Aut(T ), whence G/T is
a solvable group by the well-known Schreier conjecture. The next example follows from
[10, Theorem 1.3] and the criteria in Theorem 6.

Example 9. Let G be an almost simple group with socle Sz(22n+1) or G = Ree(32n+1).
Then every connected undirected (G, 2)-arc transitive graph is a GI-graph of G.

Utilizing Theorem 8, we are able to construct some disconnected non-GI-graphs.

Example 10. Let m and n be integers such that m > 2 and n > 2m+ 6. Take G = An,
a = (5, 6)(7, 8, . . . , 2m + 5, 2m + 6) ∈ G, b = (1, 2)(3, 4)a ∈ G, H = 〈a2〉 = 〈b2〉,
S = {a, a3, . . . , a2m−3, a2m−1} and ϕ : ai 7→ bi for any i ∈ Z. Then ϕ is an embedding
of 〈H,S〉 into G such that Hϕ = H and 〈H,Sϕ〉 = 〈b〉. Apparently, there does not
exist τ ∈ Aut(G) such that 〈H,S〉τ = 〈a〉τ = 〈b〉. Hence by Theorem 8, the coset graph
Cos(G,H,HSH) is non-GI.

We close this section with the construction of a connected symmetric non-Cayley
non-GI-graph, which proves Theorem 4.

Example 11. Let X = PSL4(3) acting naturally on the set Ω of one-dimensional sub-
spaces of F43, a four-dimensional vector space over F3. Take α ∈ Ω, and G = PΣU4(2) =
PSp4(3):C2 to be a maximal subgroup of X. There exists an involution g ∈ G such
that 〈Gα, g〉 = G and |Gα|/|Gg

α ∩ Gα| = 12. Let Γ = Cos(G,Gα, GαgGα). Then Γ is a
connected G-symmetric and G-vertex-primitive graph of order |Ω| = 40 and valency 12.
Moreover, G has two conjugacy classes of subgroups isomorphic to S6, fused in X, and
the groups in both conjugacy classes are transitive on Ω. Take P to be a group in one of
these two conjugacy classes, and Q be a group in the other. Since P and Q are conjugate
in X, they are permutation isomorphic. We claim that Γ is a non-Cayley non-GI-graph
of P .

In fact, the conclusion that Γ is not a Cayley graph is obvious as |P | 6= 40. Denote
Y = Aut(Γ). In light of Theorem 6, it suffices to show that P and Q are not conjugate
in Y . If Soc(Y ) = Soc(G) = PSU4(2), then Y = G since G 6 Y and G = Aut(PSU4(2)),
which indicates that P and Q are not conjugate in Y , as desired. Assume next that
Soc(G) 6= Soc(Y ). Then there exists a subgroup H of Y such that Soc(G) 6= Soc(H) and
G is maximal in H. By [18], either G is maximal in A40G, or H is almost simple with socle
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PSL4(3). For the latter, Hα = C3
3:PSL3(3) or C3

3:(PSL3(3) × C2) since H is primitive on
40 points, but then Hα does not have a subgroup of index 12, violating the requirement
that Γ is H-symmetric as Γ is G-symmetric. Therefore, G is maximal in A40G, and hence
Y ∩A40G = G or A40G. Because Γ is not a complete graph, we have Y � A40. It follows
that Y ∩ A40G = G. If G 
 A40, then A40G = S40 and thus Y = Y ∩ S40 = G, contrary
to our assumption that Soc(G) 6= Soc(Y ). Consequently, G 6 A40, and so G has index
two in Y . Since Soc(G) is a minimal normal subgroup of Y and Soc(G) 6= Soc(Y ), we
conclude that Y has a minimal normal subgroup other than Soc(G), say N . Viewing that
N 
 G, we have N = C2 and Y = G × N . Hence P and Q are not conjugate in Y ,
proving our claim.

4 GI-groups

A group G is said to be Hamiltonian if every subgroup of G is normal. It is obvious
that abelian groups are all Hamiltonian, but the converse is not true (for instance, the
quaternion group Q8 is Hamiltonian but not abelian).

Lemma 12. Let G be a Hamiltonian group. Then G is DGI (GI) if and only if G is DCI
(CI).

Proof. For any coset graph Cos(G,H,HSH) of G, the condition that H is core-free in G
forces H = 1 since G is Hamiltonian. This means that each coset graph of G is a Cayley
graph of G. Hence the concepts of DGI (GI) and DCI (CI) coincide.

Lemma 12 immediately shows up some DGI-groups (GI-groups) from the list of DCI-
groups (CI-groups). For example, since the groups Ck, C2k and C4k, where k is odd
square-free, are Hamiltonian and DCI [19, 20] simultaneously, we know that they are
DGI-groups.

Theorem 13. D2p is a DGI-group for any odd prime p.

Proof. Let G = D2p, N be the Sylow p-subgroup of G, and Γ = Cos(G,H,HSH) be
a coset graph of G with vertex set V = [G:H], where H is a core-free subgroup of G
and S ⊆ G \ H. If H = 1, then Γ is a DGI-graph of G by [4]. Hence we assume that
H 6= 1. As H is core-free in G, we conclude that H = C2 and |V | = |G|/|H| = p.
Let X be a subgroup of Aut(Γ) such that X = ϕ−1Ĝϕ for some ϕ ∈ Sym(V ), and Y
be a Sylow p-subgroup of X. Then Y = Cp, and by the Sylow theorem, there exists

τ ∈ Aut(Γ) such that Y = τ−1N̂τ . It derives from X = ϕ−1Ĝϕ that Y = ϕ−1N̂ϕ.
Thereby we obtain ϕ−1N̂ϕ = τ−1N̂τ , or equivalently, ϕτ−1 ∈ NSym(V )(N̂). Note that

NSym(V )(N̂) 6 NSym(V )(Ĝ). This leads to ϕτ−1 ∈ NSym(V )(Ĝ) and thus

X = ϕ−1Ĝϕ = τ−1(ϕτ−1)−1Ĝ(ϕτ−1)τ = τ−1Ĝτ.

Now appealing Theorem 6 we know that Γ is a DGI-graph of G, which proves the lemma.
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We close this section with a theorem stating that being DGI-groups (GI-groups) is
inherited by subgroups.

Theorem 14. If G is a DGI-group (GI-group), then any subgroup H of G is a DGI-group
(GI-group).

Proof. Suppose that G is a DGI-group (GI-group). Let Γ = Cos(H,K,KSK) and Σ =
Cos(H,K,KTK) be two isomorphic (undirected) coset graphs of H, where K is a core-
free subgroup of H and S, T are subsets of H \ K. Clearly, K is also core-free in G.
Without loss of generality we assume that S and T are both unions of double cosets of
K.

First assume that 〈K,S〉 = H. Then Γ is connected, and so is Σ since Γ ∼= Σ. Noticing
that Cos(G,K,KSK) and Cos(G,K,KTK) are |G|/|H| copies of Γ and Σ, respectively,
we have Cos(G,K,KSK) ∼= Cos(G,K,KTK). Then as G is a DGI-group (GI-group),
there exists τ ∈ Aut(G) such that Kτ = K and KSτK = KTK. It follows that

Hτ = 〈K,S〉τ = 〈K,KSK〉τ = 〈Kτ , KSτK〉 = 〈K,KTK〉 = 〈K,T 〉 = H.

This shows that τ induces an automorphism of H.
Next assume that 〈K,S〉 6= H. Then |K ∪ S| 6 |H|/2, and so

|K ∪ (H \ S)| = |K|+ |H \ (K ∪ S)| > |H \ (K ∪ S)| > |H|/2.

Let S = (H \ S) \ K and T = (H \ T ) \ K. Then 〈K,S〉 = 〈K,H \ S〉 = H, which
means that the complement graph Γ of Γ is connected and so is the complement graph
Σ of Σ. From Γ ∼= Σ we deduce Cos(H,K,KSK) = Γ ∼= Σ = Cos(H,K,KTK). Hence
Cos(G,K,KSK) ∼= Cos(G,K,KTK), and there exists τ ∈ Aut(G) such that Kτ = K
and KS

τ
K = KTK since G is a DGI-group (GI-group). As a consequence,

Hτ = 〈K,S〉τ = 〈K,KSK〉τ = 〈Kτ , KS
τ
K〉 = 〈K,KTK〉 = 〈K,T 〉 = H,

showing that τ induces an automorphism of H. Moreover,

KSτK = (H \K) \ (KS
τ
K) = (H \K) \ (KTK) = KTK.

Thereby we conclude that there always exists τ ∈ Aut(G) such that Kτ = K and
KSτK = KTK. This implies that H is a DGI-group (GI-group).

5 GI-properties of connected A5-symmetric graphs

For a group G, the expression G = HK with proper subgroups H and K of G is called a
factorization of G. The lemma below can be read off from [25].

Lemma 15. If T = GK is a factorization of a simple group T with G = A5, then either
(T,K) = (An,An−1) with n ∈ {10, 12, 15, 20, 30, 60} or (T,K) lies in Table 1.

The following two theorems are the main results of this section.
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Table 1:
row T K
1 A6 A4, S4, C2

3:C4, A5

2 A7 PSL2(7)
3 A8 AGL3(2)
4 PSL2(11) C11, C11:C5

5 PSL2(19) C19:C9

6 PSL2(29) C29:C7, C29:C14

7 PSL2(59) C59:C29

8 M12 M11

Theorem 16. Let G = A5 and Γ be a connected symmetric coset graph of G. If Aut(Γ)
is almost simple, then Γ is a GI-graph of G.

Proof. Suppose on the contrary that Γ is not a GI-graph of G. By Theorem 6, Aut(Γ) 6=
A5 or S5. Let α be a vertex of Γ, X = Aut(Γ) and T be the socle of X. Then T 6= A5,
X = ĜXα and Ĝ ∩ T is a normal subgroup of Ĝ. It follows that Ĝ ∩ T = 1 or Ĝ since
Ĝ ∼= G is simple. If Ĝ ∩ T = 1, then A5 = Ĝ ∼= ĜT/T 6 X/T , contrary to Schreier
conjecture. Hence Ĝ∩ T = Ĝ, or equivalently, Ĝ 6 T . Thereby we have the factorization
T = ĜTα, which is classified in Lemma 15. If T acts 2-transitively on [T :Tα], then Γ is
the complete graph on n vertices and X = Sn, which implies that Γ is a GI-graph of G by
Theorem 6, contrary to our assumption. Consequently, T does not act 2-transitively on
[T :Tα], and so we deduce from Lemma 15 that one of the following three cases appears:

(i) T = A6 and Tα = A4 or S4;

(ii) T = PSL2(11) and Tα = C11;

(iii) T = PSL2(29) and Tα = C29:C7.

First suppose that case (i) appears. As X should have at least two conjugacy classes
of subgroups isomorphic to A5 by Theorem 6, the only possibilities for X are A6 and
S6. If X = A6, then A4 6 Xα 6 S4 and hence X has only one conjugacy class of vertex-
transitive subgroups isomorphic to A5, which leads to a contradiction that Γ is a GI-graph
of G by Theorem 6. If X = S6, then A4 6 Xα 6 S4 × S2 and hence X has at most one
conjugacy class of vertex-transitive subgroups isomorphic to A5, again a contradiction.

Next suppose that case (ii) appears. As X should have at least two conjugacy classes of
subgroups isomorphic to A5 by Theorem 6, it derives that X = PSL2(11) and so Xα = C11.
Since Γ is symmetric, there exists g ∈ X \ Xα such that Γ ∼= Cos(X,Xα, XαgXα). Let
Y = PGL2(11) > X. One can take an involution t ∈ NY (Xα) such that Xαg

tXα =
XαgXα. Let H = 〈Xα, t〉 = Xα〈t〉, and note t 6∈ X. Due to Xαg

tXα = XαgXα we have
tgt ∈ XαgXα. For any h1, h2 ∈ H, if h1gh2 ∈ X, then either h1, h2 ∈ Xα or h1, h2 /∈ Xα.
Further, if h1, h2 /∈ Xα, then h1t, th2 ∈ Xα and so h1gh2 = (h1t)tgt(th2) ∈ XαgXα. This
shows that (HgH) ∩X = XαgXα. Then the map

Xαx 7→ Hx for x ∈ X
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is a graph isomorphism from Cos(X,Xα, XαgXα) to Cos(Y,H,HgH). However, this im-
plies that Y = PGL2(11) is a group of automorphisms of Γ ∼= Cos(Y,H,HgH), contrary
to the condition that Aut(Γ) = X = PSL2(11).

Finally suppose that case (iii) appears. As X should have at least two conjugacy
classes of subgroups isomorphic to A5 by Theorem 6, it derives that X = PSL2(29) and
so Xα = C29:C7. Thus Γ has order |X|/|Xα| = 60. Take β to be a neighbor of α in Γ.
Since Γ is X-symmetric, |Xα|/|Xαβ| equals the valency of Γ, which is less than 60. Hence
Xαβ = C29 or C7. If Xαβ = C29, then Xαβ fixes each neighbor of α since Xαβ C Xα.
This will cause a contradiction that Xαβ = 1 due to the connectivity of Γ. Consequently,
Xαβ = C7 and Γ is of valency |Xα|/|Xαβ| = 29. Note that X has a maximal subgroup
K = C29:C14 containing Xα such that X acts 2-transitively on [X:K]. We deduce that
X has an imprimitive block system B = {V1, V2, . . . , V30} on the vertex set of Γ, where
|V1| = · · · = |V30| = 2, and the quotient graph of Γ with respect to the partition B is
complete. Moreover, denoted by Vk the block in B such that α ∈ Vk, the action of Xα

on B \ {Vk} is transitive. Therefore, distinct neighbors of α lie in distinct blocks in B,
and so the induced graph Γ[Vi ∪ Vj] is a perfect matching for any two blocks Vi, Vj in
B. Now we see that interchanging the two vertices in each Vi is an automorphism of Γ.
Then the kernel of X acting on B is non-trivial, contrary to the fact that X = PSL2(29)
is simple.

Theorem 17. Let G = A5 and Γ be a connected symmetric coset graph of G. If Aut(Γ)
is vertex-primitive, then Γ is a GI-graph of G.

Proof. Suppose on the contrary that Γ is not a GI-graph of G. A subgroup of G has order
1, 2, 3, 4, 5, 6, 10 or 12, whence the order of Γ is 60, 30, 20, 15, 12, 10, 6 or 5. In view of
Theorem 16 we may assume that X := Aut(Γ) is not almost simple. Further, Theorem 6
requires X to have at least two conjugacy classes of transitive subgroups isomorphic to
A5. Then by [7, Appendix B], X = Hol(G) or Soc(Hol(G)), where the symbol Hol denotes
the holomorph of a group. Let N = Soc(Hol(G)) = G × G and D be the full diagonal
subgroup of N . Then the vertex set of Γ can be viewed as [N :D], with the action of N
by right multiplication. Moreover, let t be the permutation

D(g1, g2) 7→ D(g2, g1) for (g1, g2) ∈ N

on [N :D], α = D ∈ [N :D], H = 〈Xα, t〉 and Y = 〈X, t〉. Clearly, t is an involution in
Y \X. Since Γ is symmetric, there exists g ∈ X \Xα such that Γ ∼= Cos(X,Xα, XαgXα).

First suppose that g ∈ Soc(Hol(G)). Then g = (g1, g2) acts on [N :D] by right mul-
tiplication for some g1, g2 ∈ G. Take h1 ∈ G such that (g1g

−1
2 )h1 = (g1g

−1
2 )−1 and write

h2 = g−1
1 h−1

1 g2. For i = 1, 2 set xi to be the right multiplication of (hi, hi) on [N :D]. It is
routine to verify that tgt = x1gx2 ∈ XαgXα. Hence (HgH) ∩X = XαgXα, and thus the
map

Xαx 7→ Hx for x ∈ X
is a graph isomorphism from Cos(X,Xα, XαgXα) to Cos(Y,H,HgH). However, this im-
plies that Y is a group of automorphisms of Γ ∼= Cos(Y,H,HgH), contrary to the condition
that Aut(Γ) = X < Y .
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Next suppose that g ∈ Hol(G) \ Soc(Hol(G)). Then there exists an involution τ ∈
Xα \ Soc(Hol(G)) such that tτ = τt and gτ−1 ∈ Soc(Hol(G)). In the previous paragraph
we see that t(gτ−1)t ∈ Xαgτ

−1Xα. Hence

tgt = tgτ−1τt = t(gτ−1)tτ ∈ Xαgτ
−1Xατ = XαgXα.

Consequently, (HgH) ∩X = XαgXα, and so the map

Xαx 7→ Hx for x ∈ X

is a graph isomorphism from Cos(X,Xα, XαgXα) to Cos(Y,H,HgH). However, this im-
plies that Y is a group of automorphisms of Γ ∼= Cos(Y,H,HgH), contrary to the condition
that Aut(Γ) = X < Y .
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