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Abstract

Let G be a simple graph with vertex set V (G). A set S ⊆ V (G) is independent
if no two vertices from S are adjacent. For X ⊆ V (G), the difference of X is
d(X) = |X| − |N(X)| and an independent set A is critical if d(A) = max{d(X) :
X ⊆ V (G) is an independent set} (possibly A = ∅). Let nucleus(G) and diadem(G)
be the intersection and union, respectively, of all maximum size critical independent
sets in G. In this paper, we will give two new characterizations of König-Egerváry
graphs involving nucleus(G) and diadem(G). We also prove a related lower bound
for the independence number of a graph. This work answers several conjectures
posed by Jarden, Levit, and Mandrescu.

Keywords: maximum independent set; maximum critical independent set; König-
Egerváry graph; maximum matching; core; corona; ker; diadem; nucleus.

1 Introduction

In this paper G is a simple graph with vertex set V (G), |V (G)| = n, and edge set E(G).
The set of neighbors of a vertex v is NG(v) or simply N(v) if there is no possibility of
ambiguity. If X ⊆ V (G), then the set of neighbors of X is N(X) = ∪u∈XN(u), G[X]
is the subgraph induced by X, and Xc is the complement of the subset X. For sets
A,B ⊆ V (G), we use A \ B to denote the vertices belonging to A but not B. For such
disjoint A and B we let (A,B) denote the set of edges such that each edge is incident to
both a vertex in A and a vertex in B.

A matching M is a set of pairwise non-incident edges of G. A matching of maxi-
mum cardinality is a maximum matching and µ(G) is the cardinality of such a maximum
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matching. For a set A ⊆ V (G) and matching M , we say A is saturated by M if every
vertex of A is incident to an edge in M . For two disjoint sets A,B ⊆ V (G), we say there
is a matching M of A into B if M is a matching of G such that every edge of M belongs to
(A,B) and each vertex of A is saturated. An M-alternating path is a path that alternates
between edges in M and those not in M . An M-augmenting path is an M -alternating
path which begins and ends with vertices not saturated by M .

A set S ⊆ V (G) is independent if no two vertices from S are adjacent. An independent
set of maximum cardinality is a maximum independent set and α(G) is the cardinality of
such a maximum independent set. For a graph G, let Ω(G) denote the family of all its
maximum independent sets, let

core(G) =
⋂
{S : S ∈ Ω(G)}, and corona(G) =

⋃
{S : S ∈ Ω(G)}.

See [1, 15] for background and properties of core(G) and corona(G).
For a graph G and a set X ⊆ V (G), the difference of X is d(X) = |X| − |N(X)|

and the critical difference d(G) is max{d(X) : X ⊆ V (G)}. Zhang [24] showed that
max{d(X) : X ⊆ V (G)} = max{d(S) : S ⊆ V (G) is an independent set}. The set X is a
critical set if d(X) = d(G). The set S ⊆ V (G) a critical independent set if S is both a
critical set and independent. A critical independent set of maximum cardinality is called
a maximum critical independent set. Note that for some graphs the empty set is the only
critical independent set, for example odd cycles or complete graphs. See [2, 12,13,24] for
more background and properties of critical independent sets.

Finding a maximum independent set is a well-known NP-hard problem. Zhang [24]
first showed that a critical independent set can be found in polynomial time. Butenko
and Trukhanov [2] showed that every critical independent set is contained in a maximum
independent set, thereby directly connecting the problem of finding a critical independent
set to that of finding a maximum independent set.

For a graph G the inequality α(G) + µ(G) 6 n always holds. A graph G is a König-
Egerváry graph if α(G) + µ(G) = n. According to the classical result of König [10] and
Egerváry [4], all bipartite graphs are König-Egerváry graphs. There are non-bipartite
graphs which are König-Egerváry as well, see Figure 2 for an example. We adopt the
convention that the empty graph K0, without vertices, is a König-Egerváry graph.

Deming [3] and Sterboul [22] were the first to give characterizations of König-Egerváry
graphs. A matching M of a graph is perfect if every vertex of the graph is saturated by
M . With respect to a matching M , a blossom is an odd cycle where half of one less than
the number of edges in the cycle belong to M . The unique vertex of the blossom not
saturated by M is called the blossom tip. A blossom pair is a pair of blossoms whose tips
are joined by an M -alternating path with an odd number of edges that begins and ends
with edges in M . Deming proved that if G is a graph with a perfect matching M , then
G is a König-Egerváry graph if, and only if, G contains no blossom pair. Sterboul gave
an equivalent characterization.

Gavril [7] introduced red/blue-split graphs, a generalization of König-Egerváry graphs
and split graphs. A graph is a red/blue-split graph if its edges can be colored using
red, blue, or both colors such that the vertices can be partitioned into a red and blue
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independent set (where red or blue independent set is an independent set in the graph
made of red or blue edges, respectively). Gavril [6] also proved that given a maximum
matching of a graph G, the problem of determining whether G is a König-Egerváry graph
has complexity O(n+ |E(G)|).

Korach et al. [11] described red/blue-split graphs in terms of certain forbidden con-
figurations. This led them to a characterization of König-Egerváry graphs in terms of
certain forbidden subgraphs with respect to a maximum matching. Lovász [20] gave a
characterization of König-Egerváry graphs having a perfect matching, in terms of certain
forbidden subgraphs with respect to a particular perfect matching.

Larson and Pepper [14] gave a partial characterization of König-Egerváry graphs
involving the annihilation number of a graph. For a graph G with degree sequence
d1 6 d2 6 . . . 6 dn, the annihilation number a = a(G) is the largest index such that∑a

i=1 di 6 |E(G)|. An annihilating set A is a subset of the vertices such that the sum of
the degrees of the vertices in A does not exceed |E(G)|. We say that A is a maximum
annihilating set if |A| = a(G). Larson and Pepper proved that if G is a graph with
a(G) > n

2
, then a(G) = α(G) if, and only if, G is a König-Egerváry graph and every

maximum independent set is also a maximum annihilating set.
Larson [13] also showed that König-Egerváry graphs are closely related to critical

independent sets.

Theorem 1. [13] A graph G is König-Egerváry if, and only if, every maximum indepen-
dent set in G is critical.

Theorem 2. [13] For any graph G, there is a unique set X ⊆ V (G) such that all of the
following hold:

(i) α(G) = α(G[X]) + α(G[Xc]),
(ii) G[X] is a König-Egerváry graph,
(iii) for every non-empty independent set S in G[Xc], |N(S)| > |S|, and
(iv) for every maximum critical independent set I of G, X = I ∪N(I).

Larson [12] proved that a maximum critical independent set can be found in polynomial
time. So the decomposition in Theorem 2 of a graph G into X and Xc is also computable
in polynomial time. Figure 1 gives an example of this decomposition, where both the
sets X and Xc are non-empty. Recall, for some graphs the empty set is the only critical
independent set, so for such graphs the set X would be empty. If a graph G is a König-
Egerváry graph, then the set Xc would be empty. We adopt the convention that if K0 is
empty graph, then α(K0) = 0.

In [9, 17] the following concepts were introduced: for a graph G,

ker(G) =
⋂
{S : S is a critical independent set in G},

diadem(G) =
⋃
{S : S is a critical independent set in G}, and

nucleus(G) =
⋂
{S : S is a maximum critical independent set in G}.

However, the following result due to Larson allows us to use a more suitable definition for
diadem(G).
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Figure 1: G has maximum critical independent set I = {a, b, c}. Theorem 2 gives that
X = {a, b, c, d, e} and Xc = {f, g, h, i, j}.

Theorem 3. [12] Each critical independent set is contained in some maximum critical
independent set.

For the remainder of this paper we define

diadem(G) =
⋃
{S : S is a maximum critical independent set in G}.

Note that if G is a graph where the empty set is the only critical indepedent set (including
the case G = K0, the empty graph), then ker(G), diadem(G), and nucleus(G) are all
empty. See Figure 2 for examples of the sets ker(G), diadem(G), and nucleus(G).
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Figure 2: G1 is a König-Egerváry graph with ker(G1) = {a, b} ( core(G1) =
nucleus(G1) = {a, b, d} and diadem(G1) = corona(G1) = {a, b, c, d, f}. G2 is not a
König-Egerváry graph and has ker(G2) = core(G2) = {a, b} ( nucleus(G2) = {a, b, d}
and diadem(G2) = {a, b, c, d, f} ( corona(G) = {a, b, c, d, f, g, h, i, j}.

In [8, 9], the following necessary conditions for König-Egerváry graphs were given:

Theorem 4. [8] If G is a König-Egerváry graph, then
(i) diadem(G) = corona(G), and
(ii) | ker(G)|+ | diadem(G)| 6 2α(G).

Theorem 5. [9] If G is a König-Egerváry graph, then | nucleus(G)| + | diadem(G)| =
2α(G).
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In [8] it was conjectured that condition (i) of Theorem 4 is sufficient for König-Egerváry
graphs and in [9] it was conjectured the necessary condition in Theorem 5 is also sufficient.
The purpose of this paper is to affirm these conjectures by proving the following new
characterizations of König-Egerváry graphs.

Theorem 6. For a graph G, the following are equivalent:
(i) G is a König-Egerváry graph,
(ii) diadem(G) = corona(G), and
(iii) | diadem(G)|+ | nucleus(G)| = 2α(G).

The paper [8] gives an upper bound for α(G) in terms of unions and intersections of
maximum independent sets, proving

2α(G) 6 | core(G)|+ | corona(G)|

for any graph G. It is natural to ask whether a similar lower bound for α(G) can be
formulated in terms of unions and intersections of critical independent sets. Jarden,
Levit, and Mandrescu in [8] conjectured that for any graph G, the inequality | ker(G)|+
| diadem(G)| 6 2α(G) always holds. We will prove a slightly stronger statement. By
Theorem 3 we see that ker(G) ⊆ nucleus(G) holds implying that | ker(G)|+| diadem(G)| 6
| nucleus(G)|+ | diadem(G)|. In section 4 we will prove the following statement, resolving
the cited conjecture:

Theorem 7. For any graph G,

| nucleus(G)|+ | diadem(G)| 6 2α(G).

It would be interesting to know whether the sets nucleus(G) and diadem(G), or their
sizes, can be computed in polynomial time.

2 Some structural lemmas

Here we prove several crucial lemmas which will be needed in our proofs. Our results
hinge upon the structure of the set X as described in Theorem 2.

Lemma 8. Let I be a maximum critical independent set in G and set X = I ∪ N(I).
Then diadem(G) ∪N(diadem(G)) = X.

Proof. By Theorem 2 the set X is unique in G, that is, for any maximum critical in-
dependent set S, X = S ∪ N(S). Then diadem(G) ∪ N(diadem(G)) = X follows by
definition.

Lemma 9. Let I be a maximum critical independent set in G and set X = I ∪ N(I).
Then diadem(G) ⊆ diadem(G[X]) and nucleus(G[X]) ⊆ nucleus(G).
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Proof. Let S be a maximum critical independent set in G. Using Theorem 2 we see that
S is a maximum independent set in G[X] and also G[X] is a König-Egerváry graph. Then
Theorem 1 gives that S must also be critical in G[X], which implies that diadem(G) ⊆
diadem(G[X]).

Now let v ∈ nucleus(G[X]). Then v belongs to every maximum critical indepedent set
in G[X]. As remarked above, since every maximum critical independent set in G is also
a maximum critical independent set in G[X], then v belongs to every maximum critical
independent set in G. This shows that v ∈ nucleus(G) and nucleus(G[X]) ⊆ nucleus(G)
follows.

Lemma 10. Suppose I is a non-empty maximum critical independent set in G, set X =
I ∪N(I), let A = nucleus(G) \ nucleus(G[X]), and let S be a maximum independent set
in G[X]. For S ′ ⊆ S ∩ N(A), if there exists A′ ⊆ A such that N(A′) ∩ S ⊆ S ′, then
|S ′| > |A′|.

Proof. For S ′ ⊆ S ∩N(A) suppose such an A′ exists. For sake of contradiction, suppose
that |S ′| < |A′|. Since A′ ⊆ nucleus(G), then A′ is an independent set. Also since
A′ ⊆ nucleus(G) ⊆ diadem(G), by Lemma 8 we have A′ ⊆ X. Furthermore, since
N(A′) ∩ S ⊆ S ′ then A′ ∪ (S \ S ′) is an independent set in G[X]. Now by assumption
|S ′| < |A′|, so A′ ∪ (S \ S ′) is an independent set in G[X] larger than S, which cannot
happen. Therefore we must have |S ′| > |A′| as desired.

Lemma 11. Let I be a maximum critical independent set in G and set X = I ∪ N(I).
Then

| nucleus(G)|+ | diadem(G)| 6 | nucleus(G[X])|+ | diadem(G[X])|.

Proof. First note that if the set X is empty, then by Lemma 8 both sides of the inequality
are zero. So let us assume that X is non-empty. Now consider the set A = nucleus(G) \
nucleus(G[X]). If this independent set is empty, then nucleus(G) = nucleus(G[X]) and
there is nothing to prove since diadem(G) ⊆ diadem(G[X]) holds by Lemma 9. If A is
non-empty, for each v ∈ A there is some maximum independent set S of G[X] which
doesn’t contain v. Since S is a maximum independent set there exists u ∈ N(v) ∩ S.
Since v ∈ nucleus(G), then u does not belong to any maximum critical independent
set in G. Recall by Theorem 2 (ii) G[X] is a König-Egerváry graph, so Theorem
1 gives that S is a maximum critical independent set in G[X]. It follows that u ∈
diadem(G[X]) \ diadem(G), which shows each vertex in A is adjacent to at least one
vertex in diadem(G[X]) \ diadem(G).

Now we will show there is a maximum matching from A into diadem(G[X])\diadem(G)
with size |A|. For sake of contradiction, suppose such a matching M has less than |A|
edges. Then there exists some vertex v ∈ A not saturated by M . By the above, v is
adjacent to some vertex u ∈ diadem(G[X]) \ diadem(G). Since M is maximum, u is
matched to some vertex w ∈ A under M . Now let S be a maximum independent set
of G[X] containing u. We now restrict ourselves to the subgraph induced by the edges
(A∩N(S), S∩N(A)), noting this subgraph is bipartite since both A∩N(S) and S∩N(A)
are independent. In this subgraph, consider the set P of all M -alternating paths starting
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with the edge vu. Note that all such paths must start with the vertices v, u, then w. Also,
such paths must end at either a matched vertex in A ∩N(S) or an unmatched vertex in
S ∩N(A).

We wish to show that there is some alternating path ending at an unmatched vertex
in S ∩ N(A). For sake of contradiction, suppose all alternating paths end at a matched
vertex in A ∩ N(S) and let V (P) denote the union of all vertices belonging to such an
alternating path. We aim to show this scenario contradicts Lemma 10. Now clearly we
must have N(V (P)∩A)∩S ⊆ V (P)∩S, else we could extend an alternating path to any
vertex in (N(V (P) ∩ A) ∩ S) \ (V (P) ∩ S). Also, since all paths in P end at a matched
vertex in A ∩ N(S), then every vertex of V (P) ∩ S is matched under M , and such a
situation should look as in Figure 3.

v

w u

V (P) ∩ A V (P) ∩ S

Figure 3: What the M -alternating paths could look like between V (P)∩A and V (P)∩S,
where solid lines represent matched edges in M and dotted lines represent the unmatched
edges.

From this it follows that |V (P) ∩ S| < |V (P) ∩ A|. The previous statements exactly
contradict Lemma 10, so there is some alternating path P ending at an unmatched vertex
x ∈ S ∩ N(A). This means that P is an M -augmenting path. A well-known theorem
in graph theory states that a matching is maximum in G if, and only if, there is no
augmenting path [23]. So P being an M -augmenting path contradicts our assumption
that M is a maximum matching.

Therefore there is a matching M from A into diadem(G[X])\diadem(G). This match-
ing implies that | nucleus(G)\nucleus(G[X])| 6 | diadem(G[X])\diadem(G)|. Since both
nucleus(G[X]) ⊆ nucleus(G) and diadem(G) ⊆ diadem(G[X]) by Lemma 9, the lemma
follows.

3 New characterizations of König-Egerváry graphs

Proof (of Theorem 6). First we prove (ii) ⇒ (i). Suppose that diadem(G) = corona(G)
holds and let I be a maximum critical independent set with X = I ∪N(I). We will use
the decomposition in Theorem 2 to show that Xc must be empty and hence, G = G[X]
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is a König-Egerváry graph. By Lemma 8 we have corona(G) = diadem(G) ⊆ X, in
other words every maximum independent set in G is contained in X. This implies that
|I| = α(G[X]) = α(G). Now by Theorem 2 (i), α(G) = α(G[X])+α(G[Xc]) showing that
we must have α(G[Xc]) = 0. Now clearly the result follows, since α(G[Xc]) = 0 implies
that Xc must be empty.

To prove (iii) ⇒ (i), again we will use the decomposition in Theorem 2 to show
that Xc must be empty and hence, G is a König-Egerváry graph. So suppose that
| diadem(G)|+ | nucleus(G)| = 2α(G) and let I be a maximum critical independent set in
G with X = I ∪N(I). Lemma 11 implies that

2α(G) = | diadem(G)|+ | nucleus(G)| 6 | diadem(G[X])|+ | nucleus(G[X])|.

Theorem 2(ii) gives that G[X] is König-Egerváry , so by Corollary 5 we have

| diadem(G[X])|+ | nucleus(G[X])| = 2α(G[X])

implying that α(G) 6 α(G[X]). It follows by Theorem 2(i) we must have α(G) =
α(G[X]), so again we know that α(G[Xc]) = 0 which finishes this part of the proof.

The implications (i)⇒ (ii) and (i)⇒ (iii) are given in Theorem 4 and in Theorem 5.

4 A bound on α(G)

Proof (of Theorem 7). Let I be a maximum critical independent set in G and X = I ∪
N(I). By Theorem 2 (ii), G[X] is a König-Egerváry graph so by Theorem 5 we have

| nucleus(G[X])|+ | diadem(G[X])| = 2α(G[X]) 6 2α(G).

Now by Lemma 11 we must have

| nucleus(G)|+ | diadem(G)| 6 | nucleus(G[X])|+ | diadem(G[X])|

and the theorem follows.

Combining Theorem 7 and the inequality 2α(G) 6 | core(G)|+ | corona(G)| proven in
[8], the following corollary is immediate.

Corollary 12. For any graph G,

| nucleus(G)|+ | diadem(G)| 6 2α(G) 6 | core(G)|+ | corona(G)|.

These upper and lower bounds are quite interesting. The fact that every critical indepen-
dent set is contained in a maximum independent set implies that diadem(G) ⊆ corona(G)
for all graphs G. However, the graph G2 in Figure 2 has core(G2) ( nucleus(G2) while
the graph G in Figure 1 has nucleus(G) = {a, b, c} ( core(G) = {a, b, c, h}.
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