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Abstract

In 1975, Lovász conjectured that any maximal intersecting family of k-sets has
at most b(e− 1)k!c blocks, where e is the base of the natural logarithm. This con-
jecture was disproved in 1996 by Frankl and his co-authors. In this short note, we
reprove the result of Frankl et al. using a vastly simplified construction of max-
imal intersecting families with many blocks. This construction yields a maximal
intersecting family Gk of k-sets whose number of blocks is asymptotic to e2(k2 )k−1

as k →∞.
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1 Introduction

For positive integers k, by a k-set we mean a set of size k. The members of a family F of
k-sets are usually called the blocks of F . Such a family is said to be an intersecting family
if any two of its blocks have a non-empty intersection. A family F of k-sets is called a
maximal intersecting family of k-sets if (a) F is an intersecting family of k-sets, and (b)
there is no intersecting family G of k-sets such that G % F . Maximal intersecting families
of k-sets are also known as k-uniform maximal cliques.

This notion was introduced by Erdős and Lovász in [1]. In this paper they proved the
amazing result that any maximal intersecting family of k-sets has at most kk blocks, and
hence for any given k, there are only finitely many maximal intersecting families of k-sets.
(This result may be viewed as a special case of [4, Theorem 2.3].) Therefore, Erdős and
Lovász initiated the problem of finding or estimating the function M(k) defined by

M(k) := max {|F| : F is a maximal intersecting family of k − sets} .

In [1], Erdős and Lovász also proved:
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Lemma 1. For k > 2, M(k) > 1 + k ·M(k − 1).

Proof. Let F be a maximal intersecting family of (k − 1)-sets with M(k − 1) blocks.
Choose a k-set B disjoint from all the blocks of F , and consider the family

F̂ := {B} ∪ {A t {x} : A ∈ F , x ∈ B}

Then it is easy to verify that F̂ is a maximal intersecting family of k-sets with 1+k·M(k−1)
blocks.

Since M(1) = 1, using Lemma 1 and an easy induction on k, one deduces that

M(k) > k!

(
1

1!
+

1

2!
+ · · ·+ 1

k!

)
= b(e− 1)k!c.

Thus Erdős and Lovász showed

b(e− 1)k!c 6 M(k) 6 kk. (1)

In [3], Lovász conjectured that the lower bound in (1) is sharp, i.e. M(k) = b(e−1)k!c
for all k. In [2], Frankl et al. disproved this conjecture (for all k > 4) by an extremely
elegant but complicated family of counterexamples. Indeed, it is hard to verify that their
construction actually yields a maximal intersecting family of k-sets. (We addressed this
question in a recent paper [5] with Mukherjee.) There appears to be a gap in the proof
sketched in [2]. Specifically, the Claim 2 in [2] seems to be incorrect. Therefore, it seems
desirable to present a simpler construction (with short and complete proof) reproving this
result.

In this note we prove:

Theorem 2.

M(k) >

{
(k
2

+ 1)k−1 + (k − 1)(k
2

+ 1)
k
2
−1 for even k,

1 + k(k+1
2

)k−2 + k(k − 2)(k+1
2

)
k−3
2 for odd k.

Note that this lower bound is asymptotic to e2(k
2
)k−1 through even k and 2e(k

2
)k−1

through odd k. Since k! grows roughly like (k
e
)k, the bound in Theorem 2 beats the lower

bound of (1) by the exponential factor ( e
2
)k (roughly). This bound is comparable to the

explicit bound of [2], but the latter is somewhat better. Our bound beats the lower bound
of (1) for k > 8, while the bound in [2] is better than (1) for k > 4. In a final remark in
section 2, we indicate how the lower bound of Theorem 2 may be sharpened.

2 The construction

In this section, k is an even number. We construct a family Gk as follows.
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Construction. Let Xn, 0 6 n 6 k− 2 be pairwise disjoint sets, where each Xn is of size
1 + k

2
. Let α be a new symbol which does not belong to any of the Xn’s. The blocks of

Gk are of two types. The blocks of type 1 are the sets Xn t {xi : 1 6 i 6 k
2
− 1}, where

0 6 n 6 k− 2, and xi ∈ Xn+i for 1 6 i 6 k
2
− 1. Here the addition in the suffix is modulo

k − 1. The blocks of type 2 are the sets {α} t {xi : 0 6 i 6 k − 2}, where xi ∈ Xi for
0 6 i 6 k − 2.

To appreciate the following proof, it may be helpful to visualize the sets Xn as k − 1
equally spaced blobs arranged on a circle.

Theorem 3. For each even number k, Gk is a maximal intersecting family of k-sets.

Proof. Clearly Gk is a family of k-sets. For indices m, n in the range 0 6 m,n 6 k − 2,
let us write m → n to denote that n ≡ m + i (mod k − 1), for some i in the range
1 6 i 6 k

2
− 1. Notice that, for m 6= n, exactly one of the relations m → n and n → m

holds true.
Clearly any block of type 2 intersects all the blocks of Gk. Let B1 and B2 be two

blocks of type 1. Then there are two indices m, n such that B1 ⊇ Xm and B2 ⊇ Xn. If
m = n, then B1 and B2 intersect at least in Xm. Otherwise, we may assume without loss
of generality that m → n. Then every block containing Xm intersects Xn. Therefore B1

and B2 intersect in this case also. Thus, Gk is an intersecting family of k-sets.
Let C be a set of size k which intersects all the blocks of Gk. To prove that Gk is

maximal, it suffices to show that C must be a block.
Case A : α /∈ C. Since C intersects all the blocks of type 2, it follows that there is an
index m such that C ⊇ Xm. Since C is a k-set and the X’s are pairwise disjoint sets of
size k

2
+ 1, this index m is unique. Suppose, if possible, that there is an index n such that

C ∩Xn = ∅ and m→ n. Since C intersects all the blocks containing Xn, it follows there
must exist an index l such that Xl ⊂ C and n → l. By the uniqueness of the index m,
we get l = m. Therefore, m→ n and n→ m, a contradiction. Thus, C intersects all the
(k
2
− 1) sets Xn such that m → n. Since, also, C ⊇ Xm it follows that there is a block

B ⊇ Xm such that C ⊇ B. Since |C| = k = |B|, we get that C = B is a block of type 1
in this case.
Case B : α ∈ C. Let T = C r {α}. Thus T is a set of size k − 1 which intersects all the
type 1 blocks. Suppose, if possible, that there is an index n such that T ∩Xn = ∅. Then
arguing as in the previous case, we see that there is a unique index m such that T ⊇ Xm.
Also, n→ m for all indices n for which T ∩Xn = ∅. Contrapositively, Xn ∩ T 6= ∅ for all
the k

2
− 1 indices n such that m → n. Since T ⊇ Xm and |Xm| = k

2
+ 1, it follows that

|T | > k
2

+ 1 + k
2
− 1 = k, and hence |C| > k, a contradiction. Thus, T ∩Xn 6= ∅ for all n.

Since there are k − 1 = |T | pairwise disjoint sets Xn, it follows that |T ∩Xn| = 1 for all
n. Hence C is a block of type 2 in this case.

Proof of Theorem 2. First let k be an even positive integer. Note that Gk has (k
2

+ 1)k−1

blocks of type 2 and (k − 1)(k
2

+ 1)
k
2
−1 blocks of type 1. Therefore the total number of

blocks in Gk is (k
2

+ 1)k−1 + (k − 1)(k
2

+ 1)
k
2
−1. Since by Theorem 3, Gk is a maximal

intersecting family of k-sets, this number is a lower bound on M(k).
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Next let k > 1 be an odd integer. (The result is trivial for k = 1.) Using Lemma 1
and the above bound (with k − 1 in place of k) we get M(k) > 1 + k · M(k − 1) >
1 + k(k+1

2
)k−2 + k(k − 2)(k+1

2
)
k−3
2 .

Remark. When k is an odd positive integer, we may modify the above construction by
putting

|Xn| =

{
k+1
2

if 0 6 n 6 k−1
2
− 1

k+1
2

+ 1 if k−1
2

6 n 6 k − 2

and taking the type 1 blocks of Gk to be the sets Xm t {xi : 1 6 i 6 k − |Xm|}, where
0 6 m 6 k − 2 and xi ∈ Xm+i for all i. Here addition in the suffix is modulo k − 1. The
type 2 blocks are as before. Then it can be shown that the resulting family Gk is again a
maximal intersecting family of k-sets. The proof is similar, but a little more complicated.
Using this construction (together with the preceding construction for even positive integer
k) we can prove the following estimate, which improves upon Theorem 2.

Theorem 4.

M(k) > |Gk| =

(k − 1)(k
2

+ 1)
k
2
−1 + (k

2
+ 1)k−1 if k is an even integer

k+5
2

{
(k+3

2
)
k−1
2 − (k+1

2
)
k−1
2

}
+ (k+1

2
)
k−1
2 (k+3

2
)
k−1
2 if k is an odd integer.

This lower bound is asymptotic to e2(k
2
)k−1 as k →∞. It seems safe to propose:

Conjecture. M(k) is asymptotic to e2(k
2
)k−1 as k →∞.
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