
Evaluations of Hecke algebra traces at

Kazhdan-Lusztig basis elements

Samuel Clearman
Department of Mathematics

Lehigh University
Bethlehem, PA, U.S.A.

sam@samclearman.com

Matthew Hyatt
Department of Mathematics

Pace University
Pleasantville, NY, U.S.A.

mhyatt@pace.edu

Brittany Shelton
Department of Mathematics

Albright College
Reading, PA, U.S.A.

bshelton@albright.edu

Mark Skandera
Department of Mathematics

Lehigh University
Bethlehem, PA, U.S.A.

mas906@lehigh.edu

Submitted: Feb 3, 2015; Accepted: Mar 28, 2016; Published: Apr 15, 2016

Mathematics Subject Classifications: 05E10, 20C08, 05E05

Abstract

For irreducible characters {χλq |λ ` n}, induced sign characters {ελq |λ ` n}, and

induced trivial characters {ηλq |λ ` n} of the Hecke algebra Hn(q), and Kazhdan-
Lusztig basis elements C ′w(q) with w avoiding the patterns 3412 and 4231, we
combinatorially interpret the polynomials χλq (q`(w)/2C ′w(q)), ελq (q`(w)/2C ′w(q)), and
ηλq (q`(w)/2C ′w(q)). This provides a new algebraic interpretation of chromatic qua-
sisymmetric functions of Shareshian and Wachs, and a new combinatorial inter-
pretation of special cases of results of Haiman. We prove similar results for other
Hn(q)-traces, and confirm a formula conjectured by Haiman.

Keywords: Hecke algebra, character, trace, Kazhdan-Lusztig basis, chromatic qua-
sisymmetric function, planar network, P -tableau, pattern avoidance

1 Introduction

The symmetric group algebra ZSn and the (Iwahori-) Hecke algebra Hn(q) have similar

presentations as algebras over Z and Z[q
1
2 , q¯

1
2 ] respectively, with multiplicative identity
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elements e and Te, generators s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , and relations

s2
i = e T 2

si
= (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| > 2.

Analogous to the natural basis Sn of ZSn is the natural basis {Tw |w ∈ Sn} of Hn(q),
where we define Tw = Tsi1 · · ·Tsi` whenever si1 · · · si` is a reduced (short as possible)
expression for w in Sn. We call ` the length of w and write ` = `(w). It is known that
`(w) is equal to inv(w), the number of inversions in the one-line notation w1 · · ·wn of w,
i.e., the number of pairs (i, j) with i < j and wi > wj. The specialization of Hn(q) at

q
1
2 = 1 is isomorphic to ZSn.

In addition to the natural bases of ZSn and Hn(q), we have the (signless) Kazhdan-
Lusztig bases [13] {C ′w(1) |w ∈ Sn}, {C ′w(q) |w ∈ Sn}, defined in terms of certain
Kazhdan-Lusztig polynomials {Pv,w(q) | v, w ∈ Sn} in N[q] by

C ′w(1) =
∑
v6w

Pv,w(1)v, C ′w(q) = q−1
e,w

∑
v6w

Pv,w(q)Tv, (1.1)

where 6 denotes the Bruhat order on Sn and we define qv,w = q
`(w)−`(v)

2 . We have the
identity Pv,w(q) = 1 when w avoids the patterns 3412 and 4231, i.e., when no subword
wi1wi2wi3wi4 of w1 · · ·wn consists of letters which appear in the same relative order as
3412 or 4231 [17]. These particular permutations are of interest to algebraic geometers
because they correspond to smooth Schubert varieties. (See [3, Ch. 4, Ch. 13].)

Representations of ZSn and Hn(q) are often studied in terms of linear maps called
characters. (See [22, Ch. 1] for definitions.) The span of the Sn-characters is called the
space of Sn-class functions, and has dimension equal to the number of integer partitions
of n. Three well-studied bases are the irreducible characters {χλ |λ ` n}, induced sign
characters {ελ |λ ` n}, and induced trivial characters {ηλ |λ ` n}, where λ ` n denotes
that λ is a partition of n. Letting Sλ denote the Young subgroup of Sn of type λ, we
have

ελ := sgn↑SnSλ
, ηλ := triv↑SnSλ

.

The span of the Hn(q)-characters, called the space of Hn(q)-traces, has the same dimension
and analogous character bases {χλq |λ ` n}, {ελq |λ ` n}, {ηλq |λ ` n}, specializing at
q

1
2 = 1 to the Sn-character bases. Each of the two spaces has a fourth basis consisting of

monomial class functions {φλ |λ ` n} or traces {φλq |λ ` n}, and a fifth basis consisting
of power sum class functions {ψλ |λ ` n} or traces {ψλq |λ ` n}. These are defined

via the inverse Kostka numbers {K−1
λ,µ |λ, µ ` n} and the numbers {Lλ,µ |λ, µ ` n} of

row-constant Young tableaux of shape λ and content µ by

φλ :=
∑
µ

K−1
λ,µχ

µ, φλq :=
∑
µ

K−1
λ,µχ

µ
q , ψλ :=

∑
µ

Lλ,µφ
µ, ψλq :=

∑
µ

Lλ,µφ
µ
q . (1.2)

Each of these functions is not a character, but is a difference of two characters. In each
space, the five bases are related to one another by the same transition matrices which
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relate the Schur {sλ |λ ` n}, elementary {eλ |λ ` n}, complete homogeneous {hλ |λ ` n},
monomial {mλ |λ ` n}, and power sum {pλ |λ ` n} bases of the space Λn of homogeneous
degree n symmetric functions. It follows from the theory of symmetric functions that basis
elements in each space are integer linear combinations of irreducible characters in that
space. (For more information on the transition matrices and symmetric functions, see
[2, Sec. 2], [29, Ch. 7], respectively.) A correspondence between these class functions and
symmetric functions is given by the Frobenius characteristic map

ch(θ) :=
1

n!

∑
w∈Sn

θ(w)pctype(w),

where ctype(w) is the cycle type of w. In particular, we have ch(χλ) = sλ, ch(ελ) = eλ,
ch(ηλ) = hλ, ch(φλ) = mλ, ch(ψλ) = pλ, which explains our names for the fourth and fifth
bases. We naturally use the Greek ancestors ε, η of e, h in our class function notation,
but we prefer not to use the ancestors σ, µ, π of s, m, p. Instead we follow the standard
practices of using χ for irreducible characters, while reserving µ for integer partitions,
and π for path families in planar networks. We follow [11], [32] in using φ, and we use ψ
because psi begins with p.

For any Sn-class function θ belonging to the bases above, and for any element z of
the natural or Kazhdan-Lusztig basis of ZSn, we have θ(z) ∈ Z. This follows from the
linearity of θ and the fact that χλ(w) can be expressed as the trace of an integer matrix.
(See, e.g., [22, Sec. 2.3].) On the other hand, we do not in general have an elementary
formula for the integer θ(z). This incomplete understanding of the Sn-class functions
is unfortunate, since the functions encode much important information about Sn. For
some class functions and basis elements, we may associate sets R, S to the pair (θ, z) to
combinatorially interpret the integer θ(z) as (−1)|S||R|, or simply as |R| if θ(z) ∈ N. We
summarize results and open problems in the following table.

θ θ(w) ∈ N?
interpretation

of θ(w)
as (−1)|S||R|?

θ(C ′w(1)) ∈ N?

interpretation of
θ(C ′w(1)) as |R|
for w avoiding
3412 and 4231?

ηλ yes yes yes yes

ελ no yes yes yes

χλ no open yes yes

ψλ yes yes yes yes

φλ no yes conj. by Stembridge, Haiman open

For the above combinatorial interpretations of θ(w), see [2]. The number χλ(w) may
be computed by the well-known algorithm of Murnaghan and Nakayama (See, e.g., [29,
Ch. 7].) but has no conjectured expression of the type stated above. Interpretations of
θ(C ′w(1)) are not known for general w ∈ Sn, but nonnegativity follows from work of
Haiman [11] and Stembridge [31]. Interpretations of ηλ(C ′w(1)), ελ(C ′w(1)), χλ(C ′w(1)),
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ψλ(C ′w(1)), for w avoiding the patterns 3412, 4231 follow via straightforward arguments
from results of the fourth author [25, Thms. 4.3, 5.4] and others, notably Gasharov [7],
Karlin-MacGregor [12], Lindström [18], Littlewood [19], Merris-Watkins [20], Stanley-
Stembridge [30], [31]. These will be discussed in Section 4. There is no conjectured
combinatorial interpretation of φλ(C ′w(1)), even for w avoiding the patterns 3412 and
4231, but interpretations have been given for particular partitions λ by Stembridge [32],
several of the authors [4], and Wolfgang [34]. The problem of interpreting θ(C ′w(1)) when
w does not avoid the patterns 3412 and 4231 is open.

Our understanding of Hn(q)-traces is even less complete. We know that irreducible
Hn(q)-characters {χλq |λ ` n} satisfy χλq (Tw) ∈ Z[q] for all w ∈ Sn, since χλq (Tw) can be
expressed as the trace of a Z[q] matrix [13]. Thus for any element θq of the mentioned
Hn(q)-trace bases and any element z ∈ spanZ[q]{Tw |w ∈ Sn}, we have θq(z) ∈ Z[q] as
well. For instance, elements of a modified Kazhdan-Lusztig basis {qe,wC ′w(q) |w ∈ Sn}
belong to this span. On the other hand, we do not have a general elementary formula for
the polynomial θq(z). This is unfortunate, since Hn(q)-characters are important in the
study of Hn(q) and quantum groups. In some cases, we may associate sequences (Sk)k>0,
(Rk)>0 of sets to the pair (θq, z) to combinatorially interpret θq(z) as

∑
k(−1)|Sk||Rk|qk,

or simply as
∑

k |Rk|qk if θq(z) ∈ N[q]. We summarize results and open problems in the
following table.

θq θq(Tw) ∈ N[q]?

interpretation of
θq(Tw) as∑

k (−1)|Sk||Rk|qk?
θq(qe,wC

′
w(q)) ∈ N[q]?

interpretation of
θq(qe,wC

′
w(q)) as∑

k|Rk|qk for

w avoiding
3412 and 4231?

ηλq no open yes stated in Section 5

ελq no open yes stated in Section 6

χλq no open yes stated in Section 8

ψλq no open conj. by Haiman stated in Section 9

φλq no open conj. by Haiman open

The polynomial χλq (Tw), and therefore all polynomials θq(Tw) above, may be computed
via a q-extension of the Murnaghan-Nakayama algorithm, developed in [14], [15], [21], [33].
However, none of these has a conjectured expression of the type stated above. Interpreta-
tions of θq(qe,wC

′
w(q)) are not known for general w ∈ Sn, but results concerning contain-

ment in N[q] follow principally from work of Haiman [11]. In all cases above, coefficients
of θq(qe,wC

′
w(q)) are symmetric about qe,w. They are also unimodal for θq ∈ {ηλq , ελq , χλq}

and conjectured to be so for θq ∈ {ψλq , φλq} [11, Lem. 1.1, Conj. 2.1]. For w avoiding the

patterns 3412 and 4231, formulas for ηλq (qe,wC
′
w(q)), ελq (qe,wC

′
w(q)), χλq (qe,wC

′
w(q)), and

ψλq (qe,wC
′
w(q)) follow from work of Athanasiadis [1], Gasharov [7], Shareshian-Wachs [24],

and the authors. There is no conjectured combinatorial interpretation of φλq (qe,wC
′
w(q)),
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even for w avoiding the patterns 3412, 4231, although for particular partitions λ in-
terpretations are given by the authors in Section 10. The problem of combinatorially
interpreting θq(qe,wC

′
w(q)) when w does not avoid the patterns 3412 and 4231 is open.

Another way to understand the evaluations θ(w) is to define a generating function
Immθ(x) for {θ(w) |w ∈ Sn} in the polynomial ring Z[x1,1, . . . , xn,n]. Similarly, we may
define a generating function Immθq(x) for {θq(Tw) |w ∈ Sn} in a certain noncommutative
ring An(q). In some cases these generating functions have simple forms. We summarize
known results in the following tables.

θ simple expression for Immθ(x)?

ηλ yes

ελ yes

χλ open

ψλ yes

φλ open

θq simple expression for Immθq(x)?

ηλq yes

ελq yes

χλq open

ψλq open

φλq open

Simple expressions for Immηλ(x) and Immελ(x) are due to Littlewood [19] and Merris-
Watkins [20], and a simple expression for Immψλ(x) follows immediately from a standard
definition of ψ. An expression for Immχλ(x) as a coefficient of a generating function in
two sets of variables was given by Goulden-Jackson [9]. There is no conjectured simple
formula for Immφλ(x), although a simple formula for particular partitions λ was stated
by Stembridge [32]. Simple expressions for Immηλq

(x) and Immελq
(x) are due to the fourth

author and Konvalinka [16], as is a (less simple) expression for Immχλq
(x) as a coefficient

in a generating function in two sets of variables.
In Section 2 we discuss generating functions Immθ(x) for Sn-class functions θ and

generating functions Immθq(x) for Hn(q)-traces θq. These generating functions belong
to the ring Z[x1,1, . . . , xn,n] and to a certain q-analog An(q) of Z[x1,1, . . . , xn,n] known
as the quantum matrix bialgebra. In Section 3 we relate these generating functions to
structures called zig-zag networks [25], which serve as combinatorial interpretations for
Kazhdan-Lusztig basis elements indexed by permutations avoiding the patterns 3412 and
4231. In Section 4 we introduce a partial order on paths in zig-zag networks, and show
how this poset and results in the literature lead to combinatorial interpretations for the
evaluations of Sn-class functions at the above Kazhdan-Lusztig basis elements of ZSn.
For the remainder of the article, we concentrate on combinatorial interpretations of trace
evaulations of the form θq(qe,wC

′
w(q)) where w avoids the patterns 3412 and 4231. In

Sections 5 – 6 we interpret ηλq (qe,wC
′
w(q)) and ελq (qe,wC

′
w(q)). In Section 7 we recall the

relationship between Sn-class functions and Stanley’s chromatic symmetric functions,
and prove that Hn(q)-traces are similarly related to the Shareshian-Wachs chromatic
quasisymmetric functions. In Sections 8 – 9 we use results of Shareshian-Wachs and
Athanasiadis to interpret χλq (qe,wC

′
w(q)) and ψλq (qe,wC

′
w(q)). One of our interpretations

proves a formula conjectured by Haiman [11, Conj. 4.1]. Finally, in Section 10 we state
several results concerning φλq (qe,wC

′
w(q)).
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2 Generating functions for θ(w) and θq(Tw) when θ (θq) is fixed

For a fixed Sn-class function θ, we create a generating function for {θ(w) |w ∈ Sn} by
writing a matrix of variables x = (xi,j)i,j∈[n] and defining

Immθ(x) :=
∑
w∈Sn

θ(w)x1,w1 · · ·xn,wn ∈ Z[x] := Z[x1,1, . . . , xn,n],

where w1 · · ·wn is the one-line notation of w. We call this polynomial the θ-immanant.
The sign character (w 7→ (−1)`(w)) immanant and trivial character (w 7→ 1) immanant
are the determinant and permanent,

det(x) =
∑
w∈Sn

(−1)`(w)x1,w1 · · ·xn,wn , per(x) =
∑
w∈Sn

x1,w1 · · ·xn,wn .

Simple formulas for the ελ-immanants and ηλ-immanants employ determinants and per-
manents of square submatrices xI,J of x,

xI,J := (xi,j)i∈I,j∈J , I, J ⊂ [n] := {1, . . . , n}, |I| = |J |.

In particular, we have the Littlewood-Merris-Watkins identities [19], [20]

Immελ(x) =
∑

(I1,...,Ir)

det(xI1,I1) · · · det(xIr,Ir), Immηλ(x) =
∑

(I1,...,Ir)

per(xI1,I1) · · · per(xIr,Ir),

(2.1)
where λ = (λ1, . . . , λr) ` n and the sums are over all sequences of pairwise disjoint subsets
of [n] satisfying |Ij| = λj. We will call such a sequence an ordered set partition of [n] of
type λ, and will sometimes write I ` [n] and `(λ) = r.

A simple formula for the ψλ-immanant involves a sum over all permutations of cycle
type λ. Specifically, we have

Immψλ(x) = zλ
∑
w

cyc(w)=λ

x1,w1 · · ·xn,wn , (2.2)

where zλ is the product 1α12α2 · · ·nαnα1! · · ·αn!, and λ has αi components (or parts) equal
to i for i = 1, . . . , n. No such simple formulas are known for the χλ-immanants or φλ-
immanants in general, although Stembridge gave a formula [32, Thm. 2.8] for Immφλ(x)
when λ is the rectangular partition (k)r = (k, . . . , k). In this case we have

Immφ(k)
r (x) =

∑
(I1,...,Ik)

det(xI1,I2) det(xI2,I3) · · · det(xIk,I1), (2.3)

where the sum is over all ordered set partitions of [n] = [kr] of type (r)k. (See [9] for an
expression for Immχλ(x) as a coefficient of a generating function in two sets of variables.)

For a fixed Hn(q)-trace θq, we create a generating function for {θq(Tw) |w ∈ Sn} as
before, except that we interpret polynomials in x = (xi,j) as elements of the quantum
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matrix bialgebra An(q), the noncommutative Z[q
1
2 , q¯

1
2 ]-algebra generated by n2 variables

x1,1, . . . , xn,n, subject to the relations

xi,`xi,k = q
1
2xi,kxi,`, xj,kxi,` = xi,`xj,k

xj,kxi,k = q
1
2xi,kxj,k xj,`xi,k = xi,kxj,` + (q

1
2 − q¯

1
2 )xi,`xj,k,

(2.4)

for all indices 1 6 i < j 6 n and 1 6 k < ` 6 n. As a Z[q
1
2 , q¯

1
2 ]-module, An(q) has a

natural basis of monomials x`1,m1 · · ·x`r,mr in which index pairs appear in lexicographic
order. The relations (2.4) allow one to express other monomials in terms of this natural
basis.

As a generating function for {θq(Tw) |w ∈ Sn}, we define

Immθq(x) :=
∑
w∈Sn

θq(Tw)q−1
e,wx1,w1 · · · xn,wn

in An(q), and call this the θq-immanant. The Hn(q) sign character (Tw 7→ (−1)`(w)) im-
manant and trivial character (Tw 7→ q`(w)) immanant are called the quantum determinant
and quantum permanent,

detq(x) =
∑
w∈Sn

(−q¯
1
2 )`(w)x1,w1 · · ·xn,wn , perq(x) =

∑
w∈Sn

(q
1
2 )`(w)x1,w1 · · · xn,wn .

Specializing An(q) at q
1
2 = 1 gives the commutative polynomial ring Z[x], with elements

detq(x) and perq(x) specializing to the classical determinant det(x) and permanent per(x).
Simple formulas for the ελq -immanants and ηλq -immanants employ quantum determinants
and quantum permanents of submatrices of x. In particular, the fourth author and Konva-
linka [16, Thm. 5.4] proved quantum analogs of the Littlewood-Merris-Watkins identities
(2.1),

Immελq
(x) =

∑
(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir), Immηλq
(x) =

∑
(I1,...,Ir)

perq(xI1,I1) · · · perq(xIr,Ir),

(2.5)
where the sums are as in (2.1). See [16] for an expression for the χλq -immanant as a
coefficient of a generating function in two sets of variables. No formulas are known for the
ψλq - or φλq - immanants. It would be interesting to state a q-analog of (2.3) for rectangular
partitions λ = (k)r.

3 Planar networks and path matrices

Call a directed planar graph G a planar network of order n if it is acyclic and may be
embedded in a disc with 2n boundary vertices labeled clockwise as source 1, . . . , source
n (with indegrees of 0) and sink n, . . . , sink 1 (with outdegrees of 0). In figures, we will
draw sources on the left and sinks on the right, implicitly labeled 1, . . . , n from bottom
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to top. Edges will be implicitly oriented from left to right. Given a planar network G,
define the path matrix B = B(G) = (bi,j) of G by

bi,j = number of paths in G from source i to sink j. (3.1)

The path matrix of any planar network is totally nonnegative, i.e., each square submatrix
has nonnegative determinant. Specifically, for sets I = {i1, . . . , ik}, J = {j1, . . . , jk} ⊂ [n],
and the corresponding submatrix BI,J := (bi,j)i∈I,j∈J , we have that det(BI,J) is equal
to the number of families (π1, . . . , πk) of mutually nonintersecting paths from sources
i1, . . . , ik (respectively) to sinks j1, . . . , jk (respectively). This fact is known as Lindström’s
Lemma [18]. (See also [12].) We will call two planar networks G1, G2 isomorphic and will
write G1

∼= G2 if B(G1) = B(G2).
For example, consider two isomorphic planar networks, their common path matrix B

and its submatrix B23,13:

1

3

2

1

3

2
,

1

3

2

1

3

2
, B =

1 1 0
1 2 1
0 1 2

 , B23,13 =

[
1 1
0 2

]
.

We can interpret det(B23,13) = 2 as counting the two path families

1

3

2

1

3

2
,

1

3

2

1

3

2
,

from sources {2, 3} to sinks {1, 3} in the first network.
An easy fact about planar networks is the following.

Observation 3.1. Let G be a planar network of order n and assume that for some indices
i, i′, j, j′ ∈ [n], G contains a path πi from source i to sink j and a path πi′ from source i′

to sink j′. If these two paths intersect, then G also contains a path from source i to sink
j′ and a path from source i′ to sink j. If i′ < i and j < j′ then the paths πi and πi′ cross.

For [a, b] a subinterval of [n], let G[a,b] be the planar network consisting of a − 1
horizontal edges from sources 1, . . . , a − 1 to corresponding sinks, a “star” of b − a + 1
edges from sources a, . . . , b to an intermediate vertex and b− a+ 1 more edges from this
vertex to sinks a, . . . , b, and n − b more horizontal edges from sources b + 1, . . . , n to
corresponding sinks. For n = 4, there are seven such networks: G[1,4], G[2,4], G[1,3], G[3,4],
G[2,3], G[1,2], G[1,1] = · · · = G[4,4], respectively,

.

Given planar networks G, H of order n, in which all sources have outdegree 1 and
all sinks have indegree 1, define G ◦ H to be the concatenation of G and H, where for
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i = 1, . . . , n, sink i of G is dropped, source i of H is dropped, and the unique edge in G
from vertex x to sink i and the unique edge in H from source i to vertex y are merged to
form a single edge from x to y in G◦H. Note that for star networks G[c1,d1], G[c2,d2] indexed
by nonintersecting intervals, the two concatenations G[c1,d1] ◦ G[c2,d2] and G[c2,d2] ◦ G[c1,d1]

are isomorphic.
We will be interested in concatenations

G = G[c1,d1] ◦ · · · ◦G[ct,dt] (3.2)

such that

1. the sequence ([c1, d1], . . . , [ct, dt]) consists of t distinct, pairwise nonnesting intervals,

2. for i < j < k, if [ci, di]∩[cj, dj] 6= ∅ and [cj, dj]∩[ck, dk] 6= ∅, then we have ci < cj < ck
(and di < dj < dk) or ci > cj > ck (and di > dj > dk).

We define a relation ≺· on the set of intervals appearing in the concatenation (3.2) by
declaring [ci, di] ≺· [ck, dk] if

1. i < k,

2. [ci, di] ∩ [ck, dk] 6= ∅,

3. [ci, di] ∩ [cj, dj] ∩ [ck, dk] = ∅ for j = i+ 1, . . . , k − 1.

This is the covering relation of a partial order �.
For each planar network G of the form (3.2) satisfying the conditions following (3.2),

we define a related planar network F by considering each covering pair [ci, di] ≺· [cj, dj]
with |[ci, di]∩ [cj, dj]| = k, and deleting all but one of the k paths from the central vertex
of G[ci,di] to the central vertex of G[cj ,dj ]. Following [25], we call the resulting network F
a zig-zag network. In the special case that we have c1 > · · · > ct, we call F a descending
star network. The descending star networks (up to isomorphism) of order 4 are

. (3.3)

The zig-zag networks of order 4 which are not descending star networks are

. (3.4)

It is easy to see that if F is a zig-zag network of order n, then there is at most one
interval in the concatenation (3.2) containing n, and this interval must be maximal or
minimal (or both) in the partial order �.

It was shown in [25, Thm. 3.5, Lem. 5.3] that zig-zag networks of order n correspond
bijectively to 3412-avoiding, 4231-avoiding permutations in Sn. To summarize this bijec-
tion, we let F be the zig-zag network obtained from the concatenation G in (3.2), and
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construct another concatenation of star networks as follows. For i = 1, . . . , t − 1, if the
interval [ci, di] is covered by [cj, dj] in the order � and if |[ci, di] ∩ [cj, dj]| > 1, then in-
sert G[ci,di]∩[cj ,dj ] immediately after G[ci,di] in the current concatenation. (If [ci, di] is also
covered by a second interval [ck, dk], then G[ci,di]∩[ck,dk] may be inserted before or after
G[ci,di]∩[cj ,dj ].) Call the resulting augmented network G′. Now visually follow paths from
sources to sinks in G′, passing “straight” through each star, to create a 3412-avoiding,
4231-avoiding permutation w ∈ Sn. See [25, Sec. 3] for a description of the inverse of
this bijection, which maps w to G′. We will let Fw and G′w denote the zig-zag network
and augmented star network corresponding to a fixed 3412-avoiding, 4231-avoiding per-
mutation w, and we will let w(F ) denote the 3412-avoiding, 4231-avoiding permutation
corresponding to a fixed zig-zag network F .

For example, suppose that F is the zig-zag network obtained from the concatenation
G = G[3,7] ◦G[5,8] ◦G[8,9] ◦G[1,2] ◦G[2,4] of star networks of order 9. Drawing the poset �
on these intervals from left to right, we have

1

2

3

4

5

6

7

8

9

[5,8][3,7] [8,9] [1,2] [2,4]

.

Since the only covering pairs which intersect at more than an endpoint are [3, 7] ≺· [5, 8]
and [3, 7] ≺· [2, 4], we construct G′ by inserting G[3,7]∩[5,8] = G[5,7] and G[3,7]∩[2,4] = G[3,4]

after G[3,7]. Thus we have G′ = G[3,7] ◦G[5,7] ◦G[3,4] ◦G[5,8] ◦G[8,9] ◦G[1,2] ◦G[2,4], and we
obtain the 3412-avoiding, 4231-avoiding permutation w = w(F ) = 419763258:

F =

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

, G =

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

, G′ =

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

, w =

(
123456789

419763258

)
.

Note that we have G[3,4] ◦ G[5,7]
∼= G[5,7] ◦ G[3,4], since the intervals [3, 4], [5, 7] do not

overlap. In general, we have the following.

Observation 3.2. If [ci1 , di1 ], . . . , [cit , dit ] is a linear extension of the poset � defined in
terms of the concatenation (3.2), then we have

G[c1,d1] ◦ · · · ◦G[ct,dt]
∼= G[ci1 ,di1 ] ◦ · · · ◦G[cit ,dit ]

,

and the corresponding zig-zag networks are isomorphic as well.

the electronic journal of combinatorics 23(2) (2016), #P2.7 10



Call a sequence π = (π1, . . . , πn) of source-to-sink paths in a planar network G of
order n a path family. We will always assume that path πi begins at source i. If for some
w ∈ Sn with one-line notation w1 · · ·wn, each component path πi terminates at sink wi,
we will say that π has type w and we will write type(π) = w. If the union of the paths of
π is equal to G, we will say that π covers G. For example, the planar network G[2,4] ◦G[1,3]

can be covered by many different path families, including two of type e, and two of type
2341:

. (3.5)

The result [25, Lem. 5.3] states that the path families covering a zig-zag network Fw
correspond bijectively to elements of a principal order ideal in the Bruhat order:

Theorem 3.3. Fix v, w ∈ Sn with w avoiding the patterns 3412 and 4231. There is a
unique path family of type v covering Fw if and only if we have v 6 w. Otherwise, there
is no such path family.

Thus w is the unique Bruhat-maximal permutation for which some path family of type
w covers Fw. It follows also that there is exactly one path in Fw from any source i to the
corresponding sink i, and at most one path from source i to sink j 6= i. Whether or not
such a path exists may be determined by the intervals in the corresponding concatenation
of star networks and the partial order �.

Observation 3.4. Let F be a zig-zag network which corresponds to the concatenation
(3.2). There exists a path in F from source i to sink j if and only if we have one of the
following.

1. i, j ∈ [ck, dk] for some k.

2. i ∈ [ck, dk], j ∈ [c`, d`] and [ck, dk] ≺ [c`, d`] for some k, `.

It is easy to see that if F is a descending star network with sources i and j belonging to
the same connected component, then the second condition in Observation 3.4 is equivalent
to the inequality i > j. This fact allows us to refine Observation 3.1 slightly.

Lemma 3.5. Let π`1, π`2 be paths in a descending star network F from sources `1 < `2 to
sinks m1,m2, respectively. Then the paths π`1 and π`2 intersect if and only if there exists
a path in F from source `1 to sink m2.

Proof. Assume that F has order n and corresponds to the concatenation (3.2) of star
networks. Let x1, . . . , xt be the vertices in F corresponding to the central vertices of the
t star networks in (3.2), and for any index j ∈ [n], let f(j) and g(j) denote the indices of
the first and last intervals, respectively, in [c1, d1], . . . , [ct, dt] to contain j. Then for any
indices `,m ∈ [n], the unique path in F from source ` to sink m contains the vertices
xf(`), . . . , xg(m).
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It is easy to see that if the intersection of π`1 and π`2 is nonempty, then there is a path
in F from source `1 to sink m2. Now suppose that there is a path in F from source `1 to
sink m2. By Observation 3.4, we have m2 < `1 or we have an interval [ck, dk] containing
both `1 and m2. Either case implies that we have f(`2) 6 f(`1) 6 g(m2), and the paths
π`1 and π`2 share the vertex xf(`1).

The subset of zig-zag networks which are descending star networks can be characterized
using pattern avoidance.

Theorem 3.6. Let v ∈ Sn avoid the patterns 3412 and 4231. Then v avoids the pattern
312 if and only if Fv is a descending star network.

Proof. Let G be the concatenation (3.2) of star networks which leads to Fv, and define
G′ as in the example above.

Suppose first that Fv is not a descending star network. Then in the concatenation (3.2)
there exists an index i such that the interval [ci, di] is minimal in the poset �, and an
index j > i such that ci < cj and [ci, di] ≺· [cj, dj]. Considering the relationship between
G′ and v, one sees that we have vdi < cj and that for some index ` > dj we have v` = cj.
On the other hand, since G′ is constructed by inserting G[cj ,di] between G[ci,di] and G[cj ,dj ],
we have that vci > dj. Thus the indices ci < di < ` satisfy vdi < v` < vci and v does not
avoid the pattern 312.

Now suppose that Fv is a descending star network. We claim that if Fv arises from
the concatenation (3.2), then v avoids the pattern 312 and satisfies vc1 > · · · > vd1 . By
inspection of (3.3), this is true for descending star networks of orders 1 – 4. Now assume
this to be true for each descending star network Fw of order 1, . . . , n − 1, and let Fv be
a descending star network of order n. If in the first interval of (3.2) we have d1 < n,
then vn = n and Fv1···vn−1 is a descending star network of order n − 1. Thus Fv has the
claimed properties. If in the first interval of (3.2) we have d1 = n, then consider the
descending star network Fw arising from the concatenation G[c2,d2] ◦ · · · ◦ G[ct,dt]. Then
v = s[c1,d1]s[c1,d2]w, where s[a,b] is the unique Bruhat-maximal permutation for which a
path family of this type covers the star network G[a,b]. By the above argument, w avoids
the pattern 312, and satisfies wc2 > · · · > wd2 , and wi = i for i = d2 + 1, . . . , n. It follows
that the letters in positions c1, . . . , n of s[c1,d2]w form an increasing sequence, and that v
satisfies vc1 > · · · > vn. Thus the subword v1 · · · vc1−1 = w1 · · ·wc1−1 avoids the pattern
312, as does the subword vc1 · · · vn. If v contains any subword z3z1z2 that matches the
pattern 312, then z3z1 must be a subword of v1 · · · vc1−1 while z2 is a letter of the decreasing
word vc1 · · · vn. But in this case, z3z1 is a subword of w1 · · ·wc1−1 while z2 is a letter of
wc1 · · ·wn, which contradicts our assumption that w avoids the pattern 312.

It follows that there are 1
n+1

(
2n
n

)
descending star networks of order n, since there are

this many 312-avoiding permutations in Sn, all of which avoid the patterns 3412 and
4231. Also related to pattern avoidance are the sizes of the stars in the concatenation
(3.2).

the electronic journal of combinatorics 23(2) (2016), #P2.7 12



Theorem 3.7. Let w ∈ Sn avoid the patterns 3412 and 4231. Then w1 · · ·wn contains
a decreasing subsequence of size k if and only if some interval in the concatenation (3.2)
corresponding to Fw has cardinality at least k.

Proof. Let wi1 , . . . , wik be a decreasing subsequence of w. Then there is a path in Fw
from source ij to sink wij for j = 1, . . . , k. These paths pairwise intersect, since ir < is
if and only if wir > wis . Since Fw is acyclic, these paths must all intersect at a single
vertex. Such a vertex must correspond to the central vertex of a star network indexed by
an interval of cardinality at least k in the concatenation (3.2).

The converse is clearly true if we have t = 1 in (3.2). Suppose that the converse holds
for each zig-zag network corresponding to a concatenation of t − 1 star networks. Let
Fw correspond to a concatenation (3.2) of t star networks, and let Fv correspond to the
concatenation G[c1,d1] ◦ · · · ◦ G[ct−1,dt−1]. Suppose that some interval [ci, di], 1 6 i 6 t,
has cardinality at least k. If i 6 t − 1, then v contains a decreasing subsequence of
size k. By [25, Cor. 3.7], there is a reduced expression for w which consists of a reduced
expression for v, followed by some reduced expression si1 · · · sik for the permutation v−1w.
It is well known that each permutation in the sequence (v, vsi1 , vsi1si2 , . . . , w) preserves
all inversions of the previous permutation and introduces one more. It follows that w also
has a decreasing subsequence of length k. If i = t, then apply the above argument to w−1,
which corresponds to the concatenation G[ct,dt] ◦ · · · ◦G[c1,d1]. It is well known that w has
a decreasing subsequence of length k if and only if w−1 does.

We may use path matrices of zig-zag networks to evaluate Sn-class functions at
Kazhdan-Lusztig basis elements {C ′w(1) |w avoids the patterns 3412 and 4231}. Specif-
ically, if B is the path matrix of Fw, then by [25, Sec. 4, Thm. 5.4] we have

θ(C ′w(1)) = Immθ(B). (3.6)

This fact is a crucial ingredient in the proofs of Theorems 4.6, 4.7, which interpret the
evaluations of certain Sn-class functions at Kazhdan-Lusztig basis elements of ZSn.

In order to interpret the evaluations of Hn(q)-traces at Kazhdan-Lusztig basis elements
of Hn(q), we will prove a q-extension of Equation (3.6) in Proposition 3.8. Namely, we
will show that path matrices can also be used to evaluate Hn(q)-traces at the (modified)
Kazhdan-Lusztig basis elements {qe,wC ′w(q) |w avoids the patterns 3412 and 4231}. A bit
of care is required though: the evaluation Immθq(B) does not make sense because the
substitution xi,j 7→ bi,j does not respect the relations (2.4) and therefore does not give a

well-defined map from An(q) to Z[q
1
2 , q¯

1
2 ]. Thus we define a Z[q

1
2 , q¯

1
2 ]-linear map for each

n× n integer matrix B by

σB : An(q)→ Z[q
1
2 , q¯

1
2 ]

x1,v1 · · ·xn,vn 7→ qe,vb1,v1 · · · bn,vn .

Proposition 3.8. Let θq be an Hn(q)-trace and let w ∈ Sn avoid the patterns 3412 and
4231. Then the path matrix B of Fw satisfies

θq(qe,wC
′
w(q)) = σB(Immθq(x)).
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Proof. The right-hand side is equal to

σB

( ∑
v∈Sn

θq(Tv)q
−1
e,vx1,v1 · · ·xn,vn

)
=
∑
v∈Sn

θq(Tv)b1,v1 · · · bn,vn .

By Theorem 3.3 ([25, Lem. 5.3]), the product b1,v1 · · · bn,vn is 1 when v 6 w and is 0
otherwise. Thus the above expression is equal to∑

v6w

θq(Tv) = θq

(∑
v6w

Tv

)
.

Since w avoids the patterns 3412 and 4231, [17] implies that the Kazhdan-Lusztig poly-
nomials {Pv,w(q) | v 6 w} are identically 1. (See also [3, Ch. 6].) Comparing to (1.1), we
see that the parenthesized sum is equal to qe,wC

′
w(q).

Stated from another point of view, Proposition 3.8 asserts that for w avoiding the
patterns 3412 and 4231, the zig-zag network Fw combinatorially encodes the modified
Kazhdan-Lusztig basis element qe,wC

′
w(q) in the sense that

qe,wC
′
w(q) =

∑
π

Ttype(π),

where the sum is over all path families which cover Fw.

4 Path posets, planar network tableaux and interpretation of
Sn-class function evaluations

4.1 Path posets

In a planar network G of order n, the source-to-sink paths have a natural partial order
Q = Q(G). Given paths πi, ρj, originating at sources i, j, respectively, we define πi <Q ρj
if i < j and πi and ρj do not intersect. Let P (G) be the subposet of Q(G) induced by
paths whose source and sink indices are equal. For each zig-zag network Fw, the poset
P (Fw) has exactly n elements: there is exactly one path from source i to sink i, for
i = 1, . . . , n.

The posets P (G) corresponding to the descending star networks G in (3.3) are

. (4.1)

These are precisely the (3+1)-free, (2+2)-free posets on four elements, where (a+b)-free
means that no induced subposet is a disjoint union of an a-element chain and a b-element
chain. Such posets are also called unit interval orders. It is known that unit interval
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orders may be naturally labeled by the numbers [n] so that i <P j implies i < j as
integers and so that the conditions i < j < k and i incomparable to k in P imply that
{i, j, k} is an antichain in P [5, Sec. 3]. (See [26, Prop. 2.4] for the algorithm.) It is known
that there are 1

n+1

(
2n
n

)
unit interval orders on n elements [5, Sec. 4].

Theorem 4.1. The posets {P (Fv) | v ∈ Sn avoids 312} are precisely the unit interval
orders on n elements.

Proof. Let P and U be the two sets of posets in the theorem. We define a map ζ : U → P
as follows. By the above fact on incomparability, we may naturally label P ∈ U by 1, . . . , n
so that its maximal antichains are [a1, b1], . . . , [at, bt], with a1 > · · · > at. Now define F to
be the descending star network corresponding to the concatenation G[a1,b1] ◦ · · · ◦G[at,bt],
and let (π1, . . . , πn) be the unique path family of type e that covers F . Let ζ(P ) be the
poset P (F ).

We claim that for each poset P ∈ U , the map i 7→ πi is an isomorphism of P and
ζ(P ). To see this, note that i <P j if and only if i < j as integers and i, j belong to no
common antichain in P , i.e., if and only if i < j and i, j belong to no common interval
[ak, bk] defining the concatenation G[a1,b1] ◦ · · · ◦ G[at,bt] of star networks. But this is true
if and only if we have πi <ζ(P ) πj. It follows that the 1

n+1

(
2n
n

)
images {ζ(P ) |P ∈ U} are

pairwise nonisomorphic. On the other hand, by Theorem 3.6, we have |P| 6 1
n+1

(
2n
n

)
.

The claim follows.

While a star network is covered by a unique path family of type e, a concatenation
of star networks need not be. Nevertheless, such a concatenation is covered by a unique
noncrossing path family of type e: the concatenation of the unique path families of type
e that cover the component star networks. Given a concatenation G of star networks, let
P̂ (G) be the n-element subposet of P (G) induced by the paths in the unique noncrossing
path family of type e which covers G. For example, the first two figures in (3.5) show
the two path families of type e which cover G[2,4] ◦ G[1,3]. Call these (π1, π2, π3, π4) and
(π1, π

′
2, π

′
3, π4), respectively. Ordering all six of these source-i-to-sink-i paths, or only the

mutually noncrossing paths {π1, π2, π3, π4}, we form the posets

P (G[2,4] ◦G[1,3]) = π 2

π  4 

1π

π 3  2π π 3’ ’ , P̂ (G[2,4] ◦G[1,3]) = π 2

π  4 

1π

π 3
,

respectively.
It is easy to show that for a concatenation G of star networks, the poset P̂ (G) does

not depend upon the ordering of the factors of G.

Proposition 4.2. Let [a1, b1], . . . , [at, bt] be subintervals of [n]. Then for any permutation
u ∈ St, we have P̂ (G[a1,b1] ◦ · · · ◦G[at,bt])

∼= P̂ (G[au1 ,bu1 ] ◦ · · · ◦G[aut ,but ]
).

Proof. Define G = G[a1,b1] ◦ · · · ◦G[at,bt], H = G[au1 ,bu1 ] ◦ · · · ◦G[aut ,but ]
, and let (ρ1, . . . , ρn),

(τ1, . . . , τn) be the unique noncrossing path families of type e covering G, H, respectively.
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For i = 1, . . . , t, let (π
(i)
1 , . . . , π

(i)
n ) be the unique noncrossing path family of type e covering

G[ai,bi]. For j, k ∈ [n], the definition of P̂ (G) implies we have ρj 6P̂ (G) ρk if and only if

π
(i)
j 6P̂ (G[ai,bi]

) π
(i)
k for i = 1, . . . , t. But this condition is also equivalent to τj 6P̂ (H) τk.

It is also easy to show that the path poset of a zig-zag network F may be obtained
directly from the concatenation of star networks which lead to F as in Section 3.

Proposition 4.3. Let F be a zig-zag network constructed from a concatenation G of star
networks as after (3.2). Then P (F ) is isomorphic to P̂ (G).

Proof. Let (ρ1, · · · , ρn) and (τ1, . . . , τn) be the unique noncrossing path families of type e
in G and F , respectively, and let x1, . . . , xt be the vertices of F which correspond to the
central vertices of the t star networks in (3.2). For i < j, we have ρi <P̂ (G) ρj if and only
if ρi, ρj share none of the central vertices of the t star networks. But this condition holds
if and only if τi, τj share none of the vertices x1, . . . , xt.

By Propositions 4.2 and 4.3, it is possible to have an isomorphism of path posets
for nonisomorphic zig-zag networks. Define an equivalence relation ∼ on 3412-avoiding,
4231-avoiding permutations by

v ∼ w if and only if P (Fv) ∼= P (Fw). (4.2)

For example, it is easy to see the equivalence of the four permutations corresponding to
the seventh descending star network in (3.3) and the fourth, seventh, and eighth zig-zag
networks in (3.4): in each case the path poset is isomorphic to the seventh unit interval
order in (4.1). It is also easy to see that we have w ∼ w−1 for w avoiding the patterns
3412 and 4231: the networks Fw and Fw−1 differ only by reflection in a vertical line.

Theorem 4.4. Each equivalence class of the relation ∼ (4.2) contains exactly one repre-
sentative which avoids the pattern 312.

Proof. Fix w ∈ Sn avoiding the patterns 3412 and 4231, let G = G[c1,d1]◦· · · · · ·◦G[ct,dt] be
the concatenation of star networks which leads to the zig-zag network Fw as after (3.4), and
let u ∈ St be the unique permutation satisfying cu1 > · · · > cut . Then the concatenation
G[cu1 ,du1 ] ◦ · · · · · · ◦ G[cut ,dut ]

leads to a descending star network Fv. By Theorem 3.6, v
avoids the pattern 312, and by Propositions 4.2 and 4.3 we have P (Fv) ∼= P (Fw). By
Theorem 4.1, v is the only 312-avoiding permutation in its equivalence class.

4.2 Planar network tableaux

To combinatorially interpret evaluations of Sn-class functions and Hn(q)-traces, we will
repeatedly fill a (French) Young diagram with a path family π = (π1, . . . , πn) covering a
zig-zag network Fw, and will call the resulting structures Fw-tableaux, or more specifically
π-tableaux. (See, e.g., [2, Sec. 2] for French notation.) If π has type v, then we will
also say that each π-tableau has type v. Since π induces a subposet Qπ of the poset
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Q(Fw), π-tableaux form a special case of Gessel and Viennot’s P -tableaux [8]: they are
Qπ-tableaux.

Several properties which π-tableaux may posess can be defined for P -tableaux where
P is an arbitrary poset. We say that a P -tableau U has shape λ for some partition
λ = (λ1, . . . , λr) if it has λi cells in row i for all i. If U has λi cells in column i for all i,
we say that U has shape λ>, where we define λ> to be the partition whose ith part is equal
to the number of cells in row i of U . Call an element x ∈ P a nontrivial record in a row
of U if it is greater in P than all entries appearing to its left in the same row, and if it is
not the leftmost entry of its row.

• Call U column-strict (row-strict ) if whenever elements x, y appear consecutively
from bottom to top in a column (left to right in a row), then we have x <P y.

• Call U row-semistrict if whenever elements x, y appear consecutively from left to
right in a row, then we have x <P y or x incomparable to y in P .

• Call U cyclically row-semistrict if it is row-semistrict and the above condition also
holds when x, y are the rightmost and leftmost (respectively) entries in a row.

• Call U standard if it is both column-strict and row-semistrict.

• Call U record-free if no row contains a nontrivial record.

Another property of π-tableaux depends upon each path being labeled by its source vertex.
Call a row of U left anchored (right anchored ) if its leftmost (rightmost) entry has the
least source vertex of all paths in the row.

• Call U left-anchored (right-anchored ) if each row is left-anchored (right-anchored).

More properties of π-tableaux depend upon the fact that each element of the poset Qπ

has a source vertex and a (potentially different) sink vertex. Given a π-tableau U , let
L(U) and R(U) denote the Young tableaux of integers obtained from U by replacing paths
π1, . . . , πn with their corresponding source and sink indices, respectively.

• Call U row-closed if each row of R(U) is a permutation of the corresponding row of
L(U).

• Call U left row-strict if L(U) is row-strict as a Z-tableau.

• Call U cylindrical if for each row of L(U) containing indices i1, . . . , ik from left to
right, the corresponding row of R(U) contains i2, . . . , ik, i1 from left to right.

It will be convenient to let T (Fw, λ) be the set of Fw-tableaux of shape λ.

Lemma 4.5. Let v ∈ Sn avoid the pattern 312, and fix λ ` n. Within the set T (Fv, λ),
tableaux which are row-closed and left row-strict correspond bijectively to tableaux which
are row-semistrict of type e.
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Proof. Observe that for a row-closed, left row-strict tableau V ∈ T (Fv, λ), the tableau Vk
is itself a row-closed, left row-strict tableau in T (Fv|Ik , λk), where Ik is the set of indices
appearing in L(Vk). Similarly, for a row-semistrict tableau V ′ ∈ T (Fv, λ) of type e, the
tableau V ′k is itself a row-semistrict tableau of type e in T (Fv|Ik , λk). Letting r = λk, we
have that Fv|Ik is a descending star network of the form Fu for some u ∈ Sr avoiding the
pattern 312. We therefore construct a bijection which preserves the set of path indices
appearing in each row of a tableau, and we state it as a product of bijections on one-rowed
tableaux.

Map each left row-strict tableau U ∈ T (Fu, (r)) to a row-semistrict tableau U ′ of
type e in T (Fu, (r)) as follows. Let ρ = (ρ1, . . . , ρr) be the unique path family of type e
covering Fu. Let U contain the path family π = (π1, . . . , πr) from left to right, and define
w ∈ Sr to be the word of right indices of these paths. Write w−1 in cycle notation, with
each cycle starting with its greatest element, and cycles ordered by increasing greatest
elements. (See Cycle Structure subsection in [28, Sec. 1.3]). Drop the parentheses, and
interpret the resulting string x = x1 · · ·xr of letters as the one-line notation of an element
of Sr. Then write the paths ρx1 , . . . , ρxr from left to right in U ′.

To see that U ′ is row-semistrict, assume that we have ρxi >P (Fu) ρxi+1
for some i. Then

there is no path from source xi+1 to sink xi in Fu. If xi and xi+1 belong to the same cycle
of w−1, then wxi+1

= xi and there is a path from xi+1 to xi in Fu, a contradiction. If xi
and xi+1 do not belong to the same cycle of w−1, then xi+1 > xi as integers, contradicting
the assumed inequality in P (Fu).

To see that the map U 7→ U ′ is a bijection, we construct its inverse. Let V be a
row-semistrict tableau of type e in T (Fu, (r)), containing paths ρx1 , . . . , ρxr from left to
right. Define w ∈ Sn to be the permutation whose cycle notation is given by

(x1, . . . , xi1−1)(xi1 , . . . , xi2−1) · · · (xik , . . . , xr),

where x1, xi1 , xi2 , . . . , xik are the records of the word x1 · · ·xr, i.e., xij = max{x1, . . . , xij}.
Then write w−1 = w−1

1 · · ·w−1
r in one-line notation and define V ′ to be the tableau in

T (Fu, (r)) whose ith entry is the unique path in Fu from source i to sink w−1
i . It is clear

that this map, if well defined, is inverse to the map U 7→ U ′, and therefore that the two
are bijections. (See [28, Sec. 1.3]).

To see that the necessary paths exist in Fu, consider a cycle (xj, . . . , xj+`) of w and
the pairs (i, w−1

i ) ∈ {(xj+a+1, xj+a) | 1 < a 6 `} ∪ {(xj+`, xj)}. Since V is row-semistrict,
i.e., ρxj+a 6>P (Fu) ρxj+a+1

, any integer inequality xj+a > xj+a+1 implies that there are paths
in Fu from sources xj+a and xj+a+1 to (both) sinks xj+a and xj+a+1. In particular, there
are paths in Fu from sources xj and xj+1 to sinks xj and xj+1. Now assume that there
are paths from source xj+s to sink xj+s−1 and from source xj to sink xj+s, and consider
the pair (xj+s+1, xj+s). If xj+s+1 < xj+s, then by the above argument there is a path
from source xj+s+1 to sink xj+s. Since there are paths from sources xj and xj+s+1 to
sink xj+s, the two sources must belong to the same connected component of Fu. By the
comment following Observation 3.4, we also have a path from source xj to sink xj+s+1.
If on the other hand xj+s+1 < xj+s, then since xj is the maximum index in its cycle we
have xj > xj+s+1 > xj+s. Since there are paths in Fu from source xj to sink xj+s and
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from source xj+s+1 to sink xj+s+1, Observation 3.1 implies that there are also a paths
from source xj to sink xj+s+1 and from source xj+s+1 to xj+s. By induction, we have that
for a = 1, . . . , `, there is a path from source xj+a to sink xj+a−1, and that there is also a
path from source xj to sink xj+`.

4.3 Interpretation of Sn-class function evaluations

The equivalence relation in (4.2) has applications in the enumeration of certain F -tableaux
and in the evaluation of Sn-class functions.

Theorem 4.6. Let v, w ∈ Sn avoid the patterns 3412 and 4231 and satisfy v ∼ w,
and let X be a property of F -tableaux which depends only upon the poset P (F ) (rather
than on Q(F )). Then Fv-tableaux and Fw-tableaux having property X are in bijective
correspondence. Moreover, for any Sn-class function θ we have θ(C ′v(1)) = θ(C ′w(1)).

Proof. Since the property X depends only upon the poset P (Fv) ∼= P (Fw), we have a
bijection between the sets of Fv-tableaux and Fw-tableaux having property X.

Now apply Lindström’s Lemma and (3.6) to the first Littlewood-Merris-Watkins iden-
tity in (2.1) to see that for all λ ` n, the evaluations ελ(C ′v(1)) and ελ(C ′w(1)) are equal
to the numbers of column-strict Fv-tableaux and Fw-tableaux, respectively, of type e and
shape λ. Since column-strictness of these tableaux depends only upon P (Fv) ∼= P (Fw),
the above bijection implies that we have ελ(C ′v(1)) = ελ(C ′w(1)) for all λ ` n. Since
{ελ |λ ` n} is a basis for the space of Sn-class functions, each class function θ satisfies
θ(C ′v(1)) = θ(C ′w(1)).

For some Sn-class functions θ, and all 3412-avoiding, 4231-avoiding permutations w,
we may combinatorially interpret θ(C ′w(1)) in terms of a zig-zag network Fw as follows.
(See [29, p. 288] for information on the majorization order, used in (v-a) below.)

Theorem 4.7. Let w ∈ Sn avoid the patterns 3412 and 4231, and fix λ = (λ1, . . . , λr) ` n.
Then we have the following.

(i) ελ(C ′w(1)) = #{U ∈ T (Fw, λ
>) |U column-strict of type e}.

(ii-a) ηλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U row-closed, left row-strict }.

(ii-b) ηλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U row-semistrict of type e}.

(iii) χλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U standard of type e}.

(iv-a) ψλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U cylindrical }.

(iv-b) ψλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U cyclically row-semistrict of type e}.

(iv-c) ψλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U record-free, row-semistrict of type e}.

(iv-d) ψλ(C ′w(1)) = λ1· · ·λr·#{U ∈ T (Fw, λ) |U right-anchored, row-semistrict of type e}.
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(v-a) Suppose λ1 6 2. We have φλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U column-strict of type e}
if for all µ majorized by λ we have T (Fw, µ) = ∅; otherwise we have φλ(C ′w(1)) = 0.

(v-b) For λ = (k)r, we have φλ(C ′w(1)) = #{U ∈ T (Fw, λ) |U column-strict, cylindrical }.

Proof. (i) See the proof of Theorem 4.6.
(ii-a) Apply the definition (3.1) of path matrix and (3.6) to the second Littlewood-

Merris-Watkins identity in (2.1).
(ii-b) Since row-semistrictness in Fw-tableaux of type e is a property of the poset

P (Fw), we may apply Theorem 4.6 and Lemma 4.5 to the interpretation in (ii-a).
(iii) Applying (i) and Theorem 4.1 to Gasharov’s [7, Thm. 2], we obtain the claimed

interpretation for 312-avoiding permutations. (See also Section 7.) Since standardness of
Fw-tableaux depends only upon P (Fw), we may apply Theorem 4.6 to extend the result
to 3412-avoiding, 4231-avoiding permutations as well.

(iv-a) Apply the definition (3.1) of path matrix to the identity (2.2).
(iv-b) Let v ∼ w avoid the pattern 312. We define a map from cylindrical tableaux in

T (Fv, λ) to cyclically row-semistrict tableaux in T (Fv, λ) having type e as follows. For
U ∈ T (Fv, λ) cylindrical with rows k of L(U) and R(U) containing indices i1, . . . , iλk and
i2, . . . , iλk , i1 (respectively) from left to right, and ρ = (ρ1, . . . , ρn) the unique path family
of type e covering Fv, create a cyclically row-semistrict tableau U ′ ∈ T (Fv, λ) by inserting
ρi1 , . . . , ρiλk into row k, from right to left. This map is bijective since in the descending
star network Fv, there exists a (unique) path from source ij to sink im if and only if
ij > im or ρij and ρim intersect. Thus the claimed interpretation holds for 312-avoiding
permutations. Since cyclical row-semistrictness in Fw-tableaux of type e depends only
upon P (Fw), we may apply Theorem 4.6 to extend the result to 3412-avoiding, 4231-
avoiding permutations as well.

(iv-c) Shareshian and Wachs [23, Sec. 4] have shown that for 312-avoiding permuta-
tions, this formula is equivalent to Stanley’s [27, Thm. 2.6]. Since the claimed property of
Fw-tableaux depends only upon P (Fw), we may apply Theorem 4.6 to extend the result
to 3412-avoiding, 4231-avoiding permutations as well. (See also, [1, Lem. 6].)

(iv-d) The number of tableaux in (iv-b) is equal to the cardinality of the subset that are
right-anchored, times λ1 · · ·λr. This subset is precisely the right-anchored row-semistrict
Fw-tableaux of type e and shape λ. Alternatively, we may use the Shareshian-Wachs
argument of (iv-c).

(v-a) This was first stated in [4], and will be proved in Theorem 10.3. A different
interpretation was given in [34, Thm. 2.5.1].

(v-b) Apply Lindström’s Lemma and (3.6) to Stembridge’s identity (2.3).

Conspicuously absent from Theorem 4.7 is an interpretation of monomial class function
evaluations of the form φλ(C ′w(1)) which holds for all λ ` n. As we have mentioned in the
first table of Section 1, these integers are conjectured to be nonnegative. The problem of
interpreting them has been posed from different points of view by Haiman, Stanley and
Stembridge [11, Conj. 2.1], [27, Conj. 5.1], [30, Conj. 5.5], [32, Conj. 2.1]. Any extension of
the statements in Theorem 4.7 (v-a), (v-b) would be interesting.
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Problem 4.8. For (special cases of) w ∈ Sn and λ ` n, find a combinatorial proof that
φλ(C ′w(1)) is nonnegative.

4.4 Inversions in path tableaux

For λ ` n and w ∈ Sn avoiding the patterns 3412 and 4231, parts (i) – (iv-d) of The-
orem 4.7 interpret ελ(C ′w(1)), ηλ(C ′w(1)), χλ(C ′w(1)), and ψλ(C ′w(1)) as cardinalities of
certain sets of Fw-tableaux. Using these same sets of Fw-tableaux and variations of the
permutation statistic inv, we show in Sections 5, 6, 8, 9 that ελq (qe,wC

′
w(q)), ηλq (qe,wC

′
w(q)),

χλq (qe,wC
′
w(q)), and ψλq (qe,wC

′
w(q)) are generating functions for tableaux on which the

statistics take the values k = 0, 1, . . . .
Specifically, we adapt the permutation statistic inv for use on path tableaux as follows.

Let π = (π1, . . . , πn) be a path family of type v in some zig-zag network F , and let U be
a π-tableau. Let (πi, πj) be a pair of intersecting paths in F such that πi appears in a
column of U to the left of the column containing πj. Call (πi, πj) a (left) inversion in U
if we have i > j and a right inversion in U if we have vi > vj. Let inv(U) denote the
number of inversions in U , and let rinv(U) denote the number of right inversions in U .

Sometimes we will compute inversions in a one-rowed tableau formed by concatenating
all of the rows of a path tableau U . Let Ui be the ith row of U , and let U1 ◦ · · · ◦ Ur
and Ur ◦ · · · ◦ U1 be the F -tableaux of shape n consisting of the rows of U concatenated
in increasing and decreasing order, respectively. We will also compute inversions in the
transpose U> of a path tableau U , whose rows are the columns of U . It is easy to see that
inversions in these one-rowed and transposed tableaux are related by the identities

inv(U1 ◦ · · · ◦ Ur) = inv(U1) + · · ·+ inv(Ur) + inv(U>),

rinv(U1 ◦ · · · ◦ Ur) = rinv(U1) + · · ·+ rinv(Ur) + rinv(U>).
(4.3)

5 Interpretation of ηλq (qe,wC
′
w(q))

Let w ∈ Sn avoid the patterns 3412 and 4231, and let B be the path matrix of Fw. Using
(2.5) and Proposition 3.8, we have

ηλq (qe,wC
′
w(q)) = σB(Immηλq

(x)) =
∑

(I1,...,Ir)

σB(perq(xI1,I1) · · · perq(xIr,Ir)), (5.1)

where the sum is over all ordered set partitions (I1, . . . , Ir) of [n] of type λ = (λ1, . . . , λr).
Let Sλ denote the Young subgroup of Sn generated by

{s1, . . . , sn−1}r {sλ1 , sλ1+λ2 , sλ1+λ2+λ3 , . . . , sn−λr},

and let S−λ be the set of Bruhat-minimal representatives of cosets of the form Sλu, i.e.,
the elements u ∈ Sn for which each of the subwords

u1 · · ·uλ1 , uλ1+1 · · ·uλ1+λ2 , . . . , un−λr+1 · · ·un (5.2)
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is strictly increasing. It is clear that such elements correspond bijectively to the ordered
set partitions (I1, . . . , Ir) in (5.1). Expanding the product of permanents, we obtain
monomials of the form qu,v times

xu,v := xu1,v1 · · ·xun,vn ,

where v is the concatenation, in order, of rearrangements of the r words (5.2). Thus v
may be written as yu with y ∈ Sλ, or as uy with y ∈ u−1Sλu. Now the sum in (5.1)
becomes ∑

u∈S−λ

∑
y∈u−1Sλu

σB(qu,uyx
u,uy). (5.3)

Let us therefore consider evaluations of the form σB(qu,vx
u,v).

To combinatorially interpret these evaluations, let π = (π1, . . . , πn) be a path family
(of arbitrary type) which covers a zig-zag network F , and define U(u, π) to be the π-
tableau of shape (n) containing π in the order πu1 , . . . , πun . Clearly the left tableau of
U(u, π) is u1 · · ·un. If the right tableau is v1 · · · vn then π has type u−1v. If si is a left
descent for u, then right inversions in U(u, π) and U(siu, π) are related as follows.

Proposition 5.1. Fix u, v ∈ Sn, let F be a zig-zag network, and let π = (π1, . . . , πn) be
a path family of type u−1v which covers F . If siu < u then we have

rinv(U(u, π)) =


rinv(U(siu, π))− 1 if siv > v,

rinv(U(siu, π)) if siv < v and no path family of type u−1siv
covers F ,

rinv(U(siu, π)) + 1 if siv < v and some path family of type
u−1siv covers F .

Proof. The tableaux U(u, π) and U(siu, π) are identical except that πui appears before
πui+1

in U(u, π). Thus we have

rinv(U(u, π)) =



rinv(U(siu, π))− 1 if (πui , πui+1
) is a right inversion in U(siu, π)

but not in U(u, π),

rinv(U(siu, π)) + 1 if (πui , πui+1
) is a right inversion in U(u, π)

but not in U(siu, π),

rinv(U(siu, π)) if (πui , πui+1
) is not a right inversion in

U(siu, π) or U(u, π).

Since siu < u, we have ui > ui+1.
If siv > v, then we have vi < vi+1, and Observation 3.1 implies that the paths πui and

πui+1
intersect, forming a right inversion in U(siu, π) and not in U(u, π).

If siv < v, then we have vi > vi+1, and the paths πui and πui+1
do not form a right

inversion in U(siu, π). Suppose that some path family π′ = (π′1, . . . , π
′
n) of type u−1siv

covers F . Then the tableau U(u, π′) satisfies

L(U(u, π′)) = (u1, . . . , un), R(U(u, π′)) = (v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn).
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By the uniqueness of source-to-sink paths in zig-zag networks, this tableau is identical
to the tableau U(u, π) except for the paths π′ui and π′ui+1

in positions i and i + 1, which
terminate at sinks vi+1 < vi, respectively. By Observation 3.1, the paths π′ui , π

′
ui+1

cross
and the paths πui , πui+1

intersect, forming a right inversion in the tableau U(u, π). On
the other hand, suppose that no path family of type u−1siv covers F . Since π has type
u−1v, we can deduce that either there is no path in F from source ui to sink vi+1 or there
is no path from source ui+1 to sink vi. By Observation 3.1, the paths πui , πui+1

do not
intersect and therefore do not form a right inversion in U(u, π).

Now we evaluate σB(qu,vx
u,v), first in the case that u = e.

Proposition 5.2. Let w in Sn avoid the patterns 3412 and 4231, let B be the path matrix
of Fw, and fix v in Sn. Then we have

σB(qe,vx
e,v) =

{
qrinv(U(e,π)) if there exists a path family π of type v which covers Fw,

0 otherwise.

Proof. By definition we have

σB(qe,vx
e,v) = qe,vqe,vb

e,v = q`(v)be,v. (5.4)

First assume that there exists a (unique) path family π of type v that covers Fw. Then we
have be,v = 1. In the tableau U(e, π), paths appear in the order (π1, . . . , πn). Now observe
that for each inversion in v, i.e., each pair (vi, vj) with i < j and vi > vj, the paths πi
(from source i to sink vi) and πj (from source j to sink vj) cross in Fw and therefore form
a right inversion in U(e, π). Conversely, for each noninversion (vi, vj) in v, the paths πi
and πj do not form a right inversion in U(e, π). Thus we have `(v) = rinv(U(e, π)), and
the expression in (5.4) is equal to qrinv(U(e,π)).

Now assume that there is no path family of type v which covers Fw. Then we have
be,v = 0 and the expressions in (5.4) are equal to 0.

More generally, we evaluate σB(qu,vx
u,v) as follows.

Proposition 5.3. Let w in Sn avoid the patterns 3412 and 4231, let B be the path matrix
of Fw, and fix u, v in Sn. Then we have

σB(qu,vx
u,v) =

{
qrinv(U(u,π)) if there exists a path family π of type u−1v covering Fw,

0 otherwise.

Proof. We use induction on the length of u. By Proposition 5.2, the claimed formula holds
when u has length 0. Now assume that the formula holds when u has length 1, . . . , k− 1,
and consider u of length k. Choosing a left descent si of u, we may write

σB(qu,vx
u,v) =

{
σB(qu,vx

siu,siv) if siv > v,

σB(qu,vx
siu,siv + (q

1
2 − q¯12 )qu,vx

siu,v) if siv < v,

=

{
q−1σB(qsiu,sivx

siu,siv) if siv > v,

σB(qsiu,sivx
siu,siv) + (1− q−1)σB(qsiu,vx

siu,v) if siv < v.
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Suppose first that we have siv > v. Then by induction we have

σB(qsiu,sivx
siu,siv) =

q
rinv(U(siu,π)) if there exists a path family π of type u−1v

covering Fw,
0 otherwise,

and Proposition 5.1 implies that the claim is true in this case.
Now suppose that we have siv < v and consider path families of types u−1v and u−1siv

which cover Fw. If there are no path families of types u−1v and u−1siv which cover Fw,
then by induction we have

σB(qsiu,sivx
siu,siv) = σB(qsiu,vx

siu,v) = 0. (5.5)

If there exists a path family π = (π1, . . . , πn) of type u−1v which covers Fw, but no path
family of type u−1siv which covers Fw, then by induction and Proposition 5.1 we have

σB(qsiu,sivx
siu,siv) = qrinv(U(siu,π)) = qrinv(U(u,π)),

σB(qsiu,vx
siu,v) = 0.

(5.6)

If there exists a path family π′ = (π′1, . . . , π
′
n) of type u−1siv which covers Fw, then the

paths π′ui , π
′
ui+1

from sources ui > ui+1 to sinks vi+1 < vi (respectively) cross. It follows

that there exists a path family π = (π1, . . . , πn) of type u−1v which covers Fw, and which
agrees with π′ except that the paths πui , πui+1

from sources ui > ui+1 to sinks vi > vi+1

(respectively) intersect but do not cross. By induction and the existence of π′ and π we
have

σB(qsiu,sivx
siu,siv) = qrinv(U(siu,π)),

σB(qsiu,vx
siu,v) = qrinv(U(siu,π

′)).

The tableaux U(siu, π) and U(siu, π
′) agree except in positions i and i + 1, where paths

π′ui+1
and π′ui form a right inversion, but πui+1

and πui do not. This fact and Proposition 5.1
imply that we have

rinv(U(siu, π
′)) = rinv(U(siu, π)) + 1 = rinv(U(u, π)),

and
σB(qsiu,sivx

siu,siv) = qrinv(U(u,π))−1,

(1− q−1)σB(qsiu,vx
siu,v) = qrinv(U(u,π)) − qrinv(U(u,π))−1.

(5.7)

Thus by Equations (5.5), (5.6), and (5.7) the claim is true when siv < v.

Now we have the following q-analog of Theorem 4.7 (ii-a).

Theorem 5.4. Let w ∈ Sn avoid the patterns 3412 and 4231. Then for λ = (λ1, . . . , λr) `
n we have

ηλq (qe,wC
′
w(q)) =

∑
U

qrinv(U1◦···◦Ur),

where the sum is over all row-closed, left row-strict Fw-tableaux of shape λ.

the electronic journal of combinatorics 23(2) (2016), #P2.7 24



Proof. Let B be the path matrix of Fw and let (I1, . . . , Ir) be a set partition of [n] of type
λ. By (5.2) – (5.3), there is a permutation u ∈ S−λ corresponding to (I1, . . . , Ir) such that
we have

σB(perq(xI1,I1) · · · perq(xIr,Ir)) =
∑

y∈u−1Sλu

σB(qu,uyx
u,uy).

By Proposition 5.3, this is equal to ∑
(y,π)

qrinv(U(u,π)), (5.8)

where the sum is over pairs (y, π) such that y ∈ u−1Sλu and π is a path family of type y
which covers F . If such a path family π exists for a given permutation y, it is necessarily
unique. Thus as y varies over u−1Sλu we have that U(u, π) varies over all bijective path
tableaux of shape (n) which satisfy

1. For j = 1, . . . , r, the paths in positions λ1 + · · · + λj−1 + 1, . . . , λ1 + · · · + λj are
indexed by Ij, in increasing order.

2. The sequence of sink indices of these same paths are a rearrangement of Ij.

Thus the expression in (5.8) may be rewritten as∑
U

qrinv(U1◦···◦Ur), (5.9)

where this last sum is over all row-closed, left row-strict Fw-tableaux U of shape λ for
which path indices of Uj are Ij for j = 1, . . . , r. Summing over ordered set partitions and
using (5.1), we have the desired result.

For example, consider the network

F3421 =

1

2

3

4

1

2

3

4

. (5.10)

It is easy to verify that there are twenty row-closed, left row-strict F3421-tableaux of shape
31. Four of these are

4,4

1,2 2,1 3,3

,
1,3 3,22,1

4,4 , 3,3

1,2 4,12,4

,
4,1

2,2

1,3 3,4

,

where i, j represents the unique path from source i to sink j. These tableaux U of shape
31 yield tableaux U1 ◦ U2 of shape 4,

1,2 2,1 3,3 4,4 , 1,3 3,22,1 4,4 , 1,2 4,12,4 3,3 , 4,11,3 3,4 2,2 ,
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which have 1, 2, 3, and 4 right inversions, respectively. Together, the tableaux contribute
q + q2 + q3 + q4 to η31

q (qe,3421C
′
3421(q)) = 1 + 3q + 6q2 + 6q3 + 3q4 + q5.

Expanding ηλq in terms of irreducible characters and Kostka numbers, ηλq =
∑
Kµ,λχ

µ
q ,

and using Haiman’s result [11, Lem 1.1], we have that the coefficients of ηλq (qe,wC
′
w(q)) are

symmetric and unimodal about qe,w for all w ∈ Sn. In the case that w avoids the patterns
3412 and 4231, it would be interesting to explain this phenomenon combinatorially in
terms of Theorem 5.4.

It would also be interesting to extend Theorem 5.4 to include a q-analog of Theorem 4.7
(ii-b). In particular, the identity

η(n)
q =

∑
λ`n

φλq

suggests that an answer to Problem 4.8 and its q-analog are related to a set partition of
tableaux counted by η(n). It is not clear whether such a partition is more easily expressed
in terms of left row-strict tableaux of shape (n), or row-semistrict tableaux of type e and
shape (n).

Problem 5.5. Find a statistic stat on F -tableaux such that we have

ηλq (qe,wC
′
w(q)) =

∑
U

qstat(U),

where the sum is over all row-semistrict Fw-tableaux of type e and shape λ.

As a consequence of Theorem 5.4, we obtain the following q-analog of Theorem 4.6.

Theorem 5.6. Let v, w ∈ Sn avoid the patterns 3412 and 4231 and satisfy v ∼ w, and
let (X, stat) be a property of F -tableaux and a statistic on F -tableaux which depend only
upon the poset P (F ). Then Fv-tableaux and Fw-tableaux having property X and satisfying
stat(U) = k are in bijective correspondence. Moreover, for each Hn(q)-trace θq we have

θq(qe,vC
′
v(q)) = θq(qe,wC

′
w(q)).

Proof. Since the pair (X, stat) depends only upon the poset P (Fv) ∼= P (Fw), we have
a bijection between the sets of Fv-tableaux and Fw-tableaux having property X and
satisfying stat(U) = k. In particular, we have ηλq (qe,vC

′
v(q)) = ηλq (qe,wC

′
w(q)), and since

{ηλq |λ ` n} is a basis of the space of Hn(q)-traces, we have θq(qe,vC
′
v(q)) = θq(qe,wC

′
w(q))

for all Hn(q)-traces θq as well.

Let θq be an Hn(q)-trace. If the posets P (Fv), P (Fw) of two zig-zag networks are dual,
rather than isomorphic, we still have θq(qe,vC

′
v(q)) = θq(qe,wC

′
w(q)). In this case v and w

satisfy v ∼ w0ww0 and `(v) = `(w), where w0 is the longest element of Sn. Since natural
basis elements of Hn(q) satisfy Tw0TwT

−1
w0

= Tw0ww0 , and since any Hn(q)-trace θq satisfies
θq(gh) = θq(hg) for all h, g ∈ Hn(q), we have that the equations

θq(qe,w0ww0C
′
w0ww0

(q)) = θq(qe,wTw0C
′
w(q)T−1

w0
) = θq(qe,wC

′
w(q))

hold for all w ∈ Sn.
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6 Interpretation of ελq(qe,wC
′
w(q))

Let w ∈ Sn avoid the patterns 3412 and 4231 and let B be the path matrix of Fw.
Following the computations of Equations (5.1) – (5.3), we have

ελq (qe,wC
′
w(q)) = σB(Immελq

(x)) =
∑

(I1,...,Ir)

σB(detq(xI1,I1) · · · detq(xIr,Ir))

=
∑
u∈S−λ

∑
y∈u−1Sλu

(−1)`(uy)−`(u)σB(q−1
u,uyx

u,uy),
(6.1)

where the first sum is over all ordered set partitions (I1, . . . , Ir) of [n] of type λ. Let us
therefore consider evaluations of the form σB(q−1

u,vx
u,v).

To combinatorially interpret these evaluations, let π = (π1, . . . , πn) be a path family
(of arbitrary type) which covers a zig-zag network F and define U(u, π, λ) to be the π-
tableau of shape λ containing π in the order πu1 , . . . , πun . That is, U(u, π, λ)j contains
the λj paths whose indices are

uλ1+···+λj−1+1, . . . , uλ1+···+λj .

Clearly L(U(u, π, λ)) contains the numbers u1, . . . , uλ1 in row 1, uλ1+1, . . . , uλ1+λ2 in row
2, etc. If R(U(u, π, λ)) contains the numbers v1, . . . , vλ1 in row 1, vλ1+1, . . . , vλ1+λ2 in row
2, etc., then π has type u−1v. In terms of this notation, our earlier tableau U(u, π) defined
after (5.3) is equal to U(u, π, (n)). If u ∈ S−λ corresponds to (I1, . . . , Ir) as in (5.2) – (5.3),
then the path indices in row j of U(u, π, λ) are simply the elements of Ij, in increasing
order.

Proposition 6.1. Let w ∈ Sn avoid the patterns 3412 and 4231, and let B be the path
matrix of Fw. Fix λ ` n, u ∈ S−λ , and y ∈ u−1Sλu. Then we have

σB(q−1
u,uyx

u,uy) =

{
qrinv(U(u,π,λ)>) if there exists a path family π of type y covering Fw,

0 otherwise.

Proof. By Proposition 5.3 we have

σB(q−1
u,uyx

u,uy) = q−2
u,uyσB(qu,uyx

u,uy)

=

{
q`(u)−`(uy)qrinv(U(u,π,(n))) if some path family of type y covers F̂ ,

0 otherwise.

Letting V = U(u, π, λ) and using (5.9), we may rewrite the above exponent of q as
rinv(V1 ◦ · · · ◦ Vr) + `(u)− `(uy). By (4.3), this is

rinv(V1) + · · ·+ rinv(Vr) + rinv(V>)− (`(uy)− `(u)).

We claim that this expression reduces further to rinv(V>). To see this, recall that the
tableaux L(V1) ◦ · · · ◦ L(Vr) and R(V1) ◦ · · · ◦ R(Vr) contain the one-line notations of u
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and uy, respectively. Since u belongs to S−λ and each tableau R(Vj) is a permutation of
the corresponding tableau L(Vj), we have

`(u) = #{(k, k′) | k > k′, k in an earlier row of L(V ) than k′}
= #{(k, k′) | k > k′, k in an earlier row of R(V ) than k′}.

`(uy) =
r∑
j=1

inv(R(Vj)) + #{(k, k′) | k > k′, k in an earlier row of R(V ) than k′}

=
r∑
j=1

inv(R(Vj)) + `(u).

Now fix a row Vj of V and consider right inversions in Vj. Let πi, πi′ be two paths in
this row, with πi appearing first. Since u belongs to S−λ , we have i < i′. Let k and k′ be
the corresponding sink indices. If we have k > k′, then the paths cross and form a right
inversion in Vj. On the other hand, if we have k < k′, then the paths do not form a right
inversion in Vj, even if they intersect. Thus we have rinv(Vj) = inv(R(Vj)) for all j and

rinv(V1) + · · ·+ rinv(Vr) = `(uy)− `(u), (6.2)

as desired.

While the final sum in (6.1) has signs, we will use a sign-reversing involution to cancel
some of the the terms there, and to obtain a signless sum more amenable to combinatorial
interpretation. Fix a partition λ = (λ1, . . . , λr) ` n, an ordered set partition I of [n] of
type λ, and a zig-zag network F , and let TI = TI(F ) be the set of all row-closed, left row-
strict F -tableaux U of shape λ such that L(U)j = Ij (as sets) for j = 1, . . . , r. Observe
that all row-strict F -tableaux of type e satisfying L(U)j = Ij (as sets) for j = 1, . . . , r
belong to TI . Let us define an involution

ζ : TI → TI

as follows.

1. If U is a row-strict tableau of type e, then define ζ(U) = U .

2. Otherwise,

(a) Let i be the least index such that Ui is not row-strict.

(b) Let (j, j′) be the lexicographically least pair of indices in L(U)i such that πj
and πj′ intersect.

(c) Let (k, k′) be the sink indices of paths πj and πj′ , respectively.

(d) Define ζ(U) to be the tableau obtained from U by replacing πj and πj′ by the
unique paths in F from source j to sink k′ and source j′ to sink k.

Proposition 6.2. The involution ζ satisfies rinv(ζ(U)>) = rinv(U>).
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Proof. For each F -tableau U ∈ TI satisfying ζ(U) = U , the claimed equality is obvious.
Now let U be an F -tableau not fixed by ζ. Define the indices i, j, j′, k, k′ and paths πj,
πj′ as in the definition of ζ, and let π′j, π

′
j′ be the two new paths created in the final step

of the definition of ζ. Since the tableaux U>and ζ(U)>agree everywhere except in the two
cells in column i containing the paths

πj, πj′ , π′j, π′j′ , (6.3)

it is clear that the right inversions of these tableaux are equal except possibly for inversions
involving a path πh in a column other than i and one of the paths (6.3). We claim that
these remaining right inversions in U> and ζ(U)> correspond bijectively. In particular, we
have

(a) πh forms a right inversion with πj in U> if and only if it forms a right inversion with
π′j′ in ζ(U)>.

(b) πh forms a right inversion with πj′ in U> if and only if it forms a right inversion with
π′j in ζ(U)>.

To see this, observe that j < j′, and consider the intersection of πh with πj and πj′ .
By Lemma 3.5 we have four cases:

1. πh intersects both πj and πj′ .

2. πh intersects only πj′ .

3. πh intersects only the path whose sink is min(k, k′).

4. πh intersects neither πj nor πj′ .

Now considering the intersections of πh with π′j and π′j′ , we see that the above cases imply
respectively that πh intersects both π′j and π′j′ , only π′j′ (not π′j), only the path in {π′j, π′j′}
whose sink index is min(k, k′), and neither π′j nor π′j′ . In all cases, the equivalences (a)
and (b) are true.

Since the tableaux U and ζ(U) agree except in one row, we have the following.

Proposition 6.3. Let U ∈ TI be a tableau not fixed by ζ and let i be the index satisfying
Ui 6= ζ(U)i. Then we have

|rinv(ζ(U)j)− rinv(Uj)| =

{
1 if j = i,

0 otherwise.

Proof. Obvious.

Now we have the following q-analog of Theorem 4.7 (i).
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Theorem 6.4. Let w ∈ Sn avoid the patterns 3412 and 4231. Then for λ ` n we have

ελq (qe,wC
′
w(q)) =

∑
U

qinv(U),

where the sum is over all column-strict Fw-tableaux of type e and shape λ>.

Proof. Let B be the path matrix of Fw and let (I1, . . . , Ir) be a set partition of [n] of type
λ. By (5.2) – (5.3), there is a permutation u ∈ S−λ corresponding to (I1, . . . , Ir) such that
we have

σB(detq(xI1,I1) · · · detq(xIr,Ir)) =
∑

y∈u−1Sλu

(−1)`(uy)−`(u)σB(q−1
u,uyx

u,uy).

By Proposition 6.1 this is equal to∑
(y,π)

(−1)`(uy)−`(u)qrinv(U(u,π,λ)>), (6.4)

where the sum is over pairs (y, π) such that y ∈ u−1Sλu and π is a path family of type y
which covers Fw. If such a path family exists, it is necessarily unique. Thus as y varies
over u−1Sλu we have that U(u, π, λ) varies over all tableaux in TI . Thus by (6.2) this
sum is equal to ∑

V ∈TI

(−1)rinv(V1)+···+rinv(Vr)qrinv(V>). (6.5)

Now consider a tableau V ∈ TI which satisfies ζ(V ) 6= V . By Propositions 6.2 – 6.3,
the term of the above sum corresponding to the tableau ζ(V ) is

(−1)rinv(ζ(V )1)+···+rinv(ζ(V )r)qrinv(ζ(V )>) = −(−1)rinv(V1)+···+rinv(Vr)qrinv(V>).

Thus all terms corresponding to tableaux V and ζ(V ) 6= V cancel one another in the sum
(6.5), leaving terms only for the tableaux V ∈ TI which are fixed by ζ, i.e., the row-strict
tableaux. For these tableaux we have

rinv(V1) = · · · = rinv(Vr) = 0, rinv(V>) = inv(V>).

Furthermore, V is row-strict of shape λ if and only if V> is column-strict of shape λ>. Thus
we may again rewrite (6.4) as ∑

U

qinv(U),

where the sum is over all column-strict Fw-tableaux of shape λ> satisfying Uj = Ij (as
sets). Summing over ordered set partitions and using (6.1), we have the desired result.

For example, consider the descending star network F3421 in (5.10). It is easy to verify
that there are exactly two column-strict F3421-tableaux of type e and shape 31:

π

π

π π

4

1 2 3

,
π

π

π π

4

1 3 2

, (6.6)
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where πi is the unique path from source i to sink i. These tableaux have 2 and 3 inversions,
respectively. Since 31>= 211, the tableaux together give ε211

q (qe,3421C
′
3421(q)) = q2+q3. It is

clear that all twenty-four F3421-tableaux of type e and shape 4 are column-strict. Counting
inversions in these tableaux gives ε1111

q (qe,3421C
′
3421(q)) = 1 + 3q + 8q2 + 8q3 + 3q4 + q5. It

is also clear that there are no F3421-tableaux of type e and shapes 22, 211, or 1111. Thus
we have ε22

q (qe,3421C
′
3421(q)) = ε31

q (qe,3421C
′
3421(q)) = ε4q(qe,3421C

′
3421(q)) = 0.

Expanding ελq in terms of irreducible characters and Kostka numbers, ελq =
∑
Kµ>,λχ

µ
q ,

and using Haiman’s result [11, Lem 1.1], we have that ελq (qe,wC
′
w(q)) is symmetric and

unimodal about qe,w for all w ∈ Sn. In the case that w avoids the patterns 3412 and
4231, it would be interesting to explain this phenomenon combinatorially in terms of
Theorem 6.4.

Corollary 6.5. Fix λ = (λ1, . . . , λr) ` n and w ∈ Sn avoiding the patterns 3412 and 4231.
If w1 · · ·wn has a decreasing subsequence of length greater than r, then ελq (qe,wC

′
w(q)) = 0.

Proof. Let (π1, . . . , πn) be the unique path family of type e which covers Fw. By The-
orem 3.7 there exist r + 1 paths πi, . . . , πi+r which share a vertex. No two of these can
appear together in a column of a column-strict Fw-tableau. Thus no such tableau has
shape λ>.

More generally, it is known that we have ελq (qe,wC
′
w(q)) = 0 unless λ 6 sh(w) in

the majorization order, where sh(w) is the partition associated to w by the Robinson-
Schensted row insertion algorithm. (See, e.g., [11, Prop. 4.1 (3)].) This implies Corol-
lary 6.5, since a decreasing subsequence of length greater than r in w1 . . . wn implies that
we have λ � sh(w).

7 Chromatic symmetric and quasisymmetric functions

The evaluations of Sn-class functions and Hn(q) traces at Kazhdan-Lusztig basis ele-
ments are closely related to certain symmetric and quasisymmetric functions defined by
Stanley [27] and Shareshian and Wachs [23].

Let Λn be the Z-module of homogeneous degree n symmetric functions. In [27] Stanley
defined certain chromatic symmetric functions {XG |G a simple graph on n vertices } in
Λn and studied expansions of these in various bases of Λn. Given G = (V,E) and defining
P to be the set of positive integers, we call a function κ : V → P a proper coloring of G if
κ(u) 6= κ(v) whenever (u, v) ∈ E. Then we have the definition

XG =
∑
κ

xκ(1) · · ·xκ(n),

where the sum is over all proper colorings of G. When G is the incomparability graph of
a poset P , we will write XP = Xinc(P ). Stanley showed [27, Prop. 2.4] that in this case,
we have the equivalent definition

XP =
∑
λ`n

cP,λmλ, (7.1)
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where cP,λ is the number of ordered set partitions of P whose blocks are chains of cardinal-
ities λ1, λ2, . . . . These symmetric functions are related to Sn-class function evaluations
as follows.

Theorem 7.1. Let P be an n-element unit interval order, let v ∈ Sn be the 312-avoiding
permutation satisfying ζ(Fv) = P as in the proof of Theorem 4.1, and let w ∈ Sn be any
3412-avoiding, 4231-avoiding permutation satisfying w ∼ v as in (4.2). Then we have

XP =
∑
λ`n

ελ(C ′w(1))mλ. (7.2)

Proof. It is easy to see that cP,λ is equal to the number of column-strict P -tableaux of
shape λ>. By Theorems 4.1, 4.6, this is the number of column-strict Fw-tableaux of shape
λ>. Thus by Theorem 4.7 (i) we have cP,λ = ελ(C ′w(1)).

Expanding XP in other bases of Q⊗Λn, including the forgotten basis {fλ |λ ` n}, we
see that other class function evaluations appear as coefficients.

Corollary 7.2. Let P , v, w be as in Theorem 7.1. Then we have

XP =
∑
λ`n

ηλ(C ′w(1))fλ =
∑
λ`n

χλ
>
(C ′w(1))sλ

=
∑
λ`n

(−1)n−`(λ)

zλ
ψλ(C ′w(1))pλ =

∑
λ`n

φλ(C ′w(1))eλ.

Proof. The transition matrices relating the class function bases {ελ |λ ` n}, {ηλ |λ ` n},
{χλ>|λ ` n}, {(−1)n−`(λ)z−1

λ ψλ |λ ` n}, {φλ |λ ` n}, respectively, are inverse to those
relating the symmetric function bases {mλ |λ ` n}, {fλ |λ ` n}, {sλ |λ ` n}, {pλ |λ ` n},
{eλ |λ ` n}, respectively.

We remark that Theorem 7.1 and Corollary 7.2 do not hold for arbitrary w and P .
Not all chromatic symmetric functions XP can be expressed as

∑
λ`n ε

λ(C ′w(1))mλ for
appropriate w ∈ Sn, nor can all symmetric functions of this form be expressed as XP for
an appropriate labeled poset P .

Stanley and Stembridge [27, Conj. 5.1], [30, Conj. 5.5] conjectured that XP is elemen-
tary nonnegative when P is (3 + 1)-free, and Gasharov [7, Thm. 2] proved the weaker
statement that XP is Schur nonnegative in this case. Guay-Paquet [10, Thm. 5.1] showed
that the above conjecture and result are equivalent to the analogous statements in which
P is assumed to be a unit interval order. Thus by Theorem 4.6 and Corollary 7.2 the
nonnegativity statements are consequences of Haiman’s conjecture and result that for all
w ∈ Sn, λ ` n we have φλq (qe,wC

′
w(q)) ∈ N[q] and χλq (qe,wC

′
w(q)) ∈ N[q], respectively

[11, Conj. 2.1, Lem. 1.1]. Specifically, the nonnegativity statements are obtained from
Haiman’s by restricting to the case that w avoids the pattern 312 and by specializing at
q = 1.

Let QSymn be the Z-module of homogeneous degree n quasisymmetric functions in
the commuting indeterminates x1, x2, . . . , i.e., the generalization of homogeneous degree
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n symmetric functions Λn in which monomials of the forms xα1
1 · · · x

αk
k and xα1

i1
· · · xαkik are

required to have the same coefficient only when i1 < · · · < ik. In [23, Sec. 4], Shareshian
and Wachs defined a q-analog XG,q of the chromatic symmetric function XG = XG,1, with
{XG,q |G a simple labeled graph on n vertices } belonging to Z[q]⊗ QSymn, and studied
expansions of these functions in various bases. Assume that V is labeled by [n] and let
asc(κ) = #{(u, v) ∈ E |u < v and κ(u) < κ(v)}. Then we have the definition

XG,q =
∑
κ

qasc(κ)xκ(1) · · ·xκ(n),

where the sum is over all proper colorings of G. In [24, Thm. 4.5] Shareshian and Wachs
showed that this function is in fact symmetric with coefficients in Z[q] whenG is the incom-
parability graph of an appropriately labeled n-element unit interval order P . Specifically,
we require for each pair x, y ∈ P satisfying

#{z ∈ P | z < x} −#{z ∈ P | z > x} < #{z ∈ P | z < y} −#{z ∈ P | z > y}, (7.3)

that the label of x be less than that of y. (The equivalence of this requirement to that
stated in [24, Thm. 4.5] follows from comparison of [24, Props. 4.1 – 4.2] and the definition
of natural unit interval order [24, Sec. 4] to results in [6, p. 33] and [26, Obs. 2.1 – 2.3,
Prop. 2.4].) When G is the incomparability graph of a labeled poset P , we will write
XP,q = Xinc(P ),q, and we may give an alternate definition of {XP,q |P an n-element poset }
which is analogous to (7.1). (See also [24, Eq. (6.2)].)

Proposition 7.3. Let P be a unit interval order, labeled as in (7.3). Then we have

XP,q =
∑
λ`n

cP,λ(q)mλ,

where
cP,λ(q) =

∑
U

qinv(U)

and the sum is over column-strict P -tableaux of shape λ>.

Proof. Each proper coloring κ of inc(P ) may be viewed as an assignment of colors to
elements of P so that each subset of elements having a given color forms a chain. By
[24, Thm. 4.5], XP,q is symmetric. Thus for λ ` n, the coefficient in XP,q of mλ is well-

defined: it is the coefficient of xλr1 x
λr−1

2 · · ·xλ1r , i.e., the sum of qasc(κ), over all colorings
κ that assign color 1 to a λr-element chain, color 2 to a λr−1-element chain, . . . , color r
to a λ1-element chain. Each such coloring corresponds to a column-strict P -tableau U of
shape λ. Specifically, each λr+1−i-element chain of color i corresponds to column r+ 1− i
of U , for i = 1, . . . , r. Now observe that a pair (u, v) in P , with u < v as integers, forms
an ascent of κ if and only if it forms an inversion in U . Specifically, (u, v) is an edge in
inc(P ) if and only if u, v are incomparable in P , and we have κ(u) < κ(v) if and only if
u appears in a column of U to the right of the column containing v.
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Just as Stanley’s chromatic symmetric functions XP are related to Sn-class function
evaluations in Theorem 7.1, the Shareshian-Wachs chromatic quasisymmeric functions
XP,q are related to Hn(q)-trace evaluations.

Theorem 7.4. Let P be an n-element unit interval order labeled as in (7.3), let v ∈ Sn

be the corresponding 312-avoiding permutation as in Theorem 4.1, and let w ∈ Sn be any
3412-avoiding, 4231-avoiding permutation satisfying w ∼ v as in (4.2). Then we have

XP,q =
∑
λ`n

ελq (qe,wC
′
w(q))mλ.

Proof. By Proposition 7.3, cP,λ(q) is equal to the sum of qinv(U) over column-strict P -
tableaux of shape λ>. By Theorems 4.1, 5.6, we may sum over column-strict Fw-tableaux.
Now Theorem 6.4 gives cP,λ(q) = ελ(qe,wC

′
w(q)).

Expanding XP in other bases of Q[q] ⊗ Λn and following the proof of Corollary 7.2,
we see that other trace evaluations appear as coefficients.

Corollary 7.5. Let P , v, w be as in Theorem 7.4. Then we have

XP,q =
∑
λ`n

ηλq (qe,wC
′
w(q))fλ =

∑
λ`n

χλ
>

q (qe,wC
′
w(q))sλ

=
∑
λ`n

(−1)n−`(λ)

zλ
ψλq (qe,wC

′
w(q))pλ =

∑
λ`n

φλq (qe,wC
′
w(q))eλ.

As before, Theorem 7.4 and Corollary 7.5 do not hold for arbitrary w and P . Not
all chromatic symmetric functions XP,q can be expressed as

∑
λ`n ε

λ
q (qe,wC

′
w(q))mλ for

appropriate w ∈ Sn, nor can all symmetric functions of this form be expressed as XP,q

for an appropriate labeled poset P .
Shareshian and Wachs conjectured that XP,q belongs to spanN[q]{eλ |λ ` n} when P

is a unit interval order labeled as in (7.3) [23, Conj. 4.9], and proved that XP,q belongs to
spanN[q]{sλ |λ ` n} for such posets [24, Thm. 6.3]. These statements do not hold for the
more general (3+1)-free posets, since the functions XP,q are not always symmetric in this
case. Nevertheless, the result of Guay-Paquet [10, Thm. 5.1] shows that the statements
generalize those of Stanley, Stembridge, and Gasharov mentioned after Corrolary 7.2.
By Theorem 4.6 and Corollary 7.5, the statements are special cases (corresponding to w
avoiding the pattern 312) of Haiman’s conjecture and result [11, Conj. 2.1, Lem 1.1] that
for all w ∈ Sn, λ ` n we have φλq (qe,wC

′
w(q)) ∈ N[q] and χλq (qe,wC

′
w(q)) ∈ N[q]. Shareshian

and Wachs also conjectured [24, Sec. 7], and Athanasiadis proved [1, Thm. 4] that XP,q

belongs to spanN[q]{(−1)n−`(λ)z−1
λ pλ |λ ` n} when P is a unit interval order labeled as in

(7.3). By Theorem 4.6 and Corollary 7.5 this is equivalent to the assertion that we have
ψλq (qe,wC

′
w(q)) ∈ N[q] for w avoiding the pattern 312. Thus this result is a special case

of the (unpublished) conjecture that ψλq (qe,wC
′
w(q)) ∈ N[q] for all w ∈ Sn, λ ` n, which

is a weakening of Haiman’s conjecture [11, Conj. 2.1] since ψλq is a nonnegative linear
combination of monomial traces (1.2).
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8 Interpretation of χλq(qe,wC
′
w(q))

Combining results in Sections 4, 5, 7 with those of Shareshian and Wachs now leads to
the following q-analog of Theorem 4.7 (iii).

Theorem 8.1. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ ` n we have

χλq (qe,wC
′
w(q)) =

∑
U

qinv(U), (8.1)

where the sum is over all standard Fw-tableaux of type e and shape λ.

Proof. Let P = P (Fw). By Corollary 7.5, χλq (qe,wC
′
w(q)) is equal to the coefficient of sλ>

in XP,q. By [24, Thm. 6.3] and Theorems 4.1, 5.6, this is precisely the claimed sum.

For example, consider again the descending star network F3421 in (5.10). It is easy
to verify that there are exactly two standard F3421-tableaux of type e and shape 31: the
two column-strict F3421-tableaux of type e and shape 31 in (6.6) are also row-semistrict.
Thus we have χ31

q (qe,3421C
′
3421(q)) = ε211

q (qe,3421C
′
3421(q)) = q2 +q3. On the other hand, not

all twenty-four F3421-tableaux of type e and shape 4 are row-semistrict: the six tableaux
with π4 immediately preceding π1 are not. It is easy to verify that the eighteen remaining
tableaux give χ4

q(qe,3421C
′
3421(q)) = 1 + 3q + 5q2 + 5q3 + 3q4 + q5. Since there are no

column-strict F3421-tableaux of shapes 22, 211, or 1111, there are no standard F3421-
tableaux of these shapes either, and we have χ22

q (qe,3421C
′
3421(q)) = χ211

q (qe,3421C
′
3421(q)) =

χ1111
q (qe,3421C

′
3421(q)) = 0.

Combining Theorems 3.7 and 8.1, we have the following analog of Corollary 6.5.

Corollary 8.2. Fix λ = (λ1, . . . , λr) ` n and w ∈ Sn avoiding the patterns 3412 and
4231. If w1 · · ·wn has a decreasing subsequence of length greater than λ1, then we have
χλq (qe,wC

′
w(q)) = 0.

More generally, it is known that we have χλq (qe,wC
′
w(q)) = 0 unless λ > sh(w)> in the

majorization order. (See the comment following Corollary 6.5.) This implies Corollary 8.2,
since a decreasing subsequence of length greater than λ1 in w1 . . . wn implies that we have
λ � sh(w)>.

9 Interpretation of ψλq (qe,wC
′
w(q))

Combining results in Sections 4, 5, 7 with those of Shareshian, Wachs, and Athanasiadis
now leads to q-analogs of Theorem 4.7 (iv-c)–(iv-d). We will sometimes find it useful to
reflect path tableaux in a vertical line, and will write UR for the reverse of tableau U .
For instance, we have

U =
π

π

π π

1

2 3 4

, UR = π1

π4 π2π3

,
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where each path πi retains its original source, sink, and orientation. Thus UR
i will denote

the reverse of the ith row of U . Note that while UR may not be a tableau, because its
cells are right-justified rather than left justified, the functions inv and rinv may still
be applied to UR as at the end of Section 4. We will also use standard notation for
the q-analogs of the nonnegative integers and factorial function. For a ∈ N we define
[a]q = 1 + q + · · ·+ qa−1 for a > 1, and [0]q = 0. We also define [a]q! = [a]q[a− 1]q · · · [1]q
for a > 1, and [0]q! = 1.

Theorem 9.1. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ = (λ1, . . . , λr) ` n,
we have

ψλq (qe,wC
′
w(q)) =

∑
U

qinv(U1◦···◦Ur), (9.1)

where the sum is over all record-free, row-semistrict Fw-tableaux of type e and shape λ,
and

ψλq (qe,wC
′
w(q)) = [λ1]q · · · [λr]q

∑
U

qinv(UR1 ◦···◦URr ), (9.2)

where the sum is over all right-anchored, row-semistrict Fw-tableaux of type e and shape
λ,

Proof. Let P = P (Fw). By Corollary 7.5, ψλq (qe,wC
′
w(q)) is equal to (−1)n−rzλ times the

coefficient of pλ in XP,q. By [1, Thm. 3.1] and Theorems 4.1, 5.6, this is equal to the
right-hand side of (9.1). By [24, Lem. 7.7] and Theorems 4.1, 5.6, it is also equal to the
right-hand side of (9.2).

For example, consider the descending star network F3421 in (5.10) and the sum in
(9.1). It is easy to verify that there are eighteen record-free, row-semistrict F3421-tableaux
of type e and shape 31. Four of these are

π

π

π π

1

4 3 2

,
π

π

π π

2

1 3 4

,
π

π

π π

3

2 41

,
π

π

π π

4

3 2 1

, (9.3)

where πi represents the unique path from source i to sink i. These tableaux U of shape
31 yield tableaux U1 ◦ U2 of shape 4,

π π π4 π13 2
, π π π1 π23 4

, π π2 π31 4π , π π3 π42 1π ,

which have 5, 2, 2, and 3 inversions, respectively. Together, they contribute 2q2 + q3 + q5

to ψ31
q (qe,3421C

′
3421(q)) = 1 + 3q + 5q2 + 5q3 + 3q4 + q5. Now consider the sum in (9.2). It

is easy to verify that there are six right-anchored row-semistrict F3421-tableaux of type e
and shape 31: the first and fourth tableaux in (9.3) and the four tableaux

π

π

π π

1

3 4 2

,
π

π

π π

2

4 3 1

,
π

π

π π

3

4 2 1

,
π

π

π π

4

2 3 1

.
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These tableaux U of shape 31 yield six tableaux UR
1 ◦ UR

2 of shape 4,

π π π2 π13 4
, π π π1 π42 3

,

π π π π132 4
, π π π1 π23 4

, π π π1 π32 4
, π π π π421 3

,

which have 2, 0, 3, 2, 1, and 1 inversions, respectively. Together, the six tableaux con-
tribute 1 + 2q + 2q2 + q3 to [3]q[1]q(1 + 2q + 2q2 + q3) = ψ31

q (qe,3421C
′
3421(q)).

We will state three more combinatorial formulas for ψλq (qe,wC
′
w(q)) in Theorems 9.4

and 9.13. To justify these, we associate a polynomial O(F ) ∈ N[q] to a descending star
network F , and a path tableau V (F, I) to the pair (F, I), where I is an ordered set
partition of [n] of type λ.

Definition 9.1. Let F be a descending star network, and let

G[c1,d1] ◦ · · · ◦G[ct,dt] (9.4)

be the concatenation of star networks which corresponds to F as in Section 3. Define the
polynomial O(F ) ∈ N[q] by

O(F ) =



t∏
i=1

[di − ci]q!∏
[ci,di]≺·[cj ,dj ]

ci<cj

[di − cj]q!
∏

[ci,di]≺·[cj ,dj ]
cj<ci

[dj − ci]q!
if F is connected,

0 if F is disconnected.

(9.5)

For example, the connected descending star network F3421 in (5.10) corresponds to the
concatenation G = G[2,4] ◦ G[1,3] and two-element poset of intervals [2, 4] ≺· [1, 3]. Thus
we have

O(F3421) =
[4− 2]q![3− 1]q!

[3− 2]q!
=

[2]q![2]q!

[1]q!
= (1 + q)2.

Note that for the identity element e ∈ Sn we have O(Fe) = 1 if n = 1 and O(Fe) = 0
otherwise. Letting π = (π1, . . . , πn) be the unique path family of type e covering F , define
V (F, I) to be the unique (row-semistrict) π-tableau of shape λ for which L(V (F, I)) is a
row-strict Young tableau containing indices Ij in row j. For S a k-element subset of [n],
let F |S denote the zigzag network of order k isomorphic to the subnetwork of F covered
by paths {πi | i ∈ S}.

Also essential to our proofs of Theorems 9.4 and 9.13 is a map

ι : {w ∈ Sn |w avoids the patterns 3412 and 4231, Fw connected }
→ {w ∈ Sn−1 |w avoids the patterns 3412 and 4231, Fw connected }.

Let Fw be a connected zig-zag network of order n > 2 corresponding to the concatenation
(9.4). By Observation 3.2 we may assume that t = 1, or d1 = n and [c1, d1] ≺· [c2, d2], or
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dt = n and [ct−1, dt−1] ≺· [ct, dt]. We declare ι(w) to be the permutation whose descending
star network Fι(w) of order n − 1 is obtained from Fw by deleting the path from source
n to sink n, and, in the case that d1 = n and d2 = n − 1 (dt = n and dt−2 = n − 1),
by contracting one edge whose vertices correspond to the central vertices of G[c1,n] and
G[c2,n−1] (G[ct−1,n−1] and G[ct,n]). Equivalently, Fι(w) is the zig-zag network corresponding
to the concatenation

G[c1,n−1] if t = 1,

G[c2,d2] ◦ · · · ◦G[ct,dt] if d1 = n and d2 = n− 1,

G[c1,d1] ◦ · · · ◦G[ct−1,dt−1] if dt = n and dt−1 = n− 1,

G[c1,n−1] ◦G[c2,d2] ◦ · · · ◦G[ct,dt] if d1 = n and d2 < n− 1,

G[c1,d1] ◦ · · · ◦G[ct−1,dt−1] ◦G[ct,n−1] if dt = n and dt−1 < n− 1.

(9.6)

For example, let n = 6. F256431 corresponds to the concatenation G[3,6] ◦G[2,5] ◦G[1,2],
with d2 = 5 = n−1. Removing the path from source 6 to sink 6, and contracting the edge
whose endpoints correspond to the central vertices of G[3,6] and G[2,5], we obtain Fι(256431),
which can be shown (as in the example preceding Theorem 3.3) to be F25431.

F256431 =

1

2

3

4

5

6

1

2

3

4

5

6

7→

1

2

3

4

5

1

2

3

4

5

∼=

1

2

3

4

5

1

2

3

4

5

= F25431. (9.7)

Similarly, F246531 corresponds to the concatenation G[3,6]◦G[2,4]◦G[1,2], with d2 = 4 < n−1.
Removing the path from source 6 to sink 6, we obtain Fι(246531), which can be shown to
be F24531.

F246531 =

1

2

3

4

5

6

1

2

3

4

5

6

7→

1

2

3

4

5

1

2

3

4

5

= F24531. (9.8)

9.1 Right-anchored, row-semistrict F -tableaux and O(F )

Inversions in right-anchored, row-semistrict path tableaux are closely related to the
polynomials {O(F ) |F a zig-zag network of order 1, . . . , n} in Definition 9.1. In order to
state this relationship precisely (Lemma 9.3) and state a third combinatorial formula for
ψλq (qe,wC

′
w(q)) (Theorem 9.4), we define a family of sets {Z(F ) |F a zig-zag network} of

tableaux and maps between these. For F a zig-zag network of order m, let Z(F ) be the set
of right-anchored, row-semistrict F -tableaux of type e and shape (m). Note that if F is
not connected, then Z(F ) = ∅, since a right-anchored F -tableau cannot be row-semistrict
when F is disconnected.

Now let Fw be a connected zig-zag network of order m which corresponds to the
concatenation (9.4), and let [b,m] be the unique interval in (9.4) to contain m. Define a
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map
γ : Z(Fw)→ Z(Fι(w))× {0, 1, . . . ,m− b− 1}

U 7→ (U ′, k),

by declaring U ′ to be the tableau obtained from U by deleting πn, and by declaring k to
be the number of indices in the interval [b,m− 1] appearing to the left of m in L(U).

For example, consider the network F256431 in (9.7) and let U be the tableau

π π π4 π35 6 2 1π π .

Then the unique interval in G containing m = 6 is [3, 6], and there are two indices in this
interval appearing to the left of 6 in L(U). Thus γ(U) = (U ′, 2) where U ′ is the tableau

π π π4 π25 3 1π .

Lemma 9.2. For each connected zig-zag network Fw of order m, the map γ is a bijection.
Furthermore, if γ(U) = (U ′, k) then inv(UR) = inv(U ′R) + k.

Proof. To see that γ is well-defined, fix U ∈ Z(Fw) and let L(U) = (i1, . . . , im = 1), where
ij = m and j < m. Clearly U ′ is right-anchored. If j = 1 then U ′ = (πi2 , . . . , πim) is
row-semistrict. If j > 1, then U ′ = (πi1 , . . . , πij−1

, πij+1
, . . . , πim) is also row-semistrict,

since πm 6>P (Fw) πij+1
implies that πij−1

6>P (Fι(w)) πij+1
.

To invert γ, find an entry id of L(U ′) which belongs to [b,m − 1] and has exactly k
indices from the interval [b,m− 1] to its left. (This is possible, since 0 6 k 6 m− b− 1.)
Now create a new Fw-tableau by inserting πm into U ′ immediately before πid . This map
is well-defined, because πid intersects πm. It is clear that the map inverts γ. Since U has
type e, it is clear that the number of inversions in UR involving πm is equal to the number
of indices in the interval [b,m − 1] appearing to the left of m in L(U). It follows that
inv(UR) = inv(U ′R) + k.

By the above lemma, we can interpret O(F ) as a generating function for inversions in
tableaux belonging to Z(F ).

Lemma 9.3. For each w ∈ Sm avoiding the patterns 3412 and 4231, we have∑
U∈Z(Fw)

qinv(UR) = O(Fw). (9.9)

Proof. When m = 1, both sides of (9.9) are 1. Now assume that (9.9) holds for all zig-zag
networks corresponding to 3412-avoiding, 4231-avoiding permutations in S1, . . . ,Sm−1,
and consider w ∈ Sm avoiding the patterns 3412 and 4231. Let Fw correspond to the
concatenation (9.4). If Fw is disconnected, then Z(Fw) = ∅ and both sides of (9.9) are 0.
If Fw is connected, let [b,m] be the unique interval in (9.4) to contain m. By induction
and Lemma 9.2 we have∑

U∈Z(Fw)

qinv(UR) =
m−b−1∑
k=0

qk
∑

U ′∈Z(Fι(w))

qinv(U ′R) = [m− b]qO(Fι(w)). (9.10)
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By Observation 3.2 we may assume that we have t = 1, or [b,m] = [c1, d1] ≺· [c2, d2], or
[ct−1, dt−1] ≺· [ct, dt] = [b,m]. In the first case, the expression (9.10) is [m − b]q!. In the
second case, by Definition 9.1 and (9.6), it is

[m− c1]q
[m− 1− c1]q![d2 − c2]q! · · · [dt − ct]q!∏

[ci,di]≺·[cj ,dj ]
ci<cj

[di − cj]q!
∏

[ci,di]≺·[cj ,dj ]
cj<ci

[dj − ci]q!
if d1 = m, d2 < m− 1,

[m− c1]q!

[d2 − c1]q!

[d2 − c2]q! · · · [dt − ct]q!∏
[ci,di]≺·[cj ,dj ]

ci<cj

[di − cj]q!
∏

[ci,di]≺·[cj ,dj ]
cj<ci
i>2

[dj − ci]q!
if d1 = m, d2 = m− 1.

(9.11)

In the third case, we obtain an expression similar to (9.11). In all cases, the expression is
equal to O(Fw).

Now we can state the precise relationship between the polynomialsO(F ) and inversions
in right-anchored, row-semistrict path tableaux.

Theorem 9.4. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ = (λ1, . . . , λr) ` n,
we have

ψλq (qe,wC
′
w(q)) = [λ1]q · · · [λr]q

∑
I`[n]

type(I)=λ

qinv(V (Fw,I)1◦···◦V (Fw,I)r)O(Fw|I1) · · ·O(Fw|Ir).

(9.12)

Proof. By Theorem 9.1, ψλq (qe,wC
′
w(q)) is equal to the right-hand side of (9.2). Grouping

terms in the sum and using (4.3), we may rewrite this expression as

[λ1]q · · · [λr]q
∑
I`[n]

type(I)=λ

∑
U

qinv(UR1 ◦···◦URr ) = [λ1]q · · · [λr]q
∑
I`[n]

type(I)=λ

∑
U

qinv(UR1 )+···+inv(URr )+inv(U>),

(9.13)
where U now varies over the subset of right-anchored, row-semistrict tableaux of type e
and shape λ satisfying Uj = Ij for each component of the appropriate ordered set partition
I = (I1, . . . , Ir). For fixed I, this inner sum can be rewritten as∑

W (1)

qinv((W (1))R) · · ·
∑
W (r)

qinv((W (r))R)
∑
U

qinv(U>),

where W (j) varies over right-anchored, row-semistrict Fw|Ij -tableaux of shape λj and type
e ∈ Sλj , and U again varies as in (9.13). By Lemma 9.3, the first r sums are equal to
O(Fw|I1), . . . , O(Fw|Ir), and it is easy to see that for any tableau U in the last sum, we
have inv(U>) = inv(V (Fw, I)1 ◦ · · · ◦ V (Fw, I)r). Thus we obtain the right-hand side of
(9.12).
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For example, consider again the descending star network F3421 in (5.10) and the ex-
pression in (9.12). The ordered set partitions of [4] of type 31 are 123|4, 124|3, 134|2, and
234|1. Corresponding to the set partitions I are the tableaux V (F3421, I) of shape 31

π

π

π π

4

1 2 3

,
π

π

π π

3

1 2 4

,
π

π

π π

2

1 3 4

,
π

π

π π

1

2 3 4

,

respectively, where (π1, π2, π3, π4) is the unique path family of type e covering F3421. These
in turn yield tableaux V (F3421, I)1 ◦ V (F3421, I)2 of shape 4

π π π1 π42 3
, π π π1 π32 4

, π π π1 π23 4
, π π π2 π13 4

,

having 0, 1, 2, and 2 inversions, respectively. The subnetworks F3421|123, F3421|124, F3421|134,
F3421|234 and polynomials O(F3421|123), O(F3421|124), O(F3421|134), O(F3421|234) are

1

2

3

4

1

2

3

4

∼=
1

2

3

1

2

3

,

1

2

3

4

1

2

3

4

∼=
1

2

3

1

2

3

,

1

2

3

4

1

2

3

4

∼=
1

2

3

1

2

3

,

1

2

3

4

1

2

3

4

∼=
1

2

3

1

2

3

,

[3− 1]q! = 1 + q,
[3− 2]q![2− 1]q!

[2− 2]q!
= 1,

[3− 2]q![2− 1]q!

[2− 2]q!
= 1, [3− 1]q! = 1 + q.

On the other hand, each subnetwork F3421|i is simply a path and satisfies O(F3421|i) = 1.
Thus the four set partitions contribute q0(1 + q)(1), q1(1)(1), q2(1)(1), q2(1 + q)(1), or a
total of 1 + 2q + 2q2 + q3 to [3]q[1]q(1 + 2q + 2q2 + q3) = ψ31

q (qe,3421C
′
3421(q)).

The special case λ = (n) of Theorem 9.4 confirms a conjecture of Haiman [11, Conj. 4.1]

concerning evaluations of the form φ
(n)
q (qe,wC

′
w(q)) = ψ

(n)
q (qe,wC

′
w(q)).

Proposition 9.5. Let w = w1 · · ·wn ∈ Sn avoid the pattern 312 and define the sequence
(f(1), . . . , f(n)) by f(j) = max{w1, . . . , wj}. Then we have

ψ(n)
q (qe,wC

′
w(q)) = [n]q[f(1)− 1]q[f(2)− 2]q · · · [f(n− 1)− (n− 1)]q. (9.14)

Proof. Setting λ = (n) in Theorem 9.4, we have

ψ(n)
q (qe,wC

′
w(q)) = [n]qq

0O(Fw). (9.15)

If Fw is not connected, then both sides of (9.15) are 0, and for some index k the prefix
w1 · · ·wk of w belongs to Sk. Thus f(k) = k and the right-hand side of (9.14) is 0 as well.

Assume therefore that Fw is connected. Since w avoids the pattern 312, Fw is a
descending star network and the intervals in the corresponding concatenation (9.4) form
the chain [c1, d1] ≺· · · · ≺· [ct, dt] with d1 = n, ct = 1. Thus the formula (9.5) for O(Fw)
becomes

[d1 − c1]q!
[d2 − c2]q!

[d2 − c1]q!
· · · [dt − ct]q!

[dt − ct−1]q!
=
(

[d1 − c1]q[d1 − (c1 + 1)]q · · · [d1 − (n− 1)]q

)
·(

[d2 − c2]q[d2 − (c2 + 1)]q · · · [d2 − (c1 − 1)]q

)
· · ·
(

[dt − 1]q[dt − 2]q · · · [dt − (ct−1 − 1)]q

)
.
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Defining g(j) = min{i | j ∈ [ci, di]} for j = 1, . . . , n, we may now rewrite (9.15) as

ψ(n)
q (qe,wC

′
w(q)) = [n]q[dg(1) − 1]q[dg(2) − 2]q · · · [dg(n−1) − (n− 1)]q. (9.16)

Finally we claim that dg(j) = f(j) for j = 1, . . . , n− 1. We have f(j) 6 dg(j) because
there are no paths in Fw from source j to sinks dg(j) + 1, . . . , n and therefore by Obser-
vation 3.4, no paths from sources 1, . . . , j − 1 to these sinks either. Similarly, we have
f(j) > dg(j) because j belongs to the interval [cg(j), dg(j)] and wcg(j) = dg(j).

It is straightforward to show that the right-hand side of (9.16) coincides with the
expression in [23, Thm. 7.1] for (−1)n−1n = (−1)n−`(n)z(n) times the coefficient of pn in
XP,q.

9.2 Cylindrical F -tableaux and O(F )

In Theorem 9.13, we will prove an analog of Theorem 9.1 in which sums are taken
over (left-anchored) cylindrical F -tableaux. To do so, we partition the set of cylindrical
F -tableaux into equivalence classes as follows. Fix a permutation w ∈ Sn avoiding
the patterns 3412 and 4231, an integer partition λ ` n, and an ordered set partition
I = (I1, . . . , Ir) of [n] of type λ. Let C(I, Fw) be the set of cylindrical Fw-tableaux U
such that for j = 1, . . . , r, the set of entries of L(Uj) is equal to Ij. Let CL(I, Fw) be the
subset of these tableaux which are left-anchored. Now the cylindrical analogs of the sums
in (9.1) and (9.2) are∑

U

qinv(U1◦···◦Ur) =
∑
I`[n]

type(I)=λ

∑
U∈C(I,Fw)

qinv(U1◦···◦Ur),

∑
U

qinv(U1◦···◦Ur) =
∑
I`[n]

type(I)=λ

∑
U∈CL(I,Fw)

qinv(U1◦···◦Ur),
(9.17)

where the left-hand sums are over cylindrical Fw-tableaux of shape λ and left-anchored
cylindrical Fw-tableaux of shape λ, respectively. In both cases, it is easy to show that the
inner right-hand sum factors as in Theorem 9.4. To state this factorization explicitly, we
relate inv(U1 ◦ · · · ◦ Ur) to intervals in the concatenation (9.4).

Lemma 9.6. Let w ∈ Sn avoid the patterns 3412 and 4231, and let [c1, d1], . . . , [ct, dt]
be the intervals appearing in the concatenation (9.4) of star networks that corresponds to
Fw. Let U be a cylindrical Fw-tableau having r rows, and fix indices p1 < p2 in [r]. Then
we have

#{(πa, πb) ∈ Up2 × Up1 | (πb, πa) an inversion in U1 ◦ · · · ◦ Ur}
= #{(a, b) ∈ L(U)p2 × L(U)p1 | cj 6 a < b 6 dj for some j}. (9.18)
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Proof. Let A and B denote the sets on the left- and right-hand sides of (9.18), respectively.
Define a map ϕ : A→ B as follows, assuming (πa, πb) ∈ A. If a and b belong to a common
interval [ci, di], then set ϕ((πa, πb)) = (a, b). Otherwise, read Up1 cyclically from left to
right starting at πb, and let πc be the first path which lies entirely above πa. Then set
ϕ((πa, πb)) = (a, c). We claim that ϕ is a bijection.

To see that ϕ is well defined, suppose that a and b belong to no common interval
[ci, di], and let πf be the path in Up1 terminating at sink b. If πf intersects πa, then there
exists a path in Fw from source a to sink b. Since a < b, Observation 3.4 and the comment
following it imply that a and b belong to a common interval [ci, di], a contradiction. Thus
the set of paths lying strictly above πa in Up1 is nonempty, and the path πc is well defined.
Suppose a and c belong to no common interval [ci, di], and let πg be the path in Up1
cyclically preceding πc. Then πg terminates at sink c > a. By our choice of πc, the
path πg must intersect πa. Thus there is a path in Fw from source a to sink c. But this
contradicts Observation 3.4.

The inverse ξ of ϕ may be described as follows, assuming (a, b) ∈ B. If πa intersects
πb, then set ξ((a, b)) = (πa, πb). Otherwise, read Up1 cyclically from right to left starting
at πb, and let πc be the first path such that a and c belong to no common interval [ci, di],
and c > a. Then set ξ((a, b)) = (πa, πc).

To see that ξ is well defined, suppose that πa does not intersect πb and that ξ((a, b)) =
(πa, πc). Let d be the index of the sink of πc, so that πd immediately follows πc. By our
choice of πc, we have that a and d belong to a common interval [ci, di] or that d < a. Thus
by Observation 3.4, there is a path in Fw from source a to sink d, and by Lemma 3.5
paths πa and πc intersect.

Now we claim that ϕ and ξ are in fact inverse to one another. This is clear when we
restrict to pairs (a, b) belonging to a common interval in (9.4) such that the paths πa, πb
intersect. Suppose therefore that πa intersects πb, and that a, b belong to no common
interval in (9.4). Let ϕ((πa, πb)) = (a, c) and let ξ((a, c)) = (πa, πb′). Since πc lies entirely
above πa, we have b′ 6= c. Suppose b′ 6= b and let πf be the path in Up1 terminating at
sink b′. By the definitions of ϕ and ξ, and since a, b belong to no common interval in
(9.4), the row Up1 (up to cyclic rotation) has the form

· · · πb
· · · πb’πf

· · · πc
.

Since a, b′ belong to no common interval and a < b′ by the definition of ξ, we have by
Observation 3.4 that there is no path in Fw from source a to sink b′. Thus πa and πf do not
intersect, and πf must lie entirely above πa. It follows that ϕ((πa, πb)) = (a, f) 6= (a, c),
contradiction. Now suppose that πa does not intersect πb, and that a, b belong to some
common interval [ci, di] in (9.4). Let ξ((a, b)) = (πa, πc) and let ϕ((πa, πc)) = (a, b′). Since
a and c belong to no common interval in (9.4), we have c 6= b′. Suppose b′ 6= b and let g
be the sink index of πb′ . By the definitions of ϕ and ξ, and since πb lies entirely above πa,
the row Up1 (up to cyclic rotation) has the form

· · · πc
· · · πb’ πg

· · · πb
.
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By our choice of πb′ we have g > a, and there is no path in Fw from source a to sink g.
Thus by Observation 3.4 we have that a and g belong to no common interval in (9.4).
But this implies that ξ((a, b)) = (πa, πg) 6= (πa, πc), a contradiction.

Now we can factor the expressions in (9.17) as follows.

Proposition 9.7. Fix w ∈ Sn avoiding the patterns 3412 and 4231, λ = (λ1, . . . , λr) ` n,
and a set partition I = (I1, . . . , Ir) ` [n] of type λ. Let V = V (Fw, I). Then we have∑

U

qinv(U1◦···◦Ur) = qinv(V1◦···◦Vr))
(∑
W (1)

qinv(W (1))
)
· · ·
(∑
W (r)

qinv(W (r))
)
,

where the sums are over U ∈ C(I, Fw), W (1) ∈ C(I1, Fw|I1), . . . ,W (r) ∈ C(Ir, Fw|Ir), or
over U ∈ CL(I, Fw), W (1) ∈ CL(I1, Fw|I1), . . . ,W (r) ∈ CL(Ir, Fw|Ir).

Proof. First observe that we have a bijection C(I1, Fw|I1)× · · · × C(Ir, Fw|Ir)→ C(I, Fw)
defined by joining W (1), . . . ,W (r) into a single tableau U with Uj = W (j). Clearly, the
bijection restricts to the corresponding subsets of left-anchored tableaux, and satisfies

inv(U1 ◦ · · · ◦ Ur) = inv(W (1)) + · · ·+ inv(W (r)) + inv(U>). (9.19)

Now observe that the number inv(U>) is equal to the left-hand side of (9.18), summed
over pairs (p1, p2) with p1 < p2. Furthermore, by Observation 3.4, Lemma 3.5, and the
definition of V (Fw, I), we have that inv(V1 ◦ · · · ◦ Vr) is equal to the right-hand side of
(9.18), summed over pairs (p1, p2) with p1 < p2. Thus we may rewrite (9.19) as

inv(U1 ◦ · · · ◦ Ur) = inv(W (1)) + · · ·+ inv(W (r)) + inv(V1 ◦ · · · ◦ Vr),

as desired.

It is clear that a cylindrical tableau U is completely determined by the Young tableau
L(U). Under some conditions the insertion or deletion of a greatest letter in the left
tableau of a cylindrical tableau yields a valid left tableau of another cylindrical tableau.
In these cases, intersecting paths in the two cylindrical tableaux are closely related.

Lemma 9.8. Let Fw be a connected zig-zag network of order n corresponding to the
concatenation (9.4) of star networks (9.4), and let [b, n] be the unique interval containing
n.

1. For any cylindrical Fw-tableau U of shape (n), if T ′ is the Young tableau obtained
from L(U) by deleting the entry n, then there exists a unique cylindrical Fι(w)-tableau
U ′ such that T ′ = L(U ′).

2. For any cylindrical Fι(w)-tableau V ′ of shape (n − 1), let T be the Young tableau
obtained from L(V ′) by inserting the entry n cyclically before any element in [b, n−1]
if the interval [b, n] is maximal in �, and cyclically after any element in [b, n − 1]
otherwise. Then there exists a unique cylindrical Fw-tableau V such that L(V ) = T .
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3. Let tableaux U and U ′ in (1) contain the path families (π1, . . . , πn) and (π′1, . . . , π
′
n−1),

respectively. For all pairs (i, j), if πi, π
′
i have the same sink index, and πj, π

′
j have

the same sink index, then πi and πj intersect if and only if π′i and π′j intersect.

Proof. (1) Let (i1, i2) be a pair of cyclically consecutive entries in T ′. If these entries
are also cyclically consecutive in L(U), then there exists a (unique) path πi1 in Fw from
source i1 to sink i2. Since Fι(w) differs from Fw by the removal of the unique path from
source n to sink n and possibly the contraction of an edge to a single vertex, the image of
πi1 is again the unique path in Fι(w) from source i1 to sink i2. If (i1, i2) are not cyclically
consecutive in L(U), then i1 cyclically precedes n and i2 cyclically follows n in L(U). Thus
either i1 or i2 belongs to [b, n− 1]. Thus in G there is a path from source i1 to the central
vertex of G[b,n] and a path from this vertex to sink i2. It follows that there is a path in
Fw from source i1 to sink i2. Uniqueness of U ′ follows from uniqueness of source-to-sink
paths in zig-zag networks. (See comment following Theorem 3.3.)

(2) Let (i1, i2) be a pair of cyclically consecutive entries in T . If these entries are also
cyclically consecutive in L(V ′), then there exists a (unique) path from source i1 to sink i2
in Fι(w). Since each interval in the concatenation corresponding to Fι(w) is equal to or is
contained in an interval in the concatenation corresponding to Fw, we use Observation 3.4
and the fact that both Fw and Fι(w) are connected to infer that there is a path in Fw from
source i1 to sink i2. Again, uniqueness of V follows from uniqueness of source-to-sink
paths in zig-zag networks.

(3) Let πi, π
′
i, πj, π

′
j satisfy the stated conditions. Then the source and sink indices of

these paths are not equal to n. Suppose first that in the concatenation (9.4) corresponding
to Fw we have t = 1, or d1 = n and d2 < n − 1, or dt = n and dt−1 < n − 1. Then Fι(w)

is the subgraph of Fw obtained by deleting the unique path from source n to sink n. By
the uniqueness of paths in descending star networks, we have πi = π′i and πj = π′j. Now
suppose that in (9.4) we have d1 = n and d2 = n−1, or dt = n and dt−1 = n−1, and let x,
y be the vertices in Fw corresponding to the central vertices of the star networks G[b,n] and
G[c2,d2], respectively, or G[ct−1,dt−1] and G[b,n], respectively. Then Fι(w) is obtained from Fw
by deleting the unique path from source n to sink n, and by contracting the edge (x, y) to
a single vertex z. Thus if πi ∩ πj contains the edge (x, y) then π′i ∩ π′j contains the vertex
z; if πi ∩ πj does not contain the edge (x, y), then π′i ∩ π′j = πi ∩ πj.

Given a zig-zag network F of order n, define Yn(F, i) to be the set of cylindrical F -
tableaux U of shape (n) in which the first entry of L(U) is i. In terms of our earlier
notation, we have

C([n], Fw) =
⋃

16i6n

Yn(Fw, i), CL([n], Fw) = Yn(Fw, 1), (9.20)

where we interpret [n] as the ordered set partition having one block.
Let us examine the map U 7→ U ′ and the numbers inv(U), inv(U ′) defined by

Lemma 9.8 (1) in the case that U ∈ Y (Fw, i) and i 6 n − 1. To be precise, for each
pair (Fw, i) where Fw is a connected zig-zag network of order at least 2 with correspond-
ing concatenation (9.4), poset � of intervals, and [b, n] the unique interval containing n,
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and 1 6 i 6 n− 1, we define a map

δ1 : Yn(Fw, i)→ Yn−1(Fι(w), i)× {0, 1, . . . , n− b− 1}
U 7→ (U ′, k)

by declaring U ′ to be the cylindrical tableau whose left tableau is obtained from L(U) by
deleting n, and by declaring k to be the number of paths following πn in U whose{

sink index belongs to [b, n− 1] if [b, n] maximal in �,
source index belongs to [b, n− 1] otherwise.

For example, let n = 6, recall (9.7), and consider the F256431-tableau and its left Young
tableau

U = 2,54,6 6,1 1,2 3,45,3 , T = 4 6 1 2 5 3 ,

with U ∈ Y6(256431, 4), and [3, 6] not maximal in the poset [3, 6] ≺ [2, 4] ≺ [1, 2]. Remov-
ing 6 from T we have the tableaux

T ′ = 4 1 2 5 3 , U ′ = 4,1 1,2 2,5 5,3 3,4 ,

with T ′ = L(U ′) and U ′ ∈ Y5(F25431, 4). Since the only paths in U which follow π6 and
have source indices in [3, 5] are π5, π3, we have δ1(U) = (U ′, 2).

Lemma 9.9. For each connected zig-zag network Fw of order n, the map δ1 is a bijection.
Furthermore, if δ1(U) = (U ′, k) then we have inv(U) = inv(U ′) + k.

Proof. Assume that Fw corresponds to the concatenation (9.4) in which the unique interval
containing n is [b, n], and let (U ′, k) be a pair in Yn−1(Fι(w), i)× {0, 1, . . . , n− b− 1}. To
invert δ1, find an entry j ∈ [b, n − 1] in the tableau L(U ′) with exactly k − 1 entries in
[b, n − 1] to its right. (This is possible, since k 6 n − 1 − b.) Now create a new Young
tableau T by inserting the letter n into L(U ′) immediately to the left of j if [b, n] is
maximal in �, or immediately to the right of j otherwise. By Lemma 9.8 (2) there is a
unique Fw-tableau U with L(U) = T .

To compare inversions in U and U ′, write

U = (πi1 , . . . , πin),

U ′ = (π′i1 , . . . , π
′
i`−1

, π′i`+1
, . . . , π′in),

where πi` = πn. Observe that all paths except πi`−1
, πi` in U have the same sources and

sinks as the corresponding paths in U ′. Thus by Lemma 9.8 (3), two such paths form an
inversion in U if and only if the corresponding paths form an inversion in U ′. Consider
therefore inversions in U which involve one of the paths πi`−1

, πi` , and inversions in U ′

which involve the path π′i`−1
.

Suppose first that [b, n] is maximal in �. By definition, there are k inversions in U of
the form (πi` , πc), where πc terminates at a sink having index in [b, n− 1]. These in fact
are the only inversions in U involving πi` : since there are no paths in Fw from source n to
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sinks 1, . . . , b− 1, Observation 3.1 implies that πi` cannot intersect any path terminating
at one of these sinks. Now observe that path πi`−1

terminates at sink n, while paths π′i`−1

and πn terminate at sink i`+1. By the maximality of [b, n], we have that i`+1 belongs to
the interval [b, n]. Thus the paths πi`−1

and π′i`−1
are identical from their sources up to the

vertex of Fw (Fι(w)) corresponding to the central vertex of G[b,n]. It follows that any path
in U intersects πi`−1

if and only if the corresponding path in U intersects π′i`−1
. Therefore

we have inv(U) = inv(U ′) + k.
Now suppose that [b, n] is not maximal in �. Then it must be minimal, and since

πi`−1
terminates at sink n, we have i`−1 > b. Consider paths πc with c > b. By the

minimality of [b, n] in �, we have that πc intersects πi`−1
and πi` at the vertex of Fw

(Fι(w)) corresponding to the central vertex of G[b,n]. Thus (πc, πi`−1
) or (πi`−1

, πc) is an
inversion in U if and only if the corresponding pair is an inversion in U ′. By definition,
there are k inversions in U of the form (πi` , πc) with c > b. Now consider paths πc with
c < b. By Observation 3.1, no pair (πi`−1

, πc) is an inversion in U , since there is no path
from source c to sink n in Fw On the other hand, the paths πi` and π′i`−1

are identical
from the vertex of Fw (or Fι(w)) corresonding to the central vertex of G[b,n] to sink i`+1.
Thus each pair (πi` , πc) is an inversion in U if and only if (π′i`−1

, π′c) is an inversion in U ′.
It follows again that inv(U) = inv(U ′) + k.

Note that in the example preceding Lemma 9.9 we have inv(U) = 6 = inv(U ′) + 2,
and δ1(U) = (U ′, 2).

Now let us examine a map U 7→ U ′ and the numbers inv(U), inv(U ′) closely related
to those defined by Lemma 9.8 (1) in the case that U ∈ Y (Fw, n). To be precise, for each
connected zig-zag network Fw of order at least 2 with corresponding concatenation (9.4),
poset � of intervals, and [b, n] the unique interval containing n, we define a map

δ2 : Yn(Fw, n)→
n−1⋃
j=b

Yn−1(Fι(w), j),

U 7→ U ′,

(9.21)

by declaring U ′ to be the cylindrical tableau whose left tableau is obtained from L(U) =
(i1, . . . , in) by

L(U ′) =

{
(i2, . . . , in) if [b, n] maximal in �,
(in, i2, . . . , in−1) otherwise.

The tableau U ′ exists and is unique by Lemma 9.8 (1). If [b, n] is maximal in � then
any path beginning at source n must terminate at a sink in this interval. Thus we have
i2 ∈ [b, n− 1]. If [b, n] is not maximal in � it must be minimal, and any path terminating
at sink n must begin at a source in this interval. Thus we have in ∈ [b, n− 1]. It follows
that U ′ belongs to the union in (9.21).

For example, let n = 6, recall (9.8), and consider the F246531-tableau and its left Young
tableau

U = 3,56,1 1,2 2,3 5,4 4,6 , T = 6 1 2 3 5 4 ,
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with U ∈ Y6(246531, 6), and T having rightmost entry 4. Removing 6 from T and moving
4 to the leftmost position, we have the tableaux

T ′ = 4 1 2 53 , U ′ = 4,1 1,2 2,3 3,5 5,4 ,

with T ′ = L(U ′) and U ′ ∈ Y5(F24531, 4).

Lemma 9.10. For each connected zig-zag network Fw of order n, the map δ2 is a bijection.
Furthermore, if δ2(U) = U ′ ∈ Yn−1(Fι(w), j) and b is as in (9.21) then we have

inv(U) =

{
inv(U ′) + n− b if [b, n] maximal in �,
inv(U ′) + 2n− 2j − 1 otherwise.

Proof. To invert δ2, let U ′ be an element of Y (Fι(w), j) for some 1 6 j 6 n− 1. Create a
Young tableau T from L(U ′) by inserting n into the leftmost position and if [b, n] is not
maximal in � by moving j to the rightmost position. By Lemma 9.8 (2) there is a unique
Fw-tableau U = (πi1 , . . . , πin) satisfying L(U) = T .

To compare inversions in U and U ′, observe first that the paths πi2 , . . . , πin−1 in U
have the same sources and sinks as the corresponding paths in

U ′ =

{
(π′i2 , . . . , π

′
in) if [b, n] is maximal in �,

(π′in = π′j, π
′
i2
, . . . , π′in−1

) otherwise.

Thus by Lemma 9.8 (3), two such paths form an inversion in U if and only if the corre-
sponding paths form an inversion in U ′. Consider therefore inversions in U which involve
the paths πi1 = πn or πin , and inversions in U ′ which involve the path π′in .

If [b, n] is maximal in �, the path πi1 = πn in U terminates at sink i2 ∈ [b, n−1]. Thus
the path, which precedes all others in U , intersects only those n−b other paths in U which
terminate at sinks [b, n]r{i2}, and thus also pass through the vertex of Fw corresponding
to the central vertex of G[b,n]. Now observe that πin terminates at sink n of Fw, while π′in
terminates at sink i2 of Fι(w). Since i2 > b, the paths πin and π′in are identical up to the
vertex of Fw (Fι(w)) which corresponds to the central vertex of G[b,n]. Thus any path πik
in U intersects πin if and only if the corresponding path π′ik in U ′ intersects π′in . It follows
that inv(U) = inv(U ′) + b− n in this case.

If [b, n] is not maximal in �, then it is minimal. Since πin terminates at sink n, we
have that in > b. Thus πin intersects and follows the n− in + 1 paths πin+1, . . . , πn which
all intersect at least at the vertex of Fw (or Fι(w)) corresponding to the central vertex
of G[b,n]. Now observe that the paths πn and π′in both terminate at sink i2. Thus, since
in > b, the paths are identical from the vertex of Fw (Fι(w)) which corresponds to the
central vertex of G[b,n] until sink i2. Thus any path πk in U intersects πn if and only if the
corresponding path π′k in U ′ intersects π′in . It follows that inv(U) = inv(U ′) + n− j + 1
in this case.

Note that in the example preceding Lemma 9.10, the network F246531 (9.8) of order
m = 6 corresponds to the concatenation G[3,6] ◦G[2,4] ◦G[1,2], and the interval [3, 6] is not
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maximal in the poset [3, 6] ≺ [2, 4] ≺ [1, 2]. The tableaux U , U ′ satisfy j = 4, inv(U) = 6,
inv(U ′) = 3, and inv(U) = inv(U ′) + 2m− 2j − 1.

Now we return to the problem of factoring the inner sums in (9.17).

Proposition 9.11. Fix w ∈ Sm avoiding the patterns 3412 and 4231 and an index
j ∈ [m]. Then we have ∑

U∈Ym(Fw,j)

qinv(U) = qj−1O(Fw). (9.22)

Proof. We prove (9.22) by induction on m. The only zig-zag network of order m = 1 is Fe,
e ∈ S1. Thus the set Y1(Fe, 1) consists of one tableau of shape (1) having no inversions.
The left- and right-hand sides of (9.22) are therefore q0 = 1 and q0O(Fe) = [0]q! = 1,
respectively.

Now assume (9.22) to hold for zig-zag networks corresponding to 3412-avoiding, 4231-
avoiding permutations in Sm−1 and consider Fw with w ∈ Sm avoiding the patterns
3412 and 4231. Let Fw correspond to the concatenation (9.4) of star networks with [b,m]
the unique interval containing m, let u = ι(w), and fix an integer j ∈ [m]. If Fw is
disconnected, then the set Ym(Fw, j) is empty and both sides of (9.22) are 0. Assume
therefore that Fw is connected. If j < m, then by Lemma 9.9 and induction we have

∑
U∈Ym(Fw,j)

qinv(U) =
m−b−1∑
k=0

qk
∑

U ′∈Ym−1(Fu,j)

qinv(U ′) = [m− b]qqj−1O(Fu). (9.23)

Similarly, if j = m, then by Lemma 9.10 and induction we have

∑
U∈Ym(Fw,m)

qinv(U) =


m−1∑
k=b

qm−bqk−1O(Fu) if [b,m] maximal in �,

m−1∑
k=b

q2m−2k−1qk−1O(Fu) otherwise,

= [m− b]qqm−1O(Fu).

(9.24)

Now applying (9.11) to (9.23), (9.24), we have for j = 1, . . . ,m that∑
U∈Ym(Fw,j)

qinv(U) = qj−1[m− b]qO(Fu) = qj−1O(Fw).

Applying (9.20) to the previous result, we have the following.

Corollary 9.12. Let w ∈ Sm avoid the patterns 3412 and 4231. Then we have∑
U∈C([m],Fw)

qinv(U) = [m]qO(Fw),
∑

U∈CL([m],Fw)

qinv(U) = O(Fw).
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Now we have the following q-analogs of Theorem 4.7 (iv-a).

Theorem 9.13. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ = (λ1, . . . , λr) ` n,
we have

ψλq (qe,wC
′
w(q)) =

∑
U

qinv(U1◦···◦Ur), (9.25)

where the sum is over all cylindrical Fw-tableaux of shape λ, and

ψλq (qe,wC
′
w(q)) = [λ1]q · · · [λr]q

∑
U

qinv(U1◦···◦Ur), (9.26)

where the sum is over all left-anchored cylindrical Fw-tableaux of shape λ.

Proof. Rewrite the sums above as in (9.17) and factor the resulting inner sums as in
Proposition 9.7. By Corollary 9.12, the right-hand sides of (9.25), (9.26) are both equal
to

[λ1]q · · · [λr]q
∑
I`[n]

type(I)=λ

qinv(V (Fw,I)1◦···◦V (Fw,I)r)O(Fw|I1) · · ·O(Fw|Ir).

By Theorem 9.4, this is ψλq (qe,wC
′
w(q)).

For example, consider the descending star network F3421 in (5.10) and the sum in
(9.25). It is easy to verify that there are eighteen cylindrical F3421-tableaux of shape 31.
Four of these are

2,4

1,1

4,3 3,2

,
4,1

2,2

1,3 3,4

, 3,3

1,2 4,12,4

, 4,4

2,3 3,1 1,2

, (9.27)

where i, j represents the unique path from source i to sink j. These tableaux U of shape
31 yield tableaux U1 ◦ U2 of shape 4,

4,3 3,2 2,4 1,1 , 4,11,3 3,4 2,2 , 1,2 4,12,4 3,3 , 2,3 1,2 4,43,1 , (9.28)

which have 5, 2, 1, and 2 inversions, respectively. Together, they contribute q + 2q2 + q5

to ψ31
q (qe,3421C

′
3421(q)) = 1 + 3q + 5q2 + 5q3 + 3q4 + q5. Now consider the sum in (9.26).

It is easy to verify that there are six left-anchored cylindrical F3421-tableaux of shape 31:
the second and third tableaux in (9.27) and the four tableaux

4,2

1,1

2,3 3,4

,
3,2

1,1

2,4 4,3

, 4,4

1,2 2,3 3,1

, 4,4

1,3 3,2 2,1

.

These tableaux U of shape 31 yield six tableaux U1 ◦U2 of shape 4: the second and third
tableaux in (9.28) and the four tableaux

2,3 4,2 1,13,4 , 2,4 3,2 1,14,3 , 1,2 3,12,3 4,4 , 1,3 2,13,2 4,4 ,
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which have 2, 1, 2, 3, 0, and 1 inversions, respectively. Together, the six tableaux con-
tribute 1 + 2q + 2q2 + q3 to [3]q[1]q(1 + 2q + 2q2 + q3) = ψ31

q (qe,3421C
′
3421(q)).

As a consequence of Theorem 9.13, we now have the following analog of Corollary 6.5.
Say that a partition λ of n is a refinement of another partition (or composition) µ of n
if λ can be obtained from µ by replacing each part µi by an integer partition of µi and
sorting the results into weakly decreasing order.

Corollary 9.14. Let w ∈ Sn avoid the patterns 3412 and 4231and let the component
sizes of Fw be µ = (µ1, . . . , µs). Then we have

ψλq (qe,wC
′
w(q)) = 0.

if and only if λ is not a refinement of µ.

Proof. It is clear that if λ is not a refinement of µ, then there is no cylindrical Fw-tableau
of shape λ. Therefore by Theorem 9.13 we have that ψλq (qe,wC

′
w(q)) = 0. Suppose on the

other hand that λ = (λ1, . . . , λr) is a refinement of µ, and let J1, . . . , Js be the subintervals
of [n] corresponding to the connected components of Fw. Then there exists an ordered set
partition I = (I1, . . . , Ir) ` [n], whose type is a rearrangement of λ, such that each block
of J is a union of several consecutive blocks of I. Let π = (π1, . . . , πn) be the unique
path family of type e covering Fw. It is clear now that we can construct at least one
record-free, row-semistrict Fw tableau of type e and shape λ, by creating a row containing
the paths πa, . . . , πb (in order) for each block [a, b] of I. By Theorem 9.1, we therefore
have ψλq (qe,wC

′
w(q)) 6= 0.

It would be interesting to extend Theorem 9.13 to include a q-analog of Theorem 4.7
(iv-b). In particular the fourth identity in Equation (1.2) suggests that an answer to
Problem 4.8 and its q-analog are related to a set partition of tableaux counted by ψλ. It
is not clear whether such a partition is more easily expressed in terms of record-free, row-
semistrict Fw-tableaux of type e, right-anchored, row-semistrict Fw-tableaux of type e,
cylindrical Fw-tableaux, left-anchored cylindrical Fw-tableaux, or cyclically row-semistrict
Fw-tableaux of type e.

Problem 9.15. Find a statistic stat on F -tableaux such that we have

ψλq (qe,wC
′
w(q)) =

∑
U

qstat(U),

where the sum is over all cyclically row-semistrict Fw-tableaux of type e and shape λ.

It would also be interesting to show that all stated interpretations of ψλq (qe,wC
′
w(q))

remain valid if we reverse the order of concatenating rows of tableaux: this may turn out
to be the easiest way to link the Hn(q)-traces ψλq and φµq .

Problem 9.16. Show that Theorems 9.1, 9.4, 9.13 remain valid if one replaces the
numbers inv(U1 ◦ · · · ◦ Ur), inv(UR

1 ◦ · · · ◦ UR
r ), inv(V (Fw, I)1 ◦ · · · ◦ V (Fw, I)r), with

inv(Ur ◦ · · · ◦ U1), inv(UR
r ◦ · · · ◦ UR

1 ), inv(V (Fw, I)r ◦ · · · ◦ V (Fw, I)1), respectively.
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10 Results concerning φλq(qe,wC
′
w(q))

Recall that the component statements of Theorem 4.7 pertaining to monomial traces are
weaker than those pertaining to other traces. To state a q-analog of Theorem 4.7 (v-a), we
will use several partial orders, including majorization and refinement of integer partitions.
We will use the symbol E to denote majorization and 6R to denote refinement, as defined
before Corollary 9.14. We begin by stating an analog of Corollaries 6.5, 8.2.

Proposition 10.1. Fix λ = (λ1, . . . , λr) ` n and w ∈ Sn avoiding the patterns 3412 and
4231. If w1 · · ·wn has a decreasing subsequence of length greater than λ1, then we have
φλq (qe,wC

′
w(q)) = 0.

Proof. Let w ∈ Sn have a decreasing subsequence of length greater than λ1 and recall
that there exist integers {aλ,µ |λ, µ ` n} such that

φλq =
∑
µDλ>

aλ,µε
µ
q .

If φλq (qe,wC
′
w(q)) 6= 0 then some partition µ in the above sum satisfies εµq (qe,wC

′
w(q)) 6= 0.

But the number of parts of µ is necessarily less than or equal to λ1. This contradicts
Corollary 6.5.

Similarly, we have a partial analog of Corollary 9.14.

Proposition 10.2. Let w ∈ Sn avoid the patterns 3412 and 4231 and let the component
sizes of Fw (in weakly decreasing order) be µ = (µ1, . . . , µr). Then for each partition λ ` n
not refining µ we have

φλq (qe,wC
′
w(q)) = 0.

Proof. Observe that we may rewrite the last equation in (1.2) as

ψλq =
∑
ν>Rλ

Lλ,νφ
ν
q ,

since no row-constant Young tableau of shape λ has content ν unless λ refines ν. Inverting
the matrix (Lλ,ν)λ,ν`n and evaluating traces at qe,wC

′
w(q) we have

φλq (qe,wC
′
w(q)) =

∑
ν>Rλ

L−1
λ,νψ

λ
q (qe,wC

′
w(q)). (10.1)

Now suppose that we have λ 66R µ. Then each partition ν in (10.1) satisfies ν 66R µ. By
Corollary 9.14, each term on the right-hand side of (10.1) is zero.

We remark that Propositions 10.1, 10.2 are not new: they follow from [11, Prop. 4.1].
For more facts about these evaluations, see [11, Sec 4].

Now we complete the proof of Theorem 4.7 (v-a) and provide a q-analog of this result.
Let TC(Fw, µ) denote the set of column-strict Fw-tableaux of shape µ and type e.
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Theorem 10.3. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ1 6 2 we have

φλq (qe,wC
′
w(q)) =


∑

U∈TC(Fw,λ)

qinv(U) if for all µ / λ we have TC(Fw, µ) = ∅,

0 otherwise.

(10.2)

Proof. The claim is true for λ = 1n, since φ1n

q = ε
(n)
q and the claimed formula coincides

with that in Theorem 6.4. Suppose that the claim holds for λ = 21n−2, . . . , 2k−11n−2k+2

and consider the case λ = 2k1n−2k (k 6 bn
2
c). Then we have

ε(n−k,k)
q (qe,wC

′
w(q)) =

k∑
i=0

M2k1n−2k,2i1n−2iφ2i1n−2i

q (qe,wC
′
w(q)), (10.3)

where Mλ,µ is the number of column-strict Young tableaux of shape λ and content µ. It
is easy to see that M2k1n−2k,2i1n−2i is equal to

(
n−2i
k−i

)
. By Theorem 6.4, the left-hand side

of (10.3) is the sum of qinv(U) over U ∈ TC(Fw, 2
k1n−2k).

If w has a decreasing subsequence of length three, then by Proposition 10.1, the left-
hand side of (10.2) is 0. By the proof of Corollary 6.5, we have TC(Fw, µ) = ∅ for all
µ E λ, and the right-hand side of (10.2) is 0 as well.

Assume therefore that w avoids the pattern 321. By Theorem 3.7, every connected
component of Fw induces a subposet of P (Fw) which is isomorphic to P (Hk) where

Hk = ��
��
��
��
��
��
��
��

�� ��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

k −1

2k −

1

2

3

k −1

2k −

1

2

3

kk

.

Let b = b(w) be the number of odd components of Fw. Then it is possible to construct
an Fw-tableau which has b more paths in column 1 than it has in column 2, but it is not
possible to construct an Fw-tableau for which this difference is greater than b. That is,
for j = n−b

2
we have TC(Fw, 2

j1n−2j) 6= ∅ while

TC(Fw, 1
n) = TC(Fw, 21n−2) = · · · = TC(Fw, 2

j−11n−2j+2) = ∅. (10.4)

Fix U ∈ TC(Fw, 2
j1n−2j), and let the interval [p1, p2m+1] of sources and sinks define an odd

component of Fw. Then paths indexed by p1, p3, . . . , p2m+1 belong to the first column of
U while those indexed by p2, . . . , p2m belong to the second column. Note that swapping
the columns of the two sets of paths creates a valid column-strict Fw-tableau of shape
2j+11n−2j−2 which has the same number of inversions as U . Thus for each such tableau
U , we may create a column-strict Fw-tableau U ′ of shape 2k1n−2k by choosing k − j
of the odd components and swapping the columns of the even and odd indexed paths
within these components. There are

(
n−2j
k−j

)
ways to do this. Conversely, every tableau

U ′ ∈ TC(Fw, 2
k1n−2k) arises in this way. Thus we have

ε(n−k,k)
q (qe,wC

′
w(q)) =

(
n−2j
k−j

) ∑
U∈TC(Fw,2j1n−2j)

qinv(U). (10.5)
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If j < k, then we have by induction and (10.4) that φ2i1n−2i

q (qe,wC
′
w(q)) = 0 for i < k,

i 6= j. Now (10.5) implies that φ2k1n−2k

q (qe,wC
′
w(q)) = 0, and the claim is true. If j = k,

then we have by (10.3) – (10.4) that ε
(n−k,k)
q (qe,wC

′
w(q)) = φ2k1n−2k

q (qe,wC
′
w(q)) and by

(10.5) the claim again is true.

We remark that the obvious q-analogs of Theorem 4.7 (v-b) are false. Consider the
permutation w = 3142 and the evaluation φ22

q (qe,wC
′
w(q)) = q+ q2. Fw is the penultimate

zig-zag network in (3.4), and there are two column-strict cylindrical Fw-tableaux of shape
22,

4,3 3,4

2,1 1,2

, 3,4 4,3

1,2 2,1

.

Unfortunately, as U varies over these tableaux we have∑
U

qinv(U) = 1 + q3,
∑
U

qinv(U1◦U2) = 1 + q2,
∑
U

qinv(U2◦U1) = q + q3.

Perhaps a correct q-analog of Theorem 4.7 (v-b) would help with the formulation of
an interpretation of φλq (qe,wC

′
w(q)) when w avoids the patterns 3412 and 4231. Given

Theorems 5.4, 6.4, 8.1, 9.1, 9.4, and 9.13, it seems reasonable to hope that Fw-tableaux
can play an important role in such an interpretation.

Problem 10.4. Find a property X of Fw-tableaux and a statistic stat such that for
λ ` n and w avoiding the patterns 3412 and 4231 we have

φλq (qe,wC
′
w(q)) =

∑
U

qstat(U),

where the sum is over all Fw-tableaux U of shape λ having property X.

Acknowledgements

The authors are grateful to Kaitlyn Peterson, Daniel Studenmund, and Michelle Wachs
for helpful conversations, to Lehigh University, the University of Miami, and Universidad
de los Andes for financial support and hospitality. The authors are also grateful to an
anonymous referee for helpful comments.

References

[1] C. Athanasiadis. Power sum expansion of chromatic quasisymmetric functions
(2014). arXiv:1409.2595.

[2] D. Beck, J. Remmel, and T. Whitehead. The combinatorics of transition
matrices between the bases of the symmetric functions and the bn analogues. Discrete
Math., 153 (1996) pp. 3–27.

the electronic journal of combinatorics 23(2) (2016), #P2.7 54

http://arxiv.org/abs/1409.2595


[3] S. Billey and V. Lakshmibai. Singular loci of Schubert varieties , vol. 182 of
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