On Symmetries in Phylogenetic Trees

Éric Fusy*

Laboratoire d'informatique (LIX) École Polytechnique 91120 Palaiseau, France

fusy@lix.polytechnique.fr

Submitted: Mar 7, 2016; Accepted: Jul 24, 2016; Published: Aug 19, 2016 Mathematics Subject Classifications: 05A15

Abstract

Billey et al. [arXiv:1507.04976] have recently discovered a surprisingly simple formula for the number $a_n(\sigma)$ of leaf-labelled rooted non-embedded binary trees (also known as phylogenetic trees) with $n \ge 1$ leaves, fixed (for the relabelling action) by a given permutation $\sigma \in \mathfrak{S}_n$. Denoting by $\lambda \vdash n$ the integer partition giving the sizes of the cycles of σ in non-increasing order, they show by a guessing/checking approach that if λ is a binary partition (it is known that $a_n(\sigma) = 0$ otherwise), then

$$a_n(\sigma) = \prod_{i=2}^{\ell(\lambda)} (2(\lambda_i + \dots + \lambda_{\ell(\lambda)}) - 1),$$

and they derive from it a formula and random generation procedure for tanglegrams (and more generally for tangled chains). Our main result is a combinatorial proof of the formula for $a_n(\sigma)$, which yields a simplification of the random sampler for tangled chains.

Keywords: phylogenetic trees, bijection, random generation, tanglegrams

1 Introduction

For A a finite set of cardinality $n \ge 1$, we denote by $\mathcal{B}[A]$ the set of rooted binary trees that are non-embedded (i.e., the order of the two children of each node does not matter) and have n leaves with distinct labels from A. Such trees are known as *phylogenetic trees*, where typically A is the set of represented species. Note that such a tree has n-1 nodes and 2n-1 edges (we take here the convention of having an additional root-edge above

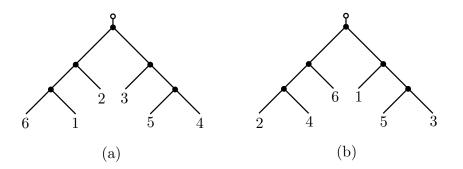


Figure 1: (a) A phylogenetic tree γ with label-set [1..6]. (b) The tree $\gamma' = \sigma \cdot \gamma$, with $\sigma = (1,4,3)(5)(2,6)$. Since $\gamma' \neq \gamma$, γ is not fixed by σ (on the other hand γ is fixed by (2,3)(1,4,6,5)).

the root-node, this edge being connected to a 'fake-vertex' that does not count as a node; see Figure 1).

The group $\mathfrak{S}(A)$ of permutations of A acts on $\mathcal{B}[A]$: for $\gamma \in \mathcal{B}[A]$ and $\sigma \in \mathfrak{S}(A)$, $\sigma \cdot \gamma$ is obtained from γ after replacing the label i of every leaf by $\sigma(i)$; see Figure 1(b). We denote by $\mathcal{B}_{\sigma}[A]$ the set of trees fixed by the action of σ , i.e., $\mathcal{B}_{\sigma}[A] := \{\gamma \in \mathcal{B}[A] \text{ such that } \sigma \cdot \gamma = \gamma\}$. We also define $\mathcal{E}_{\sigma}[A]$ (resp. $\mathcal{E}[A]$) as the set of pairs (γ, e) where $\gamma \in \mathcal{B}_{\sigma}[A]$ (resp. $\gamma \in \mathcal{B}[A]$) and e is an edge of γ (among the 2n - 1 edges). Define the *cycle-type* of σ as the integer partition $\lambda \vdash n$ giving the sizes of the cycles of σ in non-increasing order. For $\lambda \vdash n$ an integer partition, the cardinality of $\mathcal{B}_{\sigma}[A]$ is the same for all permutations σ with cycle-type λ , and this common cardinality is denoted by r_{λ} . It is easy to see (from the wreath-product structure of the automorphism-group of a tree [6, Sec.38]) that $r_{\lambda} = 0$ unless λ is a *binary partition*, i.e., an integer partition whose parts are powers of 2. Billey et al. [2] have recently found the following remarkable formula, valid for any binary partition λ :

$$r_{\lambda} = \prod_{i=2}^{\ell(\lambda)} (2(\lambda_i + \dots + \lambda_{\ell(\lambda)}) - 1).$$
(1)

They prove the formula by a guessing/checking approach. Our main result here is a combinatorial proof of (1), which yields a simplification (see Section 3) of the random sampler for tanglegrams (and more generally tangled chains) given in [2].

Theorem 1. For A a finite set and σ a permutation on A whose cycle-type is a binary partition:

- If σ has one cycle, then $|\mathcal{B}_{\sigma}[A]| = 1$.
- If σ has more than one cycle, let c be a largest cycle of σ ; let A' be the set A without the elements of c, and let σ' be the permutation σ restricted to A'. Then we have

^{*}Partly supported by the ANR grant "Cartaplus" 12-JS02-001-01 and the ANR grant "EGOS" 12-JS02-002-01.

the combinatorial isomorphism

$$\mathcal{B}_{\sigma}[A] \simeq \mathcal{E}_{\sigma'}[A']. \tag{2}$$

As we will see, the isomorphism (2) can be seen as an adaptation of Rémy's method [7] to the setting of (non-embedded rooted) binary trees fixed by a given permutation. Note that Theorem 1 implies that the coefficients r_{λ} satisfy $r_{\lambda} = 1$ if λ is a binary partition with one part and $r_{\lambda} = (2|\lambda \setminus \lambda_1| - 1) \cdot r_{\lambda \setminus \lambda_1}$ if λ is a binary partition with more than one part (where λ_1 denotes the first part of λ , and $\lambda \setminus \lambda_1$ denotes λ without its first part), from which we recover (1).

2 Proof of Theorem 1

2.1 Case where the permutation σ has one cycle

The fact that $|\mathcal{B}_{\sigma}[A]| = 1$ if σ has a one cycle and the cycle has size 2^{k} (for some $k \ge 0$) is easy to see at the level of the cycle index sum specification [1, 3] (recall that the specification is $Z(s_{1}, s_{2}, \ldots) = s_{1} + \frac{1}{2}(Z(s_{1}, s_{2}, \ldots)^{2} + Z(s_{2}, s_{4}, \ldots))$, which implies that for $k \ge 0$ and $n = 2^{k}$, the coefficient $[s^{2^{k}}]Z(s_{1}, s_{2}, \ldots)$ equals 1/n; denoting by $\lambda^{(n)}$ the partition with a single part n, this coefficient is also $r_{\lambda^{(n)}}/z_{\lambda^{(n)}} = r_{\lambda^{(n)}}/n$; thus $r_{\lambda^{(n)}} = 1$). For the sake of completeness we give here a short justification. Since the case k = 0 is trivial, we can assume that $k \ge 1$. Let c_{1}, c_{2} be the two cycles of σ^{2} (each of size 2^{k-1}), with the convention that c_{1} contains the minimal element of A; denote by A_{1}, A_{2} the induced bi-partition of A, and by σ_{1} (resp. σ_{2}) the permutation σ^{2} restricted to A_{1} (resp. A_{2}); note that σ_{1} (resp. σ_{2}) has c_{1} (resp. c_{2}) as its unique cycle. For $\gamma \in \mathcal{B}_{\sigma}[A]$ let γ_{1}, γ_{2} be the two subtrees at the root-node of γ , such that the minimal element of A is in γ_{1} . Then clearly $\gamma_{1} \in \mathcal{B}_{\sigma_{1}}[A_{1}]$ and $\gamma_{2} \in \mathcal{B}_{\sigma_{2}}[A_{2}]$, and conversely for $\gamma_{1} \in \mathcal{B}_{\sigma_{1}}[A_{1}]$ and $\gamma_{2} \in \mathcal{B}_{\sigma_{2}}[A_{2}]$ the tree γ with (γ_{1}, γ_{2}) as subtrees at the root-node is in $\mathcal{B}_{\sigma}[A]$. Hence

$$\mathcal{B}_{\sigma}[A] \simeq \mathcal{B}_{\sigma_1}[A_1] \times \mathcal{B}_{\sigma_2}[A_2], \tag{3}$$

which implies $|\mathcal{B}_{\sigma}[A]| = 1$ by induction on k (note that, also by induction on k, the underlying unlabelled tree is the complete binary tree of height k).

2.2 Case where the permutation σ has more than one cycle

Let $k \ge 0$ be the integer such that the largest cycle of σ has size 2^k . A first useful remark is that σ induces a permutation of the edges and a permutation of the nodes of γ , and each σ -cycle of edges or nodes has size 2^i for some $i \in [0..k]$. We present the proof of (2) progressively, treating first the case k = 0, then k = 1, then general k.

Case k = 0. This case corresponds to σ being the identity, so that $\mathcal{B}_{\sigma}[A] \simeq \mathcal{B}[A]$. Hence we just have to justify that $\mathcal{B}[A] \simeq \mathcal{E}[A \setminus \{i\}]$ for each fixed $i \in A$. This is easy to see using Rémy's argument [7]¹, used here in the non-embedded leaf-labelled context: every

¹A similar argument in the context of triangulations of a polygon dates back to Rodrigues [8].

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.25

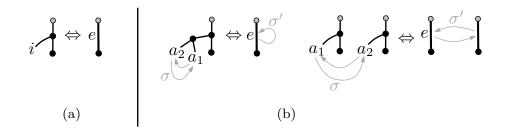


Figure 2: (a) Rémy's leaf-removal operation. (b) The two cases for removing a 2-cycle of leaves (depending whether the two leaves have the same parent or not). The vertices depicted in gray are allowed to be the fake vertex above the root-node.

 $\gamma \in \mathcal{B}[A]$ is uniquely obtained from some $(\gamma', e) \in \mathcal{E}[A \setminus \{i\}]$ upon inserting a new pendent edge from the middle of e to a new leaf that is given label i; see Figure 2(a).

Case k = 1. Let $c = (a_1, a_2)$ be the selected cycle of σ , with $a_1 < a_2$. Two cases can arise (in each case, with the notations in Theorem 1, we obtain from γ a pair (γ', e) with $\gamma' \in \mathcal{B}_{\sigma'}[A']$ and e an edge of γ'):

- If a_1 and a_2 have the same parent v, we obtain a reduced tree $\gamma' \in \mathcal{B}_{\sigma'}[A']$ by erasing the 3 edges incident to v (and the endpoints of these edges, which are a_1, a_2, v , and the parent of v); and we mark the edge e of γ' whose middle was the parent of v; see the first case of Figure 2(b).
- If a_1 and a_2 have distinct parents, we can apply the operation of Figure 2(a) to each of a_1 and a_2 , which yields a reduced tree $\gamma' \in \mathcal{B}_{\sigma'}[A']$. We then mark the edge e of γ' whose middle was the parent of a_1 ; see the second case of Figure 2(b).

Conversely, starting from $(\gamma', e) \in \mathcal{E}[A']$, the σ' -cycle of edges that contains e has either size 1 or 2:

- If it has size 1 (i.e., e is fixed by σ'), we insert a pendent edge from the middle of e and leading to "cherry" with labels (a_1, a_2) .
- If it has size 2, let $e' = \sigma'(e)$; then we attach at the middle of e (resp. e') a new pendent edge leading to a new leaf of label a_1 (resp. a_2).

The general case $k \ge 0$. Recall that the selected cycle of σ is denoted by c. A node or leaf of the tree is generically called a *vertex* of the tree. We define a *c-vertex* as a vertex v of γ such that:

- If v is a leaf then $v \in c$.
- If v is a node then all leaves that are descendants of v are in c.

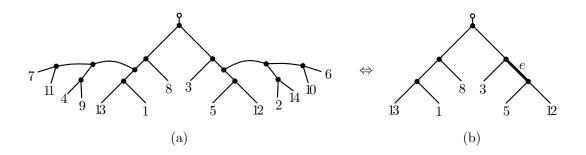


Figure 3: (a) Example of a tree in $\mathcal{B}_{\sigma}[A]$, for A = [1..14] and for $\sigma = (3,8)(1,5,13,12)(2,7,10,4,14,11,6,9)$. (b) The corresponding (when selecting the cycle c of size 8 in σ) pair $(\gamma', e) \in \mathcal{E}_{\sigma'}[A']$, where $A' = A \setminus c$ and $\sigma' = (3,8)(1,5,13,12)$ (restriction of σ to A').

A c-vertex is called maximal if it is not the descendant of any other c-vertex. A c-tree is a subtree formed by a maximal c-vertex v and its hanging subtree (if v is a leaf then the corresponding c-tree is reduced to v). Note that the maximal c-vertices are permuted by σ . Moreover since the leaves of c are permuted cyclically, the maximal c-vertices actually have to form a σ -cycle of vertices, of size 2^i for some $i \leq k$; and in each c-tree, σ^{2^i} permutes the 2^{k-i} leaves of the c-tree cyclically. Let ℓ be the leaf of minimal label in c, and let w be the maximal c-vertex such that the c-tree at w contains ℓ . We obtain a reduced tree $\gamma' \in \mathcal{B}_{\sigma'}[A']$ by erasing all c-trees and erasing the parent-edges and parent-vertices of all maximal c-vertices; and then we mark the edge e of γ' whose middle was the parent of w; see Figure 3.

Conversely, starting from $(\gamma', e) \in \mathcal{E}_{\sigma'}[A']$, let $i \in [0..k]$ be such that the σ' -cycle of edges that contains e has cardinality 2^i ; we write this cycle as $e_0, \ldots, e_{2^{i}-1}$, with $e_0 = e$. Starting from the element of c of minimal label, let $(s_0, \ldots, s_{2^{i}-1})$ be the 2^i (successive) first elements of c. And for $r \in [0..2^i - 1]$ let c_r be the cycle of σ^{2^i} that contains s_r , and let A_r be the set of elements in c_r (note that $A_0, \ldots, A_{2^{i}-1}$ each have size 2^{k-i} and partition the set of elements in c). Let T_r be the unique (by Section 2.1) tree in $\mathcal{B}[A_r]$ fixed by the cyclic permutation c_r . We obtain a tree $\gamma \in \mathcal{B}_{\sigma}[A]$ as follows: for each $r \in [0..2^i - 1]$ we create a new edge that connects the middle of e_r to a new copy of T_r .

To conclude, we have described a mapping from $\mathcal{B}_{\sigma}[A]$ to $\mathcal{E}_{\sigma'}[A']$ and a mapping from $\mathcal{E}_{\sigma'}[A']$ to $\mathcal{B}_{\sigma}[A]$ that are readily seen to be inverse of each other, therefore $\mathcal{B}_{\sigma}[A] \simeq \mathcal{E}_{\sigma'}[A']$.

3 Application to the random generation of tangled chains

For $n \ge 1$, we denote by **n** the set $\{1, \ldots, n\}$. A *tanglegram* of size n is an orbit of $\mathcal{B}[\mathbf{n}] \times \mathcal{B}[\mathbf{n}]$ under the relabelling action of \mathfrak{S}_n (see Figure 4 for an example). More generally, for $k \ge 1$, a *tangled chain* of length k and size n is an orbit of $\mathcal{B}[\mathbf{n}]^k$ under the relabelling action of \mathfrak{S}_n ; see [5, 2, 3]. Let $\mathcal{T}_n^{(k)}$ be the set of tangled chains of length k and size n, and let $t_n^{(k)}$ be the cardinality of $\mathcal{T}_n^{(k)}$. Then it follows from Burnside's lemma

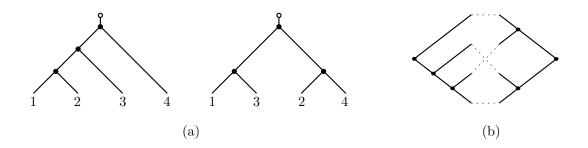


Figure 4: (a) A pair of (rooted non-embedded leaf-labelled) binary trees. (b) The corresponding (unlabelled) tanglegram.

(see [2] for a proof using double cosets and [3] for a proof using the formalism of species) that

$$t_n^{(k)} = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} |\mathcal{B}_{\sigma}[\mathbf{n}]|^k = \sum_{\lambda \vdash n} \frac{r_\lambda^k}{z_\lambda},\tag{4}$$

where $z_{\lambda} = 1^{m_1} m_1! \cdots r^{m_r} m_r!$ if λ has m_1 parts of size $1, \ldots, m_r$ parts of size r (recall that $n!/z_{\lambda}$ is the number of permutations with cycle-type λ). At the level of combinatorial classes, Burnside's lemma gives

$$\mathfrak{S}_n imes \mathcal{T}_n^{(k)} \simeq \sum_{\sigma \in \mathfrak{S}_n} \mathcal{B}_\sigma[\mathbf{n}]^k.$$

Hence the following procedure is a uniform random sampler for $\mathcal{T}_n^{(k)}$ (see [2] for details):

1. Choose a random binary partition $\lambda \vdash n$ under the distribution

$$P(\lambda) = \frac{r_{\lambda}^{k}/z_{\lambda}}{S_{n}},$$

where $S_n = \sum_{\lambda \vdash n} r_{\lambda}^k / z_{\lambda}$ (so $S_n = t_n^{(k)}$).

- 2. Let σ be a permutation with cycle-type λ . For each $r \in [1..k]$ draw (independently) a tree $T_r \in \mathcal{B}_{\sigma}[\mathbf{n}]$ uniformly at random.
- 3. Return the tangled chain corresponding to (T_1, \ldots, T_k) .

A recursive procedure (using (1)) is given in [2] to sample uniformly at random from $\mathcal{B}_{\sigma}[\mathbf{n}]$. From Theorem 1 we obtain a simpler random sampler for $\mathcal{B}_{\sigma}[\mathbf{n}]$. We order the cycles of σ as $c_1, \ldots, c_{\ell(\lambda)}$ such that the cycle-sizes are in non-decreasing order. Then, with A_1 the set of labels in c_1 , we start from the unique tree (by Section 2.1) in $\mathcal{B}_{c_1}[A_1]$ (where c_1 is to be seen as a cyclic permutation on A_1). Then, for *i* from 2 to $\ell(\lambda)$ we mark an edge chosen uniformly at random from the already obtained tree, and then we insert the leaves that have labels in c_i using the isomorphism (2).

The complexity of the sampler for $\mathcal{B}_{\sigma}[\mathbf{n}]$ is clearly linear in n and needs no precomputation of coefficients. However, step (1) of the random generator requires a table of p(n) coefficients, where p(n) is the number of binary partitions of n, which is slightly superpolynomial [4], since $p(n) = n^{\Theta(\log(n))}$. It is however possible to do step (1) in polynomial time. For this, we consider, for $i \ge 0$ and $n, j \ge 1$ the coefficient $S_n^{(i,j)}$ defined as the sum of $r_{\lambda}^{k}/z_{\lambda}$ over all binary partitions of n where the largest part is 2^{i} and has multiplicity j. Note that $S_n^{(i,j)} = 0$ unless $j \cdot 2^{i} \le n$; we denote by E_n the set of pairs of positive integers (i, j) such that $j \cdot 2^{i} \le n$. Since $r_{\lambda} = 1$ and $z_{\lambda} = |\lambda|$ if λ has one part, we have the initial condition $S_n^{(i,j)} = 1/n$ for j = 1 and $2^{i} = n$. In addition, using the fact that $r_{\lambda} = (2|\lambda \setminus \lambda_{1}| - 1) \cdot r_{\lambda \setminus \lambda_{1}}$ if λ has at least 2 parts, and the formula for z_{λ} , we easily obtain the recurrence:

$$S_n^{(i,j)} = \frac{(2(n-2^i)-1)^k}{2^i j} S_{n-2^i}^{(i,j-1)} \text{ for } (i,j) \in E_n \text{ with } 2^i < n,$$

valid for j = 1 upon defining by convention $S_n^{(i,0)}$ as the sum of $S_n^{(i',j')}$ over all pairs $(i',j') \in E_n$ such that i' < i.

Thus in step (1), instead of directly drawing λ under $P(\lambda)$, we may first choose the pair (i, j) such that the largest part of λ is 2^i and has multiplicity j, that is, we draw $(i,j) \in E_n$ under distribution $P(i,j) = S_n^{(i,j)}/S_n$. Then we continue recursively at size $n' = n - 2^{i}j$, but conditioned on the largest part to be smaller than 2^{i} (that is, for the second step and similarly for later steps, we draw the pair (i', j') in $E_{n'} \cap \{i' < i\}$ under distribution $S_{n'}^{(i',j')}/S_{n'}^{(i,0)}$. Note that $|E_n| = \sum_{i \leq \log_2(n)} \lfloor n/2^i \rfloor = \Theta(n)$. Since we need all coefficients $S_m^{(i,j)}$ for $m \leq n$ and $(i,j) \in E_m$, we have to store $\Theta(n^2)$ coefficients. In addition, looking at the first expression in (4), it is easy to see that each coefficient $S_m^{(i,j)}$ is a rational number of the form a/m! with a an integer having $O(m \log(m))$ bits. Hence the overall storage bit-complexity is $O(n^3 \log(n))$. About time complexity, starting at size n we first choose the pair (i, j) (with 2^i the largest part and j its multiplicity), which takes $O(|E_n|) = O(n)$ comparisons, and then we continue recursively at size $n - j \cdot 2^i$. At each step the choice of a pair (i, j) takes time O(m) with $m \leq n$ the current size, and the number of steps is the number of distinct part-sizes in the finally output binary partition $\lambda \vdash n$. Since the number of distinct part-sizes in a binary partition of n is $O(\log(n))$, we conclude that the time complexity (in terms of the number of real-arithmetic comparisons) to draw λ is $O(n \log(n))$.

Acknowledgements

I thank Igor Pak for interesting discussions.

References

- [1] F. Bergeron, G. Labelle, and P. Leroux. *Combinatorial Species and Tree-like Structures.* Cambridge University Press, 1997.
- [2] S. Billey, M. Konvalinka, and F. Matsen IV. On the enumeration of tanglegrams and tangled chains. arXiv:1507.04976, 2015.

- [3] I. Gessel. Counting tanglegrams with species. arXiv:1509.03867, 2015.
- [4] K. Mahler. On a special functional equation. Journal of the London Mathematical Society, 1(2):115–123, 1940.
- [5] F. Matsen IV, S. Billey, A. Kas, and M. Konvalinka. Tanglegrams: a reduction tool for mathematical phylogenetics. arXiv:1507.04784, 2015.
- [6] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta mathematica, 68(1):145–254, 1937.
- [7] J.-L. Rémy. Un procédé itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire. *RAIRO*, *Informatique théorique*, 19(2):179–195, 1985.
- [8] O. Rodrigues. Sur le nombre de manières de décomposer un polygone en triangles au moyen de diagonales. Journal de Mathématiques Pures et Appliquées, pages 547–548, 1838.