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Abstract

Let a < b be coprime positive integers. Armstrong, Rhoades, and Williams
(2013) defined a set NC(a, b) of ‘rational noncrossing partitions’, which form a subset
of the ordinary noncrossing partitions of {1, 2, . . . , b− 1}. Confirming a conjecture
of Armstrong et. al., we prove that NC(a, b) is closed under rotation and prove an
instance of the cyclic sieving phenomenon for this rotational action. We also define
a rational generalization of the Sa-noncrossing parking functions of Armstrong,
Reiner, and Rhoades (2015).

Keywords: cyclic sieving, noncrossing partition, rational Catalan theory, parking
function

1 Introduction

This paper is about generalized noncrossing partitions arising in rational Catalan com-
binatorics. A set partition of [n] := {1, 2, . . . , n} is noncrossing if its blocks do not cross
when drawn on a disk whose boundary is labeled clockwise with 1, 2, . . . , n. Noncross-
ing partitions play a key role in algebraic and geometric combinatorics. Along with an
ever-expanding family of other combinatorial objects, the noncrossing partitions of [n] are
famously counted by the Catalan number

Cat(n) =
1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

Given a Fuss parameter m > 1, the Fuss-Catalan number is

Cat(m)(n) =
1

mn+ n+ 1

(
mn+ n+ 1

n

)
.
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When m = 1, this reduces to the classical Catalan number. Many Catalan objects have
natural Fuss-Catalan generalizations. In the case of noncrossing partitions, the Fuss-
Catalan number Cat(m)(n) counts noncrossing set partitions of [mn] which are m-divisible
in the sense that every block has size divisible by m.

For coprime positive integers a and b, the rational Catalan number is Cat(a, b) =
1
a+b

(
a+b
a,b

)
. Observe that Cat(n, n + 1) = Cat(n) and Cat(n,mn + 1) = Cat(m)(n), so that

rational Catalan numbers are a further generalization of Fuss-Catalan numbers. Inspired
by favorable representation theoretic properties of the rational Cherednik algebra attached
to the symmetric group Sa at parameter b

a
, the research program of rational Catalan

combinatorics seeks to further generalize Catalan combinatorics to the rational setting.
Some rational generalizations of Catalan objects have been around for decades – the

rational analog of a Dyck path dates back at least to the probability literature of the 1940s.
Armstrong, Rhoades, and Williams used rational Dyck paths to define rational analogs
of polygon triangulations, noncrossing perfect matchings, and noncrossing partitions [4].
This paper goes deeper into the study of rational noncrossing partitions.

For coprime parameters a < b, Armstrong et. al. defined the a, b-noncrossing parti-
tions to be a subset NC(a, b) of the collection of noncrossing partitions of [b − 1] arising
from a laser construction involving rational Dyck paths (see Section 2 for details). It was
shown that NC(a, b) is counted by Cat(a, b), as it should be, and that NC(n,mn + 1) is
the set of m-divisible noncrossing partitions of [mn], as it should be.

However, the construction of NC(a, b) in [4] was indirect and involved the intermediate
object of rational Dyck paths. This left open the question of whether many of the funda-
mental properties of classical noncrossing partitions generalize to the rational case. For
example, it was unknown whether the set NC(a, b) is closed under the dihedral group of
symmetries of the disk with b− 1 labeled boundary points. Consequently, the rich theory
of counting noncrossing set partitions fixed by a dihedral symmetry (see [10]) lacked a
rational extension. Moreover, the unknown status of rotational closure made it difficult
to generalize the noncrossing parking functions of Armstrong, Reiner, and Rhoades [3]
(or the 2-noncrossing partitions of Edelman [7]) to the rational setting. The core problem
was that the natural dihedral symmetries of noncrossing partitions are harder to visualize
on the level of Dyck paths, even in the classical case.

The purpose of this paper is to resolve the issues in the last paragraph to support
NC(a, b) as the ‘correct’ definition of the rational noncrossing partitions. We will prove
the following.

• NC(a, b) is closed under dihedral symmetries (Corollary 3.16).

• The action of rotation on NC(a, b) exhibits a cyclic sieving phenomenon generalizing
that for the action of rotation on classical noncrossing partitions (Theorem 5.3).

• The numerology of partitions in NC(a, b) with a nontrivial rotational symmetry gen-
eralizes that of classical noncrossing partitions with a nontrivial rotational symmetry
(Corollaries 4.10, 4.11, 4.12).
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• Partitions in NC(a, b) can be decorated to obtain a Sa × Zb−1-set of rational non-
crossing parking functions ParkNC(a, b). The formula for the permutation character
of this set generalizes the corresponding formula for the classical case (Theorem 6.3).

The key to obtaining the rational extensions of classical results presented above will
be to develop a better understanding of the set NC(a, b). We will give two new character-
izations of this set (Propositions 3.3 and 3.15). The more important of these will involve
an idea genuinely new to rational Catalan combinatorics: a new measure of size for blocks
of set partitions in NC(a, b) called rank.

In the Fuss-Catalan case (a, b) = (n,mn+ 1), the rank of a block is determined by its
cardinality (Proposition 3.6). However, rank and cardinality diverge at the rational level
of generality. The main heuristic of this paper is that:

The rank of a block of a rational noncrossing partition is a better measure of
its size than its cardinality.

In Section 3, we will prove that rank shares additivity and dihedral invariance properties
with size. We will prove that ranks (unlike cardinalities) characterize which noncrossing
set partitions of [b−1] lie in NC(a, b). In Section 6, ranks (not cardinalities) will be used to
define and study rational noncrossing parking functions. In Sections 4 and 5, ranks (not
cardinalities) will be used to give rational analogs of enumerative results for noncrossing
partitions with rotational symmetry.

2 Background

2.1 Rational Dyck paths

The prototypical object in rational Catalan combinatorics is the rational Dyck path. Let
(a, b) be coprime positive integers. An a, b-Dyck path (or just a Dyck path when a and b
are clear from context) is a lattice path in Z2 consisting of north and east steps which
starts at (0, 0) ends at (b, a), and stays above the line y = a

b
x. The 5, 8-Dyck path

NENEENNENEEE is shown in Figure 1. When (a, b) = (n, n + 1), rational Dyck
paths are equivalent to classical Dyck paths – lattice paths from (0, 0) to (n, n) which
stay weakly above y = x.

If D is an a, b-Dyck path, a valley of D is a lattice point P on D such that P is
immediately preceded by an east step and succeeded by a north step. A vertical run of
D is a maximal contiguous sequence of north steps; the number of vertical runs equals
the number of valleys plus one. The 5, 8-Dyck path shown in Figure 1 has 4 valleys. The
vertical runs of this path have sizes 1, 1, 2, and 1.

The numerology associated to rational Dyck paths generalizes that of classical Dyck
paths. The number of a, b-Dyck paths is the rational Catalan number Cat(a, b) = 1

a+b

(
a+b
a,b

)
.

The set of a, b-Dyck paths D with k vertical runs is counted by the rational Narayana
number

Nar(a, b; k) :=
1

a

(
a

k

)(
b− 1

k − 1

)
. (1)
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Figure 1: A 5, 8-Dyck path and the corresponding 5, 8-noncrossing partition. The visibility
bijection is shown with colors.

Given a length a vector of nonnegative integers r = (r1, r2, . . . , ra) satisfying
∑
iri = a,

the number of a, b-Dyck paths with ri vertical runs of size i for 1 6 i 6 a is given by the
rational Kreweras number

Krew(a, b; r) :=
1

b

(
b

r1, r2, . . . , ra, b− k

)
=

(b− 1)!

r1!r2! · · · ra!(b− k)!
, (2)

where k =
∑
ri is the total number of vertical runs. For example, the 5, 7-Dyck path

shown in Figure 2 contributes to Krew(5, 7; r), where r = (1, 2, 0, 0, 0).

2.2 Noncrossing partitions

A set partition π of [n] is called noncrossing if, for all indices 1 6 i < j < k < ` 6 n, we
have that i ∼ k in π and j ∼ ` ∈ π together imply that i ∼ j ∼ k ∼ ` in π. Equivalently,
the set partition π is noncrossing if and only if the convex hulls of the blocks of π do not
intersect when drawn on the disk with boundary points labeled clockwise with 1, 2, . . . , n.

We let NC(n) denote the collection of noncrossing partitions of [n]. The rotation
operator rot acts on the index set [n], the power set 2[n], and the collection NC(n) by

the permutation

(
1 2 . . . n− 1 n
2 3 . . . n 1

)
. These three sets also carry an action of the

reflection operator rfn by the permutation

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
. Together, rot

and rfn generate a dihedral action on these sets.

2.3 Rational noncrossing partitions

In [4], rational Dyck paths were used to construct a rational generalization of the non-
crossing partitions. Let D be an a, b-Dyck path and let P 6= (0, 0) be a lattice point
which is at the bottom of a north step of D. The laser `(P ) is the line segment of slope
a
b

which is ‘fired’ northeast from P and continues until it intersects the Dyck path D. By
coprimality, the east endpoint of `(P ) is necessarily on the interior of an east step of D.

Let D be an a, b-Dyck path. We define a set partition π(D) of [b−1] as follows. Label
the east ends of the non-terminal east steps of D from left to right with 1, 2, . . . , b−1 and
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fire lasers from all of the valleys of D. The set partition π(D) is defined by the ‘visibility’
relation

i ∼ j if and only if the labels i and j are not separated by laser fire.

(Here we consider labels to lie slightly below their lattice points.) By construction, the
set partition π(D) is noncrossing.

An example of this construction when (a, b) = (5, 8) is shown in Figure 1. If D is an
a, b-Dyck path, we have a natural ‘visibility’ bijection from the set of vertical runs of D
to the set of blocks of π(D) which associates a vertical run at y = i to the block of π(D)
whose minimum element is i+ 1. The visibility bijection is shown with colors in Figure 1.

It will be convenient to think of the lasers fired from the valleys of a Dyck path D in
terms of their endpoints. We let the laser set `(D) of the a, b-Dyck path D be the set
of pairs (i, j) such that D contains a laser starting from a valley with x-coordinate i and
ending in the interior of an east step with west x-coordinate j. For the 5, 8-Dyck path D
shown in Figure 1, we have

`(D) = {(1, 2), (3, 7), (4, 5)}.
For a < b coprime, we define the set of admissible lasers

A(a, b) :=

{
(i, j) : 1 6 i < j 6 b− 1 and j − i =

⌊
rb

a

⌋
for some r = 1, 2, . . . , a− 1

}
.

Slope considerations show that (i, j) ∈ `(D) for some a, b-Dyck path D if and only if
(i, j) ∈ A(a, b). By considering π(D) for all possible a, b-Dyck paths D, we get the set of
a, b-noncrossing partitions

NC(a, b) := {π(D) : D an a, b-Dyck path}
(This is called the set of inhomogeneous a, b-noncrossing partitions in [4].) It is clear from
construction that NC(a, b) ⊆ NC(b−1). Some basic facts about a, b-noncrossing partitions
are as follows.

Proposition 2.1. Let a < b be coprime positive integers.

1. The map
π : {a, b-Dyck paths} → NC(a, b)

is bijective, so that |NC(a, b)| = Cat(a, b) and the number of a, b-noncrossing parti-
tions with k blocks is the rational Narayana number Nar(a, b; k).

2. If π ∈ NC(a, b) and π′ is a noncrossing partition of [b − 1] which coarsens π, then
π′ ∈ NC(a, b).

When (a, b) = (n, n + 1), the set NC(n, n + 1) of rational noncrossing partitions is
just the set NC(n) of all noncrossing partitions of [n]. When (a, b) = (n,mn + 1) we
have that NC(n,mn + 1) of rational noncrossing partitions is the set of all noncrossing
partitions of [mn] which are m-divisible in the sense that every block size is divisible
by m. Armstrong, Rhoades, and Williams posed the problem of finding an analogous
‘intrinsic’ characterization of NC(a, b) for arbitrary a < b coprime. We give two such
characterizations in Section 3.
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Figure 2: A 5, 7-Dyck path and the corresponding 5, 7-homogeneous noncrossing partition.

2.4 Homogeneous rational noncrossing partitions

Rational Dyck paths are used in [4] to construct a generalization of noncrossing perfect
matchings on the set [2n]. The construction is similar to that of the rational noncrossing
partitions.

Let (a, b) be coprime and let D be an a, b-Dyck path. We construct a set partition
π(D) of the set [a+ b−1] as follows. Label the interior lattice points of D from southwest
to northeast with 1, 2, . . . , a + b − 1. Fire lasers of slope a

b
from every lattice point of D

which is at the south end of a north step (not just those lattice points which are valleys of
D). The set partition π(D) is given by declaring i ∼ j if and only if the labels i and j are
not separated by laser fire. As before, we consider labels to be slightly below their lattice
points. Topological considerations make it clear that π(D) is a noncrossing partition of
[a+ b− 1]. An example of this construction is shown in Figure 2 for (a, b) = (5, 8).

Considering π(D) for all possible a, b-Dyck paths D gives rise to the set of a, b-
homogeneous rational noncrossing partitions

HNC(a, b) := {π(D) : D an a, b-Dyck path}.

The adjective ‘homogeneous’ refers to the fact that every set partition in HNC(a, b) has a
blocks. By construction, we have that HNC(a, b) ⊆ NC(a+ b− 1).

When (a, b) = (n, n + 1), the set HNC(n, n + 1) is the set of noncrossing perfect
matchings on [2n]. When (a, b) = (n,mn + 1), the set HNC(n,mn + 1) is the set of
noncrossing set partitions on [mn] in which every block has size m (these are also called
m-equal noncrossing partitions). Some basic facts about HNC(a, b) for general a < b are
as follows.

Proposition 2.2. Let a < b be coprime positive integers.

1. The map
π : {a, b-Dyck paths} → HNC(a, b)

is bijective, so that |HNC(a, b)| = Cat(a, b).

2. The set HNC(a, b) is closed under the rotation operator rot.
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Figure 3: The action of rot′ on a, b-Dyck paths.

In [4] a promotion operator on a, b-Dyck paths is shown to intertwine the action of
rot with the map π from paths to homogeneous noncrossing partitions. We will give an
inhomogeneous analog of this promotion operator in the next section.

3 Characterizations of Rational Noncrossing Partitions

3.1 The action of rotation

Let a < b be coprime. In this subsection we will prove that NC(a, b) is closed under the
rotation operator rot by describing rotation (or, rather, its inverse) as an operator on
a, b-Dyck paths. We will define an operator

rot′ : {a, b-Dyck paths} −→ {a, b-Dyck paths}

on the set of a, b-Dyck paths which satisfies rot−1 ◦ π = π ◦ rot′.
The definition of rot′ is probably best understood visually. Figure 3 shows three

11, 13-Dyck paths. The middle path is the image of the left path under rot′ and the right
path is the image of the middle path under rot′. The valley lasers are fired on each of
these Dyck paths, and the corresponding partitions in NC(11, 13) are shown below, but
the vertex labels on the Dyck paths are omitted for legibility.

Let D1 be the 11, 13-Dyck path on the left of Figure 3. The westernmost horizontal
run of D1 has size > 1. Because of this, we define D2 := rot′(D1) by removing one step
from this horizontal run and adding it to the easternmost horizontal run of D1. The
lattice path D2 is displayed in the middle of Figure 3. Informally, the path D2 is obtained
from D1 by translating one unit west.

Let D2 be the 11, 13-Dyck path in the middle of Figure 3. The westernmost horizontal
run of D2 has size 1. The definition of D3 := rot′(D2) is more complicated in this case.
We break the lattice path D2 up into four subpaths. The first subpath, shown in black,
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is the initial northern run of D2. The second subpath, shown in red, is the single east
step which occurs after this run. The third subpath, shown in green, extends from the
westernmost valley of D2 to the (necessarily east) step just before the laser fired from
this valley hits D2. The fourth subpath, shown in blue, extends from the end of the third
subpath to the terminal point (b, a) of D2. The path D3 is obtained by concatenating the
third, first, fourth, and second subpaths, in that order. The concatenation of green, then
black, then blue, then red is shown on the right of Figure 3.

More formally, given an a, b-Dyck path D, the definition of rot′(D) breaks up into
three cases. LetD = N i1Ej1 · · ·N imEjm be the decomposition ofD into nonempty vertical
and horizontal runs.

1. If m = 1 so that D = NaEb, we set

rot′(D) := NaEb = D.

2. If m, j1 > 1, we set

rot′(D) := N i1Ej1−1N i2Ej2 · · ·N imEjm+1.

3. If m > 1 and j1 = 1, let P = (1, i1) be the westernmost valley of D. The laser `(P )
fired from P hits D on a horizontal run Eik for some 2 6 k 6 m. Suppose that `(P )
hits the horizontal run Eik on step r, where 2 6 r 6 ik. We set

rot′(D) := N i2Ei2 · · ·N ik−1Eik−1N ikEr−1N i1Eik−r+1N ik+1Eik+1 · · ·N imEjm+1.

Proposition 3.1. The definition of rot′ given above gives a well defined operator on
the set of a, b-Dyck paths. As operators {a, b-Dyck paths } −→ NC(a, b), we have that
rot−1 ◦ π = π ◦ rot′. In particular, the set NC(a, b) is closed under rotation.

Proof. Let D be an a, b-Dyck path. If the westernmost horizontal run of D has size > 1,
it is clear that rot′(D) is also an a, b-Dyck path and that the corresponding set partitions
are related by rot−1(π(D)) = π(rot′(D)). We therefore assume that the westernmost
horizontal run of D consists of a single step.

We claim that the lattice path rot′(D) stays above the diagonal y = a
b
x. Indeed,

consider the decomposition of rot′(D) as in Figure 3. The first (green) subpath of rot′(D)
stays above y = a

b
x because the laser fired from the westernmost valley of D has slope

a
b
. The second (black) subpath of rot′(D) is a vertical run, so the concatenation of the

first and second subpaths of rot′(D) stay above y = a
b
x. The third (blue) subpath of

rot′(D) is just the corresponding subpath of D translated one unit west, and certainly
stays above the line y = a

b
x. Since the fourth (red) subpath of rot′(D) is a single east

step, we conclude that the entire path rot′(D) stays above y = a
b
x, and so is an a, b-Dyck

path.
By the last paragraph, the set partition π(rot′(D)) ∈ NC(a, b) is well defined. We

argue that rot−1(π(D)) = π(rot′(D)). To do this, we consider how the valley lasers of
rot′(D) relate to the corresponding valley lasers of D.
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Figure 4: An example of Kreweras complement.

• The valley lasers in the third (blue) subpath of rot′(D) are just the valley lasers in
the corresponding subpath of D shifted one unit west.

• The valley lasers in the first (green) subpath of rot′(D) are either the valley lasers
in the corresponding subpath of D shifted one unit west, or hit rot′(D) on its
terminal east step, depending on whether these lasers hit D in its third (green) or
fourth (blue) subpaths.

• The valley laser of the westernmost valley in D is replaced by the laser in the valley
of rot′(D) between its first (green) and second (black) subpaths, which necessarily
hits rot′(D) on its terminal east step.

From this description of the valley lasers of rot′(D), one checks that rot−1(π(D)) =
π(rot′(D)), as desired.

3.2 Characterization from Kreweras complement

Our first characterization of rational noncrossing partitions gives a description of their
Kreweras complements. Let π be a noncrossing partition of [n]. The Kreweras complement
krew(π) is the noncrossing partition obtained by drawing the 2n vertices

1, 1′, 2, 2′, . . . , n, n′

clockwise on the boundary of a disk in that order, drawing the blocks of π on the unprimed
vertices, and letting krew(π) be the unique coarsest partition of the primed vertices which
introduces no crossings. The map krew : NC(n)→ NC(n) satisfies krew2 = rot, and so is
a bijection.

An example of Kreweras complementation for n = 7 is shown in Figure 4. We have
krew : {{1, 2}, {3, 6}, {4, 5}, {7}} 7→ {{1}, {2, 6, 7}, {3, 5}, {4}}.

For (a, b) 6= (n, n + 1), the set NC(a, b) is not closed under Kreweras complement.
Indeed, the one block set partition {[b − 1]} is contained in NC(a, b) but its Kreweras
complement (the all singletons set partition) is not. On the other hand, the set NC(a, b)
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is in bijective correspondence with its Kreweras image krew(NC(a, b)). The problem of
characterizing NC(a, b) is therefore equivalent to the problem of characterizing its Krew-
eras image.

Given π ∈ NC(a, b), there is a simple relationship between the blocks of krew(π) ∈
NC(b− 1) and the laser set `(D) of the a, b-Dyck path D corresponding to π.

Lemma 3.2. Let a < b be coprime, let π ∈ NC(a, b) have corresponding a, b-Dyck path
D, and let krew(π) be the Kreweras complement of π. The laser set `(D) is

`(D) = {(i,max(B)) : B is a block of krew(π) and i is a nonmaximal element of B}.

Proof. This is clear from the topological definition of π(D) and Kreweras complement.

Let π ∈ NC(b− 1) be a noncrossing partition and suppose we would like to determine
whether π is in NC(a, b). In light of Lemma 3.2, it is enough to know whether there exists
an a, b-Dyck path D whose laser set consists of pairs (i,max(B)), where i ∈ B runs over
all nonmaximal elements of all blocks B of krew(π). A characterization of the laser sets of
a, b-Dyck paths can be read off from the results of [11]. In [11] this characterization was
used to prove that the rational analog of the associahedron is a flag simplicial complex.

Proposition 3.3. Let a < b be coprime and let π be a noncrossing partition of [b − 1].
Then π is an a, b-noncrossing partition if and only if for every block B of the Kreweras
complement krew(π) we have

• (i,max(B)) ∈ A(a, b) for every nonmaximal element i ∈ B, and

• for any two nonmaximal elements i < j in B,⌈
(max(B)− i)a

b

⌉
−
⌈
(max(B)− j)a

b

⌉
> (j − i)a

b
.

Proof. As mentioned above, we know that π ∈ NC(a, b) if and only if there exists an a, b-
Dyck path D whose laser set consists of all possible pairs (i,max(B)), where B ranges
over all blocks of krew(π) and i ranges over all nonmaximal elements of B. For such an
a, b-Dyck path D to exist, it is certainly necessary that (i,max(B)) ∈ A(a, b) always, so
we assume this condition holds.

By [11, Proposition 1.3] and [11, Lemma 4.3], we know that an a, b-Dyck path D
as in the previous paragraph exists if and only if for every two pairs (i,max(B)) and
(i′,max(B′)), there exists an a, b-Dyck path D with laser set

`(D) = {(i,max(B)), (j,max(B′))}.

By [11, Lemma 5.3] and [11, Proposition 5.5], such an a, b-Dyck path D does not exist if
and only if max(B) = max(B′) (so that B = B′) and⌈

(max(B)− i)a
b

⌉
−
⌈
(max(B)− j)a

b

⌉
< (j − i)a

b
,

where i < j. Since 1 6 i < j < b − 1, we have
⌈
(max(B)− i)a

b

⌉
−
⌈
(max(B)− j)a

b

⌉
6=

(j − i)a
b

and the result follows.
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Example 3.4. Let (a, b) = (5, 8) and consider the following three partitions in NC(7):

π1 := {{1}, {2, 6, 7}, {3}, {4, 5}},
π2 := {{1}, {2, 6, 7}, {3, 4}, {5}},
π3 := {{1}, {2, 7}, {3, 4, 5}, {6}}.

To determine which of π1, π2, π3 belong to NC(5, 8), we start by computing their Kreweras
images:

krew(π1) := {{1, 7}, {2, 3, 5}, {4}, {6}},
krew(π2) := {{1, 7}, {2, 4, 5}, {3}, {6}},
krew(π3) := {{1, 7}, {2, 5, 6}, {3}, {4}}.

Since {2, 3, 5} is a block of krew(π1) and (3, 5) /∈ A(5, 8), we conclude that π1 /∈ NC(5, 8).
Since {2, 4, 5} is a block of krew(π2) and

⌈
(5− 2)5

8

⌉
−
⌈
(5− 4)5

8

⌉
6 (4− 2)5

8
, we conclude

that π2 /∈ NC(5, 8). Since both of the bullets in Proposition 3.3 hold for π3, we conclude
that π3 ∈ NC(5, 8).

3.3 a, b-ranks

In order to state our second characterization of a, b-noncrossing partitions, we introduce
a new way to measure the ‘size’ of a block B of a noncrossing partition π other than its
cardinality |B|. Our rational analog of block size is as follows.

Definition 3.5. Let a < b be coprime positive integers and let π ∈ NC(b − 1) be a
noncrossing partition of [b − 1]. We assign an integer rankπa,b(B) ∈ Z to every block B
of π (or just rank(B) when a, b, and π are clear from context) by the following recursive
procedure. Let � be the partial order on the blocks of π defined by

B′ � B ⇐⇒ [min(B′),max(B′)] ⊆ [min(B),max(B)].

The integers rankπa,b(B) are implicitly determined by the formula∑
B′�B

rankπa,b(B
′) =

⌈
(max(B)−min(B) + 1)

a

b

⌉
, (3)

for all blocks B ∈ π.

While we define rankπa,b(·) as a function on the blocks of an arbitrary noncrossing
partition of [b− 1], this notion of rank will be more useful for a, b-noncrossing partitions.
We will see that rank is more useful than cardinality as a block size measure in rational
Catalan theory. This subsection proves basic properties of the function rankπa,b(·) on the
blocks of a, b-noncrossing partitions.

In the Fuss-Catalan case b ≡ 1 (mod a), rank and cardinality determine each other.
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Proposition 3.6. Let (a, b) = (n,mn + 1), let π ∈ NC(n,mn + 1) be an m-divisible
noncrossing partition of [mn], and let B be a block of π. We have

rankπn,mn+1(B) =
|B|
m
.

Proof. For any block B of π, we have 1 6 min(B) 6 max(B) 6 mn and the divisibility
relation m|(max(B)−min(B) + 1), so that⌈

(max(B)−min(B) + 1)
n

mn+ 1

⌉
=

max(B)−min(B) + 1

m
.

The assignment B 7→ |B|
m

therefore satisfies the recursion for rankπn,mn+1(·).

For general a < b coprime, the a, b-rank of a block of an a, b-noncrossing partition
π ∈ NC(a, b) is not necessarily determined by its cardinality. For example, consider
(a, b) = (3, 5). Then π = {{1, 3}, {2}, {4}} ∈ NC(3, 5). We have

rankπ3,5({1, 3}) = rankπ3,5({2}) = rankπ3,5({4}) = 1.

Proposition 3.6 shows that the divergence between rank and cardinality is a genuinely new
feature of rational Catalan combinatorics and is invisible at the Catalan and Fuss-Catalan
levels of generality.

Definition 3.7. If π ∈ NC(a, b) is an a, b-noncrossing partition, the rank sequence R(π) =
(r1, . . . , rb−1) of π is the sequence of nonnegative integers given by

ri :=

{
rank(B) if i = min(B) for some block B of π,

0 otherwise.

For example, the rank sequence of the 5, 8-noncrossing partition shown in Figure 1
has rank sequence (1, 1, 0, 2, 1, 0, 0). Observe that this is also the sequence of vertical runs
of the corresponding 5, 8-Dyck path, so that the rank sequence is equivalent to the Dyck
path. This is a general phenomenon.

Proposition 3.8. Let a < b be coprime, let π be an a, b-noncrossing partition with rank
sequence R(π) = (r1, . . . , rb−1), and let D be the a, b-Dyck path associated to π.

1. For any block B of π, the vertical run of D visible from π has size rank(B).

2. The Dyck path D is given by

D = N r1EN r2E · · ·N rb−1EE.
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Proof. For any block B of π, we have that min(B) labels the lattice point just to the right
of the vertical run labeled by B. Therefore, (2) follows from (1).

To prove (1), recall the partial order � on the blocks of π. If B is minimal with respect
to �, then B = [min(B),max(B)] is an interval. The labels of B must appear on a single
horizontal run of D, say on the line y = c. Let iB be the length of the vertical run visible
from B, let P be the valley at the bottom of this vertical run, and let `(P ) be the laser
fired from P .

The laser `(P ) must intersect the line y = c. We claim that it does so in the open
x-interval (max(B),max(B) + 1). Indeed, by coprimality there exists a unique lattice
point Q on D which is northwest of the laser `(P ) and has minimum horizontal distance
to the laser `(P ). Let m be the x-coordinate of Q. We claim that m ∈ B. Indeed,
if m /∈ B, there must be a laser `(Q′) fired from a valley Q′ which separates m from
B. But then Q′ would be closer than Q to `(P ), so we conclude that m ∈ B. Since
B = [min(B),max(B)] is an interval, we have that `(P ) intersects y = c in the open
x-interval (max(B),max(B) + 1). This implies that rank(B) = iB, as desired.

Now suppose that B is not �-minimal among the blocks of π. Then the interval
[min(B),max(B)] is a union of at least two blocks of π. For any block B′ contained in
this interval, let iB′ denote the size of the vertical run visible from B′. We may inductively
assume that, for all B′ 6= B, we have

rankπa,b(B
′) = iB′ .

Let π0 be the set partition obtained from π by merging the blocks contained in
[min(B),max(B)]. Then π0 is noncrossing, and hence a, b-noncrossing by Proposition 2.1
(2). The recursion for rank says that

rankπ0a,b([min(B),max(B)]) =
∑

B′⊆[min(B),max(B)]

rankπa,b(B) = rankπa,b(B) +
∑

B′⊆[min(B),max(B)]
B′ 6=B

iB′ ,

where the second equality used the inductive hypothesis. Moreover, the Dyck path
D0 corresponding to π0 is obtained from D by replacing the portion between the x-
coordinates min(B) and max(B) with a single vertical run, followed by a single horizontal
run. In particular, the size of the vertical run in D0 visible from [min(B),max(B)] is∑

B′⊆[min(B),max(B)] iB′ . This forces rankπa,b(B) = iB, as desired.

The cardinality function | · | on blocks of noncrossing partitions satisfies the following
two properties.

• Let π and π′ be noncrossing partitions such that π refines π′. For any block B′ of
π′, write B′ = B1 ] · · · ]Bk, where B1, . . . , Bk are blocks of π. We have

|B′| = |B1|+ · · ·+ |Bk|.

• The function |·| on blocks of noncrossing set partitions is invariant under the dihedral
action of 〈rot, rfn〉.
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To justify our intuition that rank measures size, we prove that rankπa,b(·) enjoys the same
properties on the set of a, b-noncrossing partitions.

Proposition 3.9. Let a < b be coprime, let π, π′ ∈ NC(a, b), and assume that π refines π′.
Let B′ be a block of π′ and let B1, . . . , Bk be the blocks of π such that B′ = B1 ] · · · ]Bk.
We have

rankπ
′

a,b(B
′) = rankπa,b(B1) + · · ·+ rankπa,b(Bk).

Proof. It suffices to consider the case where π′ is obtained by merging two blocks of π, say
B1 and B2. Suppose min(B1) < min(B2). If D,D′ are the a, b-Dyck paths corresponding
to π, π′, then D′ is obtained from D by moving the vertical run visible from B2 on top of
the vertical run visible from B1. The merged vertical run in D′ is visible from B1 ] B2.
The result follows from Proposition 3.8.

Proposition 3.9 fails for partitions π, π ∈ NC(b−1) which are not both a, b-noncrossing.
For example, let (a, b) = (2, 5), π = {{1, 2, 3}, {4}}, and π′ = {{1, 2, 3, 4}}. We have
rankπ2,5({1, 2, 3}) = 2, rankπ2,5({4}) = 1, and rankπ

′

2,5({1, 2, 3, 4}) = 2.

Proposition 3.10. Let a < b be coprime, let π ∈ NC(a, b), and let B be a block of π. We
have

rankπa,b(B) = rank
rot(π)
a,b (rot(B)), (4)

rankπa,b(B) = rank
rfn(π)
a,b (rfn(B)). (5)

Proof. Since the intervals [min(B),max(B)] and [min(rfn(B)),max(rfn(B))] have the
same length, reflection invariance is clear (and still holds if π fails to be a, b-noncrossing).

Recall that rot acts by adding 1 to every index, modulo b − 1. Rotation invariance
is therefore clear unless B has the form B = {i1 < · · · < ij < b − 1} with i1 > 1. In
this case, the intervals [1, i1 − 1], [i2 + 1, i3 − 1], . . . , [ij + 1, b− 2] must each be unions of
blocks of π. Let B1, . . . , Br be a complete list of these remaining blocks. We certainly
have rankπa,b(Bi) = rank

rot(π)
a,b (rot(Bi)) for 1 6 i 6 r. On the other hand, Proposition 3.1

and the assumption that π ∈ NC(a, b) guarantee that rot(π) ∈ NC(a, b). Proposition 3.8
shows that

a = rankπa,b(B) + rankπa,b(B1) + · · ·+ rankπa,b(Br)

= rank
rot(π)
a,b (rot(B)) + rank

rot(π)
a,b (rot(B1)) + · · ·+ rank

rot(π)
a,b (rot(Br)).

Since rankπa,b(Bi) = rank
rot(π)
a,b (rot(Bi)) for 1 6 i 6 r, we have that rankπa,b(B) =

rank
rot(π)
a,b (rot(B)).

Proposition 3.10 does not hold for partitions π ∈ NC(b − 1) which are not a, b-
noncrossing. For example, take (a, b) = (2, 5) and π = {{1}, {2, 3, 4}}, so that rot(π) =

{{1, 3, 4}{2}}. We have rankπ2,5({2, 3, 4}) = 2 but rank
rot(π)
2,5 ({1, 3, 4}) = 1.
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3.4 Characterization from rank function

The a, b-rank function rankπa,b(·) can be used to decide whether a given noncrossing parti-
tion π ∈ NC(b− 1) is a, b-noncrossing. This is our first application of a, b-rank to rational
Catalan theory. To begin, we introduce the notion of a valid a, b-ranking.

Definition 3.11. Let π ∈ NC(b− 1) be an arbitrary noncrossing partition of [b− 1]. We
say that π has a valid a, b-ranking if rankπa,b(B) > 0 for every block B ∈ π and∑

B∈π

rank(B) = a.

Example 3.12. Let (a, b) = (3, 5) and consider the two noncrossing partitions

π1 = {{1, 2, 4}, {3}}, π2 = {{1, 2}, {3}, {4}} ∈ NC(4).

Then π1 has a valid 3, 5-ranking, but π2 does not. Indeed, we have

rankπ23,5({1, 2}) + rankπ23,5({3}) + rankπ23,5({4}) = 2 + 1 + 1 > 3.

If (a, b) = (4, 7) and

π3 = {{1, 6}, {2}, {3}, {4}, {5}} ∈ NC(6),

then we have rankπ34,7({1, 6}) = 0, so that π3 does not have a valid 4, 7-ranking.

We record the following lemma for future use.

Lemma 3.13. Let a < b be coprime and let π ∈ NC(b − 1) be an arbitrary noncrossing
partition of [b− 1]. We have ∑

B∈π

rank(B) > a. (6)

Proof. Recall the partial order � on the blocks of π. If B′ is maximal with respect to �,
we have∑

B�B′
rank(B) =

⌈
(max(B′)−min(B′) + 1)

a

b

⌉
> (max(B′)−min(B′) + 1)

a

b
.

Summing over all �-maximal blocks B′ gives∑
B∈π

rank(B) > (b− 1)
a

b
, (7)

which is equivalent to the desired inequality since
∑

B∈π rank(B) ∈ Z.
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By Proposition 3.8, every a, b-noncrossing partition has a valid a, b-ranking. It would
be nice if the converse held, but it does not; if (a, b) = (2, 5), the partition

π = {{1, 2, 4}, {3}}

has a valid 2, 5-ranking but π /∈ NC(2, 5). Our second characterization of a, b-noncrossing
partitions states that π ∈ NC(a, b) if and only if every element in the orbit of π under
rotation has a valid a, b-ranking. To prove this statement, we start by examining how
validity behaves under coarsening.

In general, having a valid a, b-ranking is not closed under coarsening of noncrossing
partitions. For example, let (a, b) = (5, 11) and consider the two partitions π, π′ ∈ NC(10)
given by

π = {{1, 6, 7, 8, 9, 10}, {2}, {3}, {4}, {5}},
π′ = {{1, 6, 7, 8, 9, 10}, {2, 5}, {3}, {4}}.

Then π has a valid 5, 11-ranking but π′ does not. On the other hand, certain types of
coarsening do preserve validity.

Lemma 3.14. Let a < b be coprime and let π ∈ NC(b − 1) be a noncrossing partition
such that π has a valid a, b-ranking. Suppose that π′ ∈ NC(b− 1) is another noncrossing
partition obtained from π by one of the following two operations:

1. merging two blocks B0, B1 of π with min(B1) = max(B0) + 1, or

2. merging two blocks B0, B1 of π with B0 ≺ B1.

The noncrossing partition π′ has a valid a, b-ranking.

Observe that if π, π′ ∈ NC(b−1) are such that π refines π′ and π′ is a union of intervals,
then π′ can be obtained from π by a sequence of coarsenings as described in Lemma 3.14.

Proof. First assume that π′ is obtained from π by replacing B0 and B1 with B0 ∪ B1 as
in Condition 1. For i = 0, 1, let ri denote the sum of the ranks of the blocks B of π
satisfying B ≺ Bi. By the definition of rank, we have

rankπa,b(Bi) + ri =
⌈
(max(Bi)−min(Bi) + 1)

a

b

⌉
(8)

for i = 0, 1. Adding these two equations together and recalling that dxe + dye − 1 6
dx+ ye 6 dxe+ dye for any x, y ∈ R, we get

rankπa,b(B0) + rankπa,b(B1)− 1 6 rankπ
′

a,b(B0 ∪B1) 6 rankπa,b(B0) + rankπa,b(B1). (9)

Since π has a valid a, b-ranking, we have rankπa,b(Bi) > 0 for i = 0, 1, so that rankπ
′

a,b(B0 ∪
B1) > 0. Our analysis breaks up into two cases depending on whether B0 ∪ B1 is a
�-maximal block of π′.
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If B0∪B1 is a �-maximal block of π′, for every block B of π′ with B 6= B0, B1 we have
rankπ

′

a,b(B) = rankπa,b(B), so that the chain of inequalities in (9) give
∑

B∈π′ rankπ
′

a,b(B) 6 a,

so
∑

B∈π′ rankπ
′

a,b(B) = a by Lemma 3.13. Since every block of π′ has a positive rank, we
conclude that π′ has a valid a, b-ranking.

If B0 ∪ B1 is not a �-maximal block of π′, there exists a unique block B2 ∈ π′ such
that B2 covers B0 ∪B1 in �. The recursion for rankπ

′

a,b(·) gives

rankπ
′

a,b(B0 ∪B1) + r0 + r1 + r2 + rankπ
′

a,b(B2) =
⌈
(max(B2)−min(B2) + 1)

a

b

⌉
, (10)

where r2 is the sum of the ranks of all of the blocks B of π′ satisfying B ≺ B2 but
B 6� B0, B1. Combining (10) with the inequalities in (9), we see that rankπ

′

a,b(B2) >
rankπa,b(B2) > 0. Since∑

B∈π
B�B2

rankπa,b(B) =
⌈
(max(B2)−min(B2) + 1)

a

b

⌉
=
∑
B′∈π′
B′�B2

rankπ
′

a,b(B
′), (11)

we have rankπ
′

a,b(B) = rankπa,b(B) for all blocks B 6= B0, B1, B2. In particular, the rank of

every block of π′ is positive and
∑

B∈π′ rankπ
′

a,b(B) = a. We conclude that π′ has a valid
a, b-ranking.

Now assume that π′ is obtained from π by replacing B0 and B1 with B0 ∪ B1 as in
Condition 2. It follows that B1 covers B0 in the �-order. By the recursion for rank,

rankπ
′

a,b(B0 ∪B1) = rankπa,b(B0) + rankπa,b(B1) (12)

and the ranks of all other blocks of π′ equal the corresponding ranks in π′, so that π′ has
a valid a, b-ranking.

We are ready to prove our a, b-rank characterization of a, b-noncrossing partitions.

Proposition 3.15. Let a < b be coprime and let π be a noncrossing partition of [b− 1].
Then π is an a, b-noncrossing partition if and only if every partition in the orbit of π
under rotation has a valid a, b-ranking.

Proof. Suppose π ∈ NC(a, b). By Proposition 3.1, we know that the rotation orbit of π is
contained in NC(a, b), so that every partition in this orbit has a valid a, b-ranking.

For the converse, suppose that π ∈ NC(b−1)−NC(a, b). We argue that some partition
in the rotation orbit of π does not have a valid (a, b)-ranking.

Consider the Kreweras complement krew(π). If there is a block B ∈ krew(π) and an
index i ∈ B−{max(B)} such that (i,max(B)) /∈ A(a, b), then π refines the two-block set
partition π′ := {[i+1,max(B)], [b−1]− [i+1,max(B)]} and rot−i(π) refines rot−i(π′) =
{[1,max(B) − i], [max(B) − i + 1, b − 1]}. Since rot−i(π) consists of two intervals, we
have that rot−i(π′) can be obtained from rot−i(π) by a sequence of coarsenings as in
Lemma 3.14. The condition (i,max(B)) /∈ A(a, b) means that⌈

(max(B)− i)a
b

⌉
+
⌈
(b−max(B) + i− 1)

a

b

⌉
> a,
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so that rot−i(π′) does not have a valid a, b-ranking. By Lemma 3.14, we conclude that
rot−i(π) does not have a valid a, b-ranking.

By the last paragraph, we may assume that for every block B ∈ krew(π) and every
index i ∈ B − {max(B)}, we have (i,max(B)) ∈ A(a, b). Since π ∈ NC(b− 1)−NC(a, b),
by Proposition 3.3 there exists a block B ∈ krew(π) and indices i, j ∈ B − {max(B)}
with i < j such that ⌈

(k − i)a
b

⌉
−
⌈
(k − j)a

b

⌉
< (j − i)a

b
,

where max(B) = k. The set partition π refines the three-block noncrossing partition
π′ := {[i+ 1, j], [j + 1, k], [b− 1]− [i+ 1, k]}. Therefore, the set partition rot−i(π) refines
rot−i(π′) = {[1, j − i], [j − i + 1, k − i], [k − i + 1, b − 1]}. Since rot−i(π′) consists of
three intervals, we have that rot−i(π′) can be obtained from rot−i(π) by a sequence
of coarsenings as in Lemma 3.14. We show that rot−i(π′) does not have a valid a, b-
ranking; by Lemma 3.14, this implies that rot−i(π) does not have a valid a, b-ranking and
completes the proof.

Working towards a contradiction, suppose π′′ := rot−i(π′) has a valid a, b-ranking.
Denote the blocks of π′′ by B1 = [1, j− i], B2 = [j− i+1, k− i], and B3 = [k− i+1, b−1].
We have rankπ

′′

a,b(B1) + rankπ
′′

a,b(B2) + rankπ
′′

a,b(B3) = a. On the other hand, by Lemma 3.14,
we have that π′′′ := {B1 ∪ B2, B3} also has a valid a, b-ranking. Moreover, we have
rankπ

′′′

a,b (B3) = rankπ
′′

a,b(B3). This implies that

a = rankπ
′′′

a,b (B1 ∪B2) + rankπ
′′′

(B3) =
⌈
(k − i)a

b

⌉
+ rankπ

′′
(B3).

Putting these facts together gives

a = rankπ
′′

a,b(B1) + rankπ
′′

a,b(B2) + rankπ
′′

a,b(B3)

=
⌈
(j − i)a

b

⌉
+
⌈
(k − j)a

b

⌉
+ rankπ

′′
(B3)

=
⌈
(j − i)a

b

⌉
+
⌈
(k − j)a

b

⌉
+ a−

⌈
(k − i)a

b

⌉
> a+

⌈
(j − i)a

b

⌉
− (j − i)a

b
> a,

which is a contradiction. We conclude that π′′ does not have a valid a, b-ranking.

As an application of Proposition 3.15, we get that the set NC(a, b) carries an action
of not just the rotation operator rot, but the full dihedral group 〈rot, rfn〉. This gives
another application of a, b-ranks.

Corollary 3.16. Let a < b be coprime. The set NC(a, b) of a, b-noncrossing partitions is
closed under the action of the dihedral group 〈rot, rfn〉.

Proof. It is enough to show that NC(a, b) is closed under rfn. For any noncrossing parti-
tion π ∈ NC(b− 1) and any block B of π, we have

rankπa,b(B) = rank
rfn(π)
a,b (rfn(B)).
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It follows that every element in the rotation orbit of π has a valid a, b-ranking if and only
if every element in the rotation orbit of rfn(π) has a valid a, b-ranking.

4 Modified rank sequences

In this section we will study rational noncrossing partitions which have nontrivial rota-
tional symmetry. Our key tool will the the theory of a, b-rank developed in Section 3. We
fix the following

Notation. For the remainder of this section, let a < b be coprime positive integers.
Let d | (b− 1) be a divisor with 1 6 d < b− 1. Let q := b−1

d
. Let

NCd(a, b) := {π ∈ NC(a, b) : rotd(π) = π}

denote the set of a, b-noncrossing partitions which are fixed by rotd.
The numerology of NCd(a, b) will turn out to be somewhat simpler than that of NC(a, b)

itself. We begin by defining a modified version of the rank sequence which is well suited
to studying partitions with rotational symmetry.

Let π ∈ NCd(a, b). The fact that π is noncrossing implies that π has at most one block
B0 which satisfies rotd(B0) = B0. If such a block B0 exists, it is called central. Moreover,
the cyclic group Zq = 〈rotd〉 acts freely on the non-central blocks of π. A non-central
block B of π is called wrapping if the interval [min(B),max(B)] contains every block in
the 〈rotd〉-orbit of B. Any 〈rotd〉-orbit of blocks has at most one wrapping block.

Definition 4.1. Let π ∈ NCd(a, b). The d-modified rank sequence of π is the length d
sequence Sd(π) = (s1, . . . , sd) of nonnegative integers defined by

si :=

{
rankπa,b(B) if i = min(B) for some non-central, non-wrapping block B ∈ π,

0 otherwise.

(13)

For example, suppose that (a, b) = (4, 9), d = 4, and π = {{1, 8}, {2, 3, 6, 7}, {4, 5}} ∈
NC4(4, 9). The block {1, 8} of π is wrapping and the block {2, 3, 6, 7} of π is central. Since
the 4, 9-rank of {4, 5} is 1, the 4-modified rank sequence of π is S4(π) = (0, 0, 0, 1).

The d-modified rank sequence Sd(π) is like the ordinary rank sequence R(π), but we
only consider the indices in [d] rather than in [b− 1] and we only keep track of the ranks
of blocks which are neither central nor wrapping. It is true, but not obvious at this point,
that a set partition π ∈ NCd(a, b) is determined by Sd(π).

Our first lemma states that the assignment π 7→ Sd(π) commutes with the action of
rotation.

Lemma 4.2. Let π ∈ NCd(a, b) and let Sd(π) = (s1, s2, . . . , sd) be the d-modified rank
sequence of π. We have

Sd(rot(π)) = rot(Sd(π)), (14)

where rot(s1, s2, . . . , sd) = (sd, s1, . . . , sd−1) is the rotation operator on sequences.
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Proof. Let Sd(rot(π)) = (s′1, s
′
2, . . . , s

′
d) be the d-modified rank sequence of rot(π) and

let 1 6 i 6 q. We show that s′i = si−1, where subscripts are interpreted modulo d. We will

make free use of Proposition 3.10, which implies that rankπa,b(B) = rank
rot(π)
a,b (rot(B)) for

any block B ∈ π.
Case 1: 2 6 i 6 d. Suppose si−1 > 0. Then i−1 = min(B) for some non-central, non-

wrapping block B ∈ π. Since B is non-central and non-wrapping and 1 6 min(B) 6 d−1,
we know that rot(B) is also non-central and non-wrapping with min(rot(B)) = i. We
conclude that s′i = si−1.

Suppose si−1 = 0. If i − 1 is not the minimum element of a block of π, then i is not
the minimum element of a block of rot(π), so that s′i = 0. If i−1 = min(B0) for a central
block B0 ∈ π, then rot(B0) is a central block in rot(π) with i ∈ rot(B0), so that s′i = 0.
If i − 1 = min(B) for a wrapping block B ∈ π, then the fact that 1 6 min(B) 6 d − 1
implies that either i 6= min(rot(B)) or (rot(B) is wrapping with i ∈ rot(B)). In either
situation, we get that s′i = 0.

Case 2: i = 1. Suppose sd > 0. Then d = min(B) for some non-central, non-wrapping
block B ∈ π. Recalling that rotd(π) = π, it follows that rotd(q−1)+1(B) is a non-central,
non-wrapping block of rot(π) containing 1. Thus, we get

s′1 = rank
rot(π)
a,b (rotd(q−1)+1(B)) = rankπa,b(B) = sq.

Suppose sd = 0. If d is contained in a central block of π, then 1 is contained in a
central block of rot(π) and s′1 = 0. Since π is noncrossing and rotd(π) = π, the index
q cannot be contained in a wrapping block of π. If d ∈ B for some block B ∈ π which
is non-central and non-wrapping, we must have that d 6= min(B). Since π is noncrossing
with rotd(π) = π, it follows that rot(B) is wrapping and 1 ∈ rot(B), so that s′1 = 0.

What sequences (s1, . . . , sd) of nonnegative integers arise as d-modified rank sequences
of partitions in NCd(a, b)? If π ∈ NCd(a, b) and Sd(π) = (s1, . . . , sd) is the d-modified rank
sequence of π, we claim that

q(s1 + · · ·+ sd) =
∑
B

rankπa,b(B),

where the sum is over all non-central blocks B ∈ π. Indeed, each q-element orbit of non-
central blocks contributes the rank of one of its constituents precisely once to the nonzero
terms in Sd(π). By Proposition 3.15,

s1 + · · ·+ sd 6
a

q
,

with equality if and only if π does not have a central block. (Unless q|a, the partition π
necessarily has a central block.)

We call a length d sequence (s1, . . . , sd) of nonnegative integers good if we have the
inequality s1 + · · · + sd 6 a

q
. The goal for the remainder of this section is to show that

the map
Sd : NCd(a, b) −→ {good sequences (s1, . . . , sd)}
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is a bijection. Since good sequences are easily enumerated, this will give us information
about NCd(a, b). The strategy is to isolate nice subsets of NCd(a, b) and the set of good
sequences which contain at least one representative from every rotation orbit, show that
these subsets are in bijection under Sd, and apply Lemma 4.2.

Definition 4.3. A set partition π ∈ NCd(a, b) is noble if π does not contain any wrapping
blocks and, if π contains a central block B0, we have that 1 ∈ B0.

For example, consider the case (a, b) = (6, 7) and d = 3. Then

π = {{1}, {2, 3, 5, 6}, {4}} ∈ NC3(6, 7)

is not a noble partition because 1 is not contained in the central block. On the other
hand, both of the rotations {{1, 3, 4, 6}, {2}, {5}} and {{1, 2, 4, 5}, {3}, {6}} of π are noble
partitions. Also, if (a, b) = (6, 7) and d = 2 the partition σ = {{1, 6}, {2, 3}, {4, 5}} ∈
NC2(6, 7) is not a noble partition because the block {1, 6} is wrapping. However, the
rotation {{1, 2}, {3, 4}, {5, 6}} of σ is a noble partition. In general, we have the following
observation.

Observation 4.4. Every 〈rot〉-orbit in NCd(a, b) contains at least one noble partition.

The notion of nobility for sequences involves an intermediate definition. Let s =
(s1, . . . , sd) be a good sequence. We call s very good if s1 + · · ·+ sd = a

q
or s1 = 0.

We define a map

L : {very good sequences} −→ {lattice paths from (0, 0) to (b, a)}

as follows. If s = (s1, . . . , sq) is a very good sequence, let L(s) be the lattice path obtained
by taking the q-fold concatenation of the path N s1E . . .N sdE, adding a terminal east step,
and if s1 + · · ·+ sd <

a
q

adding an initial vertical run of size c := a− q(s1 + · · ·+ sd). In
symbols,

L(s) :=

{
(N s1E . . .N sdE)qE if s1 + · · ·+ sd = a

q
,

(N cEN s2E . . .N sdE)(N s1E . . .N sdE)q−1E if s1 + · · ·+ sd <
a
q
.

Since s is assumed to be very good, we get that L(s) ends at (b, a) so that the map L is
well defined. We will refer to the subpaths L1, . . . , Lq defined by the above factorization
of L(s) as the segments of L(s), so that L(s) = L1 · · ·LqE.

If s is a very good sequence, the lattice path L(s) is typically not an a, b-Dyck path.
For example, if (a, b) = (4, 7), d = 3, and s = (s1, s2, s3) = (0, 1, 1), we have

L(s) = (N0EN1EN1E)(N0EN1EN1E)E,

which is not a 4, 7-Dyck path.

Definition 4.5. A very good sequence s = (s1, . . . , sd) is noble if L(s) is an a, b-Dyck
path.
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When (a, b) = (4, 7) and d = 3, the above example shows that (0, 1, 1) is not a noble
sequence. On the other hand, the rotation (1, 1, 0) of (0, 1, 1) is a noble sequence. In
general, we have the following analog of Observation 4.4 for good sequences.

Lemma 4.6. Every good sequence is 〈rot〉-conjugate to at least one noble sequence.

Proof. Let (s1, . . . , sd) be a good sequence and set c = a− q(s1 + · · ·+ sd).
Case 1: c = a. In this case (s1, . . . , sd) is the zero sequence (0, 0, . . . , 0) and is trivially

noble.
Case 2: 0 < c < a. The argument we present here is a modification of the argument

used to prove the Cycle Lemma.
Consider the lattice path L which starts at the origin and ends at (2d, 2(s1 + · · ·+ sd))

given by
L = (N s1E . . .N sdE)(N s1E . . .N sdE).

As is common in rational Catalan theory, we label the lattice points P on L with integers
w(P ) as follows. The origin is labeled 0. Reading L from left to right, if P and P ′ are
consecutive lattice points, we set w(P ′) = w(P )−a if P ′ is connected to P with an E-step
and w(P ′) = w(P ) + b if P ′ is connected to P with an N -step.

For example, suppose that (a, b) = (11, 13), d = 4, and (s1, s2, s3, s4) = (1, 0, 2, 0). We
have q = 13

4
= 3 and c = 11− 3(1 + 0 + 2 + 0) = 2. The lattice path L, together with the

labels of its lattice points, is as follows.

0

13

2 -9

4

17 6

-5

8 -3

-14

-1

12 1 -10

P0

By coprimality, there exists a unique lattice point on L of minimal weight. Let P0 be
this lattice point; in the above example, we have w(P0) = −14. We claim that P0 occurs
after a pair of consecutive east steps EE. Indeed, since 0 < c < a, we know that the weight
of the terminal lattice point of L is negative (in the above example, −10), so that P0 is
not the origin. If P0 did not occur after a pair of consecutive east steps, by the minimality
of w(P0), we have that P0 occurs after a pair NE. But since a < b the lattice point P ′0
occurring at the beginning of this NE-sequence satisfies w(P ′0) = w(P0)+a−b < w(P0), a
contradiction. Therefore, the lattice point P0 does indeed occur after a pair of consecutive
east steps EE.

The minimality of w(P0) and the fact that (s1, . . . , sd) 6= (0, . . . , 0) mean that P0 is
immediately followed by a nonempty vertical run N si for some 1 6 i 6 d. Since P0 is
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preceded by a pair EE, we get that i > 2 and si−1 = 0. In the above example, we have
i = 3. Since si−1 = 0, the rotated sequence (si−1, si, . . . , sd, s1, s2, . . . , si−2) is very good.
The lattice path L(si−1, si, . . . , sd, s1, s2, . . . , si−2) is therefore well defined.

In the above example, we have (si−1, si, . . . , sd, s1, s2, . . . , si−2) = (0, 2, 0, 1) and the
lattice path L(0, 2, 0, 1) is shown in the proof of Lemma 4.7 below. The segmentation
L(s) = L1 . . . LqE = L1L2L3E is shown with vertical hash marks. Observe that L(s) is
an a, b-Dyck path in this case.

We claim that the lattice path L(si−1, si, . . . , sd, s1, s2, . . . , si−2) is always an a, b-Dyck
path, so that the rotation (si−1, si, . . . , sd, s1, s2, . . . , si−2) is a noble sequence. Indeed,
consider the segmentation L(s) = L1 . . . LqE. The segments L1, . . . , Lq will be progres-
sively further east, so it is enough to show that the final segment Lq stays west of the
line y = x. By construction, the segment Lq starts with a single east step, hits the copy
of the point P0, then then has a nonempty vertical run, and eventually ends at the point
(b− 1, a). Since (s1, . . . , sd) is a good sequence, we know that Lq starts at a lattice point
to the west of the line y = a

b
(x+ 1). The minimality of w(P0) forces Lq to remain west of

the line y = a
b
x.

Case 3: c = 0. This is a special case of the Cycle Lemma; the argument is very
similar to Case 2 and is only sketched. We again consider the lattice path L given by
L = (N s1E . . .N sdE)(N s1E . . .N sdE) and assign weights w(P ) to the lattice points P on
L as before. There exists a unique lattice point P0 on L with minimal weight. The lattice
point P0 necessarily occurs before a nonempty vertical run N si for some 1 6 i 6 d. The
rotation (si, si+1, . . . , sd, s1, s2, . . . , si−1) of s is a noble sequence.

Given any noble sequence s, we may consider the a, b-noncrossing partition π(L(s))
corresponding to the Dyck path L(s). We prove that π(L(s)) is rotd-invariant and noble.

Lemma 4.7. Suppose that s = (s1, . . . , sd) is a noble sequence Then π := π(L(s)) is a
noble a, b-noncrossing partition (and in particular rotd(π) = π) with Sd(π) = s.

Proof. Recall the visibility bijection between blocks of π and nonempty vertical runs in
L(s). Let c = a− q(s1 + · · ·+ sd). The argument depends on whether c > 0 or c = 0.

Case 1: c > 0. We consider the segmentation of L(s) given by

L(s) = L1L2 . . . LqE,

where L1 = N cEN s2E . . .N sdE and Lj = N s1EN s2E . . .N sdE for 2 6 j 6 q.
As an example of this case, consider (a, b) = (11, 13), d = 4, s = (0, 2, 0, 1). Then s is

a noble sequence. The 11, 13-Dyck path L(s) = L1L2L3E is shown below, where vertical
hash marks separate the segments L1, L2, and L3. The valley lasers from L(s) are as
shown. For visibility, we suppress the labels on the interior lattice points.
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Since s is noble and c > 0, we have s1 = 0. Fix any index 2 6 i 6 d such that si > 0
and another index 1 6 j 6 q− 1. Both of the segments Lj and Lj+1 of the a, b-Dyck path
L(s) contain a copy of the nonempty vertical run N si . If P0 and P1 are the valleys at the
bottom of these vertical runs in Lj and Lj+1, respectively, the lasers `(P0) and `(P1) fired
from P0 and P1 are (rigid) translations of the same line segment. In particular, the block
visible from the copy of N si in Lj+1 is the image of the block visible from the copy of N si

in Lj by the operator rotd. Moreover, the fact that s1 = 0 means that neither of these
blocks contain the index 1.

In the above example, we have three segments (L1, L2, and L3) with si > 0 for i = 2, 4.
The blocks visible from the copies of N s2 = N2 in L1, L2, and L3 are {2, 3}, {6, 7}, and
{10, 11}, respectively. The blocks visible from the copies of N s4 = N1 in L1, L2, and
L3 are {4}, {8}, and {12}, respectively. The block visible from the initial vertical run is
{1, 5, 9}, which is central.

In general, we conclude that the set of blocks of π not containing 1 is stable under
the action of rotd, so that the block of π containing 1 must be central. We get that
π ∈ NCd(a, b). Since π ∈ NCd(a, b) has a central block containing 1, the partition π
contains no wrapping blocks. It follows that π in noble and Sd(π) = s.

Case 2: c = 0. In this case, π does not contain a central block. We again consider
the segmentation L(s) = L1L2 . . . LqE as in Case 1. Here Lj = N s1EN s2E . . .N sdE for
1 6 j 6 q.

As an example of this case, consider (a, b) = (9, 13), d = 4, and s = (1, 2, 0, 0). Then s
is a noble sequence. The 9, 13-Dyck path L(s) is shown below, with diagonal hash marks
denoting the segmentation L(s) = L1L2L3E. The valley lasers of L(s) are shown, and
the interior lattice point labels are suppressed.
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Let 1 6 i 6 d be an index such that si > 0 and consider any two consecutive segments
Lj and Lj+1 of L(s). The lasers fired from the valleys below the copies of N si both Lj
and Lj+1 are either

• translates of each other, or

• both hit the Dyck path L(s) = L1 . . . LqE on its terminal east step.

In the above example, we see that the lasers fired from each copy of N s2 = N2 are
translates of one another, and the lasers fired from each copy of N s1 = N1 hit L(s) on its
terminal east step. This implies that the blocks corresponding of these vertical runs are
〈rotd〉-conjugate, so that π ∈ NCd(a, b).

Moreover, since c = 0 the laser fired from any copy of the (nonempty) vertical run
N s1 in L(s) = L1 . . . LqE must hit L(s) on its terminal east step. This implies that π has
no wrapping blocks, so that π is noble and Sd(π) = s.

We show that nobility for sequences and nobility for partitions coincide.

Lemma 4.8. Suppose that π ∈ NCd(a, b). Then π is noble if and only if Sd(π) is noble.

Proof. Write Sd(π) = (s1, . . . , sd) and set c = a− q(s1 + · · ·+ sd).
(⇒) Suppose π is noble. Since π contains no wrapping blocks, the rank sequence R(π)

is given by the formula

R(π) =

{
(s1, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd) if s1 + · · ·+ sd = a

q
,

(c, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd) if s1 + · · ·+ sd <
a
q
.

If c > 0, since 1 is contained in the central block of π we get s1 = 0, so that Sd(π) is very
good. By Proposition 3.8, we get that L(s) is an a, b-Dyck path, so that Sd(π) is noble.

(⇐) Suppose Sd(π) is noble. We claim that π contains no wrapping blocks. Working
towards a contradiction, assume that π contains at least one wrapping block and choose
a wrapping block B of π such that the interval [min(B),max(B)] is maximal under con-
tainment.

If 1 ∈ B, then we would have s1 = 0 since B is wrapping, making the first step of
the path L(Sd(π)) an east step. This contradicts the nobility of Sd(π). We conclude that
1 /∈ B.

Since 1 /∈ B, the interval [1,min(B) − 1] is nonempty. By our choice of B, we have
that [1,min(B) − 1] is a union blocks of π, none of which are central or wrapping. This
means that the first min(B) − 1 terms in the d-modified rank sequence Sd(π) coincide
with the first min(B)− 1 terms in the ordinary rank sequence R(π).

By Proposition 3.8, the a, b-Dyck path corresponding to π starts at the origin with the
subpath N s1EN s2E . . .N smin(B)−1E. Since [1,min(B)− 1] is a union of blocks of π, Corol-
lary 3.9 guarantees that this subpath ends at the point (min(B) − 1,

⌈
a
b
(min(B)− 1)

⌉
).

It follows that the subpath (N s1EN s2E . . .N smin(B)−1E)E obtained by appending a single
east step crosses the diagonal y = a

b
x. But since B is wrapping, we have smin(B) = 0,
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so that this is an initial subpath of L(Sd(π)), so that L(Sd(π)) is not an a, b-Dyck path.
This contradicts the nobility of Sd(π). We conclude that π contains no wrapping blocks.

Suppose that π contains a central block B0. We need to prove that 1 ∈ B0. If 1 /∈ B0,
the fact that π does not contain wrapping blocks implies that [1,min(B0)− 1] is a union
of non-wrapping, non-central blocks of π. The first min(B0) − 1 terms of the d-modifed
rank sequence Sd(π) coincide with the corresponding terms of the ordinary rank sequence
R(π). The same reasoning as in the last paragraph implies that the lattice path L(Sd(π))
contains the point (min(B0)−1,

⌈
a
b
(min(B0)− 1)

⌉
). However, since B0 is central, we have

that smin(B0) = 0, so that the lattice path L(Sd(π)) has an east step originating from this
lattice point. But this means that L(Sd(π)) is not an a, b-Dyck path, contradicting the
nobility of Sd(π). We conclude that 1 ∈ B0, and that π is a noble partition.

We have the lemmata we need to prove that the map Sd is a bijection. In particular,
partitions in NCd(a, b) are determined by their d-modified rank sequences.

Proposition 4.9. The map Sd : NCd(a, b) −→ {good sequences (s1, . . . , sd)} is a bijection
which commutes with the action of rotation.

Proof. By Lemma 4.2, we know that Sd commutes with rotation. If s is a noble sequence,
Lemma 4.7 shows that S−1

d (s) is nonempty, and Lemma 4.6 shows that Sd is surjective.
To see that Sd is injective, let s be a noble sequence and suppose π ∈ NCd(a, b) satisfies

Sd(π) = s = (s1, . . . , sd). By Lemma 4.8, the partition π is noble. The rank sequence
R(π) is therefore

R(π) =

{
(s1, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd) if s1 + · · ·+ sd = a

q
,

(c, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd) if s1 + · · ·+ sd <
a
q
,

where c = a − q(s1 + · · · + sd). By Proposition 3.8, any a, b-noncrossing partition is
determined by its rank sequence. We conclude that |S−1

d (s)| = 1. By Observation 4.4 and
Lemma 4.6, together with the fact that Sd commutes with rot (Lemma 4.2), we conclude
that Sd is a bijection.

Since every nonzero entry in a d-modified rank sequence Sd(π) = (s1, . . . , sd) corre-
sponds to a 〈rotd〉-orbit of non-central blocks of π of that rank, the following result follows
immediately from Proposition 4.9.

Corollary 4.10. Let a < b be coprime positive integers and let d | (b−1) be a divisor with
1 6 d < b − 1. Let m1, . . . ,ma be nonnegative integers which satisfy b−1

d
(m1 + 2m2 · · · +

ama) 6 a. Write m := m1 +m2 + · · ·+ma.
The number of a, b-noncrossing partitions which are invariant under rotd and have

mi orbits of non-central blocks of a, b-rank i under the action of 〈rotd〉 is the multinomial
coefficient (

d

m1,m2, . . . ,ma, d−m

)
.
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The Fuss-Catalan case b ≡ 1 (mod a) of Corollary 4.10 is equivalent to a result of
Athanasiadis [5, Theorem 2.3].

We can also consider counting partitions in NCd(a, b) with a fixed number of non-
central block orbits (of any rank). By Proposition 4.9, this is equivalent to counting
sequences (s1, . . . , sd) of nonnegative integers with bounded sum and a fixed number of
nonzero entries.

Corollary 4.11. Let a < b be coprime positive integers and let d | (b − 1) be a divisor
with 1 6 d < b− 1. Let p be a nonnegative integer with b−1

d
p 6 a.

The number of a, b-noncrossing partitions which are invariant under rotd, have a
central block, and have p orbits of non-central blocks under the action of 〈rotd〉 is(

d

p

)(
b ad
b−1
c − 1

p

)
.

The number of a, b-noncrossing partitions which are invariant under rotd, do not have
a central block, and have p orbits of non-central blocks under the action of 〈rotd〉 is{(

d
p

)( ad
b−1
−1

p−1

)
if b−1

d
| a,

0 if b−1
d

- a.

Proof. For the first part, we choose p entries in the sequence (s1, . . . , sd) to be nonzero.
Then, we assign positive values to these p entries in such a way that their sum is <

⌊
ad
b−1

⌋
.

The second part is similar.

Finally, we can consider the problem of counting NCd(a, b) itself. By Proposition 4.9,
this corresponds to counting sequences (s1, . . . , sd) of nonnegative integers which satisfy
s1 + · · ·+ sd 6

⌊
ad
b−1

⌋
.

Corollary 4.12. Let a < b be coprime positive integers and let d | (b − 1) be a divisor
with 1 6 d < b− 1.

The number of a, b-noncrossing partitions which are invariant under rotd is(
b ad
b−1
c+ d

d

)
.

The Fuss-Catalan cases b ≡ 1 (mod a) of Corollaries 4.11 and 4.12 are results of Reiner
[8, Propositions 6 and 7].

5 Cyclic sieving

Let X be a finite set, let C = 〈c〉 be a finite cyclic group acting on X, let X(q) ∈ N[q] be
a polynomial with nonnegative integer coefficients, and let ζ ∈ C be a root of unity with
multiplicative order |C|. The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon
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(CSP) if, for all d > 0, we have X(ζd) = |Xcd | = |{x ∈ X : cd.x = x}| (see [10]). In this
section we prove cyclic sieving results for the action of rotation on NC(a, b).

Our proofs will be ‘brute force’ and use direct root-of-unity evaluations of q-analogs.
We will make frequent use of the following fact: If x ≡ y (mod z), then

lim
q→e2πi/z

[x]q
[y]q

=

{
x
y

if y ≡ 0 mod z,

1 otherwise.

From this, we get the useful fact that

lim
q→e2πi/z

[nz]q!

[kz]q!
=

(
n

k

)
[nz − kz]q!|q=e2πi/z .

Theorem 5.1. Let a < b be coprime and let r = (r1, r2, . . . , ra) be a sequence of nonnega-
tive integers satisfying

∑a
i=1 iri = a. Set k :=

∑a
i=1 ri. Let X be the set of a, b-noncrossing

partitions of [b− 1] with r1 blocks of rank 1, r2 blocks of rank 2, . . . , and ra blocks of rank
a.

The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon, where C = Zb−1 acts
on X by rotation and

X(q) = Krewq(a, b, r) =
[b− 1]!q

[r1]!q[r2]!q · · · [ra]!q[b− k]!q
(15)

is the q-rational Kreweras number.

Proof. Reiner and Sommers proved that the q-Kreweras number Krewq(a, b, r) is polyno-
mial in q with nonnegative integer coefficients using algebraic techniques [9]. No com-
binatorial proof of the polynomiality or the positivity of Krewq(a, b, r) is known. That
is, there is no known statistic on a, b-noncrossing partitions of type r whose generating
function is Krewq(a, b, r).

On the other hand, we have the following elementary proof that Krewq(a, b, r) is a
polynomial in q with nonnegative coefficients. The authors are grateful to an anonymous
referee for pointing it out and allowing us to reproduce it here.

We start by showing that the rational expression

Krewq(a, b; r) =
1

[k]q

[
r1 + r2 + · · ·+ ra
r1, r2, . . . , ra

]
q

[
b− 1

k − 1

]
q

(16)

is a polynomial in q. For any positive integer n, we have

qn − 1 =
∏
d|n

Φd(q), (17)

where Φd(q) is the dth cyclotomic polynomial in q. Combining Equations 16 and 17 yields

Krewq(a, b; r) =
∏
d>2

Φd(q)
ed , (18)
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where

ed = −
a∑
i=1

⌊ri
d

⌋
+

⌊
b− 1

d

⌋
−
⌊
b− k
d

⌋
.

To prove that Krewq(a, b; r) is a polynomial in q, we must show that ed > 0 for all d.
To see that ed > 0, we observe that the equation defining ed can be written in two

different ways. We have

ed = −χ(d | k) +

(⌊
k

d

⌋
−

a∑
i=1

⌊ri
d

⌋)
+

(⌊
b− 1

d

⌋
−
⌊
b− k
d

⌋
−
⌊
k − 1

d

⌋)
(19)

= −χ(d | b) +

(⌊
k

d

⌋
−

a∑
i=1

⌊ri
d

⌋)
+

(⌊
b

d

⌋
−
⌊
b− k
d

⌋
−
⌊
k

d

⌋)
, (20)

where for any statement S we set χ(S) = 1 if S is true and χ(S) = 0 if S is false. The
terms in the second parentheses of both right-hand sides are obviously nonnegative. Since
r1 + r2 + · · ·+ ra = k, the terms in the first parentheses of both right-hand sides are also
nonnegative. Thus, unless d | k and d | b, we have ed > 0.

We therefore assume that d | k and d | b. If d|ri for all 1 6 i 6 a, then the relation
r1 + 2r2 + · · · + ara = a forces d|a, which contradicts the coprimality of a and b. Thus,
there exists 1 6 i0 6 a such that d - ri0 , meaning that

ri0
d
>
⌊ ri0
d

⌋
, and hence⌊

k

d

⌋
−

a∑
i=1

⌊ri
d

⌋
> 1.

Either of the right-hand sides 19 or 20 implies that

ed > −1 + 1 + 0 = 0,

as desired. We conclude that Krewq(a, b, r) is a polynomial in q with integer coefficients.
It remains to show that the polynomial Krewq(a, b, r) has nonnegative coefficients. To

see this, observe that the product

[k]q × Krewq(a, b, r) =

[
r1 + r2 + · · ·+ ra
r1, r2, . . . , ra

]
q

[
b− 1

k − 1

]
q

(21)

is a unimodal and reciprocal polynomial with nonnegative coefficients (since it can be writ-
ten as a product of q-binomial coefficients). Since we know that Krewq(a, b, r) is a poly-
nomial in q with integer coefficients, [1, Proposition 10.1 (iii)] applies and Krewq(a, b, r)
has nonnegative coefficients (see also the discussion before [10, Corollary 10.4]).

Let ζ = e
2πi
b−1 and let d | (b − 1) with 1 6 d < b − 1. Write t = b−1

d
. We have that

X(ζd) = 0 unless at t|ri for all but at most one 1 6 i 6 a, and that ri0 ≡ 1 (mod t) if
t - ri0 . If the sequence r satisfies the condition of the last sentence, define a new sequence
(m1, . . . ,ma) by mi =

⌊
ri
t

⌋
for 1 6 i 6 a. Let m = m1 + · · · + ma. Write ri0 = ci0t + si0

for si0 ∈ {0, 1} and assume t|ri for all i 6= i0. We have
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lim
q→ζd

X(q) =

(
d

m1

)(
d−m1

m2

)
· · ·
(
d− (m−ma)

ma

)
lim
q→ζd

[b− 1−mt]!q[ri0 − si0 ]!q
[ri0 ]!q[b− k]!q

=

(
d

m1, . . . ,ma, d−m

)
lim
q→ζd

[b− 1− (k − si0)]!q[ri0 − si0 ]!q
[ri0 ]!q[b− k]!q

b

=

{(
d

m1,...,ma,d−m

)
limq→ζd

1
[b−k]q

si0 = 0(
d

m1,...,ma,d−m

)
limq→ζd

1
[ri0 ]q

si0 = 1

=

(
d

m1, . . . ,ma, d−m

)
.

By Corollary 4.10, we have X(ζd) = |Xrotd|.

The following Narayana version of Theorem 5.1 proves a CSP involving the action of
rotation on a, b-noncrossing partitions with a fixed number of blocks.

Theorem 5.2. Let a < b be coprime, let 1 6 k 6 a, and let X be the set of (a, b)-
noncrossing partitions of [b− 1] with k blocks.

The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon, where C = Zb−1 acts
on X by rotation and

X(q) = Narq(a, b, k) =
1

[a]q

[
a

k

]
q

[
b− 1

k − 1

]
q

(22)

is the q-rational Narayana number.

Proof. Reiner and Sommers proved that the q-Narayana numbers Narq(a, b, k) are poly-
nomials in q with nonnegative integer coefficients [9]. As in the Kreweras case, no combi-
natorial proof of this fact is known.

On the other hand, the polynomiality and nonnegativity of Narq(a, b, k) may be proven
by a direct argument similar to that in the Kreweras case. By the same reasoning as in
the proof of Theorem 5.1, we get that

Narq(a, b, k) =
∏
d>2

Φd(q)
fd , (23)

where

fd = −χ(d | a) +

(⌊a
d

⌋
−
⌊
k

d

⌋
−
⌊
a− k
d

⌋)
+

(⌊
b− 1

d

⌋
−
⌊
k − 1

d

⌋
−
⌊
b− k
d

⌋)
(24)

= −χ(d | k)+

(⌊
a− 1

d

⌋
−
⌊
k − 1

d

⌋
−
⌊
a− k
d

⌋)
+

(⌊
b− 1

d

⌋
−
⌊
k − 1

d

⌋
−
⌊
b− k
d

⌋)
.

(25)

The terms in the parentheses of either of the right-hand sides above are clearly nonnega-
tive. It follows that fd > 0 whenever d - a or d - k.
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Suppose d | a and d | k. Since a and b are coprime we conclude that d - b and⌊
b−1
d

⌋
=
⌊
b
d

⌋
. This means that the term in the second parentheses of in the right-hand

sides of Equations 24 or 25 can be expressed as(⌊
b− 1

d

⌋
−
⌊
k − 1

d

⌋
−
⌊
b− k
d

⌋)
=

(⌊
b

d

⌋
−
⌊
k − 1

d

⌋
−
⌊
b− k
d

⌋)
=

(⌊
b

d

⌋
−
(
k

d
− 1

)
−
(⌊

b

d

⌋
− k

d

))
= 1,

where the second equality used the fact that d | k. We conclude that

fd > −1 + 0 + 1 = 0,

as desired, and conclude that Narq(a, b, k) is a polynomial in q with integer coefficients.
To complete the proof that Narq(a, b, k) is a polynomial with nonnegative integer co-

efficients, simply observe that

[a]q × Narq(a, b, k) =

[
a

k

]
q

[
b− 1

k − 1

]
q

(26)

is a product of two q-binomial coefficients, and hence a unimodal and reciprocal poly-
nomial in q with nonnegative coefficients. By [1, Proposition 10.1 (iii)] and the fact
that Narq(a, b, k) is a polynomial with integer coefficients, we get that the coefficients of
Narq(a, b, k) are nonnegative.

Let ζ = e
2πi
b−1 and let d | (b− 1) with 1 6 d < b− 1. Let q = b−1

d
. By Corollary 4.11, it

is enough to show that

X(ζd) =


(
d
b k
d
c

)(b ad
b−1
c−1

b k
q
c−1

)
if k ≡ 0 (mod q),(

d
b k
q
c

)(b ad
b−1
c

b k
q
c

)
if k ≡ 1 (mod q),

0 otherwise.

The argument here is similar to that in the proof of Theorem 5.1 and is left to the
reader.

The next CSP was asked for in [4, Subsection 6.2].

Theorem 5.3. Let a < b be coprime and let X be the set of (a, b)-noncrossing partitions
of [b− 1].

The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon, where C = Zb−1 acts
on X by rotation and

X(q) = Catq(a, b) =
1

[a+ b]q

[
a+ b

a, b

]
q

(27)

is the q-rational Catalan number.
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Proof. It can be argued directly that Catq(a, b) is a polynomial in q with nonnegative
integer coefficients using methods similar to those appearing in the proofs of Theorems 5.1
and 5.2. One shows that we have

Catq(a, b) =
∏
d>2

Φd(q)
hd , (28)

where

hd = −χ(d | (a+ b)) +

(⌊
a+ b

d

⌋
−
⌊a
d

⌋
−
⌊
b

d

⌋)
(29)

= −χ(d | a) +

(⌊
a+ b− 1

d

⌋
−
⌊
a− 1

d

⌋
−
⌊
b

d

⌋)
. (30)

Since the terms in the parentheses in the right-hand sides of Equations 29 and 30 are
both nonnegative, we conclude that hd > 0 unless d | (a + b) and d | a. Since a and b
are coprime, these latter divisibilities cannot hold simultaneously and we conclude that
Catq(a, b) ∈ Z[q]. Since

[a+ b]q × Catq(a, b) =

[
a+ b

a, b

]
q

(31)

is a unimodal and reciprocal polynomial in q with nonnegative integer coefficients, we
conclude as before that Catq(a, b) has nonnegative coefficients.

Let ζ = e
2πi
b−1 and let d | (b− 1) with 1 6 d < b− 1. By Corollary 4.12 it is enough to

show that

X(q) =

(
b ad
b−1
c+ d

d

)
.

The argument here is similar to that in the proof of Theorem 5.1 and is left to the
reader.

Our final CSP proves [4, Conjecture 5.3].

Theorem 5.4. Let (a, b) be coprime and X be the set of homogeneous (a, b)-noncrossing
partitions of [a + b− 1]. The triple (X,C,X(q)) exhibits the cyclic sieving phenomenon,
where C = Za+b−1 acts on X by rotation and

X(q) = Catq(a, b) =
1

[a+ b]q

[
a+ b

a, b

]
q

(32)

is the q-rational Catalan number.

Proof. Let D be an a, b-Dyck path. Construct an a, a + b-Dyck path D′ by replacing
every north step in D with a pair NE. Then D′ has a vertical runs and π(D) = π(D′).
Moreover, the map D 7→ D′ gives a bijection

{all a, b-Dyck paths} −→ {all a, a+ b-Dyck paths with a vertical runs}.

It follows that the set HNC(a, b) of homogeneous a, b-noncrossing partitions of [a+ b− 1]
is precisely the set of (ordinary) a, a+ b-noncrossing partitions of [a+ b−1] with precisely
a blocks. The result follows from Theorem 5.2.
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Figure 5: A 5, 8-noncrossing parking function.

6 Parking functions

6.1 Noncrossing parking functions

Let W be an irreducible real reflection group with Coxeter number h. Armstrong, Reiner,
and Rhoades defined a W ×Zh-set ParkNCW called the set of W -noncrossing parking func-
tions [3]. Given a Fuss parameter m > 1, a Fuss extension ParkNCW (m) of ParkNCW was de-
fined in [12]. An increasingly strong trio of conjectures (Weak, Intermediate, and Strong)
was formulated about these objects and it was shown that the weakest of these uniformly
implies various facts from W -Catalan theory which are at present only understood in a
case-by-case fashion.

In this section, we give a rational extension of the constructions in [3, 12] whenW = Sa

is the symmetric group. This gives evidence that NC(a, b) gives the ‘correct’ definition of
rational noncrossing partitions. Extending the work of [3, 12] to other reflection groups
remains an open problem.

Definition 6.1. Let a < b be coprime. An a, b-noncrossing parking function is a pair
(π, f) where π ∈ NC(a, b) is an a, b-noncrossing partition and B 7→ f(B) is a labeling of
the blocks of π with subsets of [a] such that

• we have [a] =
⊎
B∈π f(B), and

• for all blocks B ∈ π we have |f(B)| = rankπa,b(B).

We denote by ParkNC(a, b) the set of all a, b-noncrossing parking functions.

An example of a 5, 8-noncrossing parking function is shown in Figure 5. The park-
ing function shown is (π, f), where π = {{1, 3, 7}, {2}, {4, 5, 6}} and f is the labeling
{1, 3, 7} 7→ {3, 5}, {4, 5, 6} 7→ {1, 4}, and {2} 7→ {2}.

By Proposition 3.6, when (a, b) = (n,mn+ 1), the set ParkNC(n,mn+ 1) agrees with
the construction of ParkNCSn (m) given in [12]. In the classical case (a, b) = (n, n + 1), the

set ParkNC(n, n+ 1) appeared in the work of Edelman under the name of ‘2-noncrossing
partitions’ [7]. The set ParkNC(a, b) carries an action of Sa × Zb−1.

Proposition 6.2. The set ParkNC(a, b) carries an action of the product group Sa×Zb−1,
where Sa acts by label permutation and Zb−1 acts by rotation.
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Proof. We need to know that rotation preserves a, b-ranks of blocks, which is Proposi-
tion 3.10.

In order to state a formula for the character of the action in Proposition 6.2, we will
need some notation. Let V = Ca/〈(1, . . . , 1)〉 be the reflection representation of Sa and

let ζ = e
2πi
b−1 . Given w ∈ Sa and d > 0, let multw(ζd) be the multiplicity of ζd as an

eigenvalue in the action of w on V . With this notation, a formula for the character χ is
given by the following formula.

Theorem 6.3. Let w ∈ Sa and let g be a generator of Zb−1. We have

χ(w, gd) = bmultw(ζd) (33)

for all w ∈ Sa and d > 0.

The multiplicity multw(ζd) can be read off from the cycle structure of w. Namely, for
d|b− 1 we have

multw(ζd) =

{
#(cycles of w)− 1 if q = 1,

#(cycles of w of length divisible by q) otherwise,
(34)

where q = b−1
d

.
When (a, b) = (n, n + 1), Proposition 6.3 was proven in [3, Section 8]. When (a, b) =

(n,mn+1), Proposition 6.3 is [12, Proposition 8.6]. The character formula of Equation 33
is a rational extension of the Weak Conjecture of [3, 12] when W = Sa is the symmetric
group.

The argument used to prove [12, Proposition 8.6] can be combined with the enumer-
ative results of Section 4 to prove Theorem 6.3. We quickly illustrate how this is done.

Proof. (of Theorem 6.3) Let (w, gd) ∈ Sa × Zb−1. We want to show that χ(w, gd) =
bmultw(ζd). Without loss of generality, we may assume that d | (b− 1). Let q := b−1

d
. The

argument depends on whether q = 1 or q > 1.
Case 1: q = 1. In this case, we are ignoring the action of Zb−1 and considering

ParkNC(a, b) as an Sa-set. We construct an Sa-equivariant bijection from ParkNC(a, b) to
another Sa-set which is known to have the correct character.

Let Parka,b be the set of all sequences (p1, p2, . . . , pa) of positive integers whose non-
decreasing rearrangement (p′1 6 p′2 6 · · · 6 p′a) satisfies p′i 6

b
a
(i − 1) + 1. Equivalently,

the histogram with left-to-right heights (p′1 − 1, p′2 − 1, . . . , p′a − 1) stays below the line
y = b

a
x. Sequences in Parka,b are called rational slope parking functions.

The symmetric group Sa acts on Parka,b by w.(p1, p2, . . . , pa) := (pw(1), pw(2), . . . , pw(a)).
It is known that the character of this action is given by Equation 33 with ζ = 1.

We build an Sa-equivariant bijection ϕ : ParkNC(a, b)
∼−→ Parka,b as follows. Let

(π, f) be an a, b-noncrossing parking function. Define a sequence (p1, p2, . . . , pa) by letting
pi = min(B), where B is the unique block of π satisfying i ∈ f(B). Proposition 3.8
guarantees that (p1, p2, . . . , pa) is a sequence in Parka,b, so that the assignment ϕ : (π, f) 7→
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(p1, p2, . . . , pa) gives a well defined function ϕ : ParkNC(a, b) → Parka,b. It is clear that ϕ
is Sa-equivariant. Moreover, if ϕ(π, f) = (p1, p2, . . . , pa), then we can recover both the
minimal elements of the blocks of π (these are the entries appearing in p1, p2, . . . , pa) and
the ranks of these blocks (the rank of a block B is the number of times min(B) occurs
in p1, p2, . . . , pa). Proposition 3.8 says that the a, b-noncrossing partition π is therefore
determined from (p1, p2, . . . , pa). It is easy to see that we can determine the entire a, b-
noncrossing function (π, f), so that ϕ is an Sa-equivariant bijection.

Case 2: q > 1. This argument is a rational extension of [12, Section 8]. Let rq(w) be
the number of cycles of w having length divisible by q. We need to show that

|ParkNC(a, b)(w,gd)| = brq(w), (35)

where ParkNC(a, b)(w,gd) is the set of a, b-noncrossing parking functions fixed by (w, gd).
The idea is to show that both sides of Equation 35 count a certain set of functions.

Let g act on the set [b − 1] ∪ {0} by the permutation (1, 2, . . . , b − 1)(0). A function
e : [a]→ [b− 1] ∪ {0} is said to be (w, gd)-equivariant if we have

e(w(j)) = gde(j)

for every 1 6 j 6 a. We claim that the number of (w, gd)-equivariant functions e : [a]→
[b − 1] ∪ {0} is equal to brq(w). Indeed, the values of e on any cycle of w are determined
by the value of e on any representative of that cycle. Moreover, unless a cycle of w has
length divisible by q, the relation e(w(j)) = gde(j) forces e(j) = 0 for all j belonging to
that cycle. For every cycle of w having length divisible by q, we have b choices for e(j),
where j is a chosen cycle representative.

By considering set partitions coming from preimages, we can get another expression
for the number of (w, gd)-admissible functions [a] → [b − 1] ∪ {0}. A set partition σ =
{B1, B2, . . . } of [a] is called (w, q)-admissible if

• σ is w-stable in the sense that w(σ) = {w(B1), w(B2), . . . } = σ,

• at most one block Bi0 of σ is itself w-stable in the sense that w(Bi0) = Bi0 , and

• for any block Bi of σ which is not w-stable, the blocks

Bi, w(Bi), w
2(Bi), . . . , w

q−1(Bi)

are pairwise distinct, and wq(Bi) = Bi.

It is straightforward to see that, for any (w, gd)-equivariant function e : [a]→ [b−1]∪{0},
the set partition σ of [a] defined by i ∼ j if and only if e(i) = e(j) is (w, q)-admissible.
On the other hand, the same argument as in [12, Proof of Lemma 8.4] shows that the
number of (w, gd)-equivariant functions e : [a]→ [b− 1]∪{0} which induce a fixed (w, q)-
admissible set partition σ of [a] is (b − 1)(b − 1 − q)(b − 1 − 2q) · · · (b − 1 − (tσ − 1)q),
where tσ is the number of non-singleton w-orbits of blocks of σ. Combining this with the
last paragraph, we get that

brq(w) =
∑
σ

(b− 1)(b− 1− q)(b− 1− 2q) · · · (b− 1− (tσ − 1)q), (36)
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where the sum is over all (w, q)-admissible set partitions σ of [a].
To relate Equation 36 to parking functions, for (π, f) ∈ ParkNC(a, b) we let τ(π, f)

be the set partition of [a] defined by i ∼ j if and only if i, j ∈ f(B) for some block
B ∈ π. If (π, f) ∈ ParkNC(a, b)(w,gd), it follows that τ(π, f) is a (w, q)-admissible set
partition of [a]. On the other hand, if σ is a fixed (w, q)-admissible partition of [a], we
claim that the number of parking functions (π, f) ∈ ParkNC(a, b)(w,gd) with τ(π, f) = σ
equals (b − 1)(b − 1 − q)(b − 1 − 2q) · · · (b − 1 − (tσ − 1)q), where tσ is the number of
nonsingleton w-orbits of blocks in σ.

To see why this claim is true, we consider how to construct an a, b-noncrossing parking
function (π, f) ∈ ParkNC(a, b)(w,gd) with τ(π, f) = σ. This argument is almost the same
as that proving [12, Lemma 8.5], but it will rely on Corollary 4.10.

We first construct an a, b-noncrossing partition π which is invariant under rotd. If
σ has mi non singleton w-orbits of blocks of size i for 1 6 i 6 a, then π must have mi

〈rotd〉-orbits of non-central blocks of rank i for 1 6 i 6 a. Corollary 4.10 says that the
number of such partitions π is the multinomial coefficient

(
d

m1,m2,...,ma,d−tσ

)
. With π fixed,

we consider how to build the labeling f of the blocks of π. The labeling f must pair off
the 〈rotd〉-orbits of non-central blocks of π of rank i with the non-singleton w-orbits of
blocks of σ of size i. For every i, there are mi! ways to do this matching. As each of these
orbits has size q, we also have q ways to rotate f within each orbit after this matching is
chosen. In summary, the number of pairs (π, f) ∈ ParkNC(a, b)(g,wd) satisfying τ(π, f) = σ
is

qm1 · · · qmam1! · · ·ma!

(
d

m1, . . . ,ma, d− tσ

)
= qm1 · · · qma d!

(d− tσ)!

= (b− 1)(b− 1− q)(b− 1− 2q) · · · (b− 1− (tσ − 1)q).

Applying Equation 36, we obtain Equation 35, completing the proof.

Theorem 6.3 can be strengthened to prove a rational analog of the Generic Strong
Conjecture of [13] in type A. Let V be the (complexified) reflection representation of Sa,
let C[V ] =

⊕
d>0 C[V ]d be its polynomial ring, and equip C[V ] with the graded action

of Sa × Zb−1 given by letting Sa act by linear substitutions and the generator g of Zb−1

scale by (e
2πi
b−1 )d in degree d. We identify C[V ]1 with the dual space V ∗ and consider the

set of C[Sa]-equivariant linear maps HomC[Sa](V
∗,C[V ]b) as an affine complex space. We

refer the reader to [13] for the definitions of the objects in the following result.

Theorem 6.4. Let R ⊂ HomC[Sa](V
∗,C[V ]b) be the set of Θ ∈ HomC[Sa](V

∗,C[V ]b) such
that the ‘parking locus’ V Θ(b) ⊂ V cut out by the ideal 〈Θ(x1)−x1, . . . ,Θ(xa−1)−xa−1〉 ⊂
C[V ] is reduced (here x1, . . . , xa−1 is any basis of V ∗). For any Θ ∈ R, there exists an
equivariant bijection of Sa × Zb−1-sets

V Θ(b) ∼=Sa×Zb−1
ParkNC(a, b). (37)

Moreover, there exists a nonempty Zariski open subset U ⊆ HomC[Sa](V
∗,C[V ]b) such that

U ⊆ R.
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The proof of Theorem 6.4 is almost a word-for-word recreation of [13, Sections 4, 5].
One need only replace the reference to the proof of [12, Lemma 8.5] in the proof of [13,
Lemma 4.6] with the corresponding argument the fifth paragraph of Case 2 in the proof
of Theorem 6.3 (which ultimately relies on Corollary 4.10).

7 Closing Remarks

The research program of Coxeter-Catalan combinatorics seeks to realize Catalan objects
as the symmetric group instances of a wider class of objects one can attach to a broader
class of reflection groups W . Reiner [8] described a W -analog of a noncrossing partition for
classical reflection groups W which reduces to the usual notion of a noncrossing partition
of [n] when W = Sn (see also [5, 6]). In his Ph.D. thesis, Armstrong [2] studied a Fuss-
Catalan generalization of W -noncrossing partitions which depends on a reflection group
W and a Fuss parameter m ∈ Z>0.

It is natural to ask for a notion of a ‘W -b-rational noncrossing partition’, defined for any
reflection group W and depending on a ‘rational parameter’ b ∈ Z>0 which is coprime to
the Coxeter number of W . The set NC(W, b) of W -b-rational noncrossing partitions should
reduce to NC(a, b) when W = Sa. Moreover, the favorable combinatorial properties of
NC(a, b) (such as a dihedral action with a natural cyclic sieving phenomenon) should be
natural specializations of more general features of NC(W, b).

The problem of extending rational Catalan combinatorics to other reflection groups
W remains almost entirely open. In particular, no W -analog of the rational noncrossing
partitions is known. However, the results of this paper give a candidate for rational
noncrossing partitions associated to the hyperoctohedral group.

Let W (Bn) denote the hyperoctohedral group of signed permutations of [n]. In the
classical and Fuss-Catalan cases, objects associated to the group W (Bn) are obtained
by considering those attached to the ‘doubled’ symmetric group S2n which are invariant
under antipodal symmetry (see [8]). When (a, d) → (2n, b−1

2
), the formulas in Corollar-

ies 4.10, 4.11, and 4.12 reduce to the hyperoctohedral analogs of the rational Kreweras,
Narayana, and Catalan numbers (here we view 2n as the Coxeter number of W (Bn) and
let the rational parameter b be coprime to 2n). Thus, restricting to objects with antipodal
symmetry gives the correct numerology for type B, even in the rational setting.

This paper has focused completely on the combinatorics of NC(a, b); the symmetric
group Sa made no appearance. However, we are hopeful that the combinatorial results
and techniques in this paper will prove useful in defining and studying W -rational non-
crossing partitions for arbitrary reflection groups W .
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