4-Factor-criticality of vertex-transitive graphs

Wuyang Sun*
Center for Discrete Mathematics
Fuzhou University
Fuzhou, Fujian 350108, China
swywuyang@163.com

Heping Zhang
School of Mathematics and Statistics
Lanzhou University
Lanzhou, Gansu 730000, China
zhanghp@lzu.edu.cn

Submitted: Nov 3, 2014; Accepted: Jun 18, 2016; Published: Jul 8, 2016
Mathematics Subject Classifications: 05C70

Abstract

A graph of order \(n \) is \(p \)-factor-critical, where \(p \) is an integer of the same parity as \(n \), if the removal of any set of \(p \) vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertex-transitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graph of even order and degree at least 5 is 2-extendable.

Keywords: Vertex-transitive graph; 4-Factor-criticality; Matching; Connectivity

1 Introduction

Only finite and simple graphs are considered in this paper. A matching of a graph is a set of its mutually nonadjacent edges. A perfect matching of a graph is a matching covering all its vertices. A graph is called factor-critical if the removal of any one of its vertices results in a graph with a perfect matching. A graph is called bicritical if the removal of any pair of its distinct vertices results in a graph with a perfect matching. The concepts of factor-critical and bicritical graphs were introduced by Gallai [9] and by Lovász [12], respectively. In matching theory, factor-critical graphs and bicritical graphs are two basic bricks in matching structures of graphs [17]. Later on, the two concepts were generalized to the concept of \(p \)-factor-critical graphs by Favaron [7] and Yu [21], independently. A graph of order \(n \) is said to be \(p \)-factor-critical, where \(p \) is an integer of the same parity as \(n \), if the removal of any \(p \) vertices results in a graph with a perfect matching.

*Supported by NSFC grant 11371180.
q-extendable graphs was proposed by Plummer [17] in 1980. A connected graph of even order n is \textit{q-extendable}, where q is an integer with $0 \leq q < n/2$, if it has a perfect matching and every matching of size q is contained in one of its perfect matchings. Favaron [8] showed that for q even, every connected non-bipartite q-extendable graph is q-factor-critical. In 1993 Yu [21] introduced an analogous concept for graphs of odd order. A connected graph of odd order is $q_{1/2}$-extendable, if the removal of any one of its vertices results in a q-extendable graph.

A graph G is said to be \textit{vertex-transitive} if for any two vertices x and y in G there is an automorphism φ of G such that $y = \varphi(x)$. A graph with a perfect matching is \textit{elementary} if the union of its all perfect matchings forms a connected subgraphs. In [13], there is a following classic result about the factor-criticality and bicriticality of vertex-transitive graphs.

\textbf{Theorem 1} ([13]). \textit{Let G be a connected vertex-transitive graph of order n. Then
(a) G is factor-critical if n is odd;
(b) G is either elementary bipartite or bicritical if n is even.}

A question arises naturally: Does a vertex-transitive non-bipartite graph has larger p-factor-criticality?

In fact, the q-extendability and $q_{1/2}$-extendability of Cayley graphs, an important class of vertex-transitive graphs, have been investigated in literature. It was proved in papers [3, 4, 16] that a connected Cayley graph of even order on an abelian group, a dihedral group or a generalized dihedral group is 2-extendable except for several circulant graphs of degree at most 4. Miklavčič and Šparl [16] also showed that a connected Cayley graph on an abelian group of odd order $n \geq 3$ either is a cycle or is $1_{1/2}$-extendable. Chan et al. [3] raised the problem of characterizing 2-extendable Cayley graphs.

In [22], we showed that a connected vertex-transitive graph of odd order $n \geq 3$ is 3-factor-critical if and only if it is not a cycle. This general result is stronger than $1_{1/2}$-extendability of Cayley graphs. In this paper, we obtain the following main result which gives a simple characterization of 4-factor-critical vertex-transitive non-bipartite graphs.

\textbf{Theorem 2.} \textit{Let G be a connected vertex-transitive non-bipartite graph of degree k and of even order at least 6. Then G is 4-factor-critical if and only if $k \geq 5$.}

By Theorem 2, we know that all connected non-bipartite Cayley graphs of even order and of degree at least 5 is 2-extendable.

The necessity of Theorem 2 is clear. Our main task is to show the sufficiency of Theorem 2 by contradiction. Suppose that G is a connected non-bipartite vertex-transitive graph G of even order at least 6 and of degree at least 5 but G is not 4-factor-critical. By the s-restricted edge-connectivity of G, we find that in most cases a suitable integer s can be chosen such that every λ_s-atom of G is an imprimitive block. Then we can deduce contradictions. Some preliminary results are presented in Section 2 and some properties of λ_s-atoms of G which are used to show their imprimitivity are proved in Section 3. Finally, we complete the proof of Theorem 2 in Section 4.
2 Preliminaries

In this section, we introduce some notations and results needed in this paper.

Let $G = (V(G), E(G))$ be a graph. For $X \subseteq V(G)$, let $\overline{X} = V(G) \backslash X$. For $Y \subseteq \overline{X}$, denote by $[X, Y]$ the set of edges of G with one end in X and the other in Y. In particular, we denote $[X, \overline{X}]$ by $\nabla(X)$ and denote $|\nabla(X)|$ by $d_G(X)$. Denote by $N_G(v)$ the set of vertices in \overline{X} which are ends of some edges in $\nabla(X)$. If $X = \{v\}$, then X is usually written to v. Vertices in $N_G(v)$ are called the neighbors of v. If no confusion exists, the subscript G are usually omitted. Denote by $G[X]$ the subgraph induced by X and denote by $G - X$ the subgraph induced by \overline{X}. The set of edges in $G[X]$ is denoted by $E(X)$. Denote by $c_0(G)$ the number of the components of G which have odd order. For a subgraph H of G, we denote $d_G(V(H_i))$ and $\nabla(V(H_i))$ by $d_G(H_i)$ and $\nabla(H_i)$, respectively.

For a connected graph G, a subset $F \subseteq E(G)$ is said to be an edge-cut of G if $G - F$ is disconnected, where $G - F$ is the graph with vertex-set $V(G)$ and edge-set $E(G) \backslash F$. The edge-connectivity of G is the minimum cardinality over all the edge-cuts of G, denoted by $\lambda(G)$. A subset $X \subseteq V(G)$ is called a vertex-cut of G if $G - X$ is disconnected. The vertex-connectivity of G of order n, denoted by $\kappa(G)$, is $n - 1$ if G is the complete graph K_n and is the minimum cardinality over all the vertex-cuts of G otherwise. It is well known that $\kappa(G) \leq \lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum vertex-degree of G.

There are two properties of p-factor-critical graphs.

Theorem 3 ([7, 21]). A graph G is p-factor-critical if and only if $c_0(G - X) \leq |X| - p$ for all $X \subseteq V(G)$ with $|X| \geq p$.

Theorem 4 ([7]). If a graph G is p-factor-critical with $1 \leq p < |V(G)|$, then $\kappa(G) \geq p$ and $\lambda(G) \geq p + 1$.

Let X be a subset of $V(G)$. Denoted by $\mathfrak{C}_{G - X}$ the set of the components of $G - X$. X is called to be matchable to $\mathfrak{C}_{G - X}$ if the bipartite graph G_X, which arises from G by contracting the components in $\mathfrak{C}_{G - X}$ to single vertices and deleting all the edges in $E(X)$, contains a matching covering X. The following general result will be used.

Theorem 5 ([5]). Every graph G contains a set X of vertices with the following properties:
(a) X is matchable to $\mathfrak{C}_{G - X}$;
(b) Every component of $G - X$ is factor-critical.

Given any such set X, the graph G contains a perfect matching if and only if $|X| = |\mathfrak{C}_{G - X}|$.

The girth of a graph G with a cycle is the length of a shortest cycle in G and the odd girth of a non-bipartite graph G is the length of a shortest odd cycle in G. The girth and odd girth of G are denoted by $g(G)$ and $g_0(G)$, respectively. l-cycle means a cycle of length l. We present two useful lemmas as follows.

Lemma 6 ([15]). Let G be a graph with $g_0(G) > 3$. Then $|E(G)| \leq \frac{1}{4}|V(G)|^2$.

Lemma 7 ([1]). Let G be a k-regular graph. If $g_0(G) > 3$, then $|V(G)| \geq kg_0(G)/2$.

Now we list some useful properties of vertex-transitive graphs as follows.
Theorem 8 ([14]). Let G be a connected vertex-transitive k-regular graph. Then $\lambda(G) = k$.

Theorem 9 ([19]). Let G be a connected vertex-transitive k-regular graph. Then $\kappa(G) > \frac{2}{3}k$.

Lemma 10 ([19]). Let G be a connected vertex-transitive k-regular graph. If $\kappa(G) < k$, then $\kappa(G) = m\tau(G)$ for some integer $m \geq 2$, where

\[\tau(G) = \min\{\min\{|V(P)| : P \text{ is a component of } G - X\} : X \text{ is a minimum vertex-cut of } G\} \]

Lemma 11 ([19]). Let G be a connected vertex-transitive k-regular graph with $k = 4$ or 6. Then $\kappa(G) = k$.

An imprimitive block of G is a proper non-empty subset X of $V(G)$ such that for any automorphism φ of G, either $\varphi(X) = X$ or $\varphi(X) \cap X = \emptyset$.

Lemma 12 ([18]). Let G be a vertex-transitive graph and X be an imprimitive block of G. Then $G[X]$ is also vertex-transitive.

Theorem 13 ([10]). Let G be a connected vertex-transitive k-regular graph of order n. Let S be a subset of $V(G)$ chosen such that $\frac{1}{2}(k + 1) \leq |S| \leq \frac{1}{2}n$, $d(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. If $d(S) < \frac{2}{3}(k + 1)^2$, then S is an imprimitive block of G.

Corollary 14 ([10]). Let G be a connected vertex-transitive k-regular graph of order n. Let S be a subset of $V(G)$ chosen such that $1 < |S| \leq \frac{1}{2}n$, $d_G(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. If $d_G(S) < 2(k - 1)$, then $d_G(S) = |S| \geq k$ and $d_G[S](v) = k - 1$ for all $v \in S$.

Corollary 15. Let G be a connected vertex-transitive k-regular graph. Suppose $g(G) > 3$ or $|V(G)| < 2k$. Then $d_G(X) \geq 2k - 2$ for every $X \subseteq V(G)$ with $2 \leq |X| \leq |V(G)| - 2$.

Proof. If $k = 2$, then it is trivial. Now suppose $k \geq 3$ and that there is a subset $X \subseteq V(G)$ with $2 \leq |X| \leq |V(G)| - 2$ such that $d_G(X) < 2k - 2$. Let S be a subset of $V(G)$ chosen such that $1 < |S| \leq \frac{1}{2}|V(G)|$, $d_G(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. Then $d_G(S) \leq d_G(X) < 2k - 2$. By Corollary 14, $d_G(S) = |S| \geq k$ and $d_G[S](v) = k - 1$ for all $v \in S$. As $2k - 3 < \frac{3}{2}(k + 1)^2$, S is an imprimitive block of G by Theorem 13. Then $|S|$ is a divisor of $|V(G)|$, which implies $|V(G)| \geq 2|S| \geq 2k$. Thus $g(G) > 3$. Noting that $|E(S)| = \frac{1}{2}(k - 1)|S| \leq \frac{1}{4}|S|^2$ by Lemma 6, we have $d_G(S) = |S| \geq 2k - 2$, a contradiction.

A subset X of $V(G)$ is called an independent set of G if any two vertices in X are not adjacent. The maximum cardinality of independent sets of G is the independent number of G, denoted by $\alpha(G)$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1 4
Lemma 16. Let G be a non-bipartite vertex-transitive k-regular graph. Then $\alpha(G) \leq \frac{1}{2}|V(G)| - \frac{k}{4}$ if $g_0(G) > 3$, and $\alpha(G) \leq \frac{1}{2}|V(G)|$ if $g_0(G) = 3$.

Proof. Let X be a maximum independent set of G and set $g_0 := g_0(G)$. Noting that G is regular and non-bipartite, we have $|X| < |X|$. Set $t = |X| - |X|$. Since G is vertex-transitive, the number of g_0-cycles of G containing any given vertex in G is constant. Let q be this constant number and let m be the number of all the g_0-cycles of G. Note that each g_0-cycle of G contains at most $(g_0 - 1)/2$ vertices in X and at least $(g_0 + 1)/2$ vertices in X. We have $q|X| \leq \frac{1}{2}m(g_0 - 1)$ and $q|X| \geq \frac{1}{2}m(g_0 + 1)$, which implies $qt = q(|X| - |X|) \geq m$.

We know $q|V(G)| = mg_0$ by the vertex-transitivity of G. Then $qt \geq m = q\frac{2}{g_0}|V(G)|$, implying $t \geq \frac{|V(G)|}{g_0}$. If $g_0 = 3$, then $\alpha(G) = \frac{1}{2}(|V(G)| - t) \leq \frac{1}{3}|V(G)|$. If $g_0 > 3$, then $|V(G)| \geq kg_0/2$ by Lemma 7, which implies $\alpha(G) = \frac{1}{2}(|V(G)| - t) \leq \frac{1}{2}|V(G)| - \frac{k}{4}$.

A graph G is called trivial if $|V(G)| = 1$.

Lemma 17. Let G be a connected vertex-transitive non-bipartite graph. Let X be an independent set of G. Suppose that $G - X$ has $|X| - t$ trivial components, where t is a positive integer. Then $g_0(G) \geq \frac{2|X|}{t} + 1$.

Proof. Let Y be the set of vertices in the trivial components of $G - X$ and set $g_0 := g_0(G)$. Let $n_{i,j}$ be the number of g_0-cycles of G which contain exactly i vertices in X and j vertices in Y. Set $s = \frac{1}{2}(g_0 - 1)$. Since X and Y are independent sets of G, each g_0-cycle of G contains at most s vertices in X and contains less vertices in Y than in X. Let q be the number of g_0-cycles of G containing any given vertex in G. We have $\sum_{0 \leq j < i \leq s} in_{i,j} = q|X|$ and $\sum_{0 \leq j < i \leq s} jn_{i,j} = q|Y| = q(|X| - t)$. Then $q|X| = \sum_{0 \leq j < i \leq s} in_{i,j} \leq \sum_{0 \leq j < i \leq s} s(i - j)n_{i,j} = s(\sum_{0 \leq j < i \leq s} in_{i,j} - \sum_{0 \leq j < i \leq s} jn_{i,j}) = sqt = s\frac{1}{2}(g_0 - 1)qt$, which implies $g_0 \geq \frac{2|X|}{t} + 1$.

Lemma 18. Let G be a vertex-transitive graph with a triangle. Then the number of trivial components of $G - X$ is not larger than $|E(X)|$ for each subset $X \subseteq V(G)$.

Proof. Let Y be the set of vertices in the trivial components of $G - X$. Suppose $|Y| > |E(X)|$. Let q be the number of triangles of G containing any given vertex in G. Note that there are $q|Y|$ triangles of G containing vertices in Y. As $|Y| > |E(X)|$, it implies that $G[X]$ has an edge e which is contained in more than q triangles. This means that more than q triangles containing both ends of e, a contradiction.

Lemma 19. Let G be a connected triangle-free vertex-transitive 6-regular graph of even order. Suppose that there are 3 distinct vertices with the same neighbors. Then G is bipartite.

Proof. Suppose, to the contrary, that G is non-bipartite. Then $g_0 := g_0(G) \geq 5$. Let $C = u_0u_1 \ldots u_{g_0-1}u_0$ be a g_0-cycle of G. For any pair of vertices u and v in $V(C)$, we know $N(u) \neq N(v)$. So for each $u_i \in V(C)$ there are two distinct vertices u_i' and u_i'' in $V(C)$ such that $N(u_i) = N(u_i') = N(u_i'')$ by the vertex-transitivity of G. Set
Let $U_i = \{u_i, u'_i, u''_i\}$. Then U_i is an independent set of G and $U_i \cap U_j = \emptyset$ for $j \neq i$. Noting that u_i and u_{i+1} are adjacent, we have that every vertex in U_i is adjacent to every vertex in U_{i+1}, where $i + 1$ is an arithmetic on modular g_0. Since G is 6-regular and connected, $|V(G)| = |\bigcup_{i=0}^{g_0-1} U_i| = 3g_0$, which implies that $|V(G)|$ is odd, a contradiction.\qed

\section{λ_s-atoms of vertex-transitive graphs}

In this section, we will introduce some properties of the λ_s-atoms of vertex-transitive graphs. The concept of λ_s-atoms [11, 20] of graphs is used in investigating the s-restricted edge-connectivity of graphs. The s-restricted edge-connectivity of graphs was proposed by Fàbrega and Fiol [6].

For a connected graph G and some positive integer s, an edge-cut F of G is said to be an s-restricted edge-cut of G if every component of $G - F$ has at least s vertices. The minimum cardinality of s-restricted edge-cuts of G is the s-restricted edge-connectivity of G, denoted by $\lambda_s(G)$. By the definition of $\lambda_s(G)$, we can see that $\lambda(G) = \lambda_1(G) \leq \lambda_2(G) \leq \lambda_3(G) \cdots$ as long as these parameters exists.

A proper subset X of $V(G)$ is called a λ_s-fragment of G if $\nabla(X)$ is an s-restricted edge-cut of G with minimum cardinality. We can see that for every λ_s-fragment X of G, $G[X]$ and $G[X]$ are connected graphs of order at least s. A λ_s-fragment of G with minimum cardinality is called a λ_s-atom of G.

Lemma 20. Let G be a connected triangle-free vertex-transitive graph of degree $k \geq 5$. For an integer s with $4 \leq s \leq 8$, suppose $\lambda_s(G) \leq 3k$. Let S be a λ_s-atom of G.

(a) For $X \subseteq V(G)$ with $|X| \geq s$ and $|\overline{X}| \geq s$, we have $d_G(X) \geq \lambda_s(G)$. Furthermore, $d_G(X) > \lambda_s(G)$ if $G[X]$ or $G[\overline{X}]$ is disconnected.

(b) For $A \subseteq S$ with $1 \leq |A| \leq |S| - s$, we have $d_{G[S]}(A) > \frac{1}{2}d_G(A)$.

c) For each λ_s-atom T of G with $S \neq T$ and $S \cap T \neq \emptyset$, we have $d_G(S \cap T) + d_G(S \cup T) \leq 2\lambda_s(G)$, $d_G(S \cap T) + d_G(T \setminus S) \leq 2\lambda_s(G)$, $|S \cap T| \leq s - 1$ and $|S \setminus T| \leq s - 1$.

Proof. (a) If $G[X]$ and $G[\overline{X}]$ are connected, then $\nabla(X)$ is an s-restricted edge-cut of G and hence $d_G(X) > \lambda_s(G)$. Thus it only needs to show $d_G(X) > \lambda_s(G)$ if $G[X]$ or $G[\overline{X}]$ is disconnected.

Suppose that $G[X]$ is disconnected. If each component of $G[X]$ has less than 4 vertices, then $d_G(X) = k|X| - 2|E(X)| \geq k|X| - 2(|X| - 2) \geq (k - 2)s + 4 > 3k > \lambda_s(G)$. Then we assume that $G[X]$ has a component H_1 with at least 4 vertices. If each component of $G[\overline{V}(H_1)]$ has less than 4 vertices, then $d_G(X) > d_G(H_1) = d_G(\overline{V}(H_1)) > \lambda_s(G)$. Then we assume further that $G[\overline{V}(H_1)]$ has a component H_2 with at least 4 vertices. Noting that both G and H_1 are connected, we have that $G[\overline{V}(H_2)]$ is connected, which implies that $\nabla(H_2)$ is a 4-restricted edge-cut of G. Noting that $\lambda(G) = k$ by Theorem 8, we have $d_G(X) > \lambda(G) + d_G(H_1) \geq k + d(V(H_2)) > k + \lambda_4(G)$.

So $d(X) > \lambda_4(G)$. Next we consider the case that $5 \leq s \leq 8$. Set $\tau_s(G) = \min\{d(A) : A \subseteq V(G), 4 \leq |A| \leq s - 1\}$. Then $\lambda_4(G) \geq \min\{\lambda_s(G), \tau_s(G)\}$. For each subset $A \subseteq V(G)$ with $4 \leq |A| \leq 7$, noting that $|E(A)| \leq \frac{1}{2}|A|^2$ by Lemma 6, we have $d(A) = k|A| - 2|E(A)| \geq k|A| - \frac{1}{2}|A|^2 > 2k$. Hence $\tau_s(G) > 2k$. If $\lambda_s(G) > 2k$, then $d(X) > \lambda_s(G)$.
Proof. Suppose, to the contrary, that vertex-transitive graph of degree \(k \). If \(\lambda_s(G) \leq 2k \), then, noting \(\min\{\lambda_s(G), \tau_s(G)\} \leq \lambda_4(G) \leq \lambda_s(G) \), we have \(d(X) \geq k + \lambda_4(G) = k + \lambda_s(G) > \lambda_s(G) \).

(b) To the contrary, suppose \(d_{G[S]}(A) \leq \frac{1}{2}d_{G}(A) \). Then \(d_{G}(S \setminus A) = d_{G}(S) - (d_{G}(A) - 2d_{G[S]}(A)) \leq d_{G}(S) = \lambda_s(G) \). By (a), \(G[S \setminus A] \) and \(G[\overline{S} \cup A] \) are connected. Hence \(\nabla(S \setminus A) \) is an s-restricted edge-cut of \(G \). By the minimality of \(\lambda_s \)-atoms of \(G \), we have \(d_{G}(S \setminus A) > \lambda_s(G) \), a contradiction.

(c) By the well-known submodular inequality (see [2] for example), we have that \(d_{G}(S \cap T) + d_{G}(S \cup T) \leq d_{G}(S) + d_{G}(T) = 2\lambda_s(G) \) and \(d_{G}(S \cap T) + d_{G}(T \setminus S) = d_{G}(S \cap \overline{T}) + d_{G}(S \cup \overline{T}) \leq d_{G}(S) + d_{G}(\overline{T}) = 2\lambda_s(G) \). Next we show \(|S \cap T| \leq s - 1 \) and \(|S \setminus T| \leq s - 1 \). Clearly, they hold if \(|S| = s \). So we may assume \(|S| > s \).

Suppose \(|S \cap T| \geq s \). Then \(d_{G}(S \cap T) = d_{G}(S) + 2d_{G[S]}(S \setminus T) - d_{G}(S \setminus T) > d_{G}(S) = \lambda_s(G) \) by (b). Noting \(|S \cup T| \geq |V(G)| - |S| - |T| + |S \cap T| \geq s \), we have \(d_{G}(S \cup T) \geq \lambda_s(G) \) by (a). Hence \(d_{G}(S \cap T) + d_{G}(S \cup T) > 2\lambda_s(G) \), a contradiction. Thus \(|S \cap T| \leq s - 1 \).

If \(|S \cap T| = |T \setminus S| \geq s \), then we can similarly obtain \(d_{G}(S \cap T) > \lambda_s(G) \) and \(d_{G}(T \setminus S) > \lambda_s(G) \) by (b), which implies \(d_{G}(S \cap T) + d_{G}(T \setminus S) > 2\lambda_s(G) \), a contradiction. Thus \(|S \setminus T| \leq s - 1 \).

Lemma 21. Let \(G \) be a connected triangle-free vertex-transitive 5-regular graph of even order. For \(s = 5 \) or \(6 \), suppose \(\lambda_s(G) = s + 9 \). Then \(|S| \geq s + 5 \) for a \(\lambda_s \)-atom \(S \) of \(G \).

Proof. Suppose, to the contrary, that \(|S| < s + 5 \). As \(s + 9 = d_{G}(S) = 5|S| - 2|E(S)| \), \(|S| \) and \(s \) have different parities. Hence \(|S| \geq s + 1 \). By Lemma 20(b), \(\delta(G[S]) \geq 3 \). If \(|S| = s + 1 \), then \(2|E(S)| \geq \delta(G[S]) |S| \geq 3 |S| \), which implies \(d_{G}(S) = 5|S| - 2|E(S)| \leq 2|S| = 2s + 2 < s + 9 \), a contradiction. Thus \(|S| = s + 3 \). Let \(R \) be the set of vertices \(u \) in \(S \) with \(d_{G[S]}(u) = 3 \). By Lemma 20(b), \(E(R) = \emptyset \). Noting \(3s + 9 \leq \sum_{u \in S} d_{G[S]}(u) = 2|E(S)| = 5|S| - \lambda_s(G) = 4s + 6 \), we have \(|R| \geq |S| - (4s + 6 - 3s - 9) = 6 \). Since \(s = 5 \) or \(6 \), \(d_{G[S]}(R) = 3|R| \geq 18 > 5(s - 3) \geq d_{G[S]}(S \setminus R) \), a contradiction.

Lemma 22. Let \(G \) be a bicritical graph. If \(G \) is not 4-factor-critical, then there is a subset \(X \subseteq V(G) \) with \(|X| \geq 4 \) such that \(c_0(G - X) = |X| - 2 \) and every component of \(G - X \) is factor-critical.

Proof. Since \(G \) is not 4-factor-critical, there is a set \(X_1 \) of \(k \) vertices of \(G \) such that \(G - X_1 \) has no perfect matchings. By Theorem 5, \(G - X_1 \) has a vertex set \(X_2 \) such that \(X_2 \) is matchable to \(\mathcal{C}_{G - X_1 - X_2} \) and every component of \(G - X_1 - X_2 \) is factor-critical. Set \(X = X_1 \cup X_2 \). Then \(c_0(G - X) = |\mathcal{C}_{G - X}| - |X_2| = |X| - 4 \). Since \(G \) is bicritical, we have \(c_0(G - X) \leq |X| - 2 \) by Theorem 3. Hence \(|X| - 4 < c_0(G - X) \leq |X| - 2 \). Noting that \(c_0(G - X) \) and \(|X| \) have the same parity, we have \(c_0(G - X) = |X| - 2 \).

In the rest of this section, we always suppose that \(G \) is a connected non-bipartite vertex-transitive graph of degree \(k \geq 5 \) and even order, but \(G \) is not 4-factor-critical. Also we always use the following notation. Let \(X \) be a subset of \(V(G) \) with \(|X| \geq 4 \) such that \(c_0(G - X) = |X| - 2 \) and every component of \(G - X \) is factor-critical. By Theorem 1 and Lemma 22, such subset \(X \) exists. Let \(H = H_1, H_2, \ldots, H_p \) be the nontrivial components of \(G - X \). For a positive integer \(m \), let \([m] \) denote the set \(\{1, 2, \ldots, m\} \).
Lemma 23. We have $p \geq 1$. Furthermore, if $g(G) > 3$, then

(a) $p = 1$ if $\lambda_5(G) > 2k$,

(b) $|X| \geq 7$ and $|V(H)| \geq 9$ if $\lambda_5(G) > 4k - 8$ and $5 \leq k \leq 6$, and

(c) $|X| \geq 10$ and $|V(H)| \geq 15$ if $\lambda_6(G) \geq 14$ and $k = 5$.

Proof. If $p = 0$, then \(|V(G)| = 2|X| - 2 \geq 2k - 2 \geq 8\) and $\alpha(G) \geq |X| = \frac{1}{2}|V(G)| - 1 > \max\{\frac{1}{3}|V(G)|, \frac{1}{2}|V(G)| - \frac{1}{2}\}$, which contradicts Lemma 16. Thus $p \geq 1$.

Next we suppose $g(G) > 3$. For each $i \in [p]$, we have $|V(H_i)| \geq 5$ as H_i is triangle-free and factor-critical.

Suppose $\lambda_5(G) > 2k$. By Lemma 20(a), $d(H_i) \geq \lambda_5(G)$ for each $i \in [p]$. We have $2pk < p\lambda_5(G) \leq \sum_{i=1}^{p} d(H_i) = d(X) - k(\alpha(G) - X) - p) \leq k(p + 2)$, which implies $p < 2$.

Thus $p = 1$. (a) is proved.

Suppose $\lambda_5(G) > 4k - 8$ and $5 \leq k \leq 6$. We know $p = 1$ by (a). Assume $k = 6$. Notice that G is non-bipartite. It follows from Lemma 19 that $|X| \geq 7$. As $d(H) \leq 3k$ and H is triangle-free and factor-critical, we have $|V(H)| \geq 9$. Assume next $k = 5$. Notice that $|V(G)| = |V(H)| + 2|X| - 3 \geq 12$. By Lemma 20(a), $d(A) \geq \lambda_5(G) > 12$ for every subset $A \subseteq V(G)$ with $|A| = 6$, which implies that G has no subgraphs which are isomorphic to the complete bipartite graph $K_{3,3}$. By the vertex-transitivity of G, it follows that G has also no subgraphs which are isomorphic to $K_{2,5}$. So $|X| \geq 7$. If $E(X) = \emptyset$, then $g_0(G) \geq 7$ by Lemma 17, which implies $|V(H)| \geq 13$. If $E(X) \neq \emptyset$, then $d(H) = 13$, which implies $|V(H)| \geq 9$. Hence the statement (b) holds.

Now we suppose $\lambda_6(G) \geq 14$ and $k = 5$. Then $\lambda_5(G) \geq \min\{\lambda_6(G), 5k - 12\} = 13$. We know $p = 1$ by (a). By the above argument, we know $|X| \geq 7$, $|V(H)| \geq 9$ and that G has no subgraphs which are isomorphic to $K_{2,5}$ or $K_{3,3}$. By Lemma 20(a), $d(V(H) \cup A) \geq \lambda_6(G)$ and $d(V(H) \setminus A) \geq \lambda_6(G)$ for every subset $A \subseteq V(G)$ with $|A| \leq 2$. It implies that $E(X) = \emptyset$, $|\nabla(v) \cap \nabla(H)| \leq 3$ for each $u \in V(G)$ and each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)| = 3$. Set $Y = V(H) \cup X$.

Suppose $|X| = 7$. Then X has one vertex u_1 with 3 neighbors in $V(H)$ and other vertices in X has exactly two neighbors in $V(H)$. Choose a vertex $u_2 \in X \setminus \{u_1\}$ and a vertex $u_3 \in Y \setminus N(u_1)$. Since G is vertex-transitive, there is an automorphism φ_1 of G such that $\varphi_1(u_3) = u_2$. Noting that $|N(v) \cap N(u_2)| \geq 3$ for each $v \in Y$, we have $\varphi_1(Y) \subseteq X$, which implies $|\nabla(v) \cap \nabla(H)| = 3$ for each $v \in N(u_2) \cap V(H)$, a contradiction.

Suppose $8 \leq |X| \leq 9$. Then there are two vertices u_4 and u_5 in X with $|N(u_4) \cap V(H)| = 2$ and $|N(u_5) \cap V(H)| \leq 1$. Since G is vertex-transitive, there is an automorphism φ_2 of G such that $\varphi_2(u_3) = u_4$. Then $\varphi_2(Y) \cap V(H) \neq \emptyset$ and $|\varphi_2(Y) \cap Y| = 2$. As G has no subgraphs which are isomorphic to $K_{2,5}$ or $K_{3,3}$, it follows that $|\varphi_2(X) \cap X| \geq 6$. Hence $\varphi_2(Y) \subseteq V(H) \cup Y$ and $\varphi_2(X) \subseteq V(H) \cup X$. Noting that $|\nabla(u) \cap \nabla(H)| \leq 3$ and $N(u) \subseteq \varphi_2(X)$ for each $u \in \varphi_2(Y) \cap V(H)$, we have $|\varphi_2(X) \cap V(H)| = 3$. Notice that each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)| = 3$. We know $d_{G[\varphi_2(X) \cup Y]}(\varphi_2(X) \cap V(H)) \geq 3$, which implies $|\varphi_2(Y) \cap V(H)| \geq 3$. It follows that $N_H(\varphi_2(Y) \cap V(H)) \geq 3$. Now we have $|\varphi_2(X) \cap X| = 6$ and $|\varphi_2(X) \cap V(H)| = 3$ as $|\varphi_2(X)| = |X| \leq 9$. It follows that $G[\varphi_2(X \cup Y) \cap V(H)]$ contains a subgraph isomorphic to $K_{3,3}$ if $|\varphi_2(Y) \cap V(H)| \geq 4$ and $G[\varphi_2(X \cup Y) \cap V(H)]$ contains a subgraph isomorphic to $K_{3,3}$ otherwise, a contradiction.
Thus $|X| \geq 10$. Then $g_0(G) \geq 9$ by Lemma 17. Let C be a $g_0(H)$-cycle of H. Then $g_0(H) \geq g_0(G) \geq 9$ and $|N_H(v) \cap V(C)| \leq 2$ for each $v \in V(H) \setminus V(C)$. Noting $15 = d(V(H)) = 5|V(H)| - 2|E(H)|$, we can easily verify $|V(H)| \geq 15$. (c) is proved. □

Lemma 24. Suppose $k = 5$, $\lambda_6(G) = \lambda_7(G) = 12$ and $g(G) > 3$. For a λ_7-atom S of G, we have that S is an imprimitive block of G.

Proof. Suppose, to the contrary, that S is not an imprimitive block of G. Then there is an automorphism φ_1 of G such that $\varphi_1(S) \neq S$ and $\varphi_1(S) \cap S \neq \emptyset$. Set $T = \varphi_1(S)$. By Lemma 20(c), we have $|S \cap T| \leq 6$ and $|S \setminus T| \leq 6$, which implies $|S| \leq 12$. As $12 = d(S) = 5|S| - 2|E(S)|$, $|S|$ is an even integer. By Lemma 20(b), $\delta(G[S]) \geq 3$. For each $u \in S$, we have $d_{G[S]}(u) \geq \lambda_6(G)$ by Lemma 20(a), which implies $|N_G(u) \cap S| \leq 2$. Noting that $\lambda_6(G) \geq \lambda_5(G) \geq \lambda_4(G) \geq \min\{4k - 8, 5k - 12, \lambda_6(G)\} = 12$, we have $\lambda_S(G) = \lambda_4(G) = 12$. By Lemma 23, $p = 1$. By Lemma 20(a), we have $d_G(H) \geq \lambda_5(G) = 12$. Then either $d_G(H) = 13$ and $|E(X)| = 1$, or $d_G(H) = 15$ and $E(X) = \emptyset$.

Figure 1. Some possible cases of $G[S]$. In each G_i, $2 \leq i \leq 5$, the two graphs in the virtual boxes correspond to $G[S \cap T]$ and $G[S \setminus T]$.

Case 1. $|S| = 8$.

We have $|E(S)| = \frac{1}{2}(5|S| - \lambda_6(G)) = 14$. It is easy to verify that $G[S]$ is isomorphic to G_1 in Figure 1. Label $G[S]$ as in G_1 and set $W = \{w_1, w_2, w_3, w_4\}$. As $|N_G(u) \cap S| \leq 2$ for each $u \in S$, G has no vertex v different from w_1 such that $N_G(v) = N_G(w_1)$. Hence G has no subgraphs isomorphic to $K_{2,5}$ by the vertex-transitivity of G.

Claim 1. Each edge in G is contained in a 4-cycle of G.

Suppose that G has an edge contained in no 4-cycles of G. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G and there is an automorphism φ_2 of G such that $\varphi_2(w_1) = w_2$. As each edge in $G[S]$ is contained in a 4-cycle, we have $\varphi_2(N_{G[S]}(w_1)) \subseteq N_{G[S]}(w_2)$ and $N_{G[S]}(\varphi_2(z_i)) \subseteq \varphi_2(S)$ for each $i \in \{2, 3\}$. It implies $|S \cap \varphi_2(S)| \geq 7$. On the other hand, noting $\varphi_2(S) \neq S$, we have $|S \cap \varphi_2(S)| \leq 6$ by Lemma 20(c), a contradiction. Thus Claim 1 holds.

Claim 2. For any vertex $x \in V(G)$ with $2 \leq |\nabla(x) \cap \nabla(H)| \leq 3$ such that $d_{G[X]}(u) = 0$ for each $u \in \{x\} \cup N_G(x) \setminus X$, there is a subset $A \subseteq N_G(x)$ with $|A| \geq |\nabla(x) \cap \nabla(H)| - 1$ and a vertex $y \in V(G) \setminus \{x\}$ such that $\{x, y\} \subseteq \nabla(H)$ and $|\nabla(u) \cap \nabla(H)| \geq 3$ for each $u \in A$.

Since G is vertex-transitive, there is an automorphism φ_3 of G such that $\varphi_3(w_2) = x$. Let T_1 be one of X and $V(H)$ such that $x \in T_1$, and let T_2 be the other of X and $V(H)$.
Then $\varphi_3(w_3) \in T_1$ and $|\varphi_3(N_{G[S]}(w_2)) \cap T_2| \geq |\nabla(x) \cap \nabla(H)| - 1$. If $|\varphi_3(N_{G[S]}(w_2)) \cap T_2| \leq 2$ or $\varphi_3(W) \subseteq T_1$, then we choose A to be $\varphi_3(N_{G[S]}(w_2)) \cap T_2$. If $|\varphi_3(N_{G[S]}(w_2)) \cap T_2| = 3$ and $\varphi_3(W) \setminus T_1 \neq \emptyset$, then $\varphi_3(W) \cap T_1 = 3$ and $\{\varphi_3(z_2), \varphi_3(z_3)\} \subseteq T_2$. In the second case, we choose A to be $\{\varphi_3(z_2), \varphi_3(z_3)\}$. Then A and $\varphi_3(w_3)$ are a subset and a vertex which satisfy the condition. Thus Claim 2 holds.

Subcase 1.1. $d_G(H) = 13$.

Let x_1x_2 be the edge in $E(X)$. We know $|X| \geq 6$ and $|V(H)| \geq 7$. By Lemma 20(a), $d_G(V(H) \cup A) \geq \lambda_3(G)$ and $d_G(V(H) \setminus A) \geq \lambda_4(G)$ for each subset $A \subseteq V(G)$ with $|A| \leq 2$, which implies that $|\nabla(u) \cap \nabla(H)| \leq 3$ for each $u \in V(G)$ and each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)| = 3$. Hence it follows from Claim 2 that $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in X \setminus \{x_1, x_2\}$. This together with Claim 2 implies that $|\nabla(u) \cap \nabla(H)| \leq 1$ for each $u \in V(H) \setminus N_G(\{x_1, x_2\})$.

We claim $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in N_G(\{x_1, x_2\}) \cap V(H)$. Otherwise, suppose that there is a vertex $u_0 \in N_G(\{x_1, x_2\}) \cap V(H)$ with $|\nabla(u_0) \cap \nabla(H)| = 3$. Since G is vertex-transitive, there is an automorphism φ_4 of G such that $\varphi_4(u_0) = u_0$. It implies that there is a vertex $u_1 \in \varphi_4(N_{G[S]}(w_2) \cap (X \setminus \{x_1, x_2\}))$ such that $|\nabla(u_1) \cap \nabla(H)| = 3$, a contradiction.

Thus it follows from Claim 2 that $|\nabla(u) \cap \nabla(H)| \leq 1$ for each $u \in X \setminus \{x_1, x_2\}$. Noting $|N_G(\{x_1, x_2\}) \cap V(H)| \leq 5$, we have $|\nabla(N_G(\{x_1, x_2\}) \cap V(H)) \cap \nabla(H)| \leq 10$ by the claim in the previous paragraph. Hence there is an edge $x_3x_4 \in \nabla(H)$ such that $x_3 \in X \setminus \{x_1, x_2\}$ and $|\nabla(x_3) \cap \nabla(H)| = |\nabla(x_4) \cap \nabla(H)| = 1$. Then x_3x_4 is contained in no 4-cycles of G, contradicting Claim 1. Hence Subcase 1.1 cannot occur.

Subcase 1.2. $d_G(H) = 15$.

Notice that G has no subgraphs which are isomorphic to $K_{2,5}$. We know $|X| \geq 6$. Next we show $|V(H)| \geq 9$. Let O_i be the set of vertices u in G with $|\nabla(u) \cap \nabla(H)| = i$ for $1 \leq i \leq 5$. If $|X| \geq 7$, then $g_0(G) \geq 7$ by Lemma 17, which implies $|V(H)| \geq 13$. Then we assume $|X| = 6$. As G has no subgraphs which are isomorphic to $K_{2,5}$, we have $|O_3 \cap X| = 3$ and $|O_2 \cap X| = 3$. Noting $g(G) > 3$, we can obtain $|V(H)| \neq 5$. By Claim 2, $|O_3 \cap V(H)| \geq 2$, which implies $|V(H)| \geq 7$. Hence $|V(H)| \geq 9$.

By Lemma 20(a), $d_G(V(H) \cup A) \geq \lambda_3(G)$ and $d_G(V(H) \setminus A) \geq \lambda_4(G)$ for each subset $A \subseteq V(G)$ with $|A| \leq 4$. It implies $O_5 = \emptyset$, $|O_4 \cap X| \leq 1$, $|O_3 \cap X| \leq 3$, $|O_3 \cap V(H)| \leq 3$ and $|O_4 \cap X| \cdot |O_3 \cap X| = 0$.

We claim $O_4 = \emptyset$. Otherwise, suppose $O_4 \neq \emptyset$. Noting that $\delta(H) \geq 2$ as H is factor-critical, we have $O_4 \subseteq X$. Now we know $|O_4| = 1$ and $O_3 \cap X = \emptyset$. It follows from Claim 2 that $O_3 \cap V(H) = \emptyset$ and $O_3 \subseteq N_G(O_4)$. As $|\nabla(N_G(O_4) \cap V(H))| \leq 8$, there is an edge $x_5x_6 \in \nabla(H)$ with $\{x_5, x_6\} \subseteq O_1$. Then x_5x_6 is contained in no 4-cycles of G, contradicting Claim 1.

Let F_1 be the subgraph of G with vertex set $\bigcup_{i=1}^3 O_i$ and edge set $\nabla(H)$ and let F_2 be the subgraph of F_1 which is induced by O_3. By Claim 2, $\delta(F_2) \geq 2$. Hence F_2 is connected. Then F_1 is connected by Claims 1 and 2. Let t be the number of vertices u in F_2 with $d_{F_2}(u) = 2$. We have $15 = |E(F_1)| \leq |E(F_2)| + 2t = 6|O_3| - 3|E(F_2)|$ by Claim 2. It follows that $|O_3| = 6$ and $6 \leq |E(F_2)| \leq 7$.

Assume $|E(F_2)| = 6$. Then F_2 is a 6-cycle. For each $u \in O_3 \cap X$, there is a vertex
$y_u \in X \setminus O_3$ such that $N_{F_2}(u) \subseteq N_G(y_u)$ by Claim 2. It implies that there is a vertex $y \in X \setminus O_3$ such that $O_3 \cap V(H) \subseteq N_G(y)$, which contradicts $|O_3 \cap X| \leq 3$.

Assume $|E(F_2)| = 7$. As $|E(F_1)\setminus E(F_2)| = 8$, it follows from Claim 2 that there is a vertex $u_2 \in V(F_1) \setminus O_3$ with $d_{F_1}(u_2) = 2$ and we know $|N_{F_1}(u_2) \cap O_3| = 1$ and $d_{F_1}(N_{F_1}(u_2) \setminus O_3) = 1$. It is easy to see that there is no vertex u' in G such that $|N_G(u') \cap N_G(u_2)| = 4$. Noting $|N_G(u_2) \cap N_G(w_3)| = 4$, we have that there is no automorphism φ of G such that $\varphi(u_2) = u_2$, which contradicts the vertex-transitivity of G.

Case 2. $|S| = 10$ or 12.

Claim 3. For any given two distinct λ_7-atoms S_1 and S_2 of G with $S_1 \cap S_2 \neq \emptyset$, $G[S_1 \cap S_2]$ and $G[S_1 \setminus S_2]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$.

By Lemma 20(e), we have $d_G(S_1 \cap S_2) + d_G(S_1 \cup S_2) \leq 2\lambda_7(G)$, $d_G(S_1 \setminus S_2) + d_G(S_2 \setminus S_1) \leq 2\lambda_7(G)$, $|S_1 \cap S_2| \leq 6$ and $|S_1 \setminus S_2| \leq 6$. Then $|S_1 \cap S_2| \geq 4$ and $|S_1 \setminus S_2| \geq 4$. By Lemma 20(a), each of $d_G(S_1 \cap S_2)$, $d_G(S_1 \cup S_2)$, $d_G(S_1 \setminus S_2)$ and $d_G(S_2 \setminus S_1)$ is not less than $\lambda_4(G)$.

Noting $\lambda_4(G) = 12$, we have $d_G(S_1 \cap S_2) = d_G(S_1 \setminus S_2) = 12$. Then $G[S_1 \cap S_2]$ and $G[S_1 \setminus S_2]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$. So Claim 3 holds.

Let R_i be the set of vertices u in S with $d_{G[S]}(u) = i$ for $3 \leq i \leq 5$. By Lemma 20(b), $E(G[R_3]) = \emptyset$.

Claim 4. $R_5 = \emptyset$, or $G[R_5]$ is a 6-cycle and $|S| = 12$.

Suppose $R_5 \neq \emptyset$. It only needs to show that $|S| = 12$ and $G[R_5]$ is a 6-cycle. Assume $R_4 \neq \emptyset$. Choose a vertex $u \in R_4$ and a vertex $v \in R_5$. Let φ_5 be an automorphism of G such that $\varphi_5(u) = v$. Then $\varphi_5(N_{G[S]}(u)) \subseteq N_{G[S]}(v)$, which contradicts that $G[\varphi_5(S) \cap S]$ is isomorphic to $K_{3,3}$ or $K_{2,2}$ by Claim 3. Thus $R_4 = \emptyset$. Noting $|R_3| + |R_5| = |S|$ and $3|R_3| + 5|R_5| = 2|E(S)| = 5|S| - 12$, we have $|R_3| = 6$. For any two vertices $u', u'' \in R_5$, it follows from Claim 3 that $\varphi(S) = S$ for every automorphism φ of G with $\varphi(u') = u''$. Hence $G[R_5]$ is r-regular, for some integer r. Then $18 = 3|R_3| = d_{G[S]}(R_3) = d_{G[S]}(R_5) = (5 - r)(|S| - 6)$, which implies $|S| = 12$ and $r = 2$. Hence $G[R_5]$ is a 6-cycle and Claim 4 is proved.

By Claim 3, $G[S \cap T]$ and $G[S \setminus T]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$. Noting $E(G[R_3]) = \emptyset$, we have by Claim 4 that $G[S]$ is isomorphic to G_2, G_3, G_4 or G_5 in Figure 1.

Claim 5. Each vertex in G is contained in exactly two distinct λ_7-atoms of G.

By the vertex-transitivity of G, it only needs to show that $S' = S$ or $S' = T$ for a λ_7-atom S' of G with $S' \cap S \cap T \neq \emptyset$. Suppose $S' \neq S$ and $S' \neq T$. From Figure 1, we can see that S has no subset A different from $S \cap T$ and $S \setminus T$ such that $G[A]$ is isomorphic to $K_{3,3}$. Hence it follows from Claim 3 that $S' \cap S = S \cap T = S' \cap T$. Then $12 = d_G(S \cap T) \geq d_{G[S]}(S \cap T) + d_{G[T]}(S \cap T) + d_{G[S]}(S \cap T) = 18$, a contradiction. So Claim 5 holds.

Suppose $|S| = 10$. Then $G[S]$ is isomorphic to G_2. By Claims 3 and 5, there is a λ_7-atom S'' of G such that $S'' \cap S = S' \cap T$. Choose a vertex $u_3 \in S \setminus T$ and a vertex $u_4 \in S \cap T$. Noting that $G[S \setminus T]$ is not isomorphic to $G[S \cap T]$, we know by Claim 5 that there is no automorphism φ of G such that $\varphi(u_3) = u_4$, a contradiction.
Suppose next $|S| = 12$. Then $G[S]$ is isomorphic to G_3, G_4 or G_5. Let V_1, V_2, \ldots, V_m be all subsets of $V(G)$ which induce subgraphs of G isomorphic to $K_{3,3}$. Noting that $G[S \cap T]$ and $G[S \setminus T]$ are isomorphic to $K_{3,3}$, we can obtain by Claims 3 and 5 that V_1, V_2, \ldots, V_m form a partition of $V(G)$ and for each V_i there are exactly two elements $j_1, j_2 \in \{1, 2, \ldots, m\} \setminus \{i\}$ such that $G[V_i \cup V_{j_1}]$ and $G[V_i \cup V_{j_2}]$ are isomorphic to $G[S]$. We denote $V_i \sim V_j$ if $G[V_i \cup V_j]$ is isomorphic to $G[S]$, and assume $V_1 \sim V_2 \sim \cdots \sim V_m \sim V_1$. If $G[S]$ is isomorphic to G_3, then it is easy to verify that G is bipartite, a contradiction. Thus $G[S]$ is isomorphic to G_4 or G_5.

Assume that there is some $V_q \subseteq V(H)$. If $G[S]$ is isomorphic to G_4, then $|V_q \cap X| = 3$ and $N_G(V_q \setminus X) \cap V_{q-1} \subseteq X$, which implies $|E(X)| \geq |E(V_{q-1}) \cap E(X)| \geq 2$, a contradiction. Thus $G[S]$ is isomorphic to G_5. Let V_j be chosen such that $V_j \cap V(H) \neq \emptyset$ and $|j - q|$ is as small as possible. Then $|V_j \cap X| = 3$ and $|N(u) \cap X| \geq 4$ for each $u \in V_j \cap V(H)$, which contradicts that $\delta(H) \geq 2$.

We now assume that $V_i \cap V(H) \neq \emptyset$ for $1 \leq i \leq m$. Then $|V_i \cap X| > |V_i \setminus (V(H) \cup X)|$ if $V_i \cap X \neq \emptyset$. Choose some V_q' which contains vertices in $V(G) \setminus (V(H) \cup X)$. Then $V_{q-1} \cap X \neq \emptyset$ and $V_{q+1} \cap X \neq \emptyset$. Noting $c_0(G - X) = |X| - 2$, we can obtain that for each $i \in [m]$, $|V_i \cap X| = |V_i \setminus (V(H) \cup X)| + 1$ if $i \in \{q' - 1, q', q' + 1\}$ and $|V_i \cap X| = 0$ otherwise. Then $|V_q' \setminus (V(H) \cup X)| = 2$. Hence $|V_{q-1} \cap X| = |V_{q+1} \cap X| = 3$. Now we have $V_{q-1} \sim V_q' \sim V_{q+1} \sim V_{q'-1}$, which implies $V(G) = V_{q-1} \cup V_q' \cup V_{q+1}$ and $|V(H)| = 3$. It follows that $g(G) = 3$, a contradiction.

Lemma 25. Suppose $k = 5$, $\lambda_5(G) = \lambda_b(G) = 13$ and $g(G) > 3$. For a λ_b-atom S of G, we have $|S| \geq 11$.

Proof. To the contrary, suppose $|S| < 11$. As $13 = d(S) = 5|S| - 2|E(S)|$, $|S|$ is odd. Then $|S| \geq 7$. By Lemma 20(b), $\delta(G[S]) \geq 3$. By Lemma 23, we have $p = 1$, $|X| \geq 7$ and $|V(H)| \geq 9$. Hence $|V(G)| \geq 20$.

Assume $|S| = 7$. Then $|E(S)| = \frac{1}{2}(5|S| - 13) = 11$. If $G[S]$ is bipartite, then $|E(S)| \geq \frac{1}{2}(|S| + 1)\delta(G[S]) \geq 12$, a contradiction. Thus $G[S]$ is non-bipartite. Let C be a shortest cycle of odd length in $G[S]$. Then $5 \leq |V(C)| \leq 7$. Noting that $|N_{G[S]}(u) \cap V(C)| \leq 2$ for each $u \in S \setminus V(C)$, we have $|E(S)| \leq 10$, a contradiction.

So $|S| = 9$. Let R_i be the set of vertices u in S with $d_{G[S]}(u) = i$ for $3 \leq i \leq 5$.

Claim 1. For any automorphism φ of G with $\varphi(R_4 \cup R_5) \cap (R_4 \cup R_5) \neq \emptyset$, either $\varphi(S) = S$ or $G[S \cap \varphi(S)]$ is isomorphic to $K_{2,3}$.

Suppose $\varphi(S) \neq S$. By Lemma 20(c), $|S \cap \varphi(S)| \leq 5$, $|S \setminus \varphi(S)| \leq 5$ and $d(S \cap \varphi(S)) + d(S \cup \varphi(S)) \leq 2\lambda_b(G)$. Then $4 \leq |S \cap \varphi(S)| \leq 5$ and $|S \cup \varphi(S)| = |S| + |\varphi(S)| - |S \cap \varphi(S)| \leq 14$. As $|V(G)| \geq 20$, we have $d(S \cup \varphi(S)) \geq \lambda_b(G)$ by Lemma 20(a). Hence $d(S \cap \varphi(S)) \leq \lambda_b(G) = 13$. This, together with the fact that $|N_{G[\varphi(S)]}(u) \cap N_{G[S]}(u)| \geq 3$ for each $u \in \varphi(R_4 \cup R_5) \cap (R_4 \cup R_5)$, implies that $G[S \cap \varphi(S)]$ is isomorphic to $K_{2,3}$. So Claim 1 holds.

By Claim 1, it follows that G has no automorphism φ such that $\varphi(R_4) \cap R_5 \neq \emptyset$. It implies $R_4 = \emptyset$ or $R_5 = \emptyset$. Noting $\sum_{i=3}^{5}|R_i| = 2|E(S)| = 32$ and $\sum_{i=3}^{5}|R_i| = |S| = 9$, we have $|R_3| = 4$, $|R_4| = 5$ and $R_5 = \emptyset$. By Lemma 20(b), $E(R_3) = \emptyset$. Hence $|E(R_4)| = 4$.
As \(g(G[S]) \geq g(G) > 3 \), it is easy to verify that either \(G[R_4] \) has a 4-cycle or \(G[R_4] \) is isomorphic to \(K_{1,4} \). Let \(u_1 \) and \(u_2 \) be two vertices in \(R_4 \) with \(d_{G[R_4]}(u_1) < d_{G[R_4]}(u_2) \). Since \(G \) is vertex-transitive, there is an automorphism \(\psi \) of \(G \) such that \(\psi(u_2) = u_1 \). By Claim 1, \(G[\psi(S) \cap S] \) is isomorphic to \(K_{2,3} \). As \(u_1, u_2 \in R_4 \), we know \(d_{G[\psi(S) \cap S]}(u_1) = 3 \). Notice that \(|N_{G[S]}(u) \cap N_{G[S]}(u_1)| \leq 2 \) for each \(u \in S \setminus \{u_1\} \) if \(G[R_4] \) has a 4-cycle. It follows that \(G[R_4] \) is isomorphic to \(K_{1,4} \). Since \(d_{G[\psi(S) \cap S]}(v) = 2 \) for each \(v \in N_{G[\psi(S) \cap S]}(u_1) \), it follows that \(N_{G[\psi(S) \cap S]}(u_1) \subseteq R_3 \). It implies that the vertex in \(R_3 \setminus N_{G[S]}(u_1) \) has only two neighbors in \(S \), which contradicts \(\delta(G[S]) \geq 3 \).

Lemma 26. Suppose \(k = 5 \), \(\lambda_6(G) = \lambda_7(G) = 14 \) and \(g(G) > 3 \). For a \(\lambda_7 \)-atom \(S \) of \(G \), we have \(|S| \geq 14 \).

Proof. By Lemma 23, we have \(p = 1 \), \(|X| \geq 10 \) and \(|V(H)| \geq 15 \). Hence \(|V(G)| \geq 32 \). For \(1 \leq i \leq 5 \), let \(O_i \) be the set of vertices \(u \) in \(G \) with \(|\{u \cap (V(H))| = i \), and set \(m_i = |O_i \cap X| \) and \(n_i = |O_i \cap V(H)| \). By Lemma 20(a), \(d_G(V(H) \cup A) \geq \lambda_6(G) \) and \(d_G(V(H) \setminus A) \geq \lambda_6(G) \) for each subset \(A \) of \(V(G) \) with \(|A| \leq 2 \). This, together with the fact that \(d_G(H) \) is odd, implies that \(d_G(H) = 15 \), \(O_4 \cup O_5 = \emptyset \), \(m_3 \leq 1 \) and \(n_3 \leq 1 \). Hence \(E(X) = \emptyset \). Then \(g_0(G) \geq 9 \) by Lemma 17.

Suppose \(|S| < 14 \). As \(5|S| - 2|E(G[S])| = 14 \), \(|S| \) is an even integer with \(8 \leq |S| \leq 12 \). By Lemma 20(b), \(\delta(G[S]) \geq 3 \). As \(g_0(G) \geq 9 \), it follows that \(G[S] \) is bipartite. By Lemma 20(a), \(d_G(S \cup \{u\}) \geq \lambda_6(G) \) for each \(u \in S \) and \(d_G(A) \geq \lambda_6(G) \) for each subset \(A \subseteq V(G) \) with \(|A| = 6 \). Hence \(|N_G(u) \cap S| \leq 2 \) for each \(u \in S \) and \(G \) has no subgraphs which are isomorphic to \(K_{3,3} \).

Claim 1. For any two distinct \(\lambda_7 \)-atoms \(S_1 \) and \(S_2 \) of \(G \) with \(S_1 \cap S_2 \neq \emptyset \), we have \(d_G(S_1 \cap S_2) \leq 14 \) and furthermore, \(G[S_1 \cap S_2] \) and \(G[S_1 \setminus S_2] \) are isomorphic to \(K_{2,4} \) or \(K_{3,3} - e \) if \(|S| = 12 \), where \(K_{3,3} - e \) is a subgraph of \(K_{3,3} \) obtained by deleting an edge \(e \) from \(K_{3,3} \).

By Lemma 20(c), we have \(|S_1 \cap S_2| \leq 6 \), \(|S_1 \setminus S_2| \leq 6 \), \(d_G(S_1 \cap S_2) + d_G(S_1 \setminus S_2) \leq 2\lambda_7(G) \), and \(d_G(S_1 \setminus S_2) + d_G(S_2 \setminus S_1) \leq 2\lambda_7(G) \). Noting \(|V(G)| \geq 32 \), we have \(d_G(S_1 \cup S_2) \geq \lambda_7(G) \) by Lemma 20(a). Hence \(d_G(S_1 \cap S_2) \leq \lambda_7(G) = 14 \). Next assume \(|S| = 12 \). Then \(|S_1 \cap S_2| = |S_1 \setminus S_2| = 6 \). By Lemma 20(a), each of \(d_G(S_1 \cap S_2) \), \(d_G(S_1 \setminus S_2) \) and \(d_G(S_2 \setminus S_1) \) is not less than \(\lambda_6(G) \). Hence \(d_G(S_1 \cap S_2) = d_G(S_1 \setminus S_2) = 14 \). It implies that \(G[S_1 \cap S_2] \) and \(G[S_1 \setminus S_2] \) are isomorphic to \(K_{2,4} \) or \(K_{3,3} - e \). So Claim 1 holds.

![Figure 2. The illustration in the proof of Lemma 26.](image-url)
As $G[S]$ is a bipartite graph with $|E(S)| = 13$ and $\delta(G[S]) \geq 3$, $G[S]$ is isomorphic to G_6 in Figure 2. Let v_1, v_2 be the two vertices in S with $d_{G[S]}(v_1) = d_{G[S]}(v_2) = 4$ and choose a vertex $v_3 \in N_{G[S]}(v_1)\backslash\{v_2\}$.

We claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that G has an edge contained in no 4-cycles of G. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G and there is an automorphism φ_1 of G such that $\varphi_1(v_3) = v_2$. Clearly, $\varphi_1(S) \neq S$. Noting that each edge in $G[S]$ is contained in a 4-cycle of $G[S]$, we have $d_{G[\varphi_1(S)\cup S]}(u) \leq 4$ for each $u \in \varphi_1(S) \cup S$. Then $\varphi_1(N_{G[S]}(v_3) \subseteq N_{G[S]}(v_2)$ and $N_{G[S]}(\varphi_1(v_1)) \subseteq \varphi_1(N_{G[S]}(v_1))$. Noting that $|\varphi_1(S) \cap S| \leq 6$ by Lemma 20(c) and $d_G(\varphi_1(S) \cap S) \leq 14$ by Claim 1, $G[S \cap \varphi_1(S)]$ is isomorphic to $K_{3,3}$. As $d_G(S \cup \varphi_1(S)) \geq \lambda_6(G) = 14$ by Lemma 20(a), it follows that $G[S \cup \varphi_1(S)]$ is isomorphic to G_7 in Figure 2, where the graph in the virtual box corresponds to $G[S \cap \varphi_1(S)]$. Choose a vertex $v_4 \in S \cap \varphi_1(S)$ with $d_{G[S \cap \varphi_1(S)]}(v_4) = 2$. Let φ_2 be an automorphism of G such that $\varphi_2(\varphi_1(v_1)) = v_4$. Then $\varphi_2(N_{G[S]}(v_1)) = N_{G[S \cap \varphi_1(S)]}(v_4)$ and $\varphi_2(N_{G[S]}(v_2)) \backslash (S \cup \varphi_1(S)) \neq \emptyset$. Then $d_G(S \cup \varphi_2(S) \cup \varphi_2(N_{G[S]}(v_2))) \leq 14 = \lambda_6(G)$, contradicting Lemma 20(a). So this claim holds.

For each $uv \in \nabla(H)$, noting that uv is contained in a 4-cycle of G by the previous claim, we have $|\nabla(u) \cap H| + |\nabla(v) \cap H| \geq 3$. For each $u \in O_3 \cup O_3$, there is an automorphism φ_3 of G such that $\varphi_3(u) = u$, which implies that there is a vertex $v \in \varphi_3(N_{G[S]}(v_1))$ such that $uv \in \nabla(H)$ and $|\nabla(v) \cap H| = 3$. Hence $m_1 \leq n_2 + 2n_3$, $m_2 \leq 3n_3$ and $n_2 \leq 3m_4$. Noting $m_3 \leq 1$ and $n_3 \leq 1$, we have $15 + \sum_{i=1}^{3} i m_i \leq n_2 + 2n_3 + 6n_3 + 3m_3 \leq 6m_3 + 8n_3 \leq 14$, a contradiction.

Case 2. $|S| = 10$ or 12.

Let R_i be the set of vertices u in S with $d_{G[S]}(u) = i$ for $3 \leq i \leq 5$. Then $E(R_3) = \emptyset$ by Lemma 20(b). Let Z and W be the bipartition of $G[S]$ such that $|Z| \leq |W|$. Noting $\frac{1}{2}(5|S| - 14) = |E(S)| \geq \delta(G[S])|W| \geq 3|W|$, we have $|W| < \frac{1}{2} |S| + 2$.

Claim 2. If $R_3 \neq \emptyset$, then, for each $v \in R_4$, there is exactly one vertex w in $S \backslash \{v\}$ with $N_{G[S]}(v) \subseteq N_{G[S]}(w)$.

Suppose $R_3 \neq \emptyset$. Choose a vertex $u \in R_3$ and a vertex $v \in R_4$. Let φ_4 be an automorphism of G such that $\varphi_4(u) = v$. Then $N_{G[S]}(v) \subseteq \varphi_4(N_{G[S]}(u))$. Noting that $|S \cap \varphi_4(S)| \leq 6$ by Lemma 20(c) and $d_G(S \cap \varphi_4(S)) \leq 14$ by Claim 1, we have that $G[S \cap \varphi_4(S)]$ is isomorphic to $K_{2,4}$. It implies that S has a vertex w different from v with $N_{G[S]}(v) \subseteq N_{G[S]}(w)$. As G has no subgraphs isomorphic to $K_{3,3}$, such vertex w is unique. So Claim 2 holds.

Claim 3. $|W| = |Z|$ and $R_5 = \emptyset$.

Suppose, to the contrary, that $|W| > |Z|$, or $|W| = |Z|$ and $R_5 \neq \emptyset$. As $E(R_3) = \emptyset$, it follows that $|W| = 6$ if $|S| = 10$.

Assume $|W| = |Z| + 2 = 7$. Noting $|E(S)| = 23$, there is a vertex $v_5 \in (R_4 \cup R_5) \cap W$ and a vertex $v_6 \in R_5 \cap Z$. Let φ_5 be an automorphism of G such that $\varphi_5(v_5) = v_6$. Then $\varphi_5(S) \neq S$ and $\varphi_5(N_{G[S]}(v_5)) \subseteq N_{G[S]}(v_6)$. Hence $G[S \cap \varphi_5(S)]$ is isomorphic to $K_{2,4}$ by Claim 1. It implies $|\varphi_5(W) \backslash S| = 5$, contradicting that $G[\varphi_5(S) \backslash S]$ is isomorphic to $K_{2,4}$.
or $K_{3,3} - e$ by Claim 1.

Assume $|W| = 6$. If $|S| = 10$, we know $|R_4 \cap Z| = |R_5 \cap Z| = 2$ as $E(R_3) = \emptyset$ and $|E(S)| = 18$. If $|S| = 12$, we know either $|R_5 \cap Z| = 2 = |R_4 \cap Z| + 1$ or $|R_5 \cap Z| = 1 = |R_4 \cap Z| - 2$ as $|E(S)| = 23$. It follows from Claim 2 that there is a vertex $v_7 \in R_4 \cap Z$ and a vertex $v_8 \in (R_4 \cup R_5) \setminus \{v_7\}$ such that $N_G[S](v_7) \subseteq N_G[S](v_8)$ and $(R_5 \cap Z) \setminus \{v_8\} \neq \emptyset$. It implies that $G[S]$ has a subgraph which is isomorphic to $K_{3,3}$, a contradiction. So Claim 3 holds.

Subcase 2.1. $|S| = 10$.
Noting $E(R_3) = \emptyset$, we have by Claim 3 that $G[S]$ is isomorphic to G_8 in Figure 2. We label $G[S]$ as in G_8 and assume $x_1 \in Z$ and $y_1 \in W$.

Claim 4. $|N_G(u) \cap N_G(v)| \leq 3$ for any two distinct vertices u and v in G.

Suppose that there are two distinct vertices u and v in G with $|N_G(u) \cap N_G(v)| \geq 4$. Notice that $|N_G(u) \cap S| \leq 2$ for each $u \in S$. By the vertex-transitivity of G, for each $y_i \in \{y_1, y_2, y_3\}$ there is a vertex $y_j \in \{y_1, y_2, y_3\} \setminus \{y_i\}$ such that $|N_G(y_i) \cap N_G(y_j)| \geq 4$. It follows that there is a vertex $w \in S$ such that $\{y_1, y_2, y_3\} \subseteq N_G(w)$, a contradiction. So Claim 4 holds.

Let φ_6 be an automorphism of G such that $\varphi_6(y_5) = y_1$. Then $\varphi_6(S) \neq S$ and $|\varphi_6(N_G(y_5)) \cap N_G(y_1)| \geq 2$. Then $|\varphi_6(S) \cap S| \leq 6$ by Lemma 20(c) and $d_G(\varphi_6(S) \cap S) \leq 14$ by Claim 1. By Claim 4, $G[S]$ has no subgraphs isomorphic to $K_{2,4}$. It follows that $|\varphi_6(S) \cap W| \leq 3$ and $|\varphi_6(S) \cap Z| \leq 3$.

Assume that $\varphi_6(N_G(y_5)) \cap \{x_1, x_2\} = \emptyset$ and $\varphi_6(N_G(y_5)) \cap \{x_4, x_5\} = \emptyset$. Then $|N_G(y_1) \cap N_G(y_5)| = 3$ for each $u \in \varphi_6(N_G(y_5)) \cap \{x_1, x_2\}$ and $|N_G(y_1) \cap N_G(y_5)| \geq 2$ for each $v \in \varphi_6(N_G(y_5)) \cap \{x_4, x_5\}$. It follows that $|\varphi_6(S) \cap W| = 3$ and $|\varphi_6(S) \cap \{y_4, y_5\}| = 1$. Noting $2 \leq |\varphi_6(S) \cap Z| \leq 3$, we can see $d_G(\varphi_6(S) \cap S) > 14$, a contradiction.

Assume $\varphi_6(N_G(y_5)) \cap N_G(y_1) = \{x_4, x_5\}$. Then $\varphi_6(y_4) \in \{y_2, y_3\} \cup S$, which implies that $|N_G(y_1) \cap N_G(y_4)| \geq 4$ or $|N_G(x_4) \cap N_G(x_5)| \geq 4$. It contradicts Claim 4.

Thus $\varphi_6(N_G(y_5)) \cap N_G(y_1) = \{x_1, x_2\}$. By Claim 4, we have $\varphi_6(y_4) \in \{y_4, y_5\}$ and $\varphi_6((y_1, y_2, y_3)) \cap W = \{y_4, y_5\}, \varphi_6(y_4)$. Then $\{\varphi_6(x_4), \varphi_6(x_5)\} \subseteq S$. Assume $\varphi_6(y_4) = y_4$. Set $\{y_6, y_7\} = \varphi_6((y_1, y_2, y_3)) \setminus W, \{x_6\} = \varphi_6(N_G(y_5)) \setminus N_G(y_1)$ and $\{x_7, x_8\} = \{\varphi_6(x_4), \varphi_6(x_5)\}$. Then the graph G_9 showed in Figure 2 is a subgraph of G.

We can see that each edge incident with x_1 is contained in a 4-cycle of G. Then, by the vertex-transitivity of G, each edge $uv \in \nabla(H)$ is contained in a 4-cycle of G, which implies $|\nabla(u) \cap \nabla(H)| \geq 2$ or $|\nabla(v) \cap \nabla(H)| \geq 2$. Hence there is a vertex $u' \in G$ with $2 \leq |\nabla(u') \cap \nabla(H)| \leq 3$. Let φ_7 be an automorphism of G such that $\varphi_7(y_4) = u'$. It is easy to verify that either $\varphi_7(N_G(y_4) \cup S(y_4))$ has a vertex u with $|\nabla(u) \cap \nabla(H)| \geq 4$ or it has two vertices v' and v'' with $\{u'v', u'v''\} \subseteq \nabla(H)$ and $|\nabla(v') \cap \nabla(H)| = |\nabla(v'') \cap \nabla(H)| = 3$, contradicting the fact that $O_4 \cup O_5 = \emptyset, m_3 \leq 1$ and $n_3 \leq 1$.

Subcase 2.2. $|S| = 12$.

As $|E(G[S])| = 23$, $G[S]$ is not regular. Let φ_8 be an automorphism of G such that $\varphi_8(S) \neq S$ and $\varphi_8(S) \cap S \neq \emptyset$. Set $T = \varphi_8(S)$. It follows from Claims 1 and 3 that...
Suppose $d_{G[S\setminus T]}(u) = 5$ for each $u \in S \cap T$, each of $G[S\setminus T]$, $G[S \cap T]$ and $G[T\setminus S]$ is isomorphic to $K_{3,3} - e$ and $d_{G[S]}(v) = d_{G[T]}(v) = 4$ for each $v \in S \cap T$ with $d_{G[S\cap T]}(v) = 3$.

Let v_9 and v_{10} be two vertices in $W \cap T$ with $d_{G[S\setminus T]}(v_9) = 3 = d_{G[S\setminus T]}(v_{10}) + 1$. We know either $d_{G[S]}(v_{10}) = 4$ or $d_{G[T]}(v_{10}) = 4$ and assume, without loss of generality, that $d_{G[S]}(v_{10}) = 4$. Let φ_0 be an automorphism of G such that $\varphi_0(v_9) = v_{10}$. Let Q be one of $\varphi_0(S)$ and $\varphi_0(T)$ such that $Q \neq S$. Since $d_{G[G]}(v_{10}) = 4$, we know $Q \neq T$. By Claims 1 and 3, each of $G[G\setminus S]$, $G[Q\setminus S]$, $G(Q \cap T)$ and $G[T\setminus Q]$ is isomorphic to $K_{3,3} - e$. Noting $d_{G[G]}(v_{10}) = d_{G[G]}(v_{10}) = 4$, we have $|N_{G[G]}(v_{10}) \cap S| = 3$, which implies $2 \leq |Q \cap S \cap T| \leq 5$.

Assume $2 \leq |Q \cap S \cap T| \leq 3$. Noting that $G[Q \cap T]$ is isomorphic to $K_{3,3} - e$, we have $d_{G[Q\cap T]}(Q \cap S \cap T) > |Q \cap S \cap T|$ isomorphic to $K_{3,3} - e$, a contradiction.

Assume $4 \leq |Q \cap S \cap T| \leq 5$. Then $|N_{G[G]}(v_{10}) \cap S \cap T| = 2$. If $E(Q \cap S \cap T) = \emptyset$, then $d_{G[Q\cap S]}(Q \cap S \cap \overline{T}) + d_{G[Q\cap T]}(Q \cap S \cap \overline{T}) \geq 2|Q \cap S \cap \overline{T}| = 2$ and $|E(Q \cap S \cap \overline{T})| = 1$. Then $d_{G[Q\cap S]}(Q \cap S \cap \overline{T}) + d_{G[Q\cap T]}(Q \cap S \cap \overline{T}) \geq 3 + 3 > 2 \geq |(|Q \cap S \cap \overline{T}, S \cup T)|$, a contradiction.

\begin{proof}

By Lemma 23, we have $p = 1$, $|X| \geq 10$ and $|V(H)| \geq 15$. By Lemma 20(a), $d_G(A) \geq \lambda_6(G) \geq 14$, $d_G(V(H) \cup B) \geq \lambda_6(G)$ and $d_G(V(H) \setminus B) \geq \lambda_8(G)$ for any two subsets A and B of $V(G)$ with $|A| = 6$ and $|B| \leq 1$. It implies that G has no subgraphs isomorphic to $K_{3,3}$, $d_G(H) = 15$ and $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in V(G)$. Hence $E(X) = \emptyset$ and there is an edge $u_1u_2 \in \nabla(H)$ such that $N_G(u_1) \cap X = \{u_2\}$. By Lemma 17, $g_0(G) \geq 9$.

Suppose $|S| < 15$. As $g_0(G) \geq 9$ and $15 = \lambda_6(G) = d_G(S) = 5|S| - 2|E(G[S])|$, it follows that $|S|$ is odd and $G[S]$ is bipartite. By Lemma 20(b), $\delta(G[S]) \geq 3$. Let W and Z be the bipartition of $G[S]$ such that $|W| > |Z|$. We have $|W| = \frac{1}{2}(|S| + 1)$ if $|S| \leq 11$, and $7 \leq |W| \leq 8$ if $|S| = 13$.

\textbf{Case 1.} There is a vertex v_1 in S with $d_{G[S]}(v_1) = 5$.

Let R be one of W and Z such that $v_1 \in R$. As $\delta(G[S]) \geq 3$ and $|E(S)| = \frac{1}{2}(|S| - 2|E(G[S])|)$, it follows that $N_{G[S]}(N_{G[S]}(v_1)) = R$. Since G is vertex-transitive, there is an automorphism φ_1 of G such that $\varphi_1(v_1) = u_2$. Then $\varphi_1(R) \subseteq X \cup V(H)$. Noting that $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in V(G)$, we have $\varphi_1(S \setminus R) \cap X = \emptyset$. Notice that G has no subgraphs isomorphic to $K_{3,3}$. We have $|\varphi_1(R) \cap X| \geq 4$ as $|N_G(u_2) \setminus V(H)| \geq 3$ and $\delta(G[S]) \geq 3$. Then $|\varphi_1(S) \cap V(H)| \leq 6$ as $|S| \leq 13$. It follows that $d_{G[\varphi_1(S)]}(u_1) = 3$. Then $d_{G[\varphi_1(S)]}(u) \geq 4$ for each $u \in N_{G[\varphi_1(S)]}(u_1)$ by Lemma 20(b). Now we know $|S| = 13$, $|\varphi_1(R) \cap X| = 4 = |\varphi_1(R) \cap V(H)| + 2$ and $|\varphi_1(S \setminus R) \cap V(H)| = 4 = |\varphi_1(S \setminus R) \cap V(H)| + 1$. Then $R = Z$ and $|N_G(u_2) \setminus V(H)| = 2$.

Noting that $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in V(G)$, we have $d_{G[\varphi_1(S)]}(u) \leq 4$ for each $u \in \varphi_1(W)$. Since $\delta(G[S]) \geq 3$ and G has no subgraphs isomorphic to $K_{3,3}$, two vertices in $\varphi_1(W) \setminus V(H)$ has exactly 3 neighbors in $\varphi_1(Z) \cap X$. So $d_{G[\varphi_1(S)]}(u) \geq 4$ for each $u \in \varphi_1(W) \setminus N_G(u_2)$ as $|E(S)| = 25$. Then there is a vertex $u_3 \in \varphi_1(Z) \cap X$ such that $\varphi_1(W) \setminus N_G(u_2) \subseteq \varphi_1(W) \setminus N_G(u_3)$.

\end{proof}
Assume $\varphi_1(Z) \cap V(H) = \{u_4, u_5\}$. Let φ_2 be an automorphism of G such that $\varphi_2(u_4) = u_2$. Then $u_1 \notin \varphi_2(N_{G_2}(u_4))$ and $\varphi_2(\{u_2, u_3, u_4\}) \subseteq X$, which implies $|\nabla(u) \cap \nabla(H)| \geq 3$ for the vertex $u \in (N_G(u_2) \cap V(H)) \setminus \{u_1\}$, a contradiction.

Case 2. $d_{G[S]}(u) \leq 4$ for each $u \in S$.

If $|S| = 13$, then, noting $|E(G[S])| = 25$ and $5 \leq |Z| \leq 6$, we have that there is a vertex $u \in Z$ with $d_{G[S]}(u) = 5$, a contradiction. Thus $|S| \leq 11$. There is a vertex $w \in W$ with $d_{G[S]}(w) = |W| - 2$ such that $d_{G[S]}(u) = 4$ for each $u \in N_{G[S]}(w)$. Choose a vertex $z \in N_{G[S]}(w)$.

We claim that the edge u_1u_2 is contained in a 4-cycle of G. Suppose not. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G and there is an automorphism φ_3 of G such that $\varphi_3(w) = z$. We know $\varphi_3(S) \neq S$. Noting that $|N_{G[S]}(u) \cap N_{G[S]}(v)| \geq 2$ for every subset $\{u, v\} \subseteq Z$, each edge in $G[S]$ is contained in a 4-cycle of G. Hence $\varphi_3(N_{G[S]}(u)) \subseteq N_{G[S]}(z)$ and $N_{G[S]}(u) \subseteq \varphi_3(S)$ for each $u \in \varphi_3(N_{G[S]}(w))$. By Lemma 20(c), $|S \cap \varphi_3(S)| \leq 7$ and $d_G(S \cap \varphi_3(S)) + d_G(S \cup \varphi_3(S)) \leq 2\lambda_8(G)$. If $|S| = 11$, then $|S \cap \varphi_3(S)| \geq |\varphi_3(N_{G[S]}(u)) \cap N_{G[S]}(w)| = 8$, a contradiction. Thus $|S| = 9$. As $\delta(G[S]) \geq 3$, we have $Z = \bigcup_{u \in \varphi_3(N_{G[S]}(u))} N_{G[S]}(u) \subseteq \varphi_3(S)$. Hence $|S \cap \varphi_3(S)| = 7$ and $d_G(S \cap \varphi_3(S)) = 17$. Noting that $d_G(S \cup \varphi_3(S)) \geq \lambda_5(G)$ by Lemma 20(a), we have $d_G(S \cap \varphi_3(S)) + d_G(S \cup \varphi_3(S)) < 2\lambda_8(G)$, a contradiction.

Thus $|N_G(u_2) \cap V(H)| = 2$. Let φ_4 be an automorphism of G such that $\varphi_4(u) = u_2$ if $|S| = 9$, and $\varphi_4(u) = u_2$ if $|S| = 11$. If $u_1 \in \varphi_4(S)$, then $|Z| \geq d_{G[\varphi_4(S)]}(u_1) - 1 + |N_{G[\varphi_4(S)]}(N_{G[\varphi_4(S)]}(u_2) \cap V(H))| \geq 2 + 3 = 5$ if $|S| = 9$, and $|W| \geq 7$ if $|S| = 11$, a contradiction. Thus $u_1 \notin \varphi_4(S)$. Then $\varphi_5([Z]) \subseteq X$ if $|S| = 9$ and $\varphi_5([W]) \subseteq X$ if $|S| = 11$, which implies $|\nabla(u) \cap \nabla(H)| \geq 3$ for the vertex $u \in (N_G(u_2) \cap V(H)) \setminus \{u_1\}$, a contradiction.

Lemma 28. Suppose $k = 6$, $\lambda_5(G) = 16$ and $g(G) > 3$. For a λ_5-atom S of G, we have $|S| \geq 9$.

Proof. To the contrary, suppose $|S| \leq 8$. As $\frac{1}{2}(6|S| - \lambda_5(G)) = |E(S)| \leq \frac{1}{2}|S|^2$ by Lemma 6, we have $|S| \geq 8$. Hence $|S| = 8$ and $G[S]$ is isomorphic to $K_{4,4}$.

By Lemma 23, $p = 1$. Then $|X| \geq 7$ by Lemma 19. Noting that $d(H) \leq 18$ and H is triangle-free and factor-critical, we have $|V(H)| \geq 11$. Let O_i be the set of vertices u in G with $|\nabla(u) \cap \nabla(H)| = i$ for $2 \leq i \leq 6$. By Lemma 20(a), we have $d(V(H) \cup A) \geq \lambda_5(G)$ and $d(V(H) \setminus A) \geq \lambda_5(G)$ for each subset $A \subseteq V(G)$ with $|A| \leq 3$, which implies $d(H) \geq 16$, $O_5 \cup O_6 = \emptyset$, $|O_4 \cap X| \leq 1$ and $|O_4 \cap V(H)| \leq 1$.

Suppose that S is an imprimitive block of G. Then the orbits $S = S_1, S_2, \ldots, S_m$ of S under the automorphism group of G form a partition of $V(G)$. If $E(S_i) \cap E(X) \neq \emptyset$ for some S_i, then $d(H) = 16$ and $|S_i \cap V(H)| = 6$, which implies $d(V(H) \cup S_i) \leq 14 < \lambda_5(G)$, a contradiction. Thus $E(S_j) \cap E(X) = \emptyset$ for each S_j. As $|G - X| = |X| - 2$, it follows that $|O_4| \geq 3$, which contradicts the fact that $|O_4| = |O_4 \cap X| + |O_4 \cap V(H)| \leq 2$.

Suppose next that S is not an imprimitive block of G. Then there is an automorphism φ_1 of G such that $\varphi_1(S) \neq S$ and $\varphi_1(S) \cap S \neq \emptyset$. Let $T = \varphi_1(S)$. As G is 6-regular, we have $\delta(G[S \cap T]) \geq 2$. By Lemma 20(c), $|S \cap T| \leq 4$. Hence $G[S \cap T]$ is a 4-cycle of G. Assume $S \cap T = \{v_1, v_2, v_3, v_4\}$, where $N(v_1) = N(v_2)$ and $N(v_3) = N(v_4)$.
By the vertex-transitivity of G, for each $u \in V(G)$ there is a vertex u' different from u such that $N(u') = N(u)$. Assume $E(X) \neq \emptyset$. Then $|E(X)| = 1$ and let $u_1 u_2$ be the edge in $E(X)$. We know that there is a vertex u'_1 in $V(H)$ with $N(u'_1) = N(u_1)$, which implies $|N(u_1) \cap V(H)| = 5$. Then $O_5 \neq \emptyset$, a contradiction. Thus $E(X) = \emptyset$. As for each $u \in V(G)$ there is a vertex u' different from u such that $N(u') = N(u)$, it follows that there is a vertex $u_3 \in X$ with $2 \leq |N(u_3) \cap V(H)| \leq 4$. Let φ_2 be an automorphism of G such that $\varphi_2(v_1) = u_3$. If $\varphi_2(\{v_3, v_4\}) \backslash V(H) \neq \emptyset$, then $N(u_3) \cap V(H) = \varphi_2(N(v_1)) \cap V(H) \subseteq \bigcup_{i=4}^{6} O_i$. If $\varphi_2(\{v_3, v_4\}) \subseteq V(H)$, then $\varphi_2(\{v_3, v_4\}) \subseteq \bigcup_{i=4}^{6} O_i$. So $|\bigcup_{i=4}^{6} O_i \cap V(H)| \geq 2$, a contradiction. □

Lemma 29. Suppose $k = 6$, $\lambda_5(G) = \lambda_8(G) = 18$ and $g(G) > 3$. For a λ_8-atom S of G, we have $|S| \geq 15$.

Proof. To the contrary, suppose $8 \leq |S| \leq 14$. By Lemma 23, we have $p = 1$, $|X| \geq 7$ and $|V(H)| \geq 9$. By Lemma 20(a), we have $d_G(V(H) \cup A) \geq \lambda_5(G)$ and $d_G(V(H) \cup A) \geq \lambda_5(G)$ for each subset $A \subseteq V(G)$ with $|A| \leq 1$, which implies $d_G(H) = 18$ and $|\nabla(u) \cap \nabla(H)| \leq 3$ for each $u \in V(G)$. Then $g_0(G) \geq 7$ by Lemma 17. It follows that $G[A]$ is bipartite for each subset $A \subseteq V(G)$ with $|A| \leq 13$ and $d_G(A) = 18$. Hence $|V(H)| \geq 15$, and $G[S]$ is bipartite if $|S| \leq 13$. Then $|V(G)| \geq 26$.

Case 1. $|S| = 8$.

By Lemma 20(a), $d_G(A) \geq \lambda_5(G)$ for every subset $A \subseteq V(G)$ with $7 \leq |A| \leq 8$, which implies $\delta(G[S]) \geq 3$ and G has no subgraphs isomorphic to $K_{4,4}$. As $|E(G[S])| = \frac{1}{2}(6|S| - 18) = 15$ and $G[S]$ is bipartite, there is a vertex $u_0 \in S$ with $d_G[S](u_0) = 3$ and $G[S \backslash \{u_0\}]$ is isomorphic to $K_{3,5}$.

![Figure 3. The illustration in the proof of Lemma 29.](image)

Claim 1. There are no two distinct vertices u and v in G with $N_G(u) = N_G(v)$.

Suppose that u_1 and u_2 are two distinct vertices in G with $N_G(u_1) = N_G(u_2)$. Let x, y and z be the three vertices in S which have 4 neighbors in $S \backslash \{u_0\}$. Noting that G has no subgraphs isomorphic to $K_{4,4}$, we have, by the definition of the vertex-transitivity of G, that for each vertex $u \in \{x, y, z\}$ there is a vertex $u' \in \{x, y, z\} \backslash \{u\}$ such that $N_G(u) = N_G(u')$. It follows that $N_G(x) = N_G(y) = N_G(z)$. Then G is bipartite by Lemma 19, a contradiction. So Claim 1 holds.

Claim 2. G has no subgraphs isomorphic to $K_{3,5}$.

Suppose that u_3, u_4 and u_5 are three distinct vertices in G with $|N_G(u_3) \cap N_G(u_4) \cap N_G(u_5)| = 5$. By Claim 1 and the vertex-transitivity of G, it follows that for each $u \in$
there are two distinct vertices $u', u'' \in (N_G(u_3) \cap N_G(u_4)) \setminus \{u\}$ such that $|N_G(u) \cap N_G(u') \cap N_G(u'')| = 5$. It implies that there is a vertex $v \in V(G) \setminus \{u_3, u_4, u_5\}$ such that $|N_G(v) \cap N_G(u_3) \cap N_G(u_4)| \geq 4$. So G has a subgraph isomorphic to $K_{4,4}$, a contradiction. Claim 2 is proved.

Claim 3. G has no subgraphs isomorphic to G_{10} in Figure 3.

Suppose that G_{10} is a subgraph of G. Let φ_1 be an automorphism of G such that $\varphi_1(a_2) = a_1$. Noting that $d_G(V(G_{10}) \cup A) \geq \lambda_5(G)$ for each subset $A \subseteq V(G)$ with $|A| \leq 1$ by Lemma 20(a), we have $G_{10} = G[V(G_{10})]$ and $|N_G(u) \cap V(G_{10})| \leq 3$ for each $u \in V(G_{10})$. We know $\varphi_1(a_3) \in \{a_2, a_3\}$ if $|\varphi_1(N_{G_{10}}(a_2)) \cap N_{G_{10}}(a_1)| = 4$. Hence either each edge in $\nabla(a_1)$ or each edge in $\nabla(\varphi_1(a_3))$ is contained in a 4-cycle of G. By the vertex-transitivity of G, each edge in G is contained in a 4-cycle of G. It follows that $|\nabla(u) \cap \nabla(H)| \geq 3$ for each edge $uv \in \nabla(H)$.

We claim that $|\nabla(u) \cap \nabla(H)| \geq 2$ for each $u \in V(G)$. Otherwise, noting that $|\nabla(u) \cap \nabla(V(G))| \leq 3$ for each $u \in V(G)$, we suppose that there is a vertex u_6 in G with $|\nabla(u_6) \cap \nabla(H)| = 3$. Let φ_2 be an automorphism of G such that $\varphi_2(b_2) = u_6$. By considering the definition of $\varphi_2(V(G_{10}))$, we can obtain that there is a vertex $u \in \varphi_2(N_{G_{10}}(b_2))$ with $|\nabla(u) \cap \nabla(H)| \geq 4$, a contradiction.

Thus there a vertex $u_7 \in V(G)$ with $|\nabla(u_7) \cap \nabla(H)| = 2$. Let φ_3 be an automorphism of G such that $\varphi_3(a_2) = u_7$. Then there is a vertex $u \in \varphi_3(N_{G_{10}}(a_2))$ with $|\nabla(u) \cap \nabla(H)| \geq 3$, a contradiction. So Claim 3 holds.

By Claim 2, it follows that $G[S]$ is isomorphic to G_{11} in Figure 3 and we label $G[S]$ as in G_{11}. Then $|N_G(u) \cap S| \leq 2$ for each $u \in \overline{S}$ by Claims 2 and 3. Let φ_4 be an automorphism of G such that $\varphi_4(z_1) = z_4$. If $\varphi_4(N_{G[S]}(z_1)) \subseteq N_{G[S]}(z_1)$, then there is a vertex $u \in \varphi_4(S) \setminus S$ with $|N_G(u) \cap S| \geq 3$, a contradiction. Thus $\varphi_4(N_{G[S]}(z_1)) \setminus S \neq \emptyset$.

Assume $\varphi_4(N_{G[S]}(z_1)) \cap N_{G[S]}(z_1) = \{w_1, w_j\}$. As $|N_G(u) \cap S| \leq 2$ for each $u \in \varphi_4(N_{G[S]}(z_1)) \setminus S$, it follows that $|\varphi_4(\{z_2, z_3, z_4\}) \setminus S| = 2$. Then $N_G(w_i) = N_G(w_j)$, contradicting Claim 1.

Assume $\varphi_4(N_{G[S]}(z_1)) \cap N_{G[S]}(z_1) = \{w_i\}$. Then $|\varphi_4(\{z_2, z_3, z_4\}) \setminus S| = 2$, which implies that each edge in $\nabla(w_i)$ is contained in a 4-cycle of G. Then each edge in G is contained in a 4-cycle of G by the vertex-transitivity of G. Thus there is a vertex $u_8 \in V(G)$ with $2 \leq |\nabla(u_8) \cap \nabla(H)| \leq 3$. Let φ_5 be an automorphism of G such that $\varphi_5(z_4) = u_8$. As $|N_G(w_1) \cap N_G(w_2) \cap N_G(w_3)| = 4$ and $|N_G(\varphi_4(w_1)) \cap N_G(\varphi_4(w_2)) \cap N_G(\varphi_4(w_3))| = 4$, it follows that there is a vertex $u \in \varphi_5(N_{G[S, \varphi_4(S)]}(z_4))$ with $|\nabla(u) \cap \nabla(H)| \geq 4$, a contradiction.

Thus $\varphi_4(N_{G[S]}(z_1)) \cap N_{G[S]}(z_1) = \emptyset$. By Claim 1, it follows that $\varphi_4(\{z_2, z_3, z_4\}) = N_G(w_4) \setminus S$. Let φ_6 be an automorphism of G such that $\varphi_6(z_1) = z_3$. Similarly, we have $\varphi_6(N_{G[S]}(z_1)) \cap N_{G[S]}(z_1) = \emptyset$ and $\varphi_6(\{z_2, z_3, z_4\}) = N_G(w_4) \setminus S$. It implies that $G[N_G(w_4) \cup \varphi_4(N_{G[S]}(z_1)) \cup \varphi_6(N_{G[S]}(z_1))]$ has a subgraph isomorphic to $K_{3,5}$ or G_{10}, contradicting Claim 2 or Claim 3.

Case 2. $9 \leq |S| \leq 14$.

By Lemma 20(b), $\delta(G[S]) \geq 4$. If $|S| = 9$, then $18 = \frac{1}{2}(6|S| - \lambda_8(G)) = |E(S)| \geq \frac{1}{2}(|S| + 1)\delta(G[S]) \geq 20$, a contradiction. Thus $|S| \geq 10$. If $|S| \leq 13$, then let W and Z
be the bipartition of $G[S]$ with $|Z| \leq |W|$ and we have $|W| = |Z| + \frac{1}{2}(1 - (-1)^{|S|})$.

Subcase 2.1. $10 \leq |S| \leq 12$.

We claim that $d_{G[S]}(u) \leq 5$ for each $u \in S$. Otherwise, suppose that there is a vertex $v_1 \in S$ with $d_{G[S]}(v_1) = 6$. Choose a vertex $u_9 \in X$ with $\nabla(u_9) \cap \nabla(H) \neq \emptyset$. Let φ_7 be an automorphism of G such that $\varphi_7(v_1) = u_9$. As $\delta(G[S]) \geq 4$, it follows that $\varphi_7(S \setminus N_G(v_1)) \subseteq X$, which implies that $|\nabla(u) \cap \nabla(V(H))| \geq 4$ for each $u \in \varphi_7(N_G(v_1)) \cap V(H)$, a contradiction.

Noting that $4 \leq d_{G[S]}(u) \leq 5$ for each $u \in S$, and recalling $|E(S)| = 3|S| - 9$ and $|W| = |Z| + \frac{1}{2}(1 - (-1)^{|S|})$, we know that there is a vertex $v_2 \in Z$ and $v_3 \in N_{G[S]}(v_2)$ such that $d_{G[S]}(v_2) = d_{G[S]}(v_3) = 5$.

Now we claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that G has an edge contained in no 4-cycles. By the definition of the vertex-transitivity of G, each vertex in G is incident with an edge contained in no 4-cycles of G. Let φ_8 be an automorphism of G such that $\varphi_8(v_3) = v_2$. Then $\varphi_8(S) \neq S$. Notice that each edge in $G[S]$ is contained in a 4-cycle of $G[S]$. We have $\varphi_8(N_{G[S]}(v_3)) \subseteq N_{G[S]}(v_2)$ and $N_{G[S]}(\varphi_8(v_2)) \subseteq \varphi_8(N_{G[S]}(v_2))$. It implies $|\varphi_8(S) \cap S| \geq 8$, contradicting Lemma 20(e).

Thus $|\nabla(u) \cap \nabla(H)| + |\nabla(v) \cap \nabla(H)| \geq 3$ for each edge $uv \in \nabla(H)$. Then there is a vertex $u_{10} \in V(G)$ with $|\nabla(u_{10}) \cap \nabla(H)| \geq 2$.

Suppose $|S| = 10$. Then $|W| = |Z| = 5$. Let φ_9 be an automorphism of G such that $\varphi_9(v_2) = v_{10}$. Then there is a vertex $u \in \varphi_9(N_{G[S]}(v_2))$ with $|\nabla(u) \cap \nabla(H)| \geq 4$, a contradiction.

Thus $11 \leq |S| \leq 12$. Let R_i be the set of vertices u in S with $d_{G[S]}(u) = i$ for $i = 4, 5, 6$. Then $|R_0| = |R_5 \cap Z| = 4$ if $|S| = 11$, and $|R_3 \cap W| = |R_5 \cap Z| = 3$ if $|S| = 12$.

Suppose that there is a vertex $u_{11} \in V(G)$ with $|\nabla(u_{11}) \cap \nabla(H)| = 3$. For a vertex $v \in S$, let ψ be an automorphism of G such that $\psi(v) = u_{11}$. Then $\psi(S) \cap \nabla(H) \neq \emptyset$ and $\psi(S) \setminus \nabla(H) \neq \emptyset$. As $\delta(G[S]) \geq 4$ and $|\nabla(u) \cap \nabla(H)| \leq 3$ for each $u \in V(G)$, it follows that $|\psi(S) \cap X| = 4$ and $G[\psi(S) \cap V(H)]$ is isomorphic to $K_{1,4}$ or $K_{2,4}$. It implies $|N_{G[S]}(v) \cap R_4| \geq \frac{|S|}{6}$ and that there are two vertices $v', v'' \in R_4$ with $N_{G[S]}(v') = N_{G[S]}(v'')$. If $|S| = 11$, then $N_{G[S]}(u) \cap R_4 = \emptyset$ for each $u \in W \setminus N_{G[S]}(R_4 \cap Z)$, a contradiction. Thus $|S| = 12$. Then $|N_{G[S]}(u) \cap R_4| \geq 2$ for each $u \in S$. So $\delta(G[R_4]) \geq 2$.

Noting $|R_4| = |R_5| = 6$, we have $12 \geq 4|R_4| - \delta(G[R_4])|R_4| \geq 4|R_4| - 2|E(R_4)| = |[R_4, R_5]| = 5|R_3| - 2|E(R_3)| \geq 30 - 18$, which implies $d_{G[R_4]}(u) = 2$ for each $u \in R_4$. Then $G[R_4]$ is a 6-cycle of G, which contradicts that R_4 has two vertices v' and v'' with $N_{G[S]}(v') = N_{G[S]}(v'')$.

So $|\nabla(u) \cap \nabla(H)| \leq 2$ for each $u \in V(G)$. Then $|\nabla(u_{10}) \cap \nabla(H)| = 2$. We can see that there is no automorphism φ of G such that $\varphi(v_2) = u_{10}$, contradicting that G is vertex-transitive.

Subcase 2.2. $13 \leq |S| \leq 14$.

Claim 4. For two distinct λ_8-atoms S_1 and S_2 of G with $S_1 \cap S_2 \neq \emptyset$, $G[S_1 \setminus S_2]$ and $G[S_1 \cap S_2]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$.

By Lemma 20(c), we have $|S_1 \setminus S_2| \leq 7$, $|S_1 \cap S_2| \leq 7$, $d_G(S_1 \setminus S_2) + d_G(S_2 \setminus S_1) \leq 2\lambda_8(G)$ and $d_G(S_1 \cap S_2) + d_G(S_1 \cup S_2) \leq 2\lambda_8(G)$. Then $|S_1 \setminus S_2| \geq 6$ and $|S_1 \cap S_2| \geq 6$. By Lemma
20(a), each of $d_G(S_1 \setminus S_2)$, $d_G(S_2 \setminus S_1)$, $d_G(S_1 \cap S_2)$, and $d_G(S_1 \cup S_2)$ is not less than $\lambda_5(G)$. Noting $\lambda_5(G) = \lambda_6(G) = 18$, we have $d_G(S_1 \setminus S_2) = d_G(S_1 \cap S_2) = 18$. Hence $G[S_1 \setminus S_2]$ and $G[S_1 \cap S_2]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$. So Claim 4 holds.

Since $G[S]$ is not a regular graph, there is an automorphism φ_{10} of G such that $\varphi_{10}(S) \neq S$ and $\varphi_{10}(S) \cap S \neq \emptyset$. Then $G[S \setminus \varphi_{10}(S)]$ and $G[S \cap \varphi_{10}(S)]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$ by Claim 4. Set $B = S \cap \varphi_{10}(S)$.

Claim 5. S has no subset A different from $S \setminus B$ and B such that $G[A]$ is isomorphic to $K_{3,4}$ and $G[S \setminus A]$ is isomorphic to $K_{3,3}$ or $K_{3,4}$.

Suppose, to the contrary, that S has a subset A satisfying the above condition. Assume $|S| = 13$. As $|W| = |Z| + 1 = 7$, we know $|A \cap W| = 4$. It follows that there is a vertex $v_4 \in S$ with $d_G[S](v_4) = 6$. Choose a vertex $v_5 \in S$ such that $d_G[S](v_5) \geq 5$ and $\{|v_4, v_5| \cap W| = 1$. Let φ_{11} be an automorphism of G such that $\varphi_{11}(v_5) = v_4$. Then $\varphi_{11}(S) \neq S$ and $\varphi_{11}(N_G[S](v_5)) \subseteq N_G[S](v_4)$, contradicting that $G[S \cap \varphi_{11}(S)]$ is isomorphic to $K_{3,3}$ or $K_{3,4}$ by Claim 4. Assume next $|S| = 14$. Then each of $G[S \setminus B], G[B], G[A]$ and $G[S \setminus A]$ is isomorphic to $K_{3,4}$. As $|E(S)| = 33$, we know $d_G[S](B) = 9$. If $|A \cap B| = 1$, then $d_G[S](B \setminus A) = 5 + 5, a contradiction. Thus Claim 6 holds.

Claim 6. Each vertex in G is contained in exactly two distinct λ_8-atoms of G.

By the vertex-transitivity of G, it only needs to show that $S' = S$ or $\varphi_{10}(S)$ for a λ_8-atom S' of G with $S' \cap B \neq \emptyset$. Suppose $S' \neq S$ and $S' \neq \varphi_{10}(S)$. By Claims 4 and 5, we have $S' \cap S = B = S' \cap \varphi_{10}(S)$. Then $18 = d_G(B) \geq d_G[S](B) + d_G[S](\varphi_{10}(S))(B) + d_G[S'](B) \geq 3 \times 9$, a contradiction. Thus Claim 6 holds.

Let D be one of $S \setminus B$ and B such that $G[D]$ is isomorphic to $K_{3,4}$. Choose two vertices v_6 and v_7 in D such that $d_G[D](v_6) = d_G[D](v_7) = 1 = 3$. By Claim 6, there is only one λ_8-atom T of G which is different from S and contains v_6. By Claims 4 and 5, we have $S \cap T = D$. By Claim 6, S and T are the only λ_8-atoms of T which contain v_7. It implies that there is no automorphism φ of G such that $\varphi(v_6) = v_7$, a contradiction.

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof of Theorem 2. If G is 4-factor-critical, then by Theorem 8 and Theorem 4 we have $k = \lambda(G) \geq 5$. So we consider the sufficiency. Suppose $k \geq 5$. We will prove that G is 4-factor-critical.

Suppose, to the contrary, that G is not 4-factor-critical. We know by Theorem 1 that G is bicritical. By Lemma 22, there is a subset $X \subseteq V(G)$ with $|X| \geq 4$ such that $c_0(G - X) = |X| - 2$ and every component of $G - X$ is factor-critical. Let $H_1, H_2, \ldots, H_p, H_{p+1}, \ldots, H_t$ be the components of $G - X$, where $t = |X| - 2$ and H_1, H_2, \ldots, H_p
are the nontrivial components of $G - X$. We know $p \geq 1$ by Lemma 23. For each $i \in [p]$, since H_i is factor-critical, $\delta(H_i) \geq 2$. For every subset $J \subseteq [t]$, we have

$$\sum_{i \in J} d_G(H_i) + \lambda(G)(t - |J|) \leq \sum_{i=1}^t d_G(H_i) \leq d_G(X) = k(t + 2) - 2|E(X)|,$$

which implies

$$\sum_{i \in J} d_G(H_i) + 2|E(X)| \leq k(|J| + 2). \quad (1)$$

Hence $|E(X)| \leq k$. Set $Y = \bigcup_{j=p+1}^t V(H_j)$.

Case 1. $g(G) = 3$.

By Lemma 18, $|E(X)| \geq t - p = |X| - 2 - p$.

Subcase 1.1. $d_G(A) \geq 2k - 2$ for all $A \subseteq V(G)$ with $2 \leq |A| \leq |V(G)| - 2$.

For each $i \in [p]$, we have $d_G(H_i) \geq 2k - 2$. If k is odd, then $d_G(H_i)$ is odd and hence $d_G(H_i) \geq 2k - 1$. So $d_G(H_i) \geq 2k - \frac{1}{2}(3 + (-1)^k)$ for each $i \in [p]$. Now we have

$$(2k - \frac{1}{2}(3 + (-1)^k))p + 2(|X| - 2 - p) \leq \sum_{i=1}^p d_G(H_i) + 2|E(X)| \leq k(p + 2), \quad (2)$$

which implies $(k - 2 - \frac{1}{2}(3 + (-1)^k))p + 2(|X| - 2 - k) \leq 0$. Hence $|X| \leq k + 1$.

Suppose $|X| < k$. Then $p = t = |X| - 2$. By Theorem 9, $|X| \geq \kappa(G) > \frac{2}{3}k$. Hence we know from (2) that $2k \geq (k - \frac{1}{2}(3 + (-1)^k))p > (k - \frac{1}{2}(3 + (-1)^k))(\frac{2}{3}k - 2)$. That is, $k^2 - 7k + 3 < 0$ if k is odd and $k^2 - 8k + 6 < 0$ otherwise. It follows that $k \leq 6$. If $k = 6$, then $|X| \geq \kappa(G) = k$ by Lemma 11, a contradiction. Thus $k = 5$. Then $\kappa(G) = |X| = 4$. By Lemma 10, $\tau(G) = 2$. It implies that there is an edge $x_0y_0 \in E(G)$ such that $|N_G(x_0) \cap N_G(y_0)| = 4$.

Noting $k = 5$, we know from (2) that $|E(X)| \leq 1$. Choose a vertex $u \in X$ with $d_G(x_0)(u) = 0$. Since G is vertex-transitive, there is an automorphism φ_1 of G such that $\varphi_1(x_0) = u$. Assume, without loss of generality, that $\varphi_1(y_0) \in V(H_1)$. Noting $|N_G(x_0) \cap N_G(y_0)| = 4$, we have $N_G(u) \subseteq V(H_1)$. Then $d_G(V(H_1) \cup \{u\}) = d_G(X) - d_G(H_2) - 5 \leq 20 - 9 - 5 < 2k - 2$, a contradiction.

Thus $k \leq |X| \leq k + 1$. Noting $(k - 2 - \frac{1}{2}(3 + (-1)^k))p + 2(|X| - 2 - k) \leq 0$, we have $p \leq 2$ and $k \leq 8$. Then $|Y| = |X| - 2 - p \geq k - 4 \geq 1$. For any given vertex v, let q be the number of triangles containing v in G. By the vertex-transitivity of G, each vertex in G is contained in q triangles of G, which implies that each edge in G is contained in at most q triangles of G.

Claim 1. $E(X)$ is a matching of G.

Assume $p = 2$ or $|X| = k + 1$. Then we know from (2) that $|E(X)| = |X| - 2 - p = |Y|$. Since there are $q|Y|$ triangles of G containing one vertex in Y, each edge in $E(X)$ is contained in q triangles of G. It implies that $E(X)$ is a matching of G. Next we assume $p = 1$ and $|X| = k$. If two edges in $E(X)$ are adjacent, then $|E(X)| = q \geq 2|Y| = 2(k - 3)$.
and hence \(d_G(H_1) + 2|E(X)| \geq 2k - 2 + 4(k - 3) > 3k \), which contradicts the inequality (1). So Claim 1 holds.

By Claim 1, it follows that each edge incident with a vertex in \(Y \) is contained in at most one triangle of \(G \). Then, by the vertex-transitivity of \(G \), each edge in \(E(X) \) is contained in at most one triangle of \(G \).

Suppose \(|X| = k + 1 \). From (2), we know \(k \leq 6, p = 1 \) and \(|E(X)| = |Y| = k - 2 \). Since \(G \) has \(q|Y| \) triangles containing one vertex in \(Y \), each edge in \(E(X) \) is contained in \(q \) triangles of \(G \). Noting that each edge in \(E(X) \) is contained in at most one triangle of \(G \), we have \(q = 1 \). Then \(|E(N_G(u))| = 1 \) for each \(u \in Y \), which implies \(|X| \geq 2|E(X)| + (k - |E(X)| - 1) = 2k - 3 > k + 1 \), a contradiction.

Thus \(|X| = k \). Then for each \(e \in E(X) \) and each \(u \in Y \), \(G \) has a triangle containing \(e \) and \(u \). As each edge in \(E(X) \) is contained in at most one triangle of \(G \), it follows that \(|Y| = 1 \), which implies \(p = 2 \) and \(k = 5 \). From (2), we know \(d_G(H_1) = d_G(H_2) = 9 \) and \(|E(X)| = 1 \). Assume \(|V(H_1)| \leq |V(H_2)| \). Let \(u_1 \) be the vertex in \(Y \). For a vertex \(u_2 \in V(H_1) \) with \(N_G(u_2) \cap X \neq \emptyset \), we have \(|N_G(u_2) \cap X| \leq 3 \) as \(\delta(H_1) \geq 2 \). As \(H_2 \) is a component of \(G - N_G(u_1) \) with maximum cardinality, we have, by the definition of the vertex-transitivity of \(G \), that \(H_2 \) also is a component of \(G - N_G(u_2) \) with maximum cardinality. Then \(N_G(X \setminus N_G(u_2)) \cap V(H_2) = \emptyset \). It implies \(d_G(V(H_1) \cup (X \setminus N_G(u_2))) < 8 = 2k - 2 \), a contradiction. Hence Subcase 1.1 cannot occur.

Subcase 1.2. There is a subset \(A \subseteq V(G) \) with \(2 \leq |A| \leq |V(G)| - 2 \) such that \(d_G(A) < 2k - 2 \).

We choose a subset \(S \) of \(V(G) \) such that \(1 < |S| \leq \frac{1}{2}|V(G)|, d(S) \) is as small as possible, and, subject to these conditions, \(|S| \) is as small as possible. Then \(d_G(S) \leq d_G(A) \leq 2k - 3 \). By Corollary 14, \(d_G(S) = |S| \geq k \) and \(G[S] \) is \((k - 1)\)-regular. As \(2k - 3 < \frac{2}{5}(k + 1)^2 \), \(S \) is an imprimitive block of \(G \) by Theorem 13. Thus \(G[S] \) is vertex-transitive by Lemma 12. We also know that the orbits \(S = S_1, S_2, \ldots, S_m \) of \(S \) under the automorphism group of \(G \) form a partition of \(V(G) \) and each \(G[S_i] \) is \((k - 1)\)-regular.

Set \(I_i = \{ j \in \{ 1, 2, \ldots, m_1 \} : S_j \cap V(H_i) \neq \emptyset \} \) for each \(i \in [t] \) and set \(\mathcal{M} = \bigcup_{i \in I_i} S_j : i \in [t] \). If any two sets in \(\mathcal{M} \) are disjoint, then \(2|X| \geq 2|\bigcup_{U \in \mathcal{M}} \nabla(U)| \geq \sum_{U \in \mathcal{M}} d_G(U) \geq |\mathcal{M}|d_G(S) \).

Suppose \(|S| = k \). Then each \(G[S] \) is isomorphic to \(K_k \) and hence \(G[S_j] \) has common vertices with at most one component of \(G - X \). Hence \(|\mathcal{M}| = c_0(G - X) = |X| - 2 \) and any two sets in \(\mathcal{M} \) are disjoint. Then \(2|X| \geq |\mathcal{M}|d_G(S) = (|X| - 2)k > 2|X|, \) a contradiction.

Suppose \(|S| = k + 1 \). As \(\delta(H_j) \geq 2 \) for each \(j \in [p] \), we have that for each \(S_i \), \(|S_i \setminus X| = |S_i \setminus X| = 2 \) or \(S_i \setminus X \subseteq V(H_{i'}) \) for some \(i' \in [t] \). Hence \(|\mathcal{M}| \geq p + \frac{1}{2}(t - p) = \frac{1}{2}(t + p) \geq \frac{1}{2}(t + 1) = \frac{1}{2}(|X| - 1) \) and any two sets in \(\mathcal{M} \) are disjoint. Then \(2|X| \geq |\mathcal{M}|d_G(S) \geq \frac{1}{2}(|X| - 1)(k + 1) > 2|X|, \) a contradiction.

Thus \(|S| \geq k + 2 \). Noting that \((k - 1)|S| \) is even and \(k + 2 \leq |S| \leq 2k - 3 \), we have \(|S| = k + 2 \) if \(5 \leq k \leq 6 \). For each \(i \in [p] \), if \(V(H_i) \cap S_j \neq \emptyset \), then \(|V(H_i) \cap S_j| \geq 2 \) as \(\delta(H_i) \geq 2 \).

Claim 2. For each \(S_i \), there is an element \(a_i \in [p] \) such that \(V(H_{a_i}) \cap S_i \neq \emptyset \).
Suppose $S_i \subseteq X \cup Y$. By Lemma 16, $|S_i \cap Y| \leq \frac{1}{3}|S_i|$. If $k \geq 6$, then $|E(X)| \geq |E(S_i \cap X)| = \frac{1}{2}(k-1)|S_i| \geq \frac{1}{2}(k-1)(k+2) > k$, a contradiction. Thus $k = 5$. Then $|S_i| = k + 2$ and $|S_i \cap Y| \leq \frac{1}{3}|S_i| = 2$. Hence $|E(X)| \geq |E(S_i \cap X)| \geq \frac{1}{2}(k-1)(|S_i| - 4) = \frac{1}{2}(k-1)(k-2) > k$, a contradiction. So Claim 2 holds.

Claim 3. $X \setminus S_i \neq \emptyset$ for each S_i.

Suppose $X \subseteq S_i$. Choose a component H_j of $G-X$ such that $H_j \neq H_{a_i}$. Then $|V(H_j)\cap S_i| = |N_G(V(H_j)\cap S_i)\setminus S_i| \leq |V(H_j)\setminus S_i|$. Hence $V(H_j)\setminus S_i \neq \emptyset$. Then there is some $S_j \subseteq V(H_j)\setminus S_i$. Now we know $d_G(V(H_j)\setminus S_i) \geq d_G(S_i) = |S_i|$. On the other hand, we have $d_G(V(H_j)\setminus S_i) \leq |S_i|\setminus V(H_{a_i})| \leq |S_i|$, a contradiction. So Claim 3 holds.

Claim 4. For each $i \in [p]$, we have $d_G(H_i) \geq 2k-2$ if there is some S_j such that $S_j \cap V(H_i) \neq \emptyset$ and $S_j \setminus V(H_i) \neq \emptyset$.

Suppose $S_j \cap V(H_i) \neq \emptyset$ and $S_j \setminus V(H_i) \neq \emptyset$. By Claim 3, $X \setminus S_j \neq \emptyset$. Suppose $|V(H_i) \cup S_j| = 1$. Then $V(H_i) \cup S_j = X \setminus S_j$, which implies $|V(H_i) \cup X| = 1$. Hence $t = 2$ and $p = 1$, implying $|X| - 2 \geq k - 2 > 2$, a contradiction. Thus $|V(H_i) \cup S_j| \geq 2$. Then $|S_j| = d_G(S) \leq d_G(V(H_i) \cup S_j) \leq |V(H_i), V(H_i) \cup S_j| \cup |S_j| \setminus V(H_i)|$, which implies $|V(H_i), V(H_i) \cup S_j| \cup |S_j| \setminus V(H_i)| \geq d_G(S_j \cap V(H_i)) + |V(H_i), V(H_i) \cup S_j| \cup |S_j| \setminus V(H_i)|$. Hence $d_G(H_i) \geq d_G(S_j \cap V(H_i)) + |V(H_i), V(H_i) \cup S_j| \cup |S_j| \setminus V(H_i)| \geq d_G(S_j \cap V(H_i)) + |S_j| \setminus V(H_i)| \geq 2k-4$ by Corollary 15, which implies $d_G(H_i) \geq 2k-4 + |S_j| \setminus V(H_i)| \geq 2k-2$. If $|S_j| \setminus V(H_i)| = 1$, then $d_G(H_i) \geq k - 1 + |S_j| \setminus V(H_i)| \geq 2k$. Claim 4 holds.

Claim 5. $S_i \subseteq V(H_{a_i}) \cup X$ for each S_i.

Suppose, to the contrary, that $G-X$ has a component H_b with $V(H_b) \cap (S_i \setminus V(H_{a_i})) \neq \emptyset$. Let θ be an integer such that $\theta = 1$ if $|V(H_b) = 1$ and $\theta = 0$ otherwise. As $X \setminus S_i \neq \emptyset$ by Claim 2, there is some S_j with $S_j \cap (X \setminus S_i) \neq \emptyset$. Set $J = \{a_i, b\} \cup \{a_j\}$. For each $i' \in [p]$, we have $d_G(H_{i'}) \geq d_G(S) \geq k+2$ and furthermore $d_G(H_{i'}) \geq 2k-2$ by Claim 4 if $i' \in [p] \cap J$. If $|J| = 2$, then, noting that $d_G(S_j \setminus V(H_{a_i}) \cap S_i) \geq 2k-4$ by Corollary 15 and $\lambda(G[S_j]) = k-1$ by Theorem 8, we have $d_G(H_{a_i}) \geq d_G(S_j \setminus V(H_{a_i}) \cap S_i) + d_G(S_j \setminus V(H_{a_i}) \cap S_j) \geq 2k-4 + k = 3k-5$.

Assume $5 \leq k \leq 6$. We know that $|S| = k + 2$ and $G[S \cap V(H_{i'})]$ is isomorphic to K_2 for each $i' \in \{a_i, b\} \cap [p]$. Hence $S_i \subseteq V(H_{a_i}) \cup V(H_b) \cup X$. If $\theta = 1$, then $|E(G[S \cap X])| = \frac{1}{2}((k-1)|S_i \cap X| - (k-1) - (2k-4)) \geq \frac{1}{2}(k^2 - 5k + 6) \geq 3$. If $\theta = 0$, then $k = 6$ as $G[S_i]$ is vertex-transitive, which implies $|E(S_i \cap X)| = 2$. Now we have

\[
\sum_{i' \in J} d_G(H_{i'}) + 2|E(X)|
\geq (3k-5)(3 - |J|) + 2(2k-2)(|J| - 2) + \theta k + (1 - \theta)(2k-2) + 2|E(S_i \cap X)|
= k(|J| + 2) + |J| + k - 9 - \theta(k-2) + 2|E(S_i \cap X)| > k(|J| + 2),
\]

which contradicts the inequality (1).

Assume $k \geq 7$. If $\theta = 1$, then $t = |X| - 2 \geq k - 2 \geq 5$. If $\theta = 0$, then $t = |X| - 2 \geq
\[[2k/3] - 2 \geq 3 \text{ by Theorem 9. Now we have} \]
\[
\sum_{\nu \in \mathcal{H}} \delta_G(H_{\nu}) + 2|E(X)| \\
\geq (3k - 5)(3 - |J|) + 2(2k - 2)(|J| - 2) + \theta(p - |J| + 1)(k + 2) + \\
(1 - \theta)(2k - 2 + (p - |J|)(k + 2)) + (t - p)k + 2(t - p) \\
= k(t + 2) + 2t + \theta(k + 2) + (1 - \theta)(2k - 2) - |J| - k - 7 > k(t + 2),
\]
which contradicts the inequality (1). So Claim 5 holds.

By Claims 2 and 5, it follows that \(|\mathcal{M}| = p = t \) and any two sets in \(\mathcal{M} \) are disjoint. Then \(2|X| \geq |\mathcal{M}|d_G(S) \geq (|X| - 2)(k + 2) > 2|X|, \) a contradiction.

Case 2. \(g(G) \geq 4. \)

For each \(j \in [p], \) we know from (1) that \(\delta_G(H_j) \leq 3k. \) Let \(F_j \) be a component of \(G[V(H_j)] \) which contains a vertex in \(V(G \setminus (V(H_j) \cup X)). \) Then \(\nabla(F_j) \) is a 5-restricted edge-cut of \(G. \) Hence \(\lambda_5(G) \leq \delta_G(F_j) \leq \delta_G(H_j) \leq 3k. \) As it follows from Corollary 15 that \(\lambda_4(G) \geq 2k - 2, \) we have \(2k - 2 \leq \lambda_4(G) \leq \lambda_5(G) \leq 3k. \)

Claim 6. If \(\lambda_5(G) \geq 4k - 8 \) and \(k \leq 6, \) then \(p = 1, |V(H_1)| \geq 7, \lambda_7(G) \leq 3k \) and furthermore, \(\lambda_8(G) \leq 3k: \) if \(\lambda_5(G) > 4k - 8. \)

Suppose \(\lambda_5(G) \geq 4k - 8 \) and \(k \leq 6. \) Then \(p = 1 \) by Lemma 23. We claim that \(G[V(H_1)] \) is connected. Otherwise, \(d_G(H_1) \geq \lambda(G) + \delta_G(F_1) \geq k + \lambda_5(G) > 3k, \) a contradiction. Suppose \(|V(H_1)| = 5. \) As \(g(G) \geq 4 \) and \(H_1 \) is factor-critical, \(H_1 \) is a 5-cycle of \(G. \) It follows that \(k = 5, E(X) = \emptyset \) and \(|X| \geq 8. \) Then \(g_9(G) \geq 7 \) by Lemma 17, a contradiction. Thus \(|V(H_1)| \geq 7. \) Then \(\nabla(H_1) \) is a 7-restricted edge-cut of \(G \) and \(\lambda_7(G) \leq d_G(V(H_1)) \leq 3k. \) If \(\lambda_5(G) > 4k - 8, \) then \(|X| \geq 7 \) and \(|V(H_1)| \geq 9 \) by Lemma 23, which implies \(\lambda_8(G) \leq d_G(H_1) \leq 3k. \) So Claim 6 holds.

By Claim 6, we can discuss Case 2 in the following two subcases.

Subcase 2.1. \(k = 5, \lambda_5(G) = 12 \) and \(\lambda_7(G) \geq 13. \)

We have \(\lambda_4(G) = 12. \) As \(\lambda_7(G) \) exists, \(|V(G)| \geq 14. \) Then, by Lemma 20(a), \(d_G(A) \geq \lambda_5(G) \) for each subset \(A \subseteq V(G) \) with \(|A| = 7, \) which implies that \(G \) has no subgraphs isomorphic to \(K_{3,4}. \) By the definition of the vertex-transitivity of \(G, \) we can obtain that \(G \) has no subgraphs isomorphic to \(K_{2,5}. \) By Claim 6, \(p = 1 \) and \(|V(H_1)| \geq 7. \) Hence \(|X| \geq 6 \) and \(|V(G)| \geq 16. \) By Lemma 20(a), \(d_G(V(H_1) \cup A) \geq \lambda_7(G) \) for each subset \(A \subseteq X \) with \(|A| \leq 1, \) which implies \(d_G(H_1) \geq 13 \) and \(|N_G(u) \cap V(H_1)| \leq 3 \) for each \(u \in X. \) Noting \(\delta(H_1) \geq 2, \) we have \(\mid \nabla(u) \cap \nabla(H_1) \mid \leq 3 \) for each \(u \in V(G). \)

Claim 7. There is no subset \(A \subseteq V(G) \) with \(|A| \leq 3 \) such that \(A \cap V(H_1) \neq \emptyset, \mid \nabla(A) \cap \nabla(H_1) \mid = 3 \mid A \mid \) and \(d_G((V(H_1) \cup A) \setminus (V(H_1) \cap A)) \leq 12. \)

Suppose, to the contrary, that such subset \(A \) of \(V(G) \) exists. Set \(B = (V(H_1) \cup A) \setminus (V(H_1) \cap A). \) Then \(|B| \geq 4 \) and \(|B| \geq 7. \) By Lemma 20(a), we have \(d_G(B) \geq \lambda_4(G) \) and furthermore, \(d_G(B) \geq \lambda_7(G) \) if \(|B| \geq 7. \) As \(d_G(B) \leq 12, \) we know \(|B| \leq 6 \) and \(d_G(B) = 12. \) It implies that \(E(V(H_1) \cap A) = \emptyset \) and \(G[B] \) is isomorphic to \(k_{2,2} \) or \(K_{3,3}. \)
Hence $G[V(H_1) \cup A]$ is bipartite. Then H_1 is bipartite, contradicting the fact that H_1 is factor-critical. So Claim 7 holds.

As $\lambda_5(G) = 12 < \lambda_7(G)$ and $k = 5$, each λ_5-atom of G induces a subgraph which is isomorphic to $K_{3,3}$. Let $T_1, T_2, \ldots, T_{m_2}$ be all the subsets of $V(G)$, which induce subgraphs isomorphic to $K_{3,3}$. Let R_i be the set of vertices in X with i neighbors in $V(H_1)$ for $1 \leq i \leq 3$ and let Q be the set of vertices in $V(H_1)$ with 3 neighbors in X.

Subcase 2.1.1. There are two distinct T_i and T_j with $T_i \cap T_j \neq \emptyset$.

Noting that G has no subgraphs isomorphic to $K_{3,3}$ or $K_{2,5}$, we have $|T_i \cap T_j| = 2$ or 4. If $|T_i \cap T_j| = 4$, then $d_G(T_i \cap T_j) \leq 12 < \lambda_7(G)$, which contradicts Lemma 20(a). Thus $|T_i \cap T_j| = 2$. Assume $T_i \cap T_j = \{v_1, v_2\}$.

Claim 8. For each $u \in X$ with $d_G(X)(u) = 0$ and $N_G(u) \cap V(H_1) \neq \emptyset$, we have $N_G(u) \cap V(H_1) \subseteq Q$ if $u \in R_1 \cup R_2$, and $|N_G(u) \cap V(H_1) \cap Q| \geq 1$ if $u \in R_3$.

Since G is vertex-transitive, there is an automorphism φ_2 of G such that $\varphi_2(v_1) = u$. If $u \in R_1 \cup R_2$, then $\varphi_2(N_G(v_2)) \subseteq X$, which implies $N_G(u) \cap V(H_1) \subseteq Q$. If $u \in R_3$, then $|\varphi_2(N_G(v_2)) \cap X| \geq 3$, which implies $|N_G(u) \cap V(H_1) \cap Q| \geq 1$. So Claim 8 holds.

Assume $E(X) \neq \emptyset$. Then $|E(X)| = 1$ and $\sum_{i=1}^3 |R_i| = 13$, which implies $\sum_{i=1}^3 |R_i| \geq 5$. By Claim 8, $Q \neq \emptyset$. We have $d_G(V(H_1) \setminus \{u\}) \leq 12$ for each $u \in Q$, contradicting Claim 7.

Thus $E(X) = \emptyset$. As $d_G(V(H_1) \cup A) \geq \lambda_4(G)$ for each subset $A \subseteq X$ with $|A| = 4$ by Lemma 20(a), we have $|R_3| \leq 3$. By Claim 8, $|\nabla(Q) \cap \nabla(H_1)| \geq |R_3| + 2|R_2| + |R_1| = 15 - 2|R_3| \geq 9$, which implies $|Q| \geq 3$. Choose a subset $Q' \subseteq Q$ with $|Q'| = 3$. Then $d_G(V(H_1) \setminus Q') \leq 12$, contradicting Claim 7. Hence Subcase 2.1.1 cannot occur.

Subcase 2.1.2. Any two distinct T_i and T_j are disjoint.

By the vertex-transitivity of G, each vertex in G is contained in a λ_5-atom of G. Hence $T_1, T_2, \ldots, T_{m_2}$ form a partition of $V(G)$.

Assume $E(X) \neq \emptyset$. As $c_0(G - X) = |X| - 2$ and $|E(X)| = 1$, it follows that there is some T_i such that $T_i \cap X \neq \emptyset$, $T_i \cap V(H_1) \neq \emptyset$ and $E(T_i) \cap E(X) = \emptyset$. Then there is a vertex $u_1 \in T_i \cap (R_3 \cup Q)$. By Claim 7, it follows that $u_1 \in X$. We have $d_G(V(H_1) \cup \{u_1\}) = 12 < \lambda_7(G)$, contradicting Lemma 20(a).

Thus $E(X) = \emptyset$. Set $\mathcal{B}_1 = \{T_j : |T_j \cap X| = 3, j \in [m_2]\}$ and $\mathcal{B}_2 = \{T_j : |T_j \cap X| < 3, j \in [m_2]\}$. Let $D = \bigcup_{A \in \mathcal{B}_1} A \cap V(H_1) \cup \bigcup_{A \in \mathcal{B}_2} A \cap X$. Noting $c_0(G - X) = |X| - 2$ and $p = 1$, we have $|D| = 3$. By Claim 7, we have $D \subseteq X$. If $|X| \geq 7$, then $d_G(H_1 + D) = 12 < \lambda_7(G)$, which contradicts Lemma 20(a). Thus $|X| = 6$. As G has no subgraphs isomorphic to $K_{2,5}$, we know that $|R_2| = |R_3| = 3$ and $G[Y \cup R_2]$ is isomorphic to $K_{3,3}$. Choose a vertex $u_3 \in R_3$ and a vertex $u_4 \in Y$. Let φ_3 be an automorphism of G such that $\varphi_3(u_4) = u_3$. Noting $\varphi_3(Y \cup R_2) \cap (Y \cup R_2) = \emptyset$, we have $\varphi_3(Y) = R_3$ and $\varphi_3(R_2) \subseteq V(H_1)$. It implies $D \subseteq V(H_1)$ by the choice of D, a contradiction. Hence Subcase 2.1 cannot occur.

Subcase 2.2. $k \neq 5$, $\lambda_5(G) \neq 12$ or $\lambda_5(G) = \lambda_7(G) = 12$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1
Let S' be a λ_s-atom of G, where

$$s = \begin{cases}
4, & \text{if } k \leq 6 \text{ and } \lambda_5(G) < 4k - 8; \\
7, & \text{if } k = 5 \text{ and } \lambda_5(G) = \lambda_7(G) = 12; \\
6, & \text{if } k = 5 \text{ and } \lambda_5(G) = \lambda_6(G) = 13; \\
7, & \text{if } k = 5, \lambda_5(G) = 13 \text{ and } \lambda_6(G) = \lambda_7(G) = 14; \\
8, & \text{if } k = 5, \lambda_5(G) = 13, \lambda_6(G) \geq 14 \text{ and } \lambda_8(G) = 15; \\
5, & \text{if } k = 5 \text{ and } \lambda_5(G) = 14; \\
6, & \text{if } k = 5 \text{ and } \lambda_5(G) = \lambda_6(G) = 15; \\
5, & \text{if } k = 6 \text{ and } \lambda_5(G) = 4k - 8; \\
8, & \text{if } k = 6 \text{ and } \lambda_5(G) = 18; \\
5, & \text{if } k \geq 7.
\end{cases}$$

Claim 9. S' is an imprimitive block of G such that $|S'| > \frac{1}{2}\lambda_s(G)$ if $k \leq 6$ and $|S'| > \frac{1}{3}\lambda_s(G)$ otherwise.

If $k = 5$ and $\lambda_5(G) = \lambda_7(G) = 12$, then, by Lemma 24, Claim 9 holds. So we assume $k > 5$ or $\lambda_5(G) \neq 12$. By Lemma 6, $\frac{1}{2}|S'|^2 \geq 2|E(S')| = k|S| - \lambda_s(G)$. If $5 \leq k \leq 6$ and $\lambda_5(G) < 4k - 8$, then $\frac{1}{2}|S'|^2 \geq k|S' - \lambda_s(G)| > k|S'| - 4k + 8$, which implies $|S'| > 2k - 4 \geq \max\{2(s-1), \frac{1}{2}\lambda_s(G)\}$. If $5 \leq k \leq 6$ and $\lambda_5(G) \geq 4k - 8$, then $|S'| > 2(s-1)$ and $2|S'| > \lambda_s(G)$ by Lemmas 21 and 25-29. If $k \geq 7$, then $\frac{1}{2}|S'|^2 \geq k|S'| - \lambda_s(G) \geq k|S'| - 3k$ and hence $|S'| > k + 2 > \max\{2(s-1), \frac{1}{3}\lambda_s(G)\}$. Suppose S' is not an imprimitive block of G. Then there is an automorphism φ of G such that $\varphi(S') \neq S'$ and $\varphi(S') \cap S' \neq \emptyset$. By Lemma 20(c), $|S'| = |S' \cap \varphi(S')| + |S' \setminus \varphi(S')| \leq 2(s-1)$, a contradiction. So Claim 9 holds.

By Claim 9 and Lemma 12, $G[S']$ is vertex-transitive and hence it is $(k-1)$-regular if $k \leq 6$ and is $(k-1)$-regular or $(k-2)$-regular otherwise. From Claim 9, we also know that the orbits $S' = S'_1, S'_2, \ldots, S'_{m_3}$ of S' under the automorphism group of G form a partition of $V(G)$.

Claim 10. $G[S']$ is $(k-1)$-regular.

Suppose that $G[S']$ is $(k-2)$-regular. Then $k \geq 7$, $s = 5$ and $2|S'| = \lambda_s(G) \leq 3k$, which implies $|S'| \leq \frac{3k}{2}$. By Lemma 6, $\frac{1}{2}|S'|^2 \geq |E(S')| = \frac{1}{2}k(k-2)|S'|$, which implies $|S'| \geq 2(k-2)$. Now $2(k-2) \leq |S'| \leq \frac{3k}{2}$, which implies $k \leq 8$ and $|S'| = 2(k-2)$. Hence $G[S']$ is isomorphic to $K_{k-2,k-2}$. For each $i \in [p]$, noting $3k \geq d_G(H_i) \geq \lambda_s(G) = 4(k-2)$ and that $d_G(H_i)$ has the same parity with k, we have $d_G(H_i) = 3k$. Hence $p = 1$, $E(X) = \emptyset$, $|V(H_1)| > 5$ and $|X| \geq k$. As $c_0(G - X) = |X| - 2$, there is some S'_i with $S'_i \cap X \neq \emptyset$ and $S'_i \cap V(H_1) \neq \emptyset$. Then there is a vertex $u \in S'_i$ with $|\nabla(u) \cap \nabla(H_1)| \geq k-2$. Then $d_G(V(H_1) \cup \{u\}) \leq d_G(H_1) - (k-4) = 2k + 4 < 4(k-2) = \lambda_s(G)$ if $u \in X$ and $d_G(V(H_1) \setminus \{u\}) < \lambda_s(G)$ otherwise, contradicting Lemma 20(a). So Claim 10 holds.

As $\delta(H_j) \geq 2$ for each $i \in [p]$, it follows from Claim 10 that $\delta(G[V(H_j) \cap S'_i]) \geq 1$ if $V(H_j) \cap S'_i \neq \emptyset$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1
Claim 11. For each S'_i, $S'_i \setminus (X \cup Y) \neq \emptyset$ or $|S'_i \cap X| = |S'_i \cap Y|$.

Suppose $|S'_i \cap X| > |S'_i \cap Y|$ for some $S'_i \subseteq X \cup Y$. If $G[S'_i]$ is bipartite, then $|S'_i \cap Y| \leq |S'_i \cap X| - 2$. If $G[S'_i]$ is non-bipartite, then $|S'_i \cap Y| \leq \alpha(G[S'_i]) \leq \frac{1}{4}|S'_i| - \frac{k-1}{2}$ by Lemma 16, which implies $|S'_i \cap Y| \leq |S'_i \cap X| - \frac{k-1}{2} \leq |S_i \cap X| - 2$. Thus $|E(S'_i \cap X)| = \frac{1}{2}(k-1)(|S'_i \cap X| - |S'_i \cap Y|) \geq k-1$. Noting $d_G(H_i) \geq \lambda_5(G) \geq 2k-2$, we have $d_G(H_i) + 2|E(X)| \geq 2k-2 + 2(k-1) > 3k$, a contradiction. So Claim 11 holds.

Subcase 2.2.1. $|S''| \leq 2k - 1$.

Claim 12. If $S'_i \cap V(H_j) \neq \emptyset$ for some $j \in [p]$, then $S'_i \subseteq V(H_j) \cup X$.

Suppose $S'_i \cap V(H_j) \neq \emptyset$ for some $j \in [p]$ and $S'_i \cap V(H_j') \neq \emptyset$ for some $j' \in [t] \setminus \{j\}$. As $\delta(G[S'_i \cap V(H_j)]) \geq 1$, there is an edge $x_i y_1 \in E(S'_i \cap V(H_j))$. Then $|S'_i \cap V(H_j) \cup X| \geq |N_G[S'_i](x_i) \cup N_G[S'_i](y_1)| = 2k - 2$. It implies $|S'_i \cap V(H_j')| = 1$ and $|S'_i| = 2k - 1$. Then $|V(H_j')| = 1$ and $|X| \geq |N_G(V(H_j'))| = 2$. Hence $|V(H_j) \cap S''| = |N_G(V(H_j)) \setminus S'_i| + (c_0(G-X) - 2) \geq 1 + k - 4 \geq 2$. By Corollary 15, we have

$$2k-2 \leq d_G(V(H_j) \cup S'_i)$$
$$\leq d_G(H_j) - d_{G[S'_i]}(S'_i \cap V(H_j)) + |S'_i \setminus V(H_j)|$$
$$= d_G(H_j) - ((k-1)|S'_i \cap X| - 2|E(S'_i \cap X)| - (k-1)) + |S'_i \cap X| + 1$$
$$= d_G(H_j) + 2|E(S'_i \cap X)| - (k-2)|S'_i \cap X| + k$$
$$\leq 3k - (k-2)(k-1) + k = -k^2 + 7k - 2,$$

which implies $k = 5$. It is easy to verify that there is no triangle-free non-bipartite 4-regular graph of order 9, which implies $|S''| \neq 9 = 2k - 1$, a contradiction. So Claim 12 holds.

Set $I'_i = \{j \in [m_3] : S'_i \cap V(H_i) \neq \emptyset\}$ for each $i \in [t]$ and $\mathcal{M}' = \{\bigcup_{j \in I'_i} S'_j : i \in [t]\}$. Then any two sets in \mathcal{M}' are disjoint by Claim 12. By Lemma 20(a), $d_G(U) \geq \lambda_s(G)$ for each $U \in \mathcal{M}'$. Then, by Claim 11, we have

$$2(p + 2 + (k-1)(|\mathcal{M}'| - p))$$
$$= 2|X| \geq 2|\bigcup_{U \in \mathcal{M}'} \bigcup \{\mathcal{M}' \setminus |\mathcal{M}'| + 2\} - d_G(U) \geq |\mathcal{M}'| \lambda_s(G) \geq |\mathcal{M}'|(2k-2),$$

which implies $p \leq \frac{2k}{k-2} < 1$, a contradiction. Hence Subcase 2.2.1 cannot occur.

Subcase 2.2.2 $|S''| \geq 2k$.

We have $\lambda_s(G) = |S''| \geq 2k$. If $s = 4$, then $\lambda_5(G) \geq \lambda_s(G) \geq 2k$. If $s \geq 5$, then $\lambda_5(G) \geq 2k$ by the choice of s. Then $2kp \leq p\lambda_5(G) \leq \sum_{i=1}^p d_G(H_i) + 2|E(X)| \leq (k+2)p$, which implies $p \leq 2$.

Let $\mathcal{N} = \{S'_i : S'_i \cap X \neq \emptyset \text{ and } S'_i \setminus (X \cup Y) \neq \emptyset, i \in [m_3]\}$.

By Claim 11, $\sum_{A \in \mathcal{N}} |A \cap X| - |A \cap Y| = \sum_{i=1}^{m_3} (|S'_i \cap X| - |S'_i \cap Y|) = |X| - |Y| = p + 2$. Noting $|A \cap X| > |A \cap Y|$ for each $A \in \mathcal{N}$, we have $1 \leq |\mathcal{N}| \leq p + 2$. Choose a set $S'_{j_1} \in \mathcal{N}$. Without loss of generality, we assume $S'_{j_1} \cap V(H_1) \neq \emptyset$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.1 28
Suppose $p = 2$. Then $E(X) = \emptyset$ and $2k = \lambda_3(G) = d_G(H_1) = d_G(H_2)$. Hence $\lambda_4(G) = \lambda_3(G) = 2k = |S'|$. For each $u \in V(G)$ and each $i \in [p]$, we have $d_G(V(H_i) \cup \{u\}) \geq \lambda_4(G)$ and $d_G(V(H_i) \setminus \{u\}) \leq \lambda_4(G)$ by Lemma 20(a), which implies $|\nabla(u) \cap \nabla(H_i)| \leq k - 3$. Hence $|S'_j \setminus V(H_1)| \geq 2$ and $\delta(G[S'_j \cap V(H_1)]) \geq 2$, which implies $|S'_j \setminus V(H_1)| \geq 4$. Choose an edge $x_2y_2 \in E(S'_j \cap V(H_1))$. Then $|S'_j \setminus (V(H_1) \cup X)| \leq |S'_j \setminus (N_G[S'_j]\{x_2\} \cup N_G[S'_j]\{y_2\})| = 2$. It follows that $S'_j \cap V(H_2) = \emptyset$. Noting that $d_G(S'_j)(S'_j \cap V(H_1)) \geq k_4 - 4$ by Corollary 15, we have $|S'_j \setminus X| \geq |S'_j \setminus Y| + 2$. Now
\[
d_G(V(H_1) \cup S'_j) \leq d_G(H_1) - d_G[S'_j](V(H_1) \cap S'_j) + |S'_j \setminus V(H_1)|
= 2k - (k - 1)(|S'_j \setminus X| - |S'_j \setminus Y|) + |S'_j \setminus V(H_1)|
\leq 2k - 2(k - 1) + 2k - 4 = 4 = \lambda_4(G),
\]
contradicting Lemma 20(a).

Thus $p = 1$. Suppose $|\mathcal{N}| = 1$. Then $|S'_j \cap X| = |S'_j \cap Y| + 3$ and there is some $S'_j \subseteq V(H_1) \cup S'_j$. We know by Claim 11 that $G[S'_j]$ is bipartite. Hence there is some $S'_j \subseteq V(H_1) \setminus S'_j$. By Lemma 20(a), we have
\[
|S'| = \lambda_s(G) \leq d_G(V(H_1) \cup S'_j) \leq d_G(H_1) - d_G[S'_j](S'_j \setminus V(H_1)) + |S'_j \setminus V(H_1)|
= d_G(H_1) + 2|E(S'_j \cap X)| - 3(k - 1) + |S'_j \setminus V(H_1)|
\leq 3k - 3(k - 1) + |S'_j \setminus V(H_1)|.
\]
Similarly, we can obtain $|S'| \leq d_G(H_1 - S'_j) \leq 3 + |S'_j \setminus V(H_1)|$. Then $2|S'| \leq 6 + |S'_j|$, which implies $|S'| \leq 6 < 2k$, a contradiction.

Thus $|\mathcal{N}| \geq 2$. For each $S'_j \in \mathcal{N}$, noting $|S'_j \cap V(H_1)| \geq 2$, if $|S'_j \setminus V(H_1)| \geq 2$, then, by Corollary 15, we have $d_G[S'_j(S'_j \cap V(H_1)) \geq k_4 - 4$, which implies that $|S'_j \cap X| = 1$ if $|S'_j \cap X| = |S'_j \cap Y| + 1$. If $|\mathcal{N}| = 3$, then $|S'_j \cap X| = 1$ for each $S'_j \in \mathcal{N}$ and hence $d_G(V(H_1) \cup (\bigcup_{S'_j \in \mathcal{N}} S'_j)) \leq d_G(H_1) - 3(k - 2) \leq 6 < \lambda_s(G)$, which contradicts Lemma 20(a). Thus $|\mathcal{N}| = 2$. Assume $\mathcal{N} = \{S'_j, S'_j\}$ and $|S'_j \cap X| = 1$. We know that there is some $S'_j \subseteq V(G) \setminus (V(H_1) \cup S'_j \cup S'_j)$. By Lemma 20(a),
\[
|S| = \lambda_s(G) \leq d_G(V(H_1) \cup S'_j \cup S'_j)
\leq d_G(H_1) - d_G[S'_j](S'_j \cap V(H_1)) + |S'_j \setminus V(H_1)| - (k - 2)
= d_G(H_1) + 2|E(S'_j \cap X)| - 2(k - 1) + |S'_j \setminus V(H_1)| - (k - 2)
\leq 3k - 3(k - 1) + |S'_j \setminus V(H_1)|.
\]
Similarly, we can obtain $|S'| \leq d_G(V(H_1) \cap S'_j \setminus S'_j) \leq 4 + |S'_j \cap V(H_1)|$. Then $2|S'| \leq 8 + |S'_j|$, which implies $|S'| \leq 8 < 2k$, a contradiction.

References