On some conjectures concerning critical independent sets of a graph

Taylor Short*
Department of Mathematics University of South Carolina
shorttm2@mailbox.sc.edu

Submitted: Sep 18, 2015; Accepted: May 23, 2016; Published: Jun 10, 2016
Mathematics Subject Classifications: 05C75, 05C69, 05C70

Abstract

Let G be a simple graph with vertex set $V(G)$. A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent. For $X \subseteq V(G)$, the difference of X is $d(X)=|X|-|N(X)|$ and an independent set A is critical if $d(A)=\max \{d(X):$ $X \subseteq V(G)$ is an independent set $\}$ (possibly $A=\emptyset$). Let nucleus (G) and diadem (G) be the intersection and union, respectively, of all maximum size critical independent sets in G. In this paper, we will give two new characterizations of König-Egerváry graphs involving nucleus (G) and diadem (G). We also prove a related lower bound for the independence number of a graph. This work answers several conjectures posed by Jarden, Levit, and Mandrescu.

Keywords: maximum independent set; maximum critical independent set; KönigEgerváry graph; maximum matching; core; corona; ker; diadem; nucleus.

1 Introduction

In this paper G is a simple graph with vertex set $V(G),|V(G)|=n$, and edge set $E(G)$. The set of neighbors of a vertex v is $N_{G}(v)$ or simply $N(v)$ if there is no possibility of ambiguity. If $X \subseteq V(G)$, then the set of neighbors of X is $N(X)=\cup_{u \in X} N(u), G[X]$ is the subgraph induced by X, and X^{c} is the complement of the subset X. For sets $A, B \subseteq V(G)$, we use $A \backslash B$ to denote the vertices belonging to A but not B. For such disjoint A and B we let (A, B) denote the set of edges such that each edge is incident to both a vertex in A and a vertex in B.

A matching M is a set of pairwise non-incident edges of G. A matching of maximum cardinality is a maximum matching and $\mu(G)$ is the cardinality of such a maximum

[^0]matching. For a set $A \subseteq V(G)$ and matching M, we say A is saturated by M if every vertex of A is incident to an edge in M. For two disjoint sets $A, B \subseteq V(G)$, we say there is a matching M of A into B if M is a matching of G such that every edge of M belongs to (A, B) and each vertex of A is saturated. An M-alternating path is a path that alternates between edges in M and those not in M. An M-augmenting path is an M-alternating path which begins and ends with vertices not saturated by M.

A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent. An independent set of maximum cardinality is a maximum independent set and $\alpha(G)$ is the cardinality of such a maximum independent set. For a graph G, let $\Omega(G)$ denote the family of all its maximum independent sets, let

$$
\operatorname{core}(G)=\bigcap\{S: S \in \Omega(G)\}, \quad \text { and } \quad \operatorname{corona}(G)=\bigcup\{S: S \in \Omega(G)\}
$$

See $[1,15]$ for background and properties of core (G) and corona (G).
For a graph G and a set $X \subseteq V(G)$, the difference of X is $d(X)=|X|-|N(X)|$ and the critical difference $d(G)$ is $\max \{d(X): X \subseteq V(G)\}$. Zhang [24] showed that $\max \{d(X): X \subseteq V(G)\}=\max \{d(S): S \subseteq V(G)$ is an independent set $\}$. The set X is a critical set if $d(X)=d(G)$. The set $S \subseteq V(G)$ a critical independent set if S is both a critical set and independent. A critical independent set of maximum cardinality is called a maximum critical independent set. Note that for some graphs the empty set is the only critical independent set, for example odd cycles or complete graphs. See [2, 12, 13, 24] for more background and properties of critical independent sets.

Finding a maximum independent set is a well-known NP-hard problem. Zhang [24] first showed that a critical independent set can be found in polynomial time. Butenko and Trukhanov [2] showed that every critical independent set is contained in a maximum independent set, thereby directly connecting the problem of finding a critical independent set to that of finding a maximum independent set.

For a graph G the inequality $\alpha(G)+\mu(G) \leqslant n$ always holds. A graph G is a KönigEgerváry graph if $\alpha(G)+\mu(G)=n$. According to the classical result of König [10] and Egerváry [4], all bipartite graphs are König-Egerváry graphs. There are non-bipartite graphs which are König-Egerváry as well, see Figure 2 for an example. We adopt the convention that the empty graph K_{0}, without vertices, is a König-Egerváry graph.

Deming [3] and Sterboul [22] were the first to give characterizations of König-Egerváry graphs. A matching M of a graph is perfect if every vertex of the graph is saturated by M. With respect to a matching M, a blossom is an odd cycle where half of one less than the number of edges in the cycle belong to M. The unique vertex of the blossom not saturated by M is called the blossom tip. A blossom pair is a pair of blossoms whose tips are joined by an M-alternating path with an odd number of edges that begins and ends with edges in M. Deming proved that if G is a graph with a perfect matching M, then G is a König-Egerváry graph if, and only if, G contains no blossom pair. Sterboul gave an equivalent characterization.

Gavril [7] introduced red/blue-split graphs, a generalization of König-Egerváry graphs and split graphs. A graph is a red/blue-split graph if its edges can be colored using red, blue, or both colors such that the vertices can be partitioned into a red and blue
independent set (where red or blue independent set is an independent set in the graph made of red or blue edges, respectively). Gavril [6] also proved that given a maximum matching of a graph G, the problem of determining whether G is a König-Egerváry graph has complexity $O(n+|E(G)|)$.

Korach et al. [11] described red/blue-split graphs in terms of certain forbidden configurations. This led them to a characterization of König-Egerváry graphs in terms of certain forbidden subgraphs with respect to a maximum matching. Lovász [20] gave a characterization of König-Egerváry graphs having a perfect matching, in terms of certain forbidden subgraphs with respect to a particular perfect matching.

Larson and Pepper [14] gave a partial characterization of König-Egerváry graphs involving the annihilation number of a graph. For a graph G with degree sequence $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n}$, the annihilation number $a=a(G)$ is the largest index such that $\sum_{i=1}^{a} d_{i} \leqslant|E(G)|$. An annihilating set A is a subset of the vertices such that the sum of the degrees of the vertices in A does not exceed $|E(G)|$. We say that A is a maximum annihilating set if $|A|=a(G)$. Larson and Pepper proved that if G is a graph with $a(G) \geqslant \frac{n}{2}$, then $a(G)=\alpha(G)$ if, and only if, G is a König-Egerváry graph and every maximum independent set is also a maximum annihilating set.

Larson [13] also showed that König-Egerváry graphs are closely related to critical independent sets.
Theorem 1. [13] A graph G is König-Egerváry if, and only if, every maximum independent set in G is critical.

Theorem 2. [13] For any graph G, there is a unique set $X \subseteq V(G)$ such that all of the following hold:
(i) $\alpha(G)=\alpha(G[X])+\alpha\left(G\left[X^{c}\right]\right)$,
(ii) $G[X]$ is a König-Egerváry graph,
(iii) for every non-empty independent set S in $G\left[X^{c}\right],|N(S)|>|S|$, and
(iv) for every maximum critical independent set I of $G, X=I \cup N(I)$.

Larson [12] proved that a maximum critical independent set can be found in polynomial time. So the decomposition in Theorem 2 of a graph G into X and X^{c} is also computable in polynomial time. Figure 1 gives an example of this decomposition, where both the sets X and X^{c} are non-empty. Recall, for some graphs the empty set is the only critical independent set, so for such graphs the set X would be empty. If a graph G is a KönigEgerváry graph, then the set X^{c} would be empty. We adopt the convention that if K_{0} is empty graph, then $\alpha\left(K_{0}\right)=0$.

In $[9,17]$ the following concepts were introduced: for a graph G,

$$
\begin{aligned}
\operatorname{ker}(G) & =\bigcap\{S: S \text { is a critical independent set in } G\}, \\
\operatorname{diadem}(G) & =\bigcup\{S: S \text { is a critical independent set in } G\}, \text { and } \\
\operatorname{nucleus}(G) & =\bigcap\{S: S \text { is a maximum critical independent set in } G\} .
\end{aligned}
$$

However, the following result due to Larson allows us to use a more suitable definition for diadem (G).

Figure 1: G has maximum critical independent set $I=\{a, b, c\}$. Theorem 2 gives that $X=\{a, b, c, d, e\}$ and $X^{c}=\{f, g, h, i, j\}$.

Theorem 3. [12] Each critical independent set is contained in some maximum critical independent set.

For the remainder of this paper we define

$$
\operatorname{diadem}(G)=\bigcup\{S: S \text { is a maximum critical independent set in } G\}
$$

Note that if G is a graph where the empty set is the only critical indepedent set (including the case $G=K_{0}$, the empty graph), then $\operatorname{ker}(G)$, $\operatorname{diadem}(G)$, and nucleus (G) are all empty. See Figure 2 for examples of the sets $\operatorname{ker}(G)$, $\operatorname{diadem}(G)$, and nucleus (G).

Figure 2: G_{1} is a König-Egerváry graph with $\operatorname{ker}\left(G_{1}\right)=\{a, b\} \subsetneq \operatorname{core}\left(G_{1}\right)=$ nucleus $\left(G_{1}\right)=\{a, b, d\}$ and diadem $\left(G_{1}\right)=\operatorname{corona}\left(G_{1}\right)=\{a, b, c, d, f\}$. G_{2} is not a König-Egerváry graph and has $\operatorname{ker}\left(G_{2}\right)=\operatorname{core}\left(G_{2}\right)=\{a, b\} \subsetneq \operatorname{nucleus}\left(G_{2}\right)=\{a, b, d\}$ and $\operatorname{diadem}\left(G_{2}\right)=\{a, b, c, d, f\} \subsetneq \operatorname{corona}(G)=\{a, b, c, d, f, g, h, i, j\}$.

In $[8,9]$, the following necessary conditions for König-Egerváry graphs were given:
Theorem 4. [8] If G is a König-Egerváry graph, then
(i) $\operatorname{diadem}(G)=\operatorname{corona}(G)$, and
(ii) $|\operatorname{ker}(G)|+|\operatorname{diadem}(G)| \leqslant 2 \alpha(G)$.

Theorem 5. [9] If G is a König-Egerváry graph, then $|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)|=$ $2 \alpha(G)$.

In [8] it was conjectured that condition (i) of Theorem 4 is sufficient for König-Egerváry graphs and in [9] it was conjectured the necessary condition in Theorem 5 is also sufficient. The purpose of this paper is to affirm these conjectures by proving the following new characterizations of König-Egerváry graphs.

Theorem 6. For a graph G, the following are equivalent:
(i) G is a König-Egerváry graph,
(ii) $\operatorname{diadem}(G)=\operatorname{corona}(G)$, and
(iii) $|\operatorname{diadem}(G)|+|\operatorname{nucleus}(G)|=2 \alpha(G)$.

The paper [8] gives an upper bound for $\alpha(G)$ in terms of unions and intersections of maximum independent sets, proving

$$
2 \alpha(G) \leqslant|\operatorname{core}(G)|+|\operatorname{corona}(G)|
$$

for any graph G. It is natural to ask whether a similar lower bound for $\alpha(G)$ can be formulated in terms of unions and intersections of critical independent sets. Jarden, Levit, and Mandrescu in [8] conjectured that for any graph G, the inequality $|\operatorname{ker}(G)|+$ $|\operatorname{diadem}(G)| \leqslant 2 \alpha(G)$ always holds. We will prove a slightly stronger statement. By Theorem 3 we see that $\operatorname{ker}(G) \subseteq$ nucleus (G) holds implying that $|\operatorname{ker}(G)|+|\operatorname{diadem}(G)| \leqslant$ $|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)|$. In section 4 we will prove the following statement, resolving the cited conjecture:

Theorem 7. For any graph G,

$$
|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)| \leqslant 2 \alpha(G)
$$

It would be interesting to know whether the sets nucleus (G) and diadem (G), or their sizes, can be computed in polynomial time.

2 Some structural lemmas

Here we prove several crucial lemmas which will be needed in our proofs. Our results hinge upon the structure of the set X as described in Theorem 2.

Lemma 8. Let I be a maximum critical independent set in G and set $X=I \cup N(I)$. Then $\operatorname{diadem}(G) \cup N(\operatorname{diadem}(G))=X$.

Proof. By Theorem 2 the set X is unique in G, that is, for any maximum critical independent set $S, X=S \cup N(S)$. Then $\operatorname{diadem}(G) \cup N(\operatorname{diadem}(G))=X$ follows by definition.

Lemma 9. Let I be a maximum critical independent set in G and set $X=I \cup N(I)$. Then diadem $(G) \subseteq \operatorname{diadem}(G[X])$ and nucleus $(G[X]) \subseteq$ nucleus (G).

Proof. Let S be a maximum critical independent set in G. Using Theorem 2 we see that S is a maximum independent set in $G[X]$ and also $G[X]$ is a König-Egerváry graph. Then Theorem 1 gives that S must also be critical in $G[X]$, which implies that diadem $(G) \subseteq$ diadem $(G[X])$.

Now let $v \in \operatorname{nucleus}(G[X])$. Then v belongs to every maximum critical indepedent set in $G[X]$. As remarked above, since every maximum critical independent set in G is also a maximum critical independent set in $G[X]$, then v belongs to every maximum critical independent set in G. This shows that $v \in \operatorname{nucleus}(G)$ and nucleus $(G[X]) \subseteq$ nucleus (G) follows.

Lemma 10. Suppose I is a non-empty maximum critical independent set in G, set $X=$ $I \cup N(I)$, let $A=\operatorname{nucleus}(G) \backslash \operatorname{nucleus}(G[X])$, and let S be a maximum independent set in $G[X]$. For $S^{\prime} \subseteq S \cap N(A)$, if there exists $A^{\prime} \subseteq A$ such that $N\left(A^{\prime}\right) \cap S \subseteq S^{\prime}$, then $\left|S^{\prime}\right| \geqslant\left|A^{\prime}\right|$.

Proof. For $S^{\prime} \subseteq S \cap N(A)$ suppose such an A^{\prime} exists. For sake of contradiction, suppose that $\left|S^{\prime}\right|<\left|A^{\prime}\right|$. Since $A^{\prime} \subseteq \operatorname{nucleus}(G)$, then A^{\prime} is an independent set. Also since $A^{\prime} \subseteq \operatorname{nucleus}(G) \subseteq \operatorname{diadem}(G)$, by Lemma 8 we have $A^{\prime} \subseteq X$. Furthermore, since $N\left(A^{\prime}\right) \cap S \subseteq S^{\prime}$ then $A^{\prime} \cup\left(S \backslash S^{\prime}\right)$ is an independent set in $G[X]$. Now by assumption $\left|S^{\prime}\right|<\left|A^{\prime}\right|$, so $A^{\prime} \cup\left(S \backslash S^{\prime}\right)$ is an independent set in $G[X]$ larger than S, which cannot happen. Therefore we must have $\left|S^{\prime}\right| \geqslant\left|A^{\prime}\right|$ as desired.

Lemma 11. Let I be a maximum critical independent set in G and set $X=I \cup N(I)$. Then

$$
|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)| \leqslant|\operatorname{nucleus}(G[X])|+|\operatorname{diadem}(G[X])| .
$$

Proof. First note that if the set X is empty, then by Lemma 8 both sides of the inequality are zero. So let us assume that X is non-empty. Now consider the set $A=\operatorname{nucleus}(G) \backslash$ nucleus $(G[X])$. If this independent set is empty, then nucleus $(G)=\operatorname{nucleus}(G[X])$ and there is nothing to prove since diadem $(G) \subseteq \operatorname{diadem}(G[X])$ holds by Lemma 9 . If A is non-empty, for each $v \in A$ there is some maximum independent set S of $G[X]$ which doesn't contain v. Since S is a maximum independent set there exists $u \in N(v) \cap S$. Since $v \in \operatorname{nucleus}(G)$, then u does not belong to any maximum critical independent set in G. Recall by Theorem 2 (ii) $G[X]$ is a König-Egerváry graph, so Theorem 1 gives that S is a maximum critical independent set in $G[X]$. It follows that $u \in$ $\operatorname{diadem}(G[X]) \backslash \operatorname{diadem}(G)$, which shows each vertex in A is adjacent to at least one vertex in $\operatorname{diadem}(G[X]) \backslash \operatorname{diadem}(G)$.

Now we will show there is a maximum matching from A into diadem $(G[X]) \backslash \operatorname{diadem}(G)$ with size $|A|$. For sake of contradiction, suppose such a matching M has less than $|A|$ edges. Then there exists some vertex $v \in A$ not saturated by M. By the above, v is adjacent to some vertex $u \in \operatorname{diadem}(G[X]) \backslash \operatorname{diadem}(G)$. Since M is maximum, u is matched to some vertex $w \in A$ under M. Now let S be a maximum independent set of $G[X]$ containing u. We now restrict ourselves to the subgraph induced by the edges ($A \cap N(S), S \cap N(A)$), noting this subgraph is bipartite since both $A \cap N(S)$ and $S \cap N(A)$ are independent. In this subgraph, consider the set \mathcal{P} of all M-alternating paths starting
with the edge $v u$. Note that all such paths must start with the vertices v, u, then w. Also, such paths must end at either a matched vertex in $A \cap N(S)$ or an unmatched vertex in $S \cap N(A)$.

We wish to show that there is some alternating path ending at an unmatched vertex in $S \cap N(A)$. For sake of contradiction, suppose all alternating paths end at a matched vertex in $A \cap N(S)$ and let $V(\mathcal{P})$ denote the union of all vertices belonging to such an alternating path. We aim to show this scenario contradicts Lemma 10. Now clearly we must have $N(V(\mathcal{P}) \cap A) \cap S \subseteq V(\mathcal{P}) \cap S$, else we could extend an alternating path to any vertex in $(N(V(\mathcal{P}) \cap A) \cap S) \backslash(V(\mathcal{P}) \cap S)$. Also, since all paths in \mathcal{P} end at a matched vertex in $A \cap N(S)$, then every vertex of $V(\mathcal{P}) \cap S$ is matched under M, and such a situation should look as in Figure 3.

Figure 3: What the M-alternating paths could look like between $V(\mathcal{P}) \cap A$ and $V(\mathcal{P}) \cap S$, where solid lines represent matched edges in M and dotted lines represent the unmatched edges.

From this it follows that $|V(\mathcal{P}) \cap S|<|V(\mathcal{P}) \cap A|$. The previous statements exactly contradict Lemma 10, so there is some alternating path P ending at an unmatched vertex $x \in S \cap N(A)$. This means that P is an M-augmenting path. A well-known theorem in graph theory states that a matching is maximum in G if, and only if, there is no augmenting path [23]. So P being an M-augmenting path contradicts our assumption that M is a maximum matching.

Therefore there is a matching M from A into diadem $(G[X]) \backslash \operatorname{diadem}(G)$. This matching implies that $|\operatorname{nucleus}(G) \backslash \operatorname{nucleus}(G[X])| \leqslant|\operatorname{diadem}(G[X]) \backslash \operatorname{diadem}(G)|$. Since both $\operatorname{nucleus}(G[X]) \subseteq \operatorname{nucleus}(G)$ and $\operatorname{diadem}(G) \subseteq \operatorname{diadem}(G[X])$ by Lemma 9 , the lemma follows.

3 New characterizations of König-Egerváry graphs

Proof (of Theorem 6). First we prove (ii) $\Rightarrow(i)$. Suppose that diadem $(G)=\operatorname{corona}(G)$ holds and let I be a maximum critical independent set with $X=I \cup N(I)$. We will use the decomposition in Theorem 2 to show that X^{c} must be empty and hence, $G=G[X]$
is a König-Egerváry graph. By Lemma 8 we have corona $(G)=\operatorname{diadem}(G) \subseteq X$, in other words every maximum independent set in G is contained in X. This implies that $|I|=\alpha(G[X])=\alpha(G)$. Now by Theorem $2(i), \alpha(G)=\alpha(G[X])+\alpha\left(G\left[X^{c}\right]\right)$ showing that we must have $\alpha\left(G\left[X^{c}\right]\right)=0$. Now clearly the result follows, since $\alpha\left(G\left[X^{c}\right]\right)=0$ implies that X^{c} must be empty.

To prove $(i i i) \Rightarrow(i)$, again we will use the decomposition in Theorem 2 to show that X^{c} must be empty and hence, G is a König-Egerváry graph. So suppose that $|\operatorname{diadem}(G)|+|\operatorname{nucleus}(G)|=2 \alpha(G)$ and let I be a maximum critical independent set in G with $X=I \cup N(I)$. Lemma 11 implies that

$$
2 \alpha(G)=|\operatorname{diadem}(G)|+|\operatorname{nucleus}(G)| \leqslant|\operatorname{diadem}(G[X])|+|\operatorname{nucleus}(G[X])| .
$$

Theorem 2(ii) gives that $G[X]$ is König-Egerváry, so by Corollary 5 we have

$$
|\operatorname{diadem}(G[X])|+|\operatorname{nucleus}(G[X])|=2 \alpha(G[X])
$$

implying that $\alpha(G) \leqslant \alpha(G[X])$. It follows by Theorem $2(i)$ we must have $\alpha(G)=$ $\alpha(G[X])$, so again we know that $\alpha\left(G\left[X^{c}\right]\right)=0$ which finishes this part of the proof.

The implications $(i) \Rightarrow(i i)$ and $(i) \Rightarrow(i i i)$ are given in Theorem 4 and in Theorem 5.

4 A bound on $\alpha(G)$

Proof (of Theorem 7). Let I be a maximum critical independent set in G and $X=I \cup$ $N(I)$. By Theorem $2(i i), G[X]$ is a König-Egerváry graph so by Theorem 5 we have

$$
|\operatorname{nucleus}(G[X])|+|\operatorname{diadem}(G[X])|=2 \alpha(G[X]) \leqslant 2 \alpha(G)
$$

Now by Lemma 11 we must have

$$
|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)| \leqslant|\operatorname{nucleus}(G[X])|+|\operatorname{diadem}(G[X])|
$$

and the theorem follows.
Combining Theorem 7 and the inequality $2 \alpha(G) \leqslant|\operatorname{core}(G)|+|\operatorname{corona}(G)|$ proven in [8], the following corollary is immediate.

Corollary 12. For any graph G,

$$
|\operatorname{nucleus}(G)|+|\operatorname{diadem}(G)| \leqslant 2 \alpha(G) \leqslant|\operatorname{core}(G)|+|\operatorname{corona}(G)|
$$

These upper and lower bounds are quite interesting. The fact that every critical independent set is contained in a maximum independent set implies that diadem $(G) \subseteq \operatorname{corona}(G)$ for all graphs G. However, the graph G_{2} in Figure 2 has core $\left(G_{2}\right) \subsetneq \operatorname{nucleus}\left(G_{2}\right)$ while the graph G in Figure 1 has nucleus $(G)=\{a, b, c\} \subsetneq \operatorname{core}(G)=\{a, b, c, h\}$.

Acknowledgements

Many thanks to my advisor László Székely for feedback on the initial versions of this manuscript. Partial support from the NSF DMS under contract 1300547 is gratefully acknowledged.

References

[1] E. Boros, M. C. Golumbic, and V. E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Applied Mathematics 124 (2002), 17-25.
[2] S. Butenko and S. Trukhanov, Using critical sets to solve the maximum independent set problem, Operations Research Letters 35 (2007), 519-524.
[3] R. W. Deming, Independence Number of Graphs - an Extension of the König-Egerváry Theorem, Discrete Mathematics 27 (1979), 23-33.
[4] E. Egerváry, On combinatorial properties of matrices, Matematikai Lapok 38 (1931), 16-28.
[5] M. Garey and D. Johnson, Computers and Intractability, W. H. Freeman and Company, New York, 1979.
[6] F. Gavril, Testing for equality between maximum matching and minimum node covering, Inf. Process. Lett. 6 (1977), no. 6, 199-202.
[7] F. Gavril, An efficient solvable graph partition problem to which many problems are reducible, Information Processing Letters 45 (1993), no. 285-290.
[8] A. Jarden, V. E. Levit, and E. Mandrescu, Critical and Maximum Independent Sets of a Graph, arXiv:1506. 00255 (2015), 12 pp.
[9] A. Jarden, V. E. Levit, and E. Mandrescu, Monotonic Properties of Collections of Maximum Independent Sets of a Graph, arXiv:1506.00249 (2015), 15 pp.
[10] D. König, Graphen und Matrizen, Matematikai Lapok 38 (1931), 116-119.
[11] E. Korach, T. Nguyen, and B. Peis, Subgraph characterization of red/blue-split graphs and König-Egerváry graphs, Proceedings of the seventeenth annual acm-siam symposium on discrete algorithms, 2006, pp. 842-850.
[12] C. E. Larson, A Note on Critical Independence Reductions, Bulletin of the Institute of Combinatorics and its Applications 51 (2007), 34-46.
[13] C. E. Larson, The critical independence number and an independence decomposition, European Journal of Combinatorics 32 (2011), 294-300.
[14] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, The Electronic Journal of Combinatorics 18 (2011), no. 1, \#P180.
[15] V. E. Levit and E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Mathematics 117 (2002), 149-161.
[16] V. E. Levit and E. Mandrescu, On α^{+}-stable König-Egerváry graphs, Discrete Mathematics 263 (2003), 179-190.
[17] V. E. Levit and E. Mandrescu, Vertices belonging to all critical independent sets of a graph, SIAM Journal on Discrete Mathematics 26 (2012), 399-403.
[18] V. E. Levit and E. Mandrescu, On maximum matchings in König-Egerváry graphs, Discrete Applied Mathematics 161 (2013), 1635-1638.
[19] V. E. Levit and E. Mandrescu, A set and collection lemma, The Electronic Journal of Combinatorics 21 (2014), no. P1.40.
[20] L. Lovász, Ear-decompositions of matching-covered graphs, Combinatorica 3 (1983), 105-118.
[21] T. Short, KE theory \S the number of vertices belonging to all maximum independent sets in a graph, Master's Thesis, http://scholarscompass.vcu.edu/etd/2353/, 2011.
[22] F. Sterboul, A characterization of the graphs in which transversal number equals the matching number, Journal of Combinatorial Theory Series B 27 (1979), no. 228-229.
[23] D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2001.
[24] C. Q. Zhang, Finding critical independent sets and crtitical vertex subsets are polynomial problems, SIAM Journal on Discrete Mathematics 3 (1990), 431-438.

[^0]: *Supported in part by the NSF DMS under contract 1300547.

