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Abstract

Boyd (1974) proposed a class of infinite ball packings that are generated by in-
versions. Later, Maxwell (1983) interpreted Boyd’s construction in terms of root
systems in Lorentz spaces. In particular, he showed that the space-like weight vec-
tors correspond to a ball packing if and only if the associated Coxeter graph is of
“level 2”. In Maxwell’s work, the simple roots form a basis of the representations
space of the Coxeter group. In several recent studies, the more general based root
system is considered, where the simple roots are only required to be positively inde-
pendent. In this paper, we propose a geometric version of “level” for root systems
to replace Maxwell’s graph theoretical “level”. Then we show that Maxwell’s results
naturally extend to the more general root systems with positively independent sim-
ple roots. In particular, the space-like extreme rays of the Tits cone correspond to
a ball packing if and only if the root system is of level 2. We also present a partial
classification of level-2 root systems, namely the Coxeter d-polytopes of level-2 with
d + 2 facets.

Keywords: Ball packing, hyperbolic Coxeter group, Coxeter polytope

1 Introduction

The title refers to a paper of Boyd titled “A new class of infinite sphere packings” [6],
in which he described a class of infinite ball packings that are generated by inversions,
generalising the famous Apollonian disk packing.

∗This research was supported by the Deutsche Forschungsgemeinschaft within the Research Training
Group “Methods for Discrete Structures” (GRK 1408) and by the ERC Advanced Grant number 247029
“SDModels” while the author was at Freie Universität Berlin.
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Maxwell [31] generalized Boyd’s construction by interpreting a ball packing as the
space-like weights of an infinite root system in a Lorentz space. In particular, Maxwell
defined the “level” of a Coxeter graph as the smallest integer l such that the deletion of
any l vertices leaves a Coxeter graph for finite or affine Coxeter system. He then proved
that the space-like weights correspond to a ball packing if and only if the associated
Coxeter graph is of level 2.

Labbé and the author [11] revisited Maxwell’s work, and found connections with recent
works on limit roots. Limit roots are accumulation points of the roots in projective space.
The notion was introduced and studied in [18], where it was proved that limit roots lie
on the isotropic cone of the quadratic space. The relations between limit roots and the
imaginary cone are investigated in [13] and [14].

For root systems in a Lorentz space, the set of limit roots is equal to the limit set of
the Coxeter group seen as a Kleinian group acting on the hyperbolic space [19]. In [11],
we proved that the accumulation points of the roots and of the weights coincide on the
light cone in the projective space. As a consequence, when the Coxeter graph is of level 2,
the set of limit roots is the residue set of the ball packing described by Boyd and Maxwell.
Furthermore, we gave a geometric interpretation for Maxwell’s notion of level, described
the tangency graph of the Boyd–Maxwell ball packing in terms of the Coxeter complex,
and completed the enumeration of 326 Coxeter graphs of level 2.

Comparing to [31], the root systems considered in most studies of limit roots (e.g. [14,
18]) are more general in several ways:

First, the root systems considered in [14, 18] are not necessarily in a Lorentz space.
For non-Lorentzian root systems, we conjectured in [11] that the accumulation points of
roots still coincide with the accumulation points of weights.

Second, even if the root system is Lorentzian, the associated Coxeter graph is not
necessarily of level 2. The cases of level 6= 2 were also investigated in [11]. It turns out
that no ball appears if the Coxeter graph is of level 1, and balls may intersect if the
Coxeter graph is of level > 2. In either case, it remains true that the set of limit roots is
the residue set of the balls corresponding to the space-like weights.

The current paper deals with a third gap. Maxwell only considered the case where the
simple roots form a basis of the representation space, so one can define the fundamental
weights as the dual basis. However, in [14] and [18], a more general based root system
is considered, which only requires the simple roots to be positively independent, but not
necessarily linearly independent.

In order to extend Maxwell’s results, we propose the notion of “level” for root systems
to replace Maxwell’s graph theoretical “level”; see Definition 2.2. The definition is based
on the geometric interpretation in [11]. When the simple roots are linearly independent as
in [31], our “level” for root systems and Maxwell’s “level” for the Coxeter graphs coincide.
Moreover, in place of the weight vectors, we will look at the extreme rays of the Tits cone.
Then we show in Section 3 that all the results in [31] and [11] extend to the more general
setting with positively independent simple roots. In particular, the following theorem
generalizes [31, Theorem 3.2].

the electronic journal of combinatorics 23(3) (2016), #P3.16 2



Theorem 1.1. For a Lorentzian based root system, the space-like extreme rays of the Tits
cone correspond to a ball packing if and only if the based root system is of level 2.

This correspondence will be explained in Section 3.2. We consider the ball packing as
associated to the based root system in the theorem, and obtain the following generalization
of [11, Theorem 3.4].

Theorem 1.2. The set of limit roots of an irreducible Lorentzian root system of level 2
is equal to the residual set of the associated ball packing.

Maxwell’s proofs rely on the decomposition of vectors into basis vectors (i.e. the simple
roots), which is not possible in our setting. Hence many proofs need to be revised. Our
proofs will make heavy use of projective geometry. Lorentzian root systems of level > 3
are discussed in the end of Section 3.

For many Lorentzian root systems of level 2, the associated Coxeter graph is not of
level 2 in Maxwell’s sense. So our results imply many new infinite ball packings generated
by inversions. In Section 4, we provide a partial classification of Lorentzian root systems
of level 2. More specifically, we try to classify the Coxeter d-polytopes of level 2 with
d + 2 facets. For this, we follow the approach of [23, 15, 40] for enumerating hyperbolic
Coxeter d-polytopes with d + 2 facets, and take advantage of previous enumerations of
Coxeter systems, such as [25, 9, 11].

For explicit images of ball packings, the readers are referred to artworks of Leys’ [26].
The 3-dimensional ball packings in Leys’ paper (and also on his website) are inspired
from [4]. Similar idea was also proposed by Bullett and Mantica [7, 30], who also noticed
generalizations in higher dimensions. However, the packings considered in these literatures
are very limited. In our language, the Coxeter polytopes associated to these packings have
the combinatorial type of pyramid over regular polytopes. In [7], the authors were aware
of Maxwell’s work, but explained that:

Our approach via limit sets of Kleinian groups is more naive, replacing argu-
ments about weight vectors in Minkowsky N-space by elementary geometric
arguments involving polygonal tiles on the Poincare disc: it mirrors the al-
gorithm we use to construct the circle-packings and seems well adapted to
computation of the exponent of the packing and other scaling constants.

On the contrary, one easily verifies that the height of a weight vector, defined in the end
of Section 2.6, is asymptotically equivalent to the curvature of the corresponding ball.
Hence weight vectors only make the computation of the exponent much easier.

Remark. The Hausdorff dimension of the residual set of infinite ball packings are usually
approximated by computing the exponent. In the literature, Boyd’s works (e.g. [6]) are
often cited to support this numeric estimate. However, this was not fully justified until
recently by Oh and Shah [35].
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2 Geometric Coxeter systems and levels

2.1 Lorentz space

For general references on Lorentz spaces, we refer the readers to the books [8] and [17].
In particular, these books discuss the representation of spheres in Lorentz spaces, which
would be very helpful for understanding this paper.

A quadratic space is a pair (V,B) where V is a real vector space and B is a symmetric
bilinear form on V . Two vectors x,y ∈ V are said to be orthogonal if B(x,y) = 0. For a
subspace U ⊆ V , its orthogonal companion is the set

U⊥ = {x ∈ V | B(x,y) = 0 for all y ∈ U}.

The orthogonal companion V ⊥ of the whole space V is called the radical. We say that
(V,B) is degenerate if the radical V ⊥ contains non-zero vectors. In this case, the matrix
of B = (B(ei, ej)) is singular.

The signature of (V,B) is the triple (n+, n0, n−) indicating the number of positive, zero
and negative eigenvalues of the matrix B. For non-degenerate spaces we have n0 = 0.
A non-degenerate space is an Euclidean space if n− = 0 (i.e. B is positive definite), or a
Lorentz space if n− = 1.

The group of linear transformations of V that preserve the bilinear form B is called
an orthogonal group, and is denoted by OB(V ). The orthogonal group of a Lorentz space
is called a Lorentz group.

The set
Q = {x ∈ V | B(x,x) = 0}

is called the isotropic cone, and vectors in Q are said to be isotropic. In a Lorentz space,
the isotropic cone is called the light cone, and isotropic vectors are said to be light-like.
Two light-like vectors are orthogonal if and only if one is the scalar multiple of the other.
A non-isotropic vector x ∈ V is said to be space-like (resp. time-like) if B(x,x) > 0
(resp. < 0). A subspace U ⊆ V is said to be space-like if its non-zero vectors are all
space-like, light-like if it contains some non-zero light-like vector but no time-like vector,
or time-like if it contains time-like vectors.

For a non-isotropic vector α ∈ V , the reflection in α is defined as the map

sα(x) = x− 2
B(α,x)

B(α, α)
α, for all x ∈ V.

The orthogonal companion of Rα,

Hα = {x ∈ V | B(x, α) = 0},

is the hyperplane fixed by the reflection sα, and is called the reflecting hyperplane of
α. One verifies that α is space-like (resp. time-like) if and only if Hα is time-like (resp.
space-like).
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2.2 Based root systems

Based root systems have been the framework of several recent studies of infinite Coxeter
systems, including [20, 24, 14, 18] etc., and traces back to Vinberg [44].

Recall that an abstract Coxeter system is a pair (W,S), where S is a finite set of
generators and the Coxeter group W is generated by S with the relations (st)mst = e
where s, t ∈ S, mss = 1 and mst = mts > 2 or = ∞ if s 6= t. The cardinality n = |S| is
the rank of the Coxeter system (W,S). For an element w ∈ W , the length of w, denoted
by `(w), is the smallest natural number k such that w = s1s2 . . . sk for si ∈ S. Readers
unfamiliar with Coxeter groups are invited to consult [5, 21] for basics.

Let (V,B) be a quadratic space. A root basis ∆ in (V,B) is a finite set of vectors in
V such that

1. B(α, α) = 1 for all α ∈ ∆;

2. B(α, β) ∈]−∞,−1] ∪ {− cos(π/k), k ∈ Z>2} for all α 6= β ∈ ∆;

3. ∆ is positively independent. That is, a linear combination of ∆ with non-negative
coefficient only vanishes when all the coefficients vanish.

We assume that ∆ spans V . If this is not the case, we replace V by the subspace Span(∆),
and B by its restriction on Span(∆).

Following [20], we call ∆ a free root basis if it also forms a basis of V . Following [24],
we call a free root basis ∆ classical if B(α, β) > −1 for all α, β ∈ ∆. The classical root
basis is present in textbooks such as [5, 21].

Let S = {sα | α ∈ ∆} be the set of reflections in vectors of ∆, and W be the reflection
subgroup of OB(V ) generated by S. Then (W,S) is a Coxeter system, where the order of
sαsβ is k if B(α, β) = − cos(π/k), or ∞ if B(α, β) 6 −1. Let Φ := W (∆) be the orbit of
∆ under the action of W , then the pair (∆,Φ) is called a based root system in (V,B) with
associated Coxeter system (W,S). Vectors in ∆ are called simple roots, and vectors in Φ
are called roots. The roots Φ are partitioned into positive roots Φ+ = Cone(∆) ∩ Φ and
negative roots Φ− = −Φ+. The rank of (∆,Φ) is the cardinality of ∆. In the following,
we write w(x) for the action of w ∈ W on V , and the word “based” is often omitted.

A based root system in Euclidean space has a classical root basis, in which case the
associated Coxeter system is of finite type, and we say the root system is finite. If (V,B)
is degenerate yet B(v,v) > 0 for all v ∈ V , the based root system (∆,Φ) in (V,B) also
has a classical root basis; in this case, we say that (∆,Φ) is affine since the associated
Coxeter system must be of affine type. If (V,B) is a Lorentz space, we say that the root
system (∆,Φ) is Lorentzian. Finally, (∆,Φ) is said to be non-degenerate if (V,B) is.

A based root system is irreducible if there is no proper partition ∆ = ∆I t ∆J such
that B(α, β) = 0 for all α ∈ ∆I and β ∈ ∆J , in which case the associated Coxeter group
is also irreducible.
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2.3 Geometric representations of Coxeter systems

Given an abstract Coxeter system (W,S) of rank n. We introduce a matrix B such that

Bst =

{
− cos(π/mst) if mst <∞,
−cst if mst =∞,

for s, t ∈ S, where cst are chosen arbitrarily with cst = cts > 1. Note that if mst is finite
for all s, t ∈ S, there is only one choice for the matrix B. This is the case when, for
instance, (W,S) is of finite or affine type (with the exception of I∞). In [11], the Coxeter
system (W,S) associated with the matrix B is referred to as a geometric Coxeter system,
and denoted by (W,S)B.

With the matrix B, there is a canonical way to associate (W,S) to a root system with
free root basis. Let V be a real vector space of dimension n with basis {es}s∈S indexed by
the elements in S. Then the matrix B defines a bilinear form B on V by B(es, et) = eᵀ

sBet
for s, t ∈ S. The basis {es}s∈S form a free root basis in (V,B). The homomorphism that
maps s ∈ S to the reflection in es is a faithful (cf. [24, Theorem 1.2.2(b)]) geometric
representation of the Coxeter group W as a discrete reflection subgroup of the orthogonal
group OB(V ). This is the representation considered in Maxwell [31].

The current paper investigates based root systems in Lorentz spaces, which are non-
degenerate. Hence we will focus on non-degenerate root systems. We will be particularly
interested in root basis that is not linearly independent. If the free root basis given
above is degenerate, there is a canonical way to obtain a non-degenerate root system by
“dividing out the radical” [24, Section 6.1].

If the matrix B is singular with rank d, then the dimension of the radical V ⊥ is n− d.
The bilinear form B restricted on the quotient space U = V/V ⊥ is non-degenerate. Let
αs be the projection of es onto U for all s ∈ S. If the root system induced by {es}s∈S
is not affine, the vectors ∆ = {αs | s ∈ S} are positively independent and form a root
basis in (U,B) such that B(αs, αt) = Bst [24, Proposition 6.1.2]. The homomorphism
that maps s ∈ S to the reflection in αs is a faithful (cf. [24, Theorem 1.2.2(b)]) geometric
representation of the Coxeter group W as a discrete reflection subgroup of the orthogonal
group OB(U).

This process does not work for affine root systems. We call a root system canonical if
it is non-degenerate or affine. The process described in the previous paragraph is called
canonicalization. Unless otherwise stated, root systems in this paper are all canonical.

We adopt Vinberg’s convention1 to encode the matrix B into the Coxeter graph. That
is, if cst > 1 the edge st is dashed and labeled by −cst. This convention is also used by
Abramenko–Brown [1, Section 10.3.3] and Maxwell [31, Section 1]. A Coxeter graph is
connected if and only if the Coxeter system it represents is irreducible.

Maxwell proposed the following definition:

Definition 2.1 (Level of a Coxeter graph). The level of a Coxeter graph is the smallest
integer l such that deletion of any l vertices leaves a Coxeter graph of a finite or affine
root system.

1This convention traces back to [44] according to [31], [45] according to [12]
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2.4 Facials subsets and the level of root systems

The readers are assumed to be familiar with convex cones. Otherwise we recommend [37]
or the appendix of [13] for reference.

Let (∆,Φ) be a canonical root basis in (V,B) with associated Coxeter system (W,S).
Because of the positive independence, the cone C = Cone(∆) is a pointed polyhedral cone.
We call C the positive cone since it is also spanned by the positive roots, i.e. C = Cone(Φ+).
The extreme rays of C are spanned by the simple roots in ∆.

A subset ∆′ of ∆ is said to be k-facial, 1 6 k 6 d, if Cone(∆′) is a face of codimension
k of C. In this case, we say that I = {sα | α ∈ ∆′} ⊂ S is a k-facial subset of S,
and use the notation ∆I in place of ∆′. We also write WI = 〈I〉, VI = Span(∆I) and
ΦI = WI(∆I). Then a k-facial subset I of S induce a based root system (∆I ,ΦI) in (VI ,B)
with associated Coxeter system (WI , I). We call (∆I ,ΦI) a k-facial root subsystem. We
agree on the convention that ∆ and S themselves are 0-facial.

We now define the central notion of this paper.

Definition 2.2 (Level of a root system). Let (∆,Φ) be a root system in (V,B) with
canonical root basis ∆ and associated Coxeter system (W,S). The level of (∆,Φ) is the
smallest integer l such that every l-facial subsystem is (after canonicalization if necessary)
finite or affine.

So root systems of finite or affine type are of level 0. If a root system is of level l and
every l-facial subsystem is of finite type, we say that it is strictly of level l.

Remark. We only defined the notion of “facial” and “level” for canonical root basis.
However, it is possible that a facial root subsystem is not canonical. This does not
happen for Lorentzian root systems, whose facial root subsystems are either finite, affine
or Lorentzian. Hence in this paper, the canonicalization in the definition of “level” is never
needed. For non-Lorentzian root systems, we propose for the moment to first canonicalize
a facial root subsystem if necessary. This is however open for future discussions.

For free root basis, the level of the root system equals the level of the Coxeter graph.
Otherwise, the two levels are different in general.

Given a root system of level l, the bilinear form B is positive semidefinite on Span(∆I)
for every l-facial I ⊂ S, and indefinite for at least one (l − 1)-facial I ⊂ S. If the root
system (∆,Φ) is Lorentzian, we can reformulate Definition 2.2 in terms of its positive
cone C: The level of (∆,Φ) is 1+ the maximum codimension of the time-like faces of C.
Here, we use the conventions that a face of codimension 0 is the polytope itself.

2.5 Fundamental cone, Tits cone and imaginary cone

In this part, we assume that the root system is non-degenerate, so that we can identify
the dual space V ∗ with V . For definitions for degenerate root systems, see the remark
in [13, §1.9].

The dual cone C∗ of the positive cone is called the fundamental chamber. Recall that

C∗ = {x ∈ V | B(x,y) > 0 for all y ∈ C}.
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The fundamental chamber is the fundamental domain for the action of W on V .
Since (V,B) is non-degenerate, C∗ is also a pointed polyhedral cone. The supporting

hyperplanes at the facets of C∗ are the reflecting hyperplanes of the simple roots. So
the Coxeter group W is isomorphic to the group generated by reflections in the facets of
Cone(∆∗), and the stabilizer of a face of Cone(∆∗) is generated by reflections in the facets
that contains this face.

The extreme rays of C∗ correspond to the facets of C. For each 1-facial subset I ⊂ S,
we define the vector ωI by

B(α, ωI) =

{
= 0, α ∈ ∆I

> 0, α /∈ ∆I

and
min
α/∈∆I

B(α, ωI) = 1.

So ωI is a representative on the extremal ray of C∗ associated to the facet Cone(∆I) of
C. We write ∆∗ := {ωI | I is a 1-facial subset of S}. If ∆ is a free root basis, then ∆∗ is
the dual basis, i.e. the set of fundamental weights. We use Ω to denote the orbit W (∆∗)
under the action of W .

We define the Tits cone as the union of the orbits of C∗ under the action of W , i.e.

T =
⋃
w∈W

w(C∗).

It is equal to Cone(Ω). For finite root systems, the Tits cone is the entire representation
space V [1, § 2.6.3]. Otherwise, for infinite non-affine root systems, T is a pointed cone.
See [13, Lemma 1.10] for more properties of Tits cone.

For Lorentzian root systems, the dual of the closure T is the closure of the imaginary
cone I, which is equal to the intersection of the orbits of C under the action of W [13,
§ 3.1 and Theorem 5.1(a,b)], i.e.

T ∗ = I =
⋂
w∈W

w(C).

2.6 Projective picture and limit roots

As observed in [18, Section 2.1], the roots Φ have no accumulation point. To study the
asymptotic behavior of roots, we pass to the projective representation space PV , i.e. the
space of 1-subspaces of V ; see [18, Remark 2.2]. For a non-zero vector x ∈ V , we denote
by x̂ ∈ PV the 1-subspace spanned by x. The geometric representation then induces a
projective representation

w · x̂ = ŵ(x), w ∈ W, x ∈ V.

For a set X ⊂ V , we have the corresponding projective set

X̂ := {x̂ ∈ PV | x ∈ X}
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In this sense, we have the projective simple roots ∆̂, projective roots Φ̂ and the projec-

tive isotropic cone Q̂. We use Conv(X̂) and Aff(X̂) to denote ̂Cone(X) and ̂Span(X)
respectively.

The limit roots are the accumulation points of Φ̂ ⊂ PV . In [18], it was proved that

the limit roots lies on Q̂. For free root basis, it was proved in [11] that limit roots are also

the accumulation points of Ω̂. Limit roots are the projectivization of the extreme rays of
the imaginary cone [13, 14].

The projective space PV can be identified with an affine subspace plus a hyperplane
at infinity. We usually fix a vector t and take the affine subspace

H1
t = {x ∈ V | B(t,x) = 1}.

Then for a vector x ∈ V , we represent x̂ ∈ PV by the vector x/B(t,x) ∈ H1
t if B(t,x) 6= 0,

or some point at infinity if B(t,x) = 0.
For Lorentzian root systems, it is convenient to choose a time-like t ∈ −C ∩ C∗. Such

a vector always exists; see [14, § 2.2] and [13, § 3.2].
Since t is time-like, the subspace Ht = t⊥ is space-like and divides the space into two

parts, each containing half of the light cone. Vectors on the same side as t are said to be
past-directed ; they have negative inner products with t. Those on the other side are said
to be future directed. It then makes sense to call t the direction of past.

Since t ∈ −C, the fundamental chamber C∗ is past-directed. Hence on the affine
hyperplane H1

t , the light cone Q̂ appears as a closed surface projectively equivalent to a

sphere, and the fundamental chamber appears as a bounded polytope. We call P = Ĉ∗
the Coxeter polytope. We can view the interior of Q̂ as the Klein model for the hyperbolic
space. Then the study on Lorentzian root systems can be seen as a study of hyperbolic
Coxeter polytopes.

Since t ∈ C∗, one verifies that B(t, α) > 0 for all the simple roots α ∈ Φ+, so the affine
hyperplane H1

t is transverse for the positive cone C. This fact is useful for the visualization
of the root system, see [18, § 5.2], and also for a technical reason. An important technical
notion in [11] is the height h(x) for a vector x ∈ V ; see [11, § 3.1] and [18, Theorem 2.7].
For non-degenerate root systems, we define h(x) = B(t,x). One verifies that h(x) is a
L1-norm on the positive roots Φ+. If the root basis is free, our definition coincides with
the definition in [11], where h(x) is the sum of the coordinates with simple roots as basis.

3 Extending Maxwell’s results

In this part, we extend one by one the major results of [31] to canonical root systems.
Detailed proofs are given only if there is a significant difference from Maxwell’s proof. For
the statement of the results, we mimic intentionally the formulations in [31]. Remember
that the level of a root system is in general different from the level of its Coxeter graph.

First of all, the following two results are proved in [31] for free root basis, and are
extended to canonical root basis in [20]; see also [13, §9.4]. They generalize, respectively,
Proposition 1.2 and Corollary 1.3 of [31].
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Proposition 3.1 ([20, Proposition 3.4]). For every vector x in the dual of the Tits cone,
B(x,x) 6 0.

Corollary 3.2 ([20, Proposition 3.7]). The Tits cone of a Lorentzian root system contains
one component of the light cone Q \ {0}.

We will need the following lemma:

Lemma 3.3. Let P be a polytope of dimension d > 3, and x be a point in the exterior of
P. Then there is a line L that passes through x and two points u ∈ F and v ∈ G, where
F and G are two disjoint faces of P. Moreover, the following are equivalent:

(i) For any L with the forementioned property, either u or v is in the interior of a facet.

(ii) x is not on the affine hull of any facet, and is either beyond all but one facet, or
beneath all but one facet.

Here, we say that x is beyond (resp. beneath) a facet F of P if x is on the opposite
(resp. same) side of Aff(F ) as the interior of P ; see [16].

Proof. Let H be any hyperplane that separates x and P . For any point w on the boundary
of P , let π(w) be the projection of w on H from x, i.e. π(w) is the intersection point of H
with the segment [x,w]. So π(P) models the polytope P seen from x; see Figure 1 for an
example. If the segment [x,w] is disjoint from the interior of P , we say that w is visible
(from x). In Figure 1, visible edges are solid while invisible edges are dashed.

Figure 1:

The existence of L with the given property follows from a generalization of Radon’s
theorem [3], which guarantees two disjoint faces, F and G, of P such that π(F )∩π(G) 6= ∅.
Then L is given by any point in the intersection. For the equivalence, we only need to
prove that (i) implies (ii) by contraposition. The other direction is obvious.

If x ∈ Aff(F ) for some facet F of P , we apply the generalized Radon’s theorem to F ,
and conclude that there are two disjoint faces of F whose images under π intersect. Any
point in the intersection gives a line violating (i).

the electronic journal of combinatorics 23(3) (2016), #P3.16 10



Assume that x is beneath at least two facets and beyond at least two other facets,
i.e. there are at least two visible facets and two invisible facets. Let F and G be two
disjoint faces predicted by the generalized Radon’s theorem, where F is visible while G
is not. By going to the boundary if necessary, we may assume that one of them, say F ,
is of dimension < d − 1. If G is also of dimension < d − 1, any point in the intersection
gives a line violating (i), so G must be a facet. We further assume π(F ) ⊂ Intπ(G),
otherwise π(F ) intersects the boundary of π(G) and any point in the intersection gives a
line violating (i). In Figure 1, F is the thick edge, and G is the gray face.

Consider the visible faces of dimension < d− 1 that are disjoint from G. In Figure 1,
they happen to be the solid edges and their vertices. The projection of their union
is a connected set (because d > 3) that contains π(F ) ⊂ Intπ(G). Since G is not
the only invisible facet, there is a visible vertex w on the boundary of π(P) such that
π(w) 6∈ π(G). So the projection of the union intersects the boundary of π(G). Any point
in the intersection gives a line violating (i).

To conclude, whenever x violates (ii), we are able to find a line violating (i), which
finishes the proof.

3.1 Lorentzian root systems of level 1 or 2

Two vectors x,y in (V,B) are said to be disjoint if B(x,y) 6 0 and B is not positive
definite on the subspace Span{x,y}.

The proofs of the following results are apparently very different from Maxwell’s ar-
gument [31]. Indeed, while Maxwell’s proofs make heavy use of basis, our proofs rely
primarily on projective geometry. However, the basic idea is the same. In the case of free
root basis, our proofs are just geometric interpretations of Maxwell’s proofs.

The following result generalizes [31, Proposition 1.4].

Proposition 3.4. If (∆,Φ) is level 1, then it is Lorentzian, and vectors in ∆∗ are pairwise
disjoint while none are space-like.

Proof. Let (∆,Φ) be a canonical root system of level 1 in (V,B) with associated Coxeter

system (W,S). For a vector x such that B(x,x) 6 0, we claim that x̂ ∈ Ĉ. Assume
without loss of generality that h(x) > 0. If the claim is not true, we can find two vectors
x+ ∈ Cone(∆I) and x− ∈ Cone(∆J) such that x = x+ − x− for two disjoint facial subset
I, J ⊂ S; see Figure 2 (left) for the projective picture.

Figure 2:
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Since B(x,x) = B(x+,x+) +B(x−,x−)− 2B(x+,x−) 6 0, and B(x+,x−) < 0 because
I and J are disjoint, we have either B(x+,x+) < 0 or B(x−,x−) < 0, both contradict the
fact that (∆,Φ) is of level 1. Our claim is then proved. If B(x,x) < 0, since B is positive
semidefinite on the facets, x must be in the interior of C. If B(x,x) = 0, it is possible
that x is in the interior of a facet of C.

Now assume that the representation space V is not a Lorentz space. Then, as noticed
by Maxwell [31], there is a pair of orthogonal vectors u and v such that B(u,u) < 0 and
B(v,v) = 0. For any linear combination x = λu + µv we have B(x,x) < 0 as long as
λ 6= 0. The subspace Span{u,v} intersect the hyperplanes Span(∆I) at a ray R+xI for
every 1-facial subset I ⊂ S; see Figure 2 (right) for the projective picture (modeled on
H1

t ). This means that each of these supporting hyperplanes contains a ray R+xI where
B(xI ,xI) < 0, with at most one exception (namely R+v). This contradicts the fact that
(∆,Φ) is of level 1. We then proved that (∆,Φ) is Lorentzian.

Let I be any 1-facial subset of S. Since (∆,Φ) is of level 1, the subspace Span(∆I)
is not time-like, so its orthogonal companion RωI is not space-like. This proves that no
vector in ∆∗ is space-like.

It is clear that any two vectors in ∆∗ span a Lorentz space. For the disjointness, we
only needs to prove that B(ωI , ωJ) 6 0 for any two 1-facial subsets I 6= J ⊂ S. Since ωI
is not space-like, we have seen that ωI ∈ C, so B(ωI , ωJ) has the same sign (possibly 0)
for all 1-facial J ⊂ S, which is 6 0 when ωI is time-like (take the sign of B(ωI , ωI)). If ωI
is light-like, notice that ωI ∈ Cone ∆I , i.e. ωI can be written as a linear combination of
∆I with coefficients of the same sign (possibly 0). For any s /∈ I, we have B(ωI , αs) > 0
and B(αt, αs) 6 0 for any t ∈ I, so ωI must be a negative combination of ∆I . We then
conclude that B(ωI , ωJ) 6 0 since B(αt, ωJ) are all > 0.

As a consequence, the Tits cone of a level-1 root system equals the set of non-space-like
vectors; see also [13, Proposition 9.4].

The following result generalizes [31, Proposition 1.6].

Proposition 3.5. If (∆,Φ) is of level 2, then it is Lorentzian, and vectors in ∆∗ are
pairwise disjoint. A vector ωI ∈ ∆∗ is space-like if and only if the 1-facial root system
(∆I ,ΦI) is of level 1, in which case we have B(ωI , ωI) 6 1.

Proof. Let (∆,Φ) be a canonical root system of level 2 in (V,B) with associated Coxeter
system (W,S). If V is of dimension 3, it is immediate that (∆,Φ) is Lorentzian. So we
assume that the dimension of V is at least 4.

We argue as in the proof of Proposition 3.4. If the representation space V is not a
Lorentz space, it contains a pair of orthogonal vectors u and v such that B(u,u) < 0 and
B(v,v) = 0. Then, for any linear combination x = λu + µv, we have B(x,x) < 0 as long
as λ 6= 0. The subspace Span(u,v) intersect the hyperplanes Span(∆I) at a ray R+xI
for every 1-facial subset I ⊂ S. Since the 1-facial root subsystems are all of level 6 1,
we see from the proof of Proposition 3.4 that, whenever Span(∆I) contains a time-like
ray R+xI , it must be in the interior of the facet Cone(∆I). In the projective picture

(modeled on H1
t ), Span{u,v} appears as a line L intersecting every facet of Ĉ such that
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every intersection point are in the interior of a facet, with at most one exception (namely

v̂) on the boundary of a facet. But L intersects the boundary of Ĉ only at two points.
Now that one is in the interior of a facet, the other must be the intersection of all other
facets, hence a vertex. The only possibility is that Ĉ is a pyramid, in which case L pass
through the apex and an interior point of the base facet. But the apex is a projective
simple root α̂, and B(α, α) > 0, so α̂ /∈ L. This contradiction proves that V is a Lorentz
space.

Let x be a vector with B(x,x) 6 0 and assume h(x) > 0. Contrary to the case of

level 1, it is possible that x̂ /∈ Ĉ. In this case, we can again write x = x+ − x− where
x+ ∈ Cone(∆I) and x− ∈ Cone(∆J) and I, J are two disjoint facial subset of S. And
again, since B(x+,x−) < 0, we have either B(x+,x+) or B(x−,x−) < 0. Since (∆,Φ) is
of level 2, the 1-facial root subsystems are all of level 6 1, so we must have either x+ or
x− in the interior of a facet of C by Proposition 3.4. In the projective picture, it means
that for any line through x̂ that intersects two disjoint faces of Ĉ, one intersection point
must be in the interior of a facet. We then conclude from Lemma 3.3 that B(x, ω) are

non zero, and have the same sign for all but one ω ∈ ∆∗. On the other hand, if x̂ ∈ Ĉ,
only when B(x,x) = 0 is it possible that x̂ lies on a codimension-2 face of Ĉ.

Consequently, the intersection Span(∆I) ∩ Span(∆J) is not time-like for any two 1-
facial subsets I 6= J ⊂ S. The orthogonal companion of the intersection is the subspace
Span{ωI , ωJ}, which is not space-like. For proving the disjointness, one still needs to
prove that B(ωI , ωJ) 6 0.

Assume that ωI is not space-like. A similar argument as in the proof of Proposition 3.4
shows that B(ωI , ωJ) 6 0 for all J 6= I with at most one exception. Let K 6= I be this
exception. Pick a generator s ∈ I \K, we can write ωI = λαs − ω′I , where ω′I is a linear
combination of ∆K with coefficients of same sign, which is also the sign of λ. We have
B(αs, ωI) = 0 by definition, but this is not the case since B(αs, αt) 6 0 for t ∈ K while
B(αs, αs) = 1. Therefore, the exception K does not exist.

If ωI is space-like, then the subspace Span(∆I) is time-like, so (Span(∆I),B) is a (non-
degenerate) Lorentz space. This proves that (∆I ,ΦI) is of level 1. Then, for a simple root
α /∈ ∆I , let

α′ = α− B(α, ωI)

B(ωI , ωI)
ωI

be the projection of α on Span(∆I). Since B(α′, β) 6 0 for all β ∈ ∆I , α̂
′ is in the

Coxeter polytope Ĉ∗I for (∆I ,ΦI). Since (∆I ,ΦI) is of level 1, α′ is not space-like by
Proposition 3.4, i.e.

B(α′, α′) = B(α, α)− B(α, ωI)
2

B(ωI , ωI)
= 1− B(α, ωI)

2

B(ωI , ωI)
6 0.

Since this is true for all α /∈ ∆I , it proves that

B(ωI , ωI) 6 min
α/∈∆I

B(α, ωI)
2 = 1. (1)
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Let J be a 1-facial subset such that α ∈ ∆J , and

ω′J = ωJ −
B(ωJ , ωI)

B(ωI , ωI)
ωI

be the projection of ωJ on Span(∆I). Then, since α′ ∈ Ĉ∗,

B(α′, ω′J) = B(α, ωJ)− B(α, ωI)B(ωJ , ωI)

B(ωI , ωI)
= −B(α, ωI)B(ωJ , ωI)

B(ωI , ωI)
= B(α′, ωJ) > 0,

which proves that B(ωI , ωJ) 6 0. Since J can be chosen as any 1-facial subset J 6= I ⊂ S,
this finish the proof of disjointness.

The proposition has an interesting consequence.

Corollary 3.6. Let ∆ be a canonical root basis of level 2 in (V,B), then the set

∆ ∪ {−ω/
√
B(ω, ω) | ω ∈ ∆∗,B(ω, ω) > 0}

is a canonical root basis of level 1.

The following proposition generalizes [31, Corollary 1.8]. It was proved for free root
basis in, for instance, [5][Ch. V, § 4.4] and [1, Lemma 2.58]. An extension for canonical
root basis can be found in [24, Theorem 1.2.2(b)], who refers to [44] for proof. Note that
C∗ is closed in the present paper, so the inequalities are not strict.

Proposition 3.7. For x ∈ C∗, w ∈ W and αs ∈ ∆, B(w(x), αs) > 0 if `(sw) > `(w) and
B(w(x), αs) 6 0 if `(sw) < `(w).

We now prove the generalization of [31, Theorem 1.9].

Theorem 3.8. The followings are equivalent:

(a) (∆,Φ) is of level 1 or 2;

(b) (∆,Φ) is Lorentzian and any two vectors in Ω are disjoint.

Maxwell’s proof applies with only slight modification. Yet we present here a complete
proof.

Proof. (a)⇒(b): It is already proven in Proposition 3.4 and 3.5 that (∆,Φ) is Lorentzian.
So we only need to prove the disjointness.

We first prove that, for any ωI , ωJ ∈ ∆∗ and w ∈ W such that ωI 6= w(ωJ),

B(ωI , w(ωJ)) 6 0. (2)

The proof is by induction on the length of w ∈ W . The case of w = e is already known.
One may assume that `(tw) > `(w) for all t ∈ I, otherwise one may replace w by tw in
(2). So w = sw′ for some s /∈ I and `(w) > `(w′). We then have

B(ωI , w(ωJ)) = B(s(ωI), w
′(ωJ)) = B(ωI , w

′(ωJ))− 2B(αs, ωI)B(αs, w
′(ωJ)).
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If ωI 6= w′(ωJ), (2) is proved since B(ωI , w
′(ωJ)) 6 0 by inductive hypothesis, B(αs, ωI) >

0 by definition, and B(αs, w
′(ωJ)) > 0 by Proposition 3.7. Otherwise, if ωI = w′(ωJ), we

have
B(ωI , w(ωJ)) = B(ωI , ωI)− 2B(αs, ωI)

2 6 −1 < 0 (3)

by (1) and definition of ωI (recall that s 6∈ I).
It remains to prove that B is not positive definite on the subspace Span(ωI , w(ωJ)).

Assume the opposite. Then ωI is space-like hence (∆I ,ΦI) is of level 1. Let v be the
projection of w(ωJ) on ω⊥I = VI . The subspace v⊥ in VI is the time-like intersection
ω⊥I ∩w(ωJ)⊥ in V , so v must be space-like. On the other hand, for all t ∈ I, B(αt, w(ωJ)) >
0 because `(tw) > `(w). We then conclude that v is in the Coxeter polytope of (∆I ,ΦI),
so v must be time-like. This contradiction finishes the proof of disjointness.

(b)⇒(a): Since B is not positive definite on Span{ωI , ωJ} for any ωI 6= ωJ ∈ ∆∗, the
orthogonal companion of these subspaces, which contains the codimension-2 faces of C∗,
are not time-like. So B is positive semidefinite on all codimension-2 faces, which proves
that (∆,Φ) is of level 1 or 2.

3.2 Infinite ball packings

For a space-like vector x in a Lorentz space (V,B), the normalized vector x of x is given
by

x = x/
√
B(x,x).

It lies on the one-sheet hyperboloid H = {x ∈ V | B(x,x) = 1}. Note that x̂ = −̂x is
the same point in PV , but x and −x are two different vectors in opposite directions in V .
One verifies that two space-like vectors x,y are disjoint if and only if B(x,y) 6 −1.

A correspondence between space-like directions in (d + 2)-dimensional Lorentz space
(V,B) and d-dimensional balls is introduced in [31, §2], see also [17, § 1.1] and [8, § 2.2].

Fix a time-like direction of past t so that the projective light cone Q̂ appears as a closed
sphere on H1

t . Then in the affine picture, given a space-like vector x ∈ V , the intersection

of Q̂ with the half-space Ĥ−x = {x′ ∈ H1
t | B(x,x′) 6 0} is a closed ball (spherical cap)

on Q̂. We denote this ball by Ball(x); see Figure 3.

Figure 3:
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After a stereographic projection, Ball(x) becomes an d-dimensional ball in Euclidean
space. Here, we also regard closed half-spaces as closed balls of curvature 0, and comple-
ment of open balls as closed balls of negative curvature. For two past-directed space-like
vectors x and y, we have

• Ball(x) and Ball(y) are disjoint if B(x,y) < −1;

• Ball(x) is tangent to Ball(y) if B(x,y) = −1;

• Ball(x) and Ball(y) overlap (i.e. their interiors intersect) if B(x,y) > −1;

• One of Ball(x) and Ball(y) is contained in the other if B(x,y) > 1.

A ball packing is a collection of balls with disjoint interiors. It is then clear that a
ball packing correspond to a set of space-like vectors X ∈ V , with at most one future-
directed vector, such that any two vectors are disjoint. Conversely, Maxwell proved that
every such set of space-like vectors correspond to a ball packing [31, Proposition 3.1]. So
Theorem 1.1, which we restate below, follows directly from Theorem 3.8.

Theorem 3.9. Let Ωr be the set of space-like vectors in Ω, then {Ball(ω) | ω ∈ Ωr} is a
ball packing if and only if the associated Lorentzian root system is of level 2.

Remark. It is not obvious that the statement is equivalent to Theorem 1.1. A vector
ω ∈ Ωr is in the form of w(ωI) for some w ∈ W and ωI ∈ ∆∗. The stabilizer of ω is then
the parabolic facial subgroup in the form of wWIw

−1. Since ωI is space-like, WI is of level
1, and its Coxeter graph must be connected. Facial subgroups with no finite irreducible
components are said to be special in [13]; see also [27]. Hence by [13, §10.3], vectors in
Ωr span the space-like extreme rays of the Tits cone T , which proves the equivalence. As
we will see later, this does not hold for root systems of level > 3.

In the following, the ball packing in the theorem is referred to as the Boyd–Maxwell
packing associated to the Lorentzian root system. A ball packing is maximal if one can
not add any additional ball into the packing without overlapping other balls.

Theorem 3.10. The Boyd–Maxwell packing associated to a level-2 Lorentzian root system
is maximal.

In the case of free root basis, Theorem 3.10 was proved in [31, Theorem 3.3] under a
hypothesis asserting that Cone Ωr = Cone Ω when the root system is of level 2. The proof
of this part applies word for word to canonical root basis, so we will not repeat it here.
To complete the proof of Theorem 3.10, it suffices to verify this hypothesis. For free root
basis of level > 2, the hypothesis was confirmed in [32, Theorem 6.1]. We now prove the
hypothesis for canonical root basis.

Proposition 3.11. For Lorentzian root systems of level > 2, we have Cone Ωr = Cone Ω.

Maxwell’s proof applies here with slight modification, so we only give a sketch.
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Sketch of proof. What we need to prove is that if ωI ∈ Ω is not space-like, then ωI ∈
Cone Ωr.

If B(ωI , ωI) < 0, WI is finite. Choose any space-like ω ∈ ∆∗. Then v =
∑

w∈WI
w(ω)

is fixed by WI , hence v is a scalar multiple of ωI .
If B(ωI , ωI) = 0, then (∆I ,ΦI) is affine and ωI spans the radical of (VI ,B). Again,

choose any space-like ω ∈ ∆∗. Then, by a similar argument as in the proof of [32,
Proposition 5.15], we have ωI ∈ Cone(WIω).

We have extended most of the major results of [31]. We now continue to extend results
from [11].

The residual set of a collection of balls is the complement of the interiors of the balls.
With the modified height function h(x) in Section 2.6, the proofs in [11] applies directly.
We then obtain Theorem 1.2 for level 2.

The projective polytopes in the orbit W · Ĉ∗ are called chambers. Analogous to the
situation of free root basis (Ĉ∗ is a simplex) [1], the chambers form a cell decomposition C

of the projective Tits cone T̂ called Coxeter complex. It is a pure polyhedral cell complex
of dimension d− 1 (dimension of PV ). The set of vertices of C is Ω̂. The 1-cells of C are
called edges, and (d− 2)-cells are called panels.

Two chambers are adjacent if they share a panel. A gallery is a sequence of chambers
(Ĉ0, . . . , Ĉk) such that consecutive chambers are adjacent, and k is the length of the gallery.

We say that a gallery (Ĉ0, . . . , Ĉk) connects two simplices Â and Â′ of C if Â ⊆ Ĉ0 and

Â′ ⊆ Ĉk. The gallery distance d(Â, Â′) between two simplices Â and Â′ is the minimum

length of a gallery connecting Â and Â′. A gallery connecting Â and Â′ with length
d(Â, Â′) is called a minimal gallery. For an element w ∈ W , its length `(w) = d(Ĉ, w · Ĉ).
We refer the readers to [1, Section 1.4.9] for more details.

Since Ĉ∗ is the fundamental domain for the action of W on the projective Tits cone T̂ ,
the orbit of two different fundamental weights are disjoint. So the vertices of the Coxeter
complex admits a coloring by ∆∗, i.e. a vertex u is colored by ω ∈ ∆∗ if u ∈ W · ω̂. Panels
are orbits of the facets of ∆∗, therefore they can be colored by the simple roots, i.e. a
panel is colored by α ∈ ∆ if it is the orbit of the facet of ∆∗ corresponding to α.

The tangency graph of a ball packing takes the balls as vertices and the tangent pairs
as edges. We now try to describe the tangency graph in term of the Coxeter complex.
Vertices with time- or light-like colors are called imaginary vertices ; vertices with space-
like colors are called real vertices because they correspond to balls in the packing, and are
therefore vertices in the tangency graph. An edge of the Coxeter complex connecting two
real vertices of color ω and ω′ is said to be real if B(ω, ω′) = −1. Real edges correspond
to tangent pairs in the packing, and are therefore edges in the tangency graph. For a
Lorentzian root system of level 2, real vertices colored by ω ∈ ∆∗ such that B(ω, ω) = 1
are said to be surreal. Two distinct surreal vertices of the same color ω are said to
be adjacent if they are vertices of two chambers sharing a panel of color α such that
B(ω, α) = 1. One verifies that pairs of adjacent surreal vertices are also edges in the
tangency graph.

The following theorem was proved in [11, Theorem 3.5] for free root basis.
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Theorem 3.12. The tangency graph of the ball packing associated to a Lorentzian root
system of level 2 takes the real vertices of the Coxeter complex as vertices; two vertices u
and v are connected in the tangency graph if and only if either uv is a real edge of the
Coxeter complex, in which case u and v are of different colors; or u and v are adjacent
surreal vertices, in which case u and v are of the same color.

Proof. We have seen that real vertices represent balls in the Boyd–Maxwell packing.
Recall from Theorem 3.8 that

B(ωI , w(ωJ)) 6 −
√
B(ωI , ωI)B(ωJ , ωJ) (4)

whenever ωI 6= w(ωJ). We need to prove that the equality only holds if the two vertices
u = ω̂I and v = w · ω̂J are either vertices of a real edge, or a pair of adjacent surreal
vertices. In any other case, the inequality is strict, meaning that the balls are not tangent.

If u and v are in the same chamber (d(u, v) = 0), they are necessarily of different
colors, i.e. I 6= J . If they correspond to a pair of tangent balls, they must form an edge
of the chamber [10, Theorem 5.2] and this edge must be real.

If u and v are in adjacent chambers, we may assume that w = sα /∈ I ∪ J . If I 6= J ,
and the strict inequality follows from

B(ωI , sαωJ) = B(ωI , ωJ)− 2B(ωI , α)B(ωJ , α) < B(ωI , ωJ) 6 −
√
B(ωI , ωI)B(ωJ , ωJ).

Otherwise if I = J , the calculation was done in Eq. (3), where one sees immediately that
B(ωI , sαωI) = −B(ωI , ωI) if and only if B(ωI , ωI) = 1 and B(ωI , αs) = 1. Hence two
vertices in adjacent chambers correspond to tangent balls if and only if they are a pair of
adjacent surreal vertices.

It remains to prove that the inequality in Eq. (4) is strict if d(u, v) > 2. Let
(C0, . . . , Cd(u,v)) be a minimal gallery connecting u and v, and αi be the color of the panel
shared by Ci−1 and Ci. We may take w = s1 . . . sd(u,v) where si is the reflection in αi.
Note that s1 /∈ I, sd(u,v) /∈ J , and `(w) = d(u, v). Write w = s1s2w

′ with w′ = s3 . . . sd(u,v).
Then

B(ωI , wωJ) = B(s1ωI , s2w
′ωJ) = B(s1ωI , w

′ωJ)

− 2B(w′ωJ , α2)[B(ωI , α2)− 2B(ωI , α1)B(α1, α2)]

If I 6= J or w′ 6= s1, B(w′ωJ , α2) > 0 by Proposition 3.7, but the equality is ruled out
by the minimality of the gallery. Moreover, either B(ωI , α2) > 0 or B(α1, α2) < 0 (s1

and s2 do not commute); if both are 0, one may find a smaller gallery, contradicting the
minimality. The strict inequality in Eq. (4) is then proved since the second line is strictly
negative.

If I = J and w′ = s1, we continue the calculation and obtain

B(ωI , wωI) = B(ωI , s1s2s1ωI) = B(ωI , ωI)

− 2B(ωI , α2)2 + 8B(ωI , α1)B(ωI , α2)B(α1, α2)− 8B(ωI , α1)2B(α1, α2)2
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Note that either B(ωI , α2) > 0 or B(α1, α2) < −1/2 (order of s1s2 is bigger than 3);
otherwise there is a smaller gallery, contradicting the minimality. Hence B(ωI , wωI) <
−1 6 −B(ωI , ωI), which proves the strict inequality in Eq. (4).

Finally, the following generalizes [11, Corollary 3.1], whose proof applies here word for
word.

Corollary 3.13. The projective Tits cone T̂ of a Lorentzian root system of level 2 is an
edge-tangent infinite polytope, i.e. its edges are all tangent to the projective light cone.
Furthermore, the 1-skeleton of T̂ is the tangency graph of the ball packing associated to
the root system.

3.3 Lorentzian root systems of higher levels

In this part we investigate Lorentzian Coxeter systems of level > 3. The space-like vectors
in Ω still correspond to balls, and we call {Ball(ω) | ω ∈ Ωr} a Boyd–Maxwell ball cluster.
It turns out that, in a Boyd–Maxwell cluster, either the balls may overlap hence do not
form a packing, or one may extract a subset that form a packing but lose the maximality.

Remark. If the level > 3, the balls do not correspond to the extreme rays as in Theo-
rem 1.1. It is possible that the stabilizer of some space-like ωI ∈ ∆∗ has a finite compo-
nent, hence not a special subgroup. In this case, the rays spanned by W (ωI) might not
be extreme for T .

In [11, §3.4], it was falsely claimed for level > 3 that the balls in {Ball(ω) | ω ∈ Ωr}
can only intersect at acute angles. The correct statement is the following, which is also
valid for canonical root basis:

Lemma 3.14. In the Boyd–Maxwell cluster associated to a level > 3 Lorentzian root
system, no ball contains another.

Though the mistake plays a minor role in [11], we include a short proof here for
completeness.

Proof. If a ball is contained in another, the corresponding space-like weight ω would be
in the interior of the Tits cone Cone Ωr = Cone Ω. Then the stabilizer of ω in W must be
finite, so ω can not be space-like. This contradiction proves the lemma.

A set of overlapping balls is maximal if any extra ball, once introduced into the packing,
would contain, be contained in, or overlap at an obtuse angle with an existing ball. The
following results from [11], together with their proofs, extend word for word to canonical
root systems.

Theorem 3.15. The Boyd–Maxwell cluster associated to a Lorentzian root system of
level > 2 is maximal. And the set of limit roots is equal to the residual set of the cluster.
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We have seen that the balls corresponding to Ωr do not form a packing. However, one
could extract a packing from the Boyd–Maxwell cluster, in the price of losing maximality.
Let ∆∗1 ⊆ ∆∗ be the set of space-like vectors ωI in ∆∗ such that the 1-facial root systems
(∆I ,ΦI) are of level 1.

Theorem 3.16. For a Lorentzian root system of level > 3, B(ωI , ωI) 6 1 for all ωI ∈ ∆∗1,
and the balls {Ball(ω) | ω ∈ W (∆∗1) ⊂ Ωr} form a packing.

The proofs for Eq. (1) and Theorem 3.8 applies here word for word, so we will not
repeat it. Examples of such packings appear in a study of Bianchi groups by Stange [38],
to whom the author is grateful for helpful discussions.

4 Partial classification of level-2 Coxeter polytopes

To provide examples of new infinite ball packings, we devote the last section to a partial
enumeration of based root systems of level 2. More precisely, we will enumerate the
Coxeter d-polytopes with d+ 2 facets.

The enumeration is implemented in the computer algebra system Sage [39]. Com-
mented source code is made public at http://github.com/Dr-How/L2Graph. Our algo-
rithm is an enhanced combination of the techniques used in previous enumerations such
as [23, 15, 40]. Since a thorough description of the algorithm would cost too much space
yet provide little mathematical insight, we decide to present only main ideas of the pro-
cedure. Interested readers are encouraged to consult the cited literatures and the source
code for mathematical and technical details.

For convenience, we will talk about the level for Coxeter polytopes and, by abuse of
language, for Coxeter graphs, but we actually mean the level of the associated root system.
For Coxeter graphs, this leads to a confusion with Maxwell’s definition, but should not
cause any problem within this section.

4.1 Background

Recall that a simple system ∆ in (V,B) can be represented by the Coxeter graph G
with Vinberg’s convention. Simple roots correspond to vertices of G. If two simple roots
α, β ∈ ∆ are not orthogonal, they are connected by an edge, which is solid with label
3 6 m <∞, if B(α, β) = − cos(π/m); with label∞ if B(α, β) = −1; or dashed with label
−c if B(α, β) = −c < −1. The label 3 on solid edges are often omitted.

If we consider the Coxeter polytope P , then vertices of the Coxeter graph G correspond
to facets of P . A solid edge of G with integer label means that the intersection of two
facets is time-like; a solid edge with label ∞ means that the intersection is light-like; and
a dashed edge means that the intersection is space-like.

For a based root system (∆,Φ), the corank of it’s Coxeter polytope P is defined as the
nullity of the Gram matrix B of ∆. A Coxeter polytope of dimension d and corank k has
d+k+1 facets. In particular, a Coxeter polytope of corank 0 is a simplex. In this case, the
level of the Coxeter graph coincide with Maxwell’s definition. For convenience, a Coxeter

the electronic journal of combinatorics 23(3) (2016), #P3.16 20

http://github.com/Dr-How/L2Graph


polytope of level l and corank k is abbreviated as (l, k)-polytope. Such abbreviation is
also used for Coxeter graphs.

In the affine picture of the projective space PV , the projective light cone Q̂ appears as
a closed surface that is projectively equivalent to a sphere. We can consider the interior
of the sphere (time-like part) as the Klein model of the hyperbolic space. With this point
of view, a Coxeter polytope P ∈ PV is a hyperbolic polytope, and is the fundamental
domain of the hyperbolic reflection group generated by the reflections in its facets [47].
By Proposition 3.4, Coxeter polytopes of level 1 correspond to finite-volume hyperbolic
polytopes, or even compact if the level is strict; Coxeter polytopes of level > 2, on the
other hand, are hyperbolic polytopes of infinite volume.

Vinberg [46] proved that there is no strict level-1 Coxeter polytopes of dimension 30 or
higher, and Prokhorov [36] proved that there is no level-1 Coxeter polytopes in hyperbolic
spaces of dimension 996 or higher. On the other hand, Allcock [2] proved that there are
infinitely many level-1 (resp. strictly level-1) Coxeter polytopes in every hyperbolic space
of dimension 19 (resp. 6) or lower, which suggests that a complete enumeration of level-1
Coxeter polytopes is hopeless.

Nevertheless, there are many interesting partial enumerations. The (1, 0)-polytopes
have been completely enumerated by Chein [9]. They are hyperbolic simplices of finite vol-
ume. The list of Chein also comprises strict (1, 0)-polytopes, which was first enumerated
by Lannér [25]. The (1, 1)-polytopes have been enumerated by Kaplinskaja [23] for sim-
plicial prisms, Esselmann [15] for compact polytopes and Tumarkin [40] for finite-volume
polytopes. Tumarkin also studied strict (1, 2)- and (1, 3)-polytopes [41, 42]. Mcleod [34]
finished the classification of all pyramids of level 1. Our algorithm of enumeration is based
on the techniques and results in these works.

Recall that a Coxeter polytope is of level 2 if all its edges are time-like or light-
like, but some vertices are space-like. In view of Corollary 3.6, we deduce immediately
from the result of [36] that there is no level-2 Coxeter polytopes in hyperbolic spaces
of dimension 996 or higher. However, in the shadow of [2], there might be infinitely
many level-2 Coxeter polytopes in lower dimensions, so a complete classification may be
hopeless. A (2, 0)-graph is either a connected graph, or a disjoint union of an isolated
vertex and a (1, 0)-graph. The enumeration of connected (2, 0)-graphs was initiated in
[31] and completed in [11]. In this section, we would like to enumerate (2, 1)-graphs.

Remark. We notice that the “doubling trick” used in Allcock’s construction produces
Coxeter subgroups of finite index, so the infinitely many hyperbolic Coxeter groups con-
structed in [2] are all commensurable. It has been noticed in [31, § 4] that commensurable
Coxeter groups of level-2 correspond to the same ball packing. Indeed, if two Coxeter
groups are commensurable, their Coxeter complex is the subdivision of the same coarser
Coxeter complex. Therefore, it makes more sense to investigate commensurable classes of
Coxeter groups, as Maxwell did in [31, Table II].

For root systems of corank 0, the commensurable classes and subgroup relations have
been studied for level 1 and 2 in [33], and are completely determined for level 1 by
Johnson et al. [22]. Despite of Allcock’s result, we may still ask: Are there infinitely many
commensurable classes for level-l Coxeter groups acting on lower dimensional hyperbolic
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spaces? For level 1 Coxeter groups, the answer is “yes” in dimension 2 (triangle groups),
3 [28, § 4.7.3], 4 and 5 [29] [47, § 5.4]. The constructions in dimension 3–5 made use of
level-1 polytopes of low corank.

4.2 Strategy of enumeration

Let F be a k-face of a d-polytope P . The face figure of F , denoted by P/F , is the
projection of P onto the quotient space Span(P )/ Span(F ). F is said to be simple if P/F
is a simplex, or almost simple if P/F is the direct product of simplices. A polytope is said
to be k-simple (resp. almost k-simple) if all its k-faces are simple (resp. almost simple).
For a hyperbolic Coxeter polytope P , time-like faces are simple, and light-like faces are
almost simple; this is an easy generalization of [43, Lemma 3]. We then conclude the
following proposition from the definition of level.

Proposition 4.1. A Coxeter polytope of level l is almost l-simple, or l-simple if the level
is strict.

By the Gale diagram analysis [16, §6.3] [40, §2] and Proposition 4.1, we conclude that

Proposition 4.2. The (2, 1)-polytope falls into one of the four cases:

• the direct product of two simplices.

• the pyramid over the direct product of two simplices, with light-like apex.

• the pyramid over the direct product of two simplices, with space-like apex.

• the two-fold pyramid over the direct product of two simplices.

Polytopes in each case will be enumerated separately. Our enumeration, like previous
enumerations, follows a “nomination–recognition” strategy: We first generate a reasonably
short list of candidates, then pass the list to a recognition program to screen out the (2, 1)-
graphs. Hence for each case, we will come up with a lemma characterizing the Coxeter
graphs. This lemma serves as the guide for nominating candidates. We will present the
lemmata without proof. Interested readers are referred to Lemmata 2 and 4 of [40] for
the idea of proofs. Basically, the lemmata follow from the definition of level, and make
use of the following theorem:

Theorem 4.3 ([47, Theorem 3.1]). A subgraph of Coxeter graph G corresponds to the
face figure of a time-like face of P if and only if it is of finite type.

For some cases of low rank, due to the large number of graphs, we do not give explicit
lists in this paper. Interested readers are welcome to check the source code at http:

//github.com/Dr-How/L2Graph.

Remark (Notation). Let G be a Coxeter graph, G1 and G2 be two subgraphs of G. We
use G1 +G2 to denote the subgraph induced by the vertices of G1 and G2, use G1−G2 to
denote the subgraph induced by the vertices of G1 that are not in G2. A subgraph with
only one vertex is denoted by the vertex.
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4.3 Products of two simplices

In this case, the following lemma guides the nomination of candidates:

Lemma 4.4. If a (2, 1)-polytope is combinatorial equivalent to the product of two sim-
plices, then its Coxeter graph G is connected. It consists of two (1, 0)-subgraphs, say G1

and G2, corresponding to the two simplices. For any v1 ∈ G1, the graphs G2 + v1 is
a (2, 0)-graph. Moreover, G2 is strictly (1, 0), and G2 + v1 is strictly (2, 0), unless G1

contains only two vertices.

If one simplex is a segment, the product is a simplicial prism. As argued in [23], a prism
can be cut into two orthogonally based prisms (one of whose base facets is orthogonal
to all the lateral facets). The Coxeter graph of an orthogonally based (2, 1)-prism is
obtained from a (2, 0)-graph by attaching a vertex with a dashed edge. For the polytope,
this corresponds to truncating a space-like vertex. A candidate nominated in this way is
of level 1 or 2 depending on whether the truncated vertex is the only space-like vertex.
Moreover, we shall verify the label for the dashed edge, which should be < −1; otherwise
the truncating face contains an unexpected vertex, and the combinatorial type of the
polytope is the pyramid over a simplicial prism.

The list of (2, 0)-graphs with at least five vertices can be found in [11], where some
vertices are colored in white or grey. By attaching a vertex to each of these white or gray
vertices, we obtain 655 candidate Coxeter graphs. Among them, 17 graphs correspond to
orthogonally based simplicial prisms of level 1, as also enumerated in [23]; for 129 graphs,
the label of the dashed edge is −1, hence the polytope is a pyramid. The remaining 509
graphs are confirmed by the recognition program as orthogonally based (2, 1)-prisms.

If neither simplex is segment, we enumerate 28 (2, 1)-graphs in Table 1. The table
is used in conjunction with Figure 4 in the following manner: Figure 4 lists some strict
(1, 0)-graphs, with some vertices colored in white and marked with numbers. For each
entry in Table 1, the first two columns give the positions of two (1, 0)-graphs, say G1 and
G2, in Figure 4. A Coxeter graph G is obtained by connecting G1 with G2 by adding the
edges indicated in the last column in the format (vertex in G1, vertex in G2, label). We
claim that

Proposition 4.5. The 28 Coxeter graphs in Table 1 are the only (2, 1)-graphs whose
Coxeter polytope is combinatorially equivalent to the product of two simplices, both of
dimension > 1.

Remark. Figure 4 excludes hyperbolic triangle groups with label 7, 9 or > 11. By the
same technique as in [15, § 4.1, Step 3) 4)], we verified by computer that these triangle
groups can not be used to form any Coxeter graph of positive corank.
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G1 G2 Edges between G1 and G2 G1 G2 Edges between G1 and G2

2 13 (1,0,3), (2,2,3) 4 19 (0,0,3), (3,1,3)
6 11 (0,1,3) 6 13 (0,0,3), (0,2,3)
10 17 (0,1,3), (3,1,3) 10 22 (0,0,3), (3,1,3)
11 14 (1,0,3) 11 22 (1,2,3)
12 12 (0,1,3) 12 12 (2,2,3)
12 15 (0,0,3), (0,2,3) 12 15 (2,1,3)
12 19 (0,0,3), (0,1,3) 12 19 (1,2,3)
12 24 (2,0,3), (2,1,3) 12 27 (0,0,3), (2,1,3)
13 14 (0,0,3), (2,0,3) 13 22 (0,0,3), (2,1,3)
13 26 (0,0,3), (2,2,3) 15 15 (0,0,3), (2,2,3)
15 15 (1,1,3) 15 19 (0,0,3), (2,1,3)
16 30 (0,0,3), (2,1,3) 17 22 (0,0,3), (2,1,3)
17 26 (0,0,3), (2,2,3) 18 18 (0,1,3), (1,0,3)
24 24 (0,0,3), (1,1,3), (2,2,3) 25 25 (0,0,3), (0,0,4), (1,1,3), (1,1,4)

Table 1: The first two columns are the positions of G1 and G2 in Figure 4, and the
third columns are the edges connecting G1 and G2. The white vertices in Figure 4 are
numbered, so the edges are represented in the format of (vertex in G1, vertex in G2,
label). By connecting G1 and G2 by the indicated edges, we obtain the (2, 1)-graphs for
the products of two simplices (both of dimension > 1).
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Figure 4: Strict (1, 0)-graphs of > 3 vertices used in Table 1.
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4.4 Pyramids over products of two simplices, with light-like apex

In this case, the following lemma guides the nomination of candidates:

Lemma 4.6. If a (2, 1)-polytope is combinatorial equivalent to the pyramid over the prod-
uct of two simplices, and the apex is light-like, then its Coxeter graph G consists of two
(1, 0)-subgraphs, say G1 and G2, sharing a common vertex v. The subgraphs G1 − v and
G2−v are affine Coxeter graphs, and are disjoint; they correspond to the two simplices. If
v2 ∈ G2−v is a neighbor of v, then G1 +v2 is a (2, 0)-graph. Moreover, G1 +v2 is strictly
(2, 0), and v is the unique vertex of G2 whose removal leaves an affine graph, unless G1

contains only two vertices.

If one of the simplices is a segment, we construct a candidate (2, 1)-graph as follows:
we take a non-strict (1, 0)-graph G, find a vertex v whose removal leaves an affine graph,
then attach two vertices u and u′ to v, and finally connect u and u′ by a solid edge with
label ∞. The edge uu′ corresponds to the segment.

The list of non-strict (1, 0)-graph with > 4 vertices can be found in [9]. The procedure
above then gives, up to graph isomorphism, 358 graphs of level 1 or 2. Among them, 89 are
of level 1 as also enumerated in [40]. The remaining 269 graphs correspond to pyramids
of level 2, and 129 of them were previously discovered when enumerating orthogonally
based simplicial prisms.

If neither simplex is segment, we enumerate 65 (2, 1)-graphs in Table 2. The table is
used in conjunction with Figure 5 in the following manner: Figure 5 lists some non-strict
(1, 0)-graphs with at least 4 vertices. Each of them has a white vertex. For each entry
in Table 2, the two numbers are the positions of two (1, 0)-graphs, say G1 and G2, in
Figure 5. A Coxeter graph G is obtained by combining G1 and G2 by identifying the
white vertex. We claim that:

Proposition 4.7. The 65 Coxeter graphs in Table 2 are the only (2, 1)-graphs whose
Coxeter polytope is combinatorially equivalent to the pyramid over the product of two
simplices, both of dimension > 1.

1–2 1–5 1–9 1–12 1–15 1–16 1–19 1–22 1–24 1–27
2–3 2–7 2–8 2–23 3–5 3–13 3–15 3–16 3–20 3–28
4–9 4–12 4–19 4–22 4–24 4–27 5–7 5–8 5–23 7–9
7–12 7–15 7–16 7–19 7–22 7–24 7–27 8–9 8–12 8–15
8–16 8–19 8–22 8–24 8–27 9–26 10–12 10–19 10–27 11–12

11–19 11–27 12–18 12–26 13–23 15–23 16–23 18–19 18–27 19–26
20–23 22–26 23–28 24–26 26–27

Table 2: For each pair i–j in the list, by identifying the white vertices of the i-th and the
j-th graph in Figure 5, we obtain the (2, 1)-graph of a pyramid over the product of two
simplices (both of dimension > 1).
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Figure 5: Non-strict (1, 0)-graphs of > 4 vertices used in Table 2.
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4.5 Pyramids over products of two simplices, with space-like apex

In this case, the following lemma guides the nomination of candidates:

Lemma 4.8. If a (2, 1)-polytope is combinatorially equivalent to the pyramid over the
product of two simplices, and the apex is space-like, then its Coxeter graph G consists of
two strict (2, 0)-graphs, say G1 and G2, sharing a common vertex v. The subgraph G− v
is a (1, 1)-graph, hence essentially connected. In both G1 and G2, v is the unique vertex
whose removal leaves a (1, 0)-graph. For any v2 ∈ G2−v, G1−v+v2 is a strict (2, 0)-graph
in which v2 is the unique vertex whose removal leaves a strict (1, 0)-graph, and G1 + v2

is a strict (3, 0)-graph in which v and v2 are the only two vertices whose removal leaves a
(2, 0)-graph.

If one of the simplices is a segment, the base facet is a (1, 1)-prism. Coxeter graphs
for (1, 1)-prisms are classified in [23], where a list of orthogonally based (1, 1)-prisms is
given. The disjoint union of an isolated vertex with the graph of a (1, 1)-prism is indeed
a (2, 1)-pyramid. Otherwise, we claim that

Proposition 4.9. The 18 Coxeter graphs in Figure 6 are the only connected (2, 1)-graphs
with > 7 vertices whose Coxeter polytope is combinatorially equivalent to the pyramid over
a prism and whose apex is space-like.

Figure 6: All the 18 connected (2, 1)-graphs of rank > 7 whose Coxeter polytope has the
type of a pyramid over a prism and whose apex is space-like.

For 4-dimensional pyramids over triangular prisms, we obtain 266 connected (2, 1)-
graphs from triangle graphs with labels at most 6. For triangle graphs with a label k > 7,
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the Coxeter graph is necessarily in the form of k −c . The unlabeled edges can not

have label > 7, so for a given k, there are only finitely many possibilities for the labels.
For each of them, the value of −c is determined by k. We then use Sage to find the
expressions of the determinant in terms of k, and find no integer root that is > 7 for these
expressions. So we believe that the labels on solid edges are at most 6 for this type of
(2, 1)-graphs. However, the author thinks that this is the point to question the reliability
of computer enumeration, and an analytic explanation is welcomed.

If neither simplex is segment, the Coxeter graph for the base facet falls in the list
in [15] and [40]. The two lists contain eight graphs in total. Disjoint union of an isolated
vertex with any of the eight graphs clearly yields a (2, 1)-graph. Otherwise, we claim that

Proposition 4.10. The three Coxeter graphs in Figure 7 are the only connected (2, 1)-
graphs whose Coxeter polytope is combinatorially equivalent to the pyramid over the prod-
uct of two simplices, both of dimension > 1, and whose apex is space-like.

4 4 4

4 4

44

4 4

44

4 4

44

Figure 7: All the three connected (2, 1)-graphs whose Coxeter polytope has the type of
Pyr(4×4) with space-like apex. The white vertex corresponds to the base facet.

4.6 Two-fold pyramids over products of two simplices

In this case, the following lemma guides the nomination of candidates:

Lemma 4.11. If a (2, 1)-polytope is combinatorially equivalent to the 2-fold pyramid over
a product of two simplices, then its Coxeter graph G consists of two (2, 0)-graphs, say G1

and G2, sharing two common vertices u and v. The subgraph G1 − u− v and G2 − u− v
are affine graphs, and are not connected to each other. In both G1 and G2, u and v are
the unique pair of vertices whose removal leaves an affine graph. For any v2 ∈ G2, the
subgraph G1 + v2 is a (3, 0)-graph in which u, v and v2 are the only three vertices whose
removal leaves a (2, 0)-graph.

If one of the simplices is a segment, we enumerate 49 (2, 1)-graphs in Table 3. The
table is used in conjunction with Figure 8 in the following manner: Figure 8 lists some
(2, 0)-graphs with at least 5 vertices; each of them has a white vertex and a gray vertex.
Each entry of table 3 is in the format of i : (a, b)(c, d). A Coxeter graph is obtained as
follows: Take the i-th graph G in Figure 8. Let u be the gray vertex and v be the white
vertex, introduce to new vertices w and w′ connected by a solid edge with label ∞, and
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connect them to G by solid edges wu with label a, wv with label b, w′u with label c and
w′v with label d. We claim that

Proposition 4.12. The 49 Coxeter graphs in Table 3 are the only (2, 1)-graphs with > 7
vertices whose Coxeter polytope is combinatorially equivalent to the two-fold pyramid over
a simplicial prism.

4:(2,3)(3,2) 4:(2,4)(4,2) 5:(2,3)(3,2) 6:(2,3)(3,2) 15:(2,2)(3,3)
15:(2,3)(3,2) 15:(2,4)(4,2) 15:(3,3)(3,3) 15:(3,4)(4,3) 24:(2,3)(4,3)
28:(2,2)(3,3) 28:(2,3)(3,2) 28:(3,3)(3,3) 32:(2,2)(3,3) 32:(2,3)(3,2)
32:(2,4)(4,2) 32:(3,3)(3,3) 37:(2,3)(3,2) 38:(2,2)(3,3) 38:(2,3)(3,2)
38:(3,3)(3,3) 39:(2,3)(3,2) 40:(2,2)(3,3) 40:(2,3)(3,2) 40:(3,3)(3,3)
41:(2,2)(3,3) 41:(3,3)(3,3) 42:(2,2)(3,3) 42:(3,3)(3,3) 48:(3,2)(3,3)
49:(2,2)(4,3) 49:(2,3)(4,2) 49:(3,2)(3,4) 49:(4,3)(4,3) 57:(2,3)(4,3)
59:(2,2)(3,3) 59:(3,3)(3,3) 61:(2,2)(3,3) 61:(2,3)(3,2) 61:(2,4)(4,2)
61:(3,3)(3,3) 65:(2,3)(3,2) 66:(2,2)(3,3) 66:(2,3)(3,2) 66:(3,3)(3,3)
67:(2,3)(3,2) 68:(2,2)(3,3) 68:(2,3)(3,2) 68:(3,3)(3,3)

Table 3: For each entry i:(a, b)(c, d) in the list, take the i-th graph H+u+v in Figure 8,
where u is the gray vertex and v is the white vertex. Introduce two new vertices w and
w′, and connect them to H such that wu has label a, wv has label b, w′u has label c, w′v
has label d, and finally label the edge ww′ by∞. The result is the (2, 1)-graph of a 2-fold
pyramid over a prism.

If neither simplex is segment. We enumerate 36 (2, 1)-graphs in Table 4. The table is
used in conjunction with Figure 8 in the following manner: For each entry in the table,
the two numbers are the positions of two (2, 0)-graphs, say G1 and G2, in Figure 8. A
Coxeter graph is obtained by combining G1 and G2 by identifying the non-black vertices.
It turns out that, for every entry in the table, there is a unique way combination up to
graph isomorphism. We claim that:

Proposition 4.13. The 36 Coxeter graphs in Table 4 are the only (2, 1)-graphs whose
Coxeter polytope is combinatorially equivalent to the two-fold pyramid over the product of
two simplices, both of dimension > 1.

4–4 8–15 8–22 8–56 8–62 13–13
13–49 15–15 15–22 15–32 15–35 15–54
15–56 15–61 15–62 22–22 22–32 22–35
22–54 22–56 22–61 22–62 32–56 32–62
35–56 35–62 38–56 49–49 54–56 54–62
56–56 56–61 56–62 56–66 61–62 62–62

Table 4: For each pair i–j in the list, by identifying the white/light-gray vertices of the
i-th and the j-th graph in Figure 8, we obtain the (2, 1)-graph of a 2-fold pyramid over
the product of two simplices (both of dimension > 1).
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Figure 8: (2, 0)-graphs of > 5 vertices used in Tables 3 and 4.
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[16] B. Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 2003. Prepared and with a preface by
Volker Kaibel, Victor Klee and Günter M. Ziegler.

[17] U. Hertrich-Jeromin. Introduction to Möbius Differential Geometry, volume 300 of
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[45] È. B. Vinberg. Some arithmetical discrete groups in Lobačevskĭı spaces. In Discrete
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