On Symmetries in Phylogenetic Trees

Éric Fusy*
Laboratoire d'informatique (LIX)
École Polytechnique
91120 Palaiseau, France
fusy@lix.polytechnique.fr

Submitted: Mar 7, 2016; Accepted: Jul 24, 2016; Published: Aug 19, 2016
Mathematics Subject Classifications: 05A15

Abstract

Billey et al. [arXiv:1507.04976] have recently discovered a surprisingly simple formula for the number $a_{n}(\sigma)$ of leaf-labelled rooted non-embedded binary trees (also known as phylogenetic trees) with $n \geqslant 1$ leaves, fixed (for the relabelling action) by a given permutation $\sigma \in \mathfrak{S}_{n}$. Denoting by $\lambda \vdash n$ the integer partition giving the sizes of the cycles of σ in non-increasing order, they show by a guessing/checking approach that if λ is a binary partition (it is known that $a_{n}(\sigma)=0$ otherwise), then $$
a_{n}(\sigma)=\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right),
$$ and they derive from it a formula and random generation procedure for tanglegrams (and more generally for tangled chains). Our main result is a combinatorial proof of the formula for $a_{n}(\sigma)$, which yields a simplification of the random sampler for tangled chains.

Keywords: phylogenetic trees, bijection, random generation, tanglegrams

1 Introduction

For A a finite set of cardinality $n \geqslant 1$, we denote by $\mathcal{B}[A]$ the set of rooted binary trees that are non-embedded (i.e., the order of the two children of each node does not matter) and have n leaves with distinct labels from A. Such trees are known as phylogenetic trees, where typically A is the set of represented species. Note that such a tree has $n-1$ nodes and $2 n-1$ edges (we take here the convention of having an additional root-edge above

(a)

(b)

Figure 1: (a) A phylogenetic tree γ with label-set [1..6]. (b) The tree $\gamma^{\prime}=\sigma \cdot \gamma$, with $\sigma=(1,4,3)(5)(2,6)$. Since $\gamma^{\prime} \neq \gamma, \gamma$ is not fixed by σ (on the other hand γ is fixed by $(2,3)(1,4,6,5))$.
the root-node, this edge being connected to a 'fake-vertex' that does not count as a node; see Figure 1).

The group $\mathfrak{S}(A)$ of permutations of A acts on $\mathcal{B}[A]$: for $\gamma \in \mathcal{B}[A]$ and $\sigma \in \mathfrak{S}(A), \sigma \cdot \gamma$ is obtained from γ after replacing the label i of every leaf by $\sigma(i)$; see Figure 1(b). We denote by $\mathcal{B}_{\sigma}[A]$ the set of trees fixed by the action of σ, i.e., $\mathcal{B}_{\sigma}[A]:=\{\gamma \in \mathcal{B}[A]$ such that $\sigma \cdot \gamma=$ $\gamma\}$. We also define $\mathcal{E}_{\sigma}[A]$ (resp. $\mathcal{E}[A]$) as the set of pairs (γ, e) where $\gamma \in \mathcal{B}_{\sigma}[A]$ (resp. $\gamma \in \mathcal{B}[A]$) and e is an edge of γ (among the $2 n-1$ edges). Define the cycle-type of σ as the integer partition $\lambda \vdash n$ giving the sizes of the cycles of σ in non-increasing order. For $\lambda \vdash n$ an integer partition, the cardinality of $\mathcal{B}_{\sigma}[A]$ is the same for all permutations σ with cycle-type λ, and this common cardinality is denoted by r_{λ}. It is easy to see (from the wreath-product structure of the automorphism-group of a tree [6, Sec.38]) that $r_{\lambda}=0$ unless λ is a binary partition, i.e., an integer partition whose parts are powers of 2 . Billey et al. [2] have recently found the following remarkable formula, valid for any binary partition λ :

$$
\begin{equation*}
r_{\lambda}=\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right) \tag{1}
\end{equation*}
$$

They prove the formula by a guessing/checking approach. Our main result here is a combinatorial proof of (1), which yields a simplification (see Section 3) of the random sampler for tanglegrams (and more generally tangled chains) given in [2].

Theorem 1. For A a finite set and σ a permutation on A whose cycle-type is a binary partition:

- If σ has one cycle, then $\left|\mathcal{B}_{\sigma}[A]\right|=1$.
- If σ has more than one cycle, let c be a largest cycle of σ; let A^{\prime} be the set A without the elements of c, and let σ^{\prime} be the permutation σ restricted to A^{\prime}. Then we have

[^0]\[

$$
\begin{equation*}
\mathcal{B}_{\sigma}[A] \simeq \mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right] . \tag{2}
\end{equation*}
$$

\]

As we will see, the isomorphism (2) can be seen as an adaptation of Rémy's method [7] to the setting of (non-embedded rooted) binary trees fixed by a given permutation. Note that Theorem 1 implies that the coefficients r_{λ} satisfy $r_{\lambda}=1$ if λ is a binary partition with one part and $r_{\lambda}=\left(2\left|\lambda \backslash \lambda_{1}\right|-1\right) \cdot r_{\lambda \backslash \lambda_{1}}$ if λ is a binary partition with more than one part (where λ_{1} denotes the first part of λ, and $\lambda \backslash \lambda_{1}$ denotes λ without its first part), from which we recover (1).

2 Proof of Theorem 1

2.1 Case where the permutation σ has one cycle

The fact that $\left|\mathcal{B}_{\sigma}[A]\right|=1$ if σ has a one cycle and the cycle has size 2^{k} (for some $k \geqslant 0$) is easy to see at the level of the cycle index sum specification [1,3] (recall that the specification is $Z\left(s_{1}, s_{2}, \ldots\right)=s_{1}+\frac{1}{2}\left(Z\left(s_{1}, s_{2}, \ldots\right)^{2}+Z\left(s_{2}, s_{4}, \ldots\right)\right.$, which implies that for $k \geqslant 0$ and $n=2^{k}$, the coefficient $\left[s^{2^{k}}\right] Z\left(s_{1}, s_{2}, \ldots\right)$ equals $1 / n$; denoting by $\lambda^{(n)}$ the partition with a single part n, this coefficient is also $r_{\lambda^{(n)}} / z_{\lambda^{(n)}}=r_{\lambda^{(n)}} / n$; thus $r_{\lambda^{(n)}}=1$). For the sake of completeness we give here a short justification. Since the case $k=0$ is trivial, we can assume that $k \geqslant 1$. Let c_{1}, c_{2} be the two cycles of σ^{2} (each of size 2^{k-1}), with the convention that c_{1} contains the minimal element of A; denote by A_{1}, A_{2} the induced bi-partition of A, and by σ_{1} (resp. σ_{2}) the permutation σ^{2} restricted to A_{1} (resp. $\left.A_{2}\right)$; note that $\sigma_{1}\left(\right.$ resp. $\left.\sigma_{2}\right)$ has c_{1} (resp. c_{2}) as its unique cycle. For $\gamma \in \mathcal{B}_{\sigma}[A]$ let γ_{1}, γ_{2} be the two subtrees at the root-node of γ, such that the minimal element of A is in γ_{1}. Then clearly $\gamma_{1} \in \mathcal{B}_{\sigma_{1}}\left[A_{1}\right]$ and $\gamma_{2} \in \mathcal{B}_{\sigma_{2}}\left[A_{2}\right]$, and conversely for $\gamma_{1} \in \mathcal{B}_{\sigma_{1}}\left[A_{1}\right]$ and $\gamma_{2} \in \mathcal{B}_{\sigma_{2}}\left[A_{2}\right]$ the tree γ with $\left(\gamma_{1}, \gamma_{2}\right)$ as subtrees at the root-node is in $\mathcal{B}_{\sigma}[A]$. Hence

$$
\begin{equation*}
\mathcal{B}_{\sigma}[A] \simeq \mathcal{B}_{\sigma_{1}}\left[A_{1}\right] \times \mathcal{B}_{\sigma_{2}}\left[A_{2}\right], \tag{3}
\end{equation*}
$$

which implies $\left|\mathcal{B}_{\sigma}[A]\right|=1$ by induction on k (note that, also by induction on k, the underlying unlabelled tree is the complete binary tree of height k).

2.2 Case where the permutation σ has more than one cycle

Let $k \geqslant 0$ be the integer such that the largest cycle of σ has size 2^{k}. A first useful remark is that σ induces a permutation of the edges and a permutation of the nodes of γ, and each σ-cycle of edges or nodes has size 2^{i} for some $i \in[0 . . k]$. We present the proof of (2) progressively, treating first the case $k=0$, then $k=1$, then general k.

Case $\boldsymbol{k}=\mathbf{0}$. This case corresponds to σ being the identity, so that $\mathcal{B}_{\sigma}[A] \simeq \mathcal{B}[A]$. Hence we just have to justify that $\mathcal{B}[A] \simeq \mathcal{E}[A \backslash\{i\}]$ for each fixed $i \in A$. This is easy to see using Rémy's argument [7] ${ }^{1}$, used here in the non-embedded leaf-labelled context: every

[^1]

Figure 2: (a) Rémy's leaf-removal operation. (b) The two cases for removing a 2-cycle of leaves (depending whether the two leaves have the same parent or not). The vertices depicted in gray are allowed to be the fake vertex above the root-node.
$\gamma \in \mathcal{B}[A]$ is uniquely obtained from some $\left(\gamma^{\prime}, e\right) \in \mathcal{E}[A \backslash\{i\}]$ upon inserting a new pendent edge from the middle of e to a new leaf that is given label i; see Figure 2(a).
Case $\boldsymbol{k}=1$. Let $c=\left(a_{1}, a_{2}\right)$ be the selected cycle of σ, with $a_{1}<a_{2}$. Two cases can arise (in each case, with the notations in Theorem 1, we obtain from γ a pair $\left(\gamma^{\prime}, e\right)$ with $\gamma^{\prime} \in \mathcal{B}_{\sigma^{\prime}}\left[A^{\prime}\right]$ and e an edge of $\left.\gamma^{\prime}\right)$:

- If a_{1} and a_{2} have the same parent v, we obtain a reduced tree $\gamma^{\prime} \in \mathcal{B}_{\sigma^{\prime}}\left[A^{\prime}\right]$ by erasing the 3 edges incident to v (and the endpoints of these edges, which are a_{1}, a_{2}, v, and the parent of v); and we mark the edge e of γ^{\prime} whose middle was the parent of v; see the first case of Figure 2(b).
- If a_{1} and a_{2} have distinct parents, we can apply the operation of Figure 2(a) to each of a_{1} and a_{2}, which yields a reduced tree $\gamma^{\prime} \in \mathcal{B}_{\sigma^{\prime}}\left[A^{\prime}\right]$. We then mark the edge e of γ^{\prime} whose middle was the parent of a_{1}; see the second case of Figure 2(b).

Conversely, starting from $\left(\gamma^{\prime}, e\right) \in \mathcal{E}\left[A^{\prime}\right]$, the σ^{\prime}-cycle of edges that contains e has either size 1 or 2 :

- If it has size 1 (i.e., e is fixed by σ^{\prime}), we insert a pendent edge from the middle of e and leading to "cherry" with labels $\left(a_{1}, a_{2}\right)$.
- If it has size 2, let $e^{\prime}=\sigma^{\prime}(e)$; then we attach at the middle of e (resp. e^{\prime}) a new pendent edge leading to a new leaf of label a_{1} (resp. a_{2}).

The general case $\boldsymbol{k} \geqslant \mathbf{0}$. Recall that the selected cycle of σ is denoted by c. A node or leaf of the tree is generically called a vertex of the tree. We define a c-vertex as a vertex v of γ such that:

- If v is a leaf then $v \in c$.
- If v is a node then all leaves that are descendants of v are in c.

(a)

(b)

Figure 3: (a) Example of a tree in $\mathcal{B}_{\sigma}[A]$, for $A=[1 . .14]$ and for $\sigma=$ $(3,8)(1,5,13,12)(2,7,10,4,14,11,6,9)$. (b) The corresponding (when selecting the cycle c of size 8 in σ) pair $\left(\gamma^{\prime}, e\right) \in \mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right]$, where $A^{\prime}=A \backslash c$ and $\sigma^{\prime}=(3,8)(1,5,13,12)$ (restriction of σ to A^{\prime}).

A c-vertex is called maximal if it is not the descendant of any other c-vertex. A c-tree is a subtree formed by a maximal c-vertex v and its hanging subtree (if v is a leaf then the corresponding c-tree is reduced to v). Note that the maximal c-vertices are permuted by σ. Moreover since the leaves of c are permuted cyclically, the maximal c-vertices actually have to form a σ-cycle of vertices, of size 2^{i} for some $i \leqslant k$; and in each c-tree, $\sigma^{2^{i}}$ permutes the 2^{k-i} leaves of the c-tree cyclically. Let ℓ be the leaf of minimal label in c, and let w be the maximal c-vertex such that the c-tree at w contains ℓ. We obtain a reduced tree $\gamma^{\prime} \in \mathcal{B}_{\sigma^{\prime}}\left[A^{\prime}\right]$ by erasing all c-trees and erasing the parent-edges and parent-vertices of all maximal c-vertices; and then we mark the edge e of γ^{\prime} whose middle was the parent of w; see Figure 3 .

Conversely, starting from $\left(\gamma^{\prime}, e\right) \in \mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right]$, let $i \in[0 . . k]$ be such that the σ^{\prime}-cycle of edges that contains e has cardinality 2^{i}; we write this cycle as $e_{0}, \ldots, e_{2^{i}-1}$, with $e_{0}=e$. Starting from the element of c of minimal label, let $\left(s_{0}, \ldots, s_{2^{i}-1}\right)$ be the 2^{i} (successive) first elements of c. And for $r \in\left[0 . .2^{i}-1\right]$ let c_{r} be the cycle of $\sigma^{2^{i}}$ that contains s_{r}, and let A_{r} be the set of elements in c_{r} (note that $A_{0}, \ldots, A_{2^{i}-1}$ each have size 2^{k-i} and partition the set of elements in c). Let T_{r} be the unique (by Section 2.1) tree in $\mathcal{B}\left[A_{r}\right]$ fixed by the cyclic permutation c_{r}. We obtain a tree $\gamma \in \mathcal{B}_{\sigma}[A]$ as follows: for each $r \in\left[0 . .2^{i}-1\right]$ we create a new edge that connects the middle of e_{r} to a new copy of T_{r}.

To conclude, we have described a mapping from $\mathcal{B}_{\sigma}[A]$ to $\mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right]$ and a mapping from $\mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right]$ to $\mathcal{B}_{\sigma}[A]$ that are readily seen to be inverse of each other, therefore $\mathcal{B}_{\sigma}[A] \simeq \mathcal{E}_{\sigma^{\prime}}\left[A^{\prime}\right]$.

3 Application to the random generation of tangled chains

For $n \geqslant 1$, we denote by \mathbf{n} the set $\{1, \ldots, n\}$. A tanglegram of size n is an orbit of $\mathcal{B}[\mathbf{n}] \times \mathcal{B}[\mathbf{n}]$ under the relabelling action of \mathfrak{S}_{n} (see Figure 4 for an example). More generally, for $k \geqslant 1$, a tangled chain of length k and size n is an orbit of $\mathcal{B}[\mathbf{n}]^{k}$ under the relabelling action of \mathfrak{S}_{n}; see $[5,2,3]$. Let $\mathcal{T}_{n}^{(k)}$ be the set of tangled chains of length k and size n, and let $t_{n}^{(k)}$ be the cardinality of $\mathcal{T}_{n}^{(k)}$. Then it follows from Burnside's lemma

(a)

(b)

Figure 4: (a) A pair of (rooted non-embedded leaf-labelled) binary trees. (b) The corresponding (unlabelled) tanglegram.
(see [2] for a proof using double cosets and [3] for a proof using the formalism of species) that

$$
\begin{equation*}
t_{n}^{(k)}=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}\left|\mathcal{B}_{\sigma}[\mathbf{n}]\right|^{k}=\sum_{\lambda \vdash n} \frac{r_{\lambda}^{k}}{z_{\lambda}} \tag{4}
\end{equation*}
$$

where $z_{\lambda}=1^{m_{1}} m_{1}!\cdots r^{m_{r}} m_{r}$! if λ has m_{1} parts of size $1, \ldots, m_{r}$ parts of size r (recall that $n!/ z_{\lambda}$ is the number of permutations with cycle-type λ). At the level of combinatorial classes, Burnside's lemma gives

$$
\mathfrak{S}_{n} \times \mathcal{T}_{n}^{(k)} \simeq \sum_{\sigma \in \mathfrak{S}_{n}} \mathcal{B}_{\sigma}[\mathbf{n}]^{k}
$$

Hence the following procedure is a uniform random sampler for $\mathcal{T}_{n}^{(k)}$ (see [2] for details):

1. Choose a random binary partition $\lambda \vdash n$ under the distribution

$$
P(\lambda)=\frac{r_{\lambda}^{k} / z_{\lambda}}{S_{n}}
$$

where $S_{n}=\sum_{\lambda \vdash n} r_{\lambda}^{k} / z_{\lambda}\left(\right.$ so $\left.S_{n}=t_{n}^{(k)}\right)$.
2. Let σ be a permutation with cycle-type λ. For each $r \in[1 . . k]$ draw (independently) a tree $T_{r} \in \mathcal{B}_{\sigma}[\mathbf{n}]$ uniformly at random.
3. Return the tangled chain corresponding to $\left(T_{1}, \ldots, T_{k}\right)$.

A recursive procedure (using (1)) is given in [2] to sample uniformly at random from $\mathcal{B}_{\sigma}[\mathbf{n}]$. From Theorem 1 we obtain a simpler random sampler for $\mathcal{B}_{\sigma}[\mathbf{n}]$. We order the cycles of σ as $c_{1}, \ldots, c_{\ell(\lambda)}$ such that the cycle-sizes are in non-decreasing order. Then, with A_{1} the set of labels in c_{1}, we start from the unique tree (by Section 2.1) in $\mathcal{B}_{c_{1}}\left[A_{1}\right]$ (where c_{1} is to be seen as a cyclic permutation on A_{1}). Then, for i from 2 to $\ell(\lambda)$ we mark an edge chosen uniformly at random from the already obtained tree, and then we insert the leaves that have labels in c_{i} using the isomorphism (2).

The complexity of the sampler for $\mathcal{B}_{\sigma}[\mathbf{n}]$ is clearly linear in n and needs no precomputation of coefficients. However, step (1) of the random generator requires a table of $p(n)$
coefficients, where $p(n)$ is the number of binary partitions of n, which is slightly superpolynomial [4], since $p(n)=n^{\Theta(\log (n))}$. It is however possible to do step (1) in polynomial time. For this, we consider, for $i \geqslant 0$ and $n, j \geqslant 1$ the coefficient $S_{n}^{(i, j)}$ defined as the sum of $r_{\lambda}{ }^{k} / z_{\lambda}$ over all binary partitions of n where the largest part is 2^{i} and has multiplicity j. Note that $S_{n}^{(i, j)}=0$ unless $j \cdot 2^{i} \leqslant n$; we denote by E_{n} the set of pairs of positive integers (i, j) such that $j \cdot 2^{i} \leqslant n$. Since $r_{\lambda}=1$ and $z_{\lambda}=|\lambda|$ if λ has one part, we have the initial condition $S_{n}^{(i, j)}=1 / n$ for $j=1$ and $2^{i}=n$. In addition, using the fact that $r_{\lambda}=\left(2\left|\lambda \backslash \lambda_{1}\right|-1\right) \cdot r_{\lambda \backslash \lambda_{1}}$ if λ has at least 2 parts, and the formula for z_{λ}, we easily obtain the recurrence:

$$
S_{n}^{(i, j)}=\frac{\left(2\left(n-2^{i}\right)-1\right)^{k}}{2^{i} j} S_{n-2^{i}}^{(i, j-1)} \text { for }(i, j) \in E_{n} \text { with } 2^{i}<n,
$$

valid for $j=1$ upon defining by convention $S_{n}^{(i, 0)}$ as the sum of $S_{n}^{\left(i^{\prime}, j^{\prime}\right)}$ over all pairs $\left(i^{\prime}, j^{\prime}\right) \in E_{n}$ such that $i^{\prime}<i$.

Thus in step (1), instead of directly drawing λ under $P(\lambda)$, we may first choose the pair (i, j) such that the largest part of λ is 2^{i} and has multiplicity j, that is, we draw $(i, j) \in E_{n}$ under distribution $P(i, j)=S_{n}^{(i, j)} / S_{n}$. Then we continue recursively at size $n^{\prime}=n-2^{i} j$, but conditioned on the largest part to be smaller than 2^{i} (that is, for the second step and similarly for later steps, we draw the pair $\left(i^{\prime}, j^{\prime}\right)$ in $E_{n^{\prime}} \cap\left\{i^{\prime}<i\right\}$ under distribution $\left.S_{n^{\prime}}^{\left(i^{\prime}, j^{\prime}\right)} / S_{n^{\prime}}^{(i, 0)}\right)$. Note that $\left|E_{n}\right|=\sum_{i \leqslant \log _{2}(n)}\left\lfloor n / 2^{i}\right\rfloor=\Theta(n)$. Since we need all coefficients $S_{m}^{(i, j)}$ for $m \leqslant n$ and $(i, j) \in E_{m}$, we have to store $\Theta\left(n^{2}\right)$ coefficients. In addition, looking at the first expression in (4), it is easy to see that each coefficient $S_{m}^{(i, j)}$ is a rational number of the form $a / m!$ with a an integer having $O(m \log (m))$ bits. Hence the overall storage bit-complexity is $O\left(n^{3} \log (n)\right)$. About time complexity, starting at size n we first choose the pair (i, j) (with 2^{i} the largest part and j its multiplicity), which takes $O\left(\left|E_{n}\right|\right)=O(n)$ comparisons, and then we continue recursively at size $n-j \cdot 2^{i}$. At each step the choice of a pair (i, j) takes time $O(m)$ with $m \leqslant n$ the current size, and the number of steps is the number of distinct part-sizes in the finally output binary partition $\lambda \vdash n$. Since the number of distinct part-sizes in a binary partition of n is $O(\log (n))$, we conclude that the time complexity (in terms of the number of real-arithmetic comparisons) to draw λ is $O(n \log (n))$.

Acknowledgements

I thank Igor Pak for interesting discussions.

References

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge University Press, 1997.
[2] S. Billey, M. Konvalinka, and F. Matsen IV. On the enumeration of tanglegrams and tangled chains. arXiv:1507.04976, 2015.
[3] I. Gessel. Counting tanglegrams with species. arXiv:1509.03867, 2015.
[4] K. Mahler. On a special functional equation. Journal of the London Mathematical Society, 1(2):115-123, 1940.
[5] F. Matsen IV, S. Billey, A. Kas, and M. Konvalinka. Tanglegrams: a reduction tool for mathematical phylogenetics. arXiv:1507.04784, 2015.
[6] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta mathematica, 68(1):145-254, 1937.
[7] J.-L. Rémy. Un procédé itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire. RAIRO, Informatique théorique, 19(2):179-195, 1985.
[8] O. Rodrigues. Sur le nombre de manières de décomposer un polygone en triangles au moyen de diagonales. Journal de Mathématiques Pures et Appliquées, pages 547-548, 1838.

[^0]: *Partly supported by the ANR grant "Cartaplus" 12-JS02-001-01 and the ANR grant "EGOS" 12-JS02-002-01.

[^1]: ${ }^{1}$ A similar argument in the context of triangulations of a polygon dates back to Rodrigues [8].

