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Abstract

Motivated by the geometry of hyperplane arrangements, Manin and Schechtman
defined for each integer n > 1 a hierarchy of finite partially ordered sets B(In, k),
indexed by positive integers k, called the higher Bruhat orders. The poset B(In, 1)
is naturally identified with the weak left Bruhat order on the symmetric group Sn,
each B(In, k) has a unique maximal and a unique minimal element, and the poset
B(In, k + 1) can be constructed from the set of maximal chains in B(In, k). Ben
Elias has demonstrated a striking connection between the posets B(In, k) for k = 2
and the diagrammatics of Bott-Samelson bimodules in type A, providing significant
motivation for the development of an analogous theory of higher Bruhat orders in
other Cartan-Killing types, particularly for k = 2. In this paper we present a partial
generalization to type B, completed up to k = 2, prove a direct analogue of the main
theorem of Manin and Schechtman, and relate our construction to the weak Bruhat
order and reduced expression graph for Weyl group Bn.

Keywords: Coxeter theory, poset, Bruhat order

1 Introduction

In their 1989 paper [4], Manin and Schechtman introduced for each positive integer n
a family of ranked partially ordered sets B(n, k), the higher Bruhat orders, indexed by
positive integers k. The motivation for this purely combinatorial construction came from
the geometry of hyperplane arrangements, and the geometric picture was used to study
these posets by Felsner-Weil [2], Kapranov-Voevodsky [3], Ziegler [6], and others. More
recently, Elias [1] has demonstrated a striking connection between the higher Bruhat
orders B(n, k) for k = 2 and the diagrammatrics of Bott-Samelson bimodules in type A,
giving significant motivation for the development of an analogous theory of higher Bruhat
orders in other Cartan-Killing types, particularly for k = 2.
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In this paper, we will introduce such a partial generalization of the Manin-Schechtman
construction in type B. In particular, a generalization to type B, in analogy with the
construction in type A, should specify a family of sets CB(Jn, k) indexed by positive
integers n and k along with a packet operation PB that associates to an element K ∈
CB(Jn, k + 1) a packet PB(K) ⊂ CB(Jn, k). There should be a specified standard order
on packets, leading to a notion of admissible orderings AB(Jn, k) of CB(Jn, k) as those
total orderings of CB(Jn, k) whose restrictions to any packet extends either the standard
order or its opposite on that packet. There should be an equivalence relation ∼ on
AB(Jn, k) analogous to the equivalence relation defined by Manin-Schechtman in type A,
and for each packet K a packet flip operation pK(•) defined on appropriate elements of
AB(Jn, k) and descending to the quotient BB(Jn, k) := AB(Jn, k)/ ∼. There should be a
notion of inversion set for elements of AB(Jn, k), defined in terms of the standard order
on packets, and this notion should respect the relation ∼ and therefore induce a notion
of inversion set for elements of BB(Jn, k). This notion of inversion set, along with the
packet flip operation, should endow BB(Jn, k) with the structure of a poset ranked by the
cardinality of the inversion set, in a manner analogous to the original construction in type
A. Finally, and most importantly, this data should be coherent as k varies, in a manner
analogous to the main theorem of Manin-Schechtman in type A. In particular, each
poset BB(Jn, k) should have a unique maximal element and a unique minimal element,
AB(Jn, k + 1) should be naturally identified with the set of maximal chains in BB(Jn, k),
and any element of BB(Jn, k) should be determined by its inversion set.

Such a construction should be considered a “type B” higher Bruhat order if the con-
nections between the Manin-Schechtman higher Bruhat orders and the combinatorics of
the type A Weyl groups hold instead for the type B Weyl groups. In section 3 we make
explicit the connection at the levels k = 1, 2 between the higher Bruhat orders and the
combinatorics of type A Weyl groups. In particular, we explain that the ranked poset
B(In, 1) of Manin-Schechtman is naturally identified with the symmetric group Sn on n
letters with its natural weak left Bruhat order, ranked by the number of inversions; that
the set C(In, 2) is naturally identified with a set of positive roots in the root system of Sn
in a manner compatible with inversion sets; that the set of maximal chains in B(In, 1),
and hence the set A(In, 2) by the main theorem of Manin-Schechtman, is naturally identi-
fied with the set of reduced expressions for the longest element of Sn as a Coxeter group;
and that the equivalence relation ∼ on A(In, 2) is generated by st = ts braid relations
and that the packet flip operation correspond to sts = tst braid relations. All of these
notions have natural analogues for type B Weyl groups which serve as the motivation for
the definitions we give in section 4 at the levels k = 1, 2, and we see in Theorem 20 and
Corollary 21 that the construction we give there is compatible with the combinatorics of
the type B Weyl groups in the same way. In section 4, we provide sufficient definitions
at the levels k = 3, 4 to formulate and prove the analogue of the main theorem of Manin-
Schechtman at the levels k = 1, 2, which is achieved in Proposition 7 and Theorems 9 and
15.

Motivated by the connection with categorification in [1] mentioned above, we have
focused our efforts here on developing the theory at the levels k = 1, 2 sufficient for that
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purpose. However, it should be be very interesting to complete this generalization and the
proof of the analogue of the main theorem of Manin-Schechtman for k > 2 and to address
in this context matters explored previously for the type A higher Bruhat orders. For
instance, following the work of Felsner-Weil [2], one may attempt to identify the partial
order on the set BB(Jn, 2) introduced here with the partial order defined by inversion
set containment, and similarly one may attempt to conduct a geometric study of these
higher orders following, for instance, Ziegler’s work [6] in type A. We comment that the
reduced expression graphs in type B have already received some attention, for example in
the work of Reiner and Roichman [5]. Finally, it would be very interesting to determine
the extent to which a theory of higher Bruhat orders can, or cannot, be developed for
Weyl groups of type D or of exceptional type.

2 Higher Bruhat orders in type A (cf. [4])

In this section, we recall the construction of and main theorem for the original Manin-
Schechtman higher Bruhat orders.

Let In := {1, . . . , n} be totally ordered in the usual way, and let C(In, k) denote the set
of k-element subsets of In. Then C(In, k) is totally ordered by the lexicographic ordering,
denoted ρmin. We refer to the reverse total ordering as the anti-lexicographic ordering,
denoted ρmax.

For each K ∈ C(In, k + 1), let P (K) := {S ∈ C(In, k) : S ⊂ K} be the set of all k-
element subsets of K. We refer to P (K) as the packet of K and to any subset of C(In, k)
of the form P (K) for some K ∈ C(In, k+1) as a k-packet. Call a total ordering of C(In, k)
admissible if its restriction to each k-packet is either lexicographic or anti-lexicographic.
Let A(In, k) denote the set of admissible total orderings of C(In, k). Clearly, if ρ is an
admissible ordering so is its reverse ordering ρt, and both the lexicographic ordering ρmin
the anti-lexicographic ordering ρmax = ρtmin are admissible. Note that any total ordering of
C(In, 1) = In is admissible, as the only total orderings on a 1-packet are the lexicographic
and anti-lexicographic orderings, so the admissibility criterion is vacuous for k = 1 and
A(In, 1) is the set of total orderings of In.

For a set S, let 2S denote the set of subsets of S, and for a total ordering ρ on S and
a subset T ⊂ S let ρ|T denote the restriction of ρ to T . Let the function Inv : A(In, k)→
2C(In,k+1) be defined by

Inv (ρ) := {K ∈ C(In, k + 1) : ρ|P (K) = ρmax|P (K)}.

For example, Inv (ρmin) = ∅ and Inv (ρmax) = C(In, k+ 1). For k = 1 this gives the usual
notion of the inversion set of a permutation of In.

Let the function N : A(In, k)→ 2C(In,k+1) be defined by

N(ρ) := {K ∈ C(In, k + 1) : P (K) forms a chain in ρ}.

For ρ ∈ A(In, k) and K ∈ N(ρ), the ordering pK(ρ) obtained by reversing the ordering
of the chain P (K) in ρ is also admissible, because any two k-packets have intersection of
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size at most 1. This operation pK , when defined, is called a packet flip. When pK(ρ) is
defined, we have

Inv (pK(ρ)) =

{
Inv (ρ) \K if K ∈ Inv (ρ)

Inv (ρ) ∪ {K} otherwise.

We will now construct the set B(In, k) as a quotient of A(In, k) by a certain equivalence
relation. Call ρ, ρ′ ∈ A(In, k) elementarily equivalent if one can be obtained from the other
by reversing the order of two neighboring elements that do not belong to a common k-
packet. Let ∼ be the equivalence relation on A(In, k) generated by these elementary
equivalences, so that ρ ∼ ρ′ if and only if ρ and ρ′ can be connected by a sequence of
elementary equivalences. Let

B(In, k) := A(In, k)/ ∼

be the quotient of A(In, k) by this equivalence relation. For ρ ∈ A(In, k) let [ρ] denote its
class in B(In, k). We set rmin = [ρmin] and rmax = [ρmax].

It is clear that if ρ ∼ ρ′ then Inv (ρ) = Inv (ρ′) and hence Inv descends to B(In, k).
We also extend the definition of N , defining N(r) for r ∈ B(In, k) by

N(r) = ∪ρ∈rN(ρ).

For K ∈ N(r) there exists ρ ∈ r with K ∈ N(ρ), so that pK(ρ) is defined. It is clear then
that [pK(ρ)] is independent of the choice of ρ, and we extend the definition of packet flips
be defining pK(r) = [pK(ρ)] for any ρ ∈ r and K ∈ N(ρ).

We now define the Manin-Schechtman higher Bruhat orders on the sets B(In, k). For
r, r′ ∈ B(In, k), we write r <MS r′ if there exist sequences K1, . . . , Km ∈ C(In, k + 1)
and r0, . . . , rm ∈ B(In, k) such that r = r0, r′ = rm, Ki ∈ N(ri−1) \ Inv (ri−1), and ri =
pKi

(ri−1) for 1 6 i 6 m. The following theorem was proven by Manin and Schechtman
about the relation <MS:

Theorem (cf. [4]). The following hold:

– <MS defines a partial order on B(In, k).

– Under <MS, B(In, k) is a ranked poset with a unique minimal element, rmin, and a
unique maximal element, rmax. The rank is given by r 7→ |Inv (r)|.

– The map rmin < pK1(rmin) < · · · < pKm · · · pK1(rmin) 7→ ρ : K1 ≺ · · · ≺ Km defines
a bijection from the set of maximal chains in B(In, k) to the set A(In, k + 1).

– The map Inv : B(In, k)→ 2C(In,k+1) is injective.

This is the central result that we wish to generalize to type B. First, we make explicit
the connection of this construction for k = 1 and k = 2 with the type A Weyl groups Sn.
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3 Connection with Type A Weyl Groups

As we saw before, for k = 1 admissibility is a vacuous condition on orders of I, so A(In, 1)
is the set of total orderings of In. Furthermore any two distinct elements i 6= j ∈ In belong
to the common packet {i, j} so there are no elementary equivalences between orderings,
and B(In, 1) = A(In, 1). We may then identify B(In, 1) with the symmetric group Sn,
where the total ordering a1 < · · · < an corresponds to the permutation ai 7→ i.

Let
Φ := {±(ei − ej) : 1 6 i < j 6 n} ⊂ Rn

be the root system attached to Sn, and choose the system of positive roots

Φ+ := {ei − ej : 1 6 i < j 6 n}

with associated simple roots Π = {ei−ei+1 : 1 6 i < n} and simple reflections si = (i, i+1)
for 1 6 i < n. There is then an obvious bijection between C(In, 2) and Φ+ given by

{i, j} 7→ ei − ej

for i < j. We have a function Inv : Sn → 2Φ+
given as usual by

Inv (w) := {α ∈ Φ+ : w(α) /∈ Φ+}

so the length function l : Sn → Z>0 is l(w) = |Inv (w)|. This is compatible with Inv :
B(In, 1)→ 2C(In,2) in the sense that the following diagram commutes:

B(In, 1) Sn

2C(In,2) 2Φ+

Inv

∼

∼
Inv

For an ordering ρ = (a1 < · · · < an) of In, corresponding to a permutation w ∈ Sn,
the action of the packet flip p{ai,ai+1} for i < n on ρ corresponds to left multiplication by
the adjacent transposition si := (i, i + 1) ∈ Sn. The ordering <MS on B(In, 1) is thus
identified with the weak left Bruhat order on Sn, defined by the covering relations w < w′

for l(w′) = l(w) + 1 and w′ = siw for some i.
The unique minimal element rmin of B(In, 1) is identified with 1 ∈ Sn and the unique

maximal element rmax is identified with the longest element w0 ∈ Sn given by w0(i) =
n+1−i. The identification of A(In, 2) with the set of maximal chains in B(In, 1) therefore
identifies A(In, 2) with the set of reduced expressions for w0. Elementary equivalence in
A(In, 2) then corresponds to exchanging the positions of two adjacent commuting simple
reflections si and sj for |i− j| > 1, and packet flip operations correspond to m = 3 braid
relations sisi+1si = si+1sisi+1.
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In the next section, we introduce a partial generalization of the Manin-Schechtman
construction to type B. We provide analogues of the sets C(In, k) and packets for all k and
n, and for k = 1, 2 and all n we give a complete analogue, providing partially ordered sets
analogous to the B(In, k) satisfying the direct analogues of the main theorem of Manin
and Schechtman on <MS and the root system combinatorics explained above in type A.
In type B, m = 4 (stst = tsts) braid relations become relevant in addition to the m = 3
(sts = tst) braid relations seen in type A, leading to the introduction of two types of
packets.

4 Construction in Type B

Let E be a finite subset of Z stable under negation and not containing 0. Let E+ denote
the subset of positive elements in E. We give E the total ordering inherited from Z.

Definition 1. Let CB(E, 1) := E. For k > 1, let

˜C1
B(E, k) := {S ⊂ E : |S| = k, |S| = |{|s| : s ∈ S}|} ,

C2
B(E, k) := {T ∪ {?} : T ⊂ E+, |T | = k − 1}

(the condition in the first line means the elements of S have distinct absolute values)

where ? is a bookkeeping symbol. Z/2Z acts on ˜C1
B(E, k) by negation, and we let

C1
B(E, k) = ˜C1

B(E, k)/(Z/2Z).

Finally, we set
CB(E, k) = C1

B(E, k) ∪ C2
B(E, k).

Let Jn = {−n, . . . ,−1, 1, . . . , n} for n > 1. The sets CB(Jn, k) are to play the roles
of the sets C(In, k) seen previously. We use the notation CB to indicate that these are
constructions related to type B. As in the type A case, we want to associate to an element
K ∈ CB(Jn, k + 1) a subset, PB(K) ⊂ CB(Jn, k), called its packet. As before, a subset
of CB(Jn, k) of the form PB(K) will be called a k-packet. PB(K) will be constructed
differently depending on whether K ∈ C1

B(Jn, k) or K ∈ C2
B(Jn, k).

For brevity, we will define σ to be the negation map x 7→ −x.

Definition 2. For K ∈ C1
B(Jn, k + 1), let R ∈ ˜C1

B(Jn, k + 1) be a representative. Define

P̃B(K) to be the set of the σ-orbits of the k-element subsets of R. Clearly, P̃B(K) is
independent of the choice of representative R. Note that for k = 1, the elements of
CB(J, k) are not themselves σ-orbits. For this reason, we make the correction

PB(K) :=

{
∪T∈P̃B(K)T if K ∈ C1

B(Jn, 2)

P̃B(K) if K ∈ C1
B(Jn, k + 1) for k > 1
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For example, if K = [{−3, 2}], then

PB(K) = {−3,−2, 2, 3} ⊂ CB(J3, 1),

and if K = [{−3, 2, 1}] then

PB(K) = {[{−3, 2}], [{−3, 1}], [{2, 1}]} ⊂ CB(J3, 2).

For K ∈ C2
B(Jn, k + 1), let K ′ = K \ {?}, and define PB(K) := CB(K ′ ∪ σ(K ′), k).

Notation. As C1
B(Jn, k) is a set of equivalence classes, we encounter the problem of

choosing a good way to represent its elements. We will denote the class of {a1, . . . , ak} by
[a1, . . . , ak]. Wherever possible, we will choose the representative for which the element
with the greatest magnitude is negative. For some T ∈ C1

B(Jn, k), if {a1, . . . , ak} is such
a representative, we will denote T by the bracketed list [a1, . . . , ak]. Such a representative
will be referred to as a preferred representative, and we will indicate where this choice of
representative is assumed.

For consistency, an element s ∈ C2
B(Jn, k) will also be denoted as a bracketed list

[b1, . . . bk−1, ?], with either all bi positive or all bi negative.
We list elements with negative elements first, in increasing order, followed by positive

elements, in decreasing order, e.g. [−5,−2, 3, 1].

Definition 3. We now introduce certain standard orders on the sets CB(Jn, k) for k =
1, 2, 3.

The standard order of CB(Jn, 1) = Jn is the usual ordering of Jn inherited from Z.
The standard order of the set CB(Jn, 2) is defined with respect to preferred represen-

tatives. It is convenient here to represent elements [a1, ?] by [−a1, a1]. Viewing a total
ordering as a list of elements read left to right, with the smallest elements occurring first,
i.e. to the left, we define the standard order on CB(Jn, 2) as follows:

– Elements represented by two negative indices occur first, in lexicographic order.

– Elements with a single negative index occur afterwards. If the elements are listed
in increasing order, a1, a2, then the ordering is lexicographic in the following sense:

[a1, a2] < [b1, b2] if a1 < b1, or if a1 = b1 and a2 > b2

Similarly, we have the following standard order for the set CB(Jn, 3). Similar to the
above, it is convenient here to represent elements of the form [a1, a2, ?] by [−a1, −a2, a2]
with a1 > a2 > 0.

– Elements represented by three negative indices occur first, in lexicographic order.

– Elements represented by two negative indices occur second. For two elements rep-
resented by negative indices, define the order by setting [a1, a2, a3] < [b1, b2, b3],
where a3, b3 > 0, if and only if either [a1, a2] < [b1, b2] or if both [a1, a2] = [b1, b2]
and a3 > b3.
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– Elements represented by a single negative index occur third. For two elements of
this form, we set [a1, a2, a3] < [b1, b2, b3] if and only if either a1 > b1 or if both
a1 = b1 and [−a2, −a3] < [−b2 ,−b3].

The standard ordering of a given set is denoted ρmin whenever this notation is unam-
biguous. For these sets, the reverse standard ordering, ρmax, is obtained by reversing the
standard ordering.

Definition 4. For a k-packet P with k = 2 or k = 3, the standard ordering of P is given
by the restriction of the standard ordering ρmin to P . For a 1-packet, standard packet
orderings are given by the following Hasse diagrams, where we assume [j, i] is a preferred
representative as above:

[i, j]

i

−ij

−j

[i, −j]

i

−i−j

j

[k, ?]

k

−k

The reverse ordering of a 1-, 2-, or 3-packet P is given by reversing the direction of
each relation in the standard ordering, and RevP will denote the packet P endowed with
the reverse ordering.

Definition 5. A comparable component of a poset is defined to be a connected component
of the poset’s Hasse diagram.

Definition 6. For k 6 3, we now make a collection of definitions analogous to the type
A case:

– A total ordering ρ of CB(Jn, k) is admissible if, for each k-packet P , ρ extends either
P or RevP .

– Let AB(Jn, k) be the set of all admissible orderings of CB(Jn, k). In particular
ρmin, ρmax ∈ AB(Jn, k).

– For an admissible ordering ρ, let Inv (ρ) be the set of elements K ∈ CB(Jn, k + 1)
such that ρ extends RevPB(K).

– For ρ ∈ AB(Jn, k), let N(ρ) be the set of K ∈ CB(Jn, k + 1) such that for each
comparable component C ⊂ PB(K), C forms a chain in ρ.

– Two elements of CB(Jn, k) commute if they are incomparable in each k-packet to
which they both belong.

– Two orderings ρ, ρ′ ∈ AB(Jn, k) are elementarily equivalent if ρ′ can be obtained
from ρ by exchanging the order of two adjacent, commuting elements.
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– Let ∼ be the equivalence relation on AB(Jn, k) generated by elementary equivalence.

– Let BB(Jn, k) = AB(Jn, k)/ ∼. Let [ρ] denote the equivalence class of ρ ∈ AB(Jn, k).

– Let N([ρ]) = ∪ρ′∈[ρ]N(ρ′).

As before, it is clear that ρ ∼ ρ′ implies Inv (ρ) = Inv (ρ′), so Inv descends toBB(Jn, k).
Moreover, we have the following result, as in type A:

Proposition 7. The function Inv is injective on the set BB(Jn, k).

Proof. Consider two orderings ρ and ρ′, such that Inv (ρ) = Inv (ρ′) = S. Note that the
transitive closure of the union over the ordering relations RevP for P ∈ S and Q for
Q ∈ C(Jn, k + 1) \ S defines a poset structure on CB(Jn, k), and both ρ and ρ′ must
be linear extensions of this poset. Furthermore, if two elements are incomparable in this
poset, then they must be incomparable in every packet to which they both belong. But
any two linear extensions of a finite poset differ by a sequence of transpositions of adjacent
elements incomparable in the poset, so ρ ∼ ρ′ as needed.

Definition 8. Given ρ in A(Jn, k) and K ∈ N(ρ), we can construct a new admissible order
pK(ρ), the packet flip of ρ by K, by reversing the order of each comparable component of
PB(K) in ρ. Clearly

Inv (pK(ρ)) =

{
Inv (ρ) \K if K ∈ Inv (ρ)

Inv (ρ) ∪ {K} otherwise.

Like in type A, we may extend this operation to BB(Jn, k) by acting on representatives.
Specifically, for r ∈ BB(Jn, k) and K ∈ N(r), there exists ρ ∈ r with K ∈ N(ρ), and we
set pK(r) = [pK(ρ)].

For any [ρ], [ρ′] ∈ BB(Jn, k), we write [ρ] < [ρ′] if there exists a finite sequence
{ρi}m1 ⊂ AB(Jn, k) such that ρ1 = ρ, ρm = ρ′, and for each pair (ρi, ρi+1) there exists
some Ki ∈ N([ρi]) \ Inv ([ρi]) such that for some ρ′i ∈ [ρi], ρi+1 = pKi

(ρ′i). This relation
defines a partial ordering on the set BB(Jn, k).

Theorem 9. For the cases k = 1, 2, BB(Jn, k) has a unique maximal (respectively,
minimal) element, given by [ρmax] (resp. [ρmin]).

Our proof will make use of the following lemmas, which will be proved after the general
argument is given.

Notation. For any admissible ordering ρ ∈ AB(Jn, k) and any subset S ⊂ CB(Jn, k), we
write S(ρ) to denote the minimal chain containing S in ρ. To simplify the notation, we
write SK to denote the set PB(K).

Definition 10. For ρ ∈ AB(Jn, 2) we say that x blocks S in ρ when x /∈ S but x ∈ S(ρ′)
for all ρ′ ∈ [ρ].
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Lemma 11. Let a set S ⊂ CB(Jn, 2) be given, and let ρ ∈ AB(Jn, 2). If x does not block
S in ρ and x /∈ S, then there exists some ρ′ ∈ [ρ] such that S(ρ′) ⊂ S(ρ), and x 6∈ S(ρ′).

Lemma 12. Let ρ ∈ AB(Jn, 2). For K ∈ CB(Jn, 3), K 6∈ N([ρ]) if and only if there exists
some x which blocks SK in ρ.

Lemma 13. Let [ρ] ∈ BB(Jn, 2), and suppose K 6∈ N([ρ]) ∪ Inv ([ρ]). Then at least one
of the following seven cases holds for all ρ′ ∈ [ρ]:

– If K ∈ C1
B(Jn, 3), let [i, j, k] be a preferred representative. Then, we have either:

1. [i, j] < [i, x] < [i, k],

2. [i, k] < [k, x] < [j, k], or

3. [i, j] < [j, x] < [j, k],

for some x ∈ Jn \ {i, j, k}.

– If K ∈ C2
B(Jn, 3), fix K = [i, j, ?]. Then, we have either:

1. [i, j] < [i, x] < [i, ?],

2. [i, ?] < [i, x] < [i, −j],
3. [i, −j] < [j, x] < [j, ?], or

4. [i, j] < [j, x] < [i, −j],

for some x ∈ Jn \ {i, j, −i, −j}.

Lemma 14. In the setting of the previous lemma, there exists some K ′ ∈ CB(Jn, 3) \
Inv ([ρ]) such that either SK′(ρ

′) ( SK(ρ′) for all ρ′ ∈ [ρ], or the minimal element of SK′
is greater than the minimal element in SK in every ordering ρ′ ∈ [ρ].

Proof of Theorem 9. Clearly any class of orderings [ρ] satisfying Inv ([ρ]) = CB(Jn, k+ 1)
must be maximal, so in particular [ρmax] is a maximal element. By injectivity of Inv
on BB(Jn, k), [ρmax] is the unique class of orderings for which Inv ([ρ]) = CB(Jn, k + 1).
Therefore, we need only prove that any [ρ] ∈ BB(Jn, k) for which Inv ([ρ]) ( CB(Jn, k+1)
is not maximal. Let [ρ] be such an ordering, so we have some K ∈ CB(Jn, k+1)\Inv ([ρ]).
We need to find K ′ ∈ N([ρ]) \ Inv ([ρ]).

For k = 2 this follows immediately from the preceding lemma and induction.
For k = 1, the statement follows immediately from the identification in the next section

(independently of the intervening material) of the poset BB(Jn, 1) and the Weyl group
Bn with the weak left Bruhat order.
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Proof of Lemma 11. Let ρ, S, and x be as in the statement of the lemma. Then there
exists ρ̂ ∈ [ρ] such that x 6∈ S(ρ̂). By taking reverse orderings if necessary, we may assume
x < minS in ρ̂. Let T be the subset of S(ρ) which is less than or equal to x in the order
ρ. Clearly T forms a chain in ρ.

As ρ̂ ∼ ρ, there exists a sequence t1 . . . tr of pairs of commuting elements of CB(Jn, 2)
such that ρ̂ can be obtained from ρ by exchanging the order of the pair t1, then t2, etc.,
where at each step the pair ti to be reversed is an adjacent pair. Let ti1 , . . . , tis , with
1 6 i1 < i2 < · · · < is 6 r be the subsequence of pairs of elements in T . Then the
ordering ρ′ obtained from ρ by first reversing the ordering of ti1 , then ti2 , etc., is such that
S̄(ρ′) ⊂ S̄(ρ) and x /∈ S̄(ρ′).

Proof of Lemma 12. Fix S = PB(K). If some x blocks S in ρ, then certainly K 6∈ N([ρ]).
Suppose that no element blocks K in ρ. If S(ρ) = S, then K ∈ N([ρ]). If not, there exists
y ∈ S(ρ) \ S. By Lemma 11, there exists ρ′ ∼ ρ such that y 6∈ S(ρ′), and S(ρ′) ⊂ S(ρ),
and the lemma follows by induction on |S̄(ρ)|.

Proof of Lemma 13. Let ρ ∈ AB(Jn, 2) and K ∈ CB(Jn, 3) \ (N([ρ]) ∪ Inv (ρ)). Write
K = [i, j, k], where i < j < 0, by the conventions introduced earlier. Once again, let
S = PB(K), and S(ρ) is the minimal chain containing S in ρ.

First, we show that there exists some element which blocks S in ρ, which does not
commute with every element of S. Suppose to the contrary that every element which
blocks S commutes with every element of S. Then, by applying Lemma 11, we can
produce some ρ′ ∈ [ρ] for which the only elements in S(ρ′) \ S are those which block ρ in
S. But then as these elements commute with every element of S there exists an equivalent
ordering ρ∗ for which S(ρ∗) = S, contradicting K /∈ N([ρ]).

Suppose K ∈ C1
B(Jn, 3). Then, we can conclude from the above that there exists some

b which blocks S in ρ, and b has the form [i, x], [j, x], or [k, x] for some x ∈ Jn \ {i, j, k}.
Either b falls into one of the stated cases, or one of the following:

1. [i, j] < [k, x] < [i, k]

2. [i, k] < [i, x] < [j, k]

In case (1), consider the set D = {d : [i, j] < d < [k, x]}. If every element of D commutes
with [i, j], then, as b = [k, x] also commutes with [i, j], there exists an equivalent ordering
ρ′ ∼ ρ for which SK(ρ′) does not contain b, a contradiction. We may thus conclude that
there is an element b′ ∈ D of the form [i, x] or [j, x] such that [i, j] < b′ < [i, k] < [j, k].

In case (2), consider the set D = {d : [i, k] < d < [j, k]}. If every element of D
commutes with [j, k], then there exists an equivalent ordering ρ′ ∼ ρ for which SK(ρ′)
does not contain [i, x], a contradiction. We may thus conclude that there is an element
b′ ∈ D of the form [k, x] or [j, x] such that [i, j] < [i, k] < b′ < [j, k].

If K ∈ C2
B(Jn, 3), then as above there exists some b ∈ S(ρ) of the form [i, x] or [j, x].

Either b belongs to one of the stated cases, or we have [i, −j] < [i, x] < [j, ?]. In this
case, consider the set D = {d : [i, −j] < d < [j, ?]}. If every element of D commutes
with [j, ?], then there exists an equivalent ordering ρ′ ∼ ρ for which SK(ρ′) does not
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contain [i, x], a contradiction. We may thus conclude that there is an element b′ of the
form [j, x] such that [i, −j] < b′ < [j, ?].

Proof of Lemma 14. Lemma 14 is proved by case work. For the complete case analysis,
refer to the Appendix [Sec. 6.1].

Theorem 15. For k = 1, 2, there is a bijection

{maximal chains in BB(Jn, k)} ∼−→ AB(Jn, k + 1),

defined by

[ρmin] = [ρ1] 6 [ρ2] 6 · · · [ρi] · · · 6 [ρmax] 7→ K1 < · · · < Km,

where [ρi] ∈ pKi−1
(. . . pK1([ρmin])), m = |C(Jn, k + 1)| and Ki ∈ N([ρi]) \ Inv ([ρi]) for all

i.

Proof. As [ρmin] is the unique minimal element of BB(Jn, k) and [ρmax] is the unique
maximal element, the assignment

[ρmin] = [ρ1] 6 [ρ2] 6 · · · [ρi] · · · 6 [ρmax] 7→ K1 < · · · < Km,

maps the set of maximal chains of BB(Jn, k) into total orderings of CB(Jn, 3), and this
map is clearly injective. We need only show that its image is precisely AB(Jn, k+1). This
reduces to checking a few cases, which is treated in the Appendix [Sec. 6.2].

5 Connection with Type B Weyl Groups

As before, let Jn be the set {−n . . . n}\{0}. Recall that the Weyl group Bn acts faithfully
on Jn as the set of permutations π : Jn → Jn such that π(−i) = −π(i) for all i ∈ Jn. In
this way, we have a natural inclusion Bn ↪→ S2n. Likewise, the set AB(Jn, 1) = BB(Jn, 1)
of all admissible orderings of Jn is contained in the set A(Jn, 1) = B(Jn, 1) of all total
orderings of Jn.

Definition 16. For a total ordering ρ of Jn, say

j−n < j−n+1 < · · · < jn−1 < jn,

let πρ ∈ S2n be the permutation of Jn given by ji 7→ i. Let φ : B(Jn, 1)→ S2n denote the
map ρ 7→ πρ.

Proposition 17. The image of the composition BB(Jn, 1) ↪→ B(J, 1)
φ−→ S2n is Bn

Proof. From the definitions, it is clear that the set of total orderings of Jn sent into Bn

under φ are those reversed under negation. Certainly any such total ordering belongs to
BB(Jn, 1), and we need only show the converse. So, let ρ ∈ AB(Jn, 1) be given, and let x be
the maximal element of Jn with respect to ρ. Then, for every other element y ∈ Jn \ {x},
considering the packet order on PB([x, y]), we have y < x and hence −x < −y. So −x is
the minimal element, and the claim follows by induction on n.
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Recall the reflection representation of Bn in Rn given by

ei 7→ sign (π(i)) · e|π(i)|

for π ∈ Bn, where e1, . . . , en is the standard basis of Rn. We have the associated root
system

Φ := {±ei : 1 6 i 6 n} ∪ {±ei ± ej : 1 6 i < j 6 n} ⊂ Rn.

We choose the set of positive roots

Φ+ := {ei : 1 6 i 6 n} ∪ {ei ± ej : i > j}

with associated set of simple roots

Π := {e1} ∪ {ei − ei−1 : 1 < i 6 n}.

Under the realization of Bn with the subgroup of the permutations of Jn discussed above,
the simple reflection se1 is given by the permutation (−1, 1), and the simple reflection
sei−ei−1

for 1 < i 6 n is given by (−i,−i+ 1)(i, i− 1). We define the function

Inv : Bn → 2Φ+

by
Inv (w) = {α ∈ Φ+ : w(α) /∈ Φ+}

so that the length function l : Bn → Z defined by the simple reflections sα for α ∈ Π is
given by l(w) = |Inv (w)|.

We now give a specific bijection between Φ+ and CB(Jn, 2) such that the definitions
of Inv on Φ+ and on CB(Jn, 2) become compatible with the identification of BB(Jn, 1)
and Bn:

Definition 18. Let K 7→ αK denote the bijection CB(Jn, 2)→ Φ+ given by

αK =


ei − ej if K = [i, j] for i > j > 0,

ei + ej if K = [i, −j] for i > j > 0,

ek if K = [k, ?] for k > 0.

Lemma 19. Let ρ ∈ BB(Jn, 1), and let πρ = φ(ρ) ∈ Bn be the corresponding element of
Bn. Then for each K ∈ CB(Jn, 2), we have

K ∈ Inv (ρ) ⇐⇒ πρ(αK) 6∈ Φ+.

In other words, the following diagram commutes.

BB(Jn, 1) Bn

2CB(Jn,2) 2Φ+

Inv

∼
φ

∼
φ

Inv
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Proof. Let ρ and πρ be as in the statement of the lemma, and let i, j ∈ {1, . . . , n} with
i > j > 0. Let k = πρ(i) and l = πρ(j). Suppose that [−j, −i] 6∈ Inv (ρ), so that k > l.
Then the image of the positive root αP = ei−ej under πρ is positive. In particular, either:

1. k > l > 0, and πρ(αP ) = ek − el.

2. k > 0 > l, and πρ(αP ) = ek + e−l, or

3. 0 > k > l, and πρ(αP ) = e−l − e−k.

Conversely, if [−i, −j] ∈ Inv (ρ), so that l > k, we have one of the following:

1. l > k > 0, and πρ(αP ) = ek − el.

2. l > 0 > k, and πρ(αP ) = −e−k − el, or

3. 0 > l > k, and πρ(αP ) = e−l − e−k.

Therefore πρ(αP ) is not positive.
Next, we show that if [−j, i] 6∈ Inv (ρ), then the image of αP = ei + ej under πρ is

positive. If this were the case, then we would have one of the following:

1. −k < l < 0, and πρ(αP ) = ek − e−l,

2. −k < 0 < l, and πρ(αP ) = ek + el, or

3. 0 < −k < l, and πρ(αP ) = el − e−k.

Analagous to the previous case, if [−j, i] ∈ Inv (ρ) then the image of αP is not positive.
The cases to consider here are:

1. l < −k < 0, and πρ(αP ) = ek − e−l,

2. l < 0 < −k, and πρ(αP ) = −ek − el, or

3. 0 < l < −k, and πρ(αP ) = el − e−k.

Finally, it is clear that πρ(ei) /∈ Φ+ if and only if [i, ?] ∈ Inv (ρ), as needed.

Recall that the weak left Bruhat order on Bn, with respect to the choice of positive
roots Φ+, is the poset structure on Bn with covering relations w < w′ for w′ = sw for
some simple reflection s with l(w′) = l(w) + 1.

Theorem 20. φ defines a poset isomorphism BB(Jn, 1) → Bn, where Bn is ordered by
the weak left Bruhat order.

Proof. Notice that under the bijection φ, the action of packet flips on BB(Jn, 1) corre-
sponds to left multiplications by simple reflections. The preceding lemma then shows
that the covering relations in the two posets are identified under φ, and the theorem
follows.
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Corollary 21. φ induces a bijection AB(Jn, 2) → R(w0), where w0 is the longest ele-
ment of Bn and R(w0) is the set of reduced expressions for w0. Under this bijection,
two admissible orderings ρ, ρ′ ∈ AB(Jn, 2) are elementarily equivalent if and only if the
corresponding reduced expressions for w0 are related by exchanging the order of a pair of
adjacent commuting simple reflections. Packet flip operations pK on AB(Jn, 2) are iden-
tified with m = 3 (sts = tst) braid relations for K ∈ C1

B(Jn, 3) and are identified with
m = 4 (stst = tsts) braid relations for K ∈ C2

B(Jn, 3).

6 Appendix

6.1 Proof of Lemma 14

As the lemma is merely casework, it was checked by a computer algorithm. We will
describe this algorithm, and prove its correctness.

Definition 22. For some ρ ∈ AB(Jn, 2), and two elements a, b ∈ CB(Jn, 2), a crosses b
in ρ if there exists ρ′ ∈ [ρ] such that the relative positions of a and b in the orders ρ and
ρ′ are opposite.

We first describe an algorithm which, on inputs ρ ∈ AB(Jn, 2) and a, b ∈ CB(Jn, 2),
outputs 1 if a crosses b in ρ and 0 otherwise.

Algorithm 1. If b < a in ρ, replace ρ by its reverse ordering. Let S denote the chain
of elements in ρ greater than a and less than b. Initialize a list, called right, containing
only the element a. For each element q in S, in ascending order, we compute whether q
commutes with every element in right. If so, we continue. If not, we add q to right.
Finally, return 1 if b commutes with every q contained in right, and 0 otherwise.

Proof of correctness. Suppose Algorithm 1 outputs 1. Then each element of S \{a} which
is not added to right can be moved to the left past a, leaving only elements in right

between a and b. But b commutes with all elements in right, so b can be moved to the
left past a, so a crosses b in ρ as needed.

Conversely, suppose Algorithm 1 returns 0. Then there exists an element q1 of right
which does not commute with b. Either q1 does not commute with a, or there exists q2

in right with q2 < q1 in the order ρ such that q1 and q2 do not commute. Continuing in
this manner, there is a sequence q1, . . . , qs for some s > 1 of elements of right such that
a < qs < · · · q1 < b in the order ρ and each pair (a, qs), (qs, qs−1), . . . , (q2, q1), (q1, b) does
not commute. It follows that the relative positions of these elements cannot change by
transposing adjacent commuting elements, so in particular a < b for all orders ρ′ ∈ [ρ], so
a does not cross b in ρ.

In the following algorithm, posets are represented as directed acyclic graphs in which
vertices represent elements of the poset and there is a directed edge for every covering
relation. For elements a, b, a < b exactly when there is a directed path from a to b. The
transitive union of two poset structures on the same set is given by the directed graph
with the same vertex set and with edge set equal to the union of the edge sets for each
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poset. The resulting relation is reflexive and transitive, and it is antisymmetric so long
as it contains no cycles. Linear extensions are computed using the topological sorting
algorithm.

Notation. Recall that a 2-packet P is understood to be an ordered set with the ordering
inherited from the standard ordering ρmin. RevP is understood to be the same set, with
the ordering relation inherited from ρmax.

Each case from Lemma 13 involves a sequence Q of 4 or 5 elements of CB(Jn, 2), all
but one belonging to some packet PB(K) for K ∈ CB(Jn, 3), and the remaining element
shares exactly one index with K. As such, there is a unique element R ∈ CB(Jn, 4)
such that the set T = ∪S∈PB(R)PB(S) contains the sequence Q. Furthermore, the unique
2-packet containing any pair of elements in the sequence Q is contained in T .

Algorithm 2. Initialize an empty list L. Each pair of elements pair appearing in the
sequence Q is contained in at most one common 2-packet P . For each such pair appearing
in Q and lying in the 2-packet P :

– If pair appears in Q in standard order, add the poset given by the standard order
on P to L.

– Otherwise, add the poset RevP given by the reverse-standard order to L.

Let U be the set of packets PB(S) for S ∈ PB(R) whose order is not recorded in this
manner. For each B ⊂ U , create a new list L’ containing the elements of L. For each
element P ∈ U ∩ B, add the poset P to L’. For each element P ∈ U \ B, add the poset
RevP to L’. Compute the transitive union over the relations in L’. If there are no cycles,
record a linear extension of the corresponding poset.

For each recorded linear extension, iterate over the packets PB(S) for S ∈ PB(R) until
finding a 2-packet P ∗ which is in standard order such that, with respect to the linear
extension under consideration, either

– minρ P
∗ > minρ PB(K) and minρ PB(K) does not cross minρ P

∗, or

– minρ P
∗ = minρ PB(K), maxρ P

∗ < maxρ PB(K), and maxρ P
∗ does not cross

maxρ PB(K).

If this is the case, the algorithm continues. Otherwise, it outputs 0. If every linear
extension recorded has been checked in this way, the algorithm outputs 1. Algorithm 2
returns 1 when run on each of the cases in Lemma 13, proving Lemma 14.

6.2 Proof of Theorem 15

We first show that the image of the map

[ρmin] = [ρ1] 6 [ρ2] 6 · · · [ρi] · · · 6 [ρmax] 7→ K1 < · · · < Km,

in question lies in AB(Jn, k + 1). For this, we need to check that for every element
K ∈ CB(Jn, k + 2), its packet PB(K) ⊂ CB(Jn, k + 1) appears in either standard or
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reverse standard order in K1 < · · · < Km. For this, we look at the restriction of the
standard order ρmin to the set S = ∪Z∈PB(K)P (Z) ⊂ CB(Jn, k) and consider the possible
orders in which the packets of elements of PB(K) could be flipped. By inspection, we
have the following tables indicating the possible orders in which the packets of elements
of PB(K) can be flipped, which show in each case that the possible orders are exactly the
standard or reverse standard order on PB(K). A preferred representative is assumed in
the left-hand column only. For the case K = [i, j, k] we consider only the subset {i, j, k}
of S, which is enough already to deduce the possible orderings of PB(K).

Case k = 1

K Restriction of ρmin to S Possible flip sequence (up to reverse)

[i, j, ?] −i < −j < j < i [i, j] ≺ [i, ?] ≺ [i, −j] ≺ [j, ?]
[i, j, k]
with j < 0

i < j < k [i, j] ≺ [i, k] ≺ [j, k]

[i, j, k]
with j > 0

i < k < j [j, k] ≺ [i, j] ≺ [i, k]

Case k = 2

K Restriction of ρmin to S Possible flip sequence (up to reverse)

[i, j, k, ?] [−i, −j] < [−i, −k] <
[−j, −k] < [i, ?] < [−i, j] <
[−i, k] < [j, ?] < [−j, k] <
[k, ?]

[−i, −j, −k] ≺ [i, j, ?] ≺ [−i, −j, k] ≺
[−i, −k, j] ≺ [i, k, ?] ≺ [j, k, ?] ≺
[−i, j, k]

[i, j, k, l],
where k < 0

[i, j] < [i, k] < [j, k] <
[i, l] < [j, l] < [k, l]

[i j, k] ≺ [i, j, l] ≺ [i, k, l] ≺ [j, k, l]

[i, j, l, k],
where k > 0

[i, j] < [−k, −l] < [i, l] <
[i, k] < [j, l] < [j, k]

[i, j, k] ≺ [i, j, l] ≺ [j, k, l] ≺ [i, k, l]

In particular, we see that K1 · · ·Km is indeed an admissible ordering of CB(Jn, k+ 1).
Next we show surjectivity. Suppose KN . . . K1 is an admissible order of CB(Jn, k+ 1).

Let r0 = [ρmin] denote the class of the standard ordering of CB(Jn, k). We want to show
that KN . . . K1 gives a valid sequence of packet flips pKN

. . . pK1 on r0. With the empty
sequence of packet flips as base case, assume inductively that pKi

. . . pK1 is a valid sequence
of packet flips on r0 for some i > 0. Then writing ri = pKi

. . . pK1(r0), we need to check
that Ki+1 ∈ N(ri). Noting that Ki+1 is the minimal element of CB(Jn, k + 1) \ Inv (ri)
with respect to the admissible order KN . . . K1, it suffices to prove the following statement
for k = 1, 2: If ρ is an admissible ordering of CB(Jn, k) and K ∈ CB(Jn, k+ 1) \ (Inv (ρ)∪
N([ρ])), then K is not minimal in the restriction of any admissible ordering to CB(Jn, k+
1) \ Inv (ρ). This is what we check by casework below.
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Case k = 1 Let ≺ denote the ordering of Jn = CB(Jn, 1) given by ρ ∈ AB(Jn, 1). Let
K = [k, l] ∈ CB(Jn, 2) \ (Inv (ρ)∪N([ρ])) be as above, where if K ∈ C1

B(Jn, 2) then [k, l]
is a preferred representative, and if K ∈ C2

B(Jn, 2) then l = −k > 0, by the convention
used previously. As [k, l] /∈ Inv (ρ)∪N([ρ]), there must exist x ∈ Jn such that k ≺ x ≺ l.
The following table considers the possible relative orderings of such k, l, and x under the
usual ordering of Z, denoted <. The first column treats these relative positions of x,
the second column lists implications about the order in which certain packets flips can
be applied to [ρ], and the final column lists the admissible order (up to reverse) of these
packets, showing that each case leads to a contradiction, as needed.

Condition Implied order Admissible order (up to reverse)

x < k < l [x, k] ≺ [k, l] ≺ [x, l] [x, k] < [x, l] < [k, l]
k < x < l [k, l] ≺ [k, x] and [k, l] ≺

[x, l]
[k, x] < [k, l] < [x, l]

k < l < x [l, x] ≺ [k, l] ≺ [k, x] [k, l] < [k, x] < [x, l]

Case k = 2 Straightforward casework entirely analogous to the argument for k = 1
given above proves the desired statement for k = 2. In particular, let ≺ denote the
ordering of CB(Jn, 2) given by some admissible ordering ρ ∈ AB(Jn, 2) and let K ∈
CB(Jn, 3) \ (Inv (ρ)∪N([ρ])). We have either K ∈ C1

B(Jn, 3), in which case we can write
K = [k, l,m], or K ∈ C2

B(Jn, 3), in which case we can write K = [i, j, ?]. Then, by
Lemma 13, there exists an x ∈ Jn as specified in that lemma, leading to only 7 cases to
consider. Each case may then be split into a few further cases, as we saw in the above
analysis for k = 1, according to the possible relative positions of x among k, l,m (in the
case K = [k, l,m]) or ±i,±j (in the case K = [i, j, ?]) with respect to the usual ordering
< of the integers. In each of these several cases, one easily concludes that K cannot be
minimal in the restriction of any admissible ordering to CB(Jn, k+1)\Inv (ρ), as needed.
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