A new construction of non-extendable intersecting families of sets

Kaushik Majumder
R C Bose Centre for Cryptology and Security
Indian Statistical Institute
202 Barrackpore Trunk Road, Kolkata - 700108, India.
kaushikbnmajumder@gmail.com

Submitted: Mar 1, 2016; Accepted: Aug 1, 2016; Published: Aug 19, 2016
Mathematics Subject Classifications: 05D05, 05A16.

Abstract

In 1975, Lovász conjectured that any maximal intersecting family of k-sets has at most $\lfloor(e-1) k!\rfloor$ blocks, where e is the base of the natural logarithm. This conjecture was disproved in 1996 by Frankl and his co-authors. In this short note, we reprove the result of Frankl et al. using a vastly simplified construction of maximal intersecting families with many blocks. This construction yields a maximal intersecting family \mathbb{G}_{k} of k-sets whose number of blocks is asymptotic to $e^{2}\left(\frac{k}{2}\right)^{k-1}$ as $k \rightarrow \infty$.

Keywords: Intersecting family of k-sets, Maximal k-cliques.

1 Introduction

For positive integers k, by a k-set we mean a set of size k. The members of a family \mathcal{F} of k-sets are usually called the blocks of \mathcal{F}. Such a family is said to be an intersecting family if any two of its blocks have a non-empty intersection. A family \mathcal{F} of k-sets is called a maximal intersecting family of k-sets if (a) \mathcal{F} is an intersecting family of k-sets, and (b) there is no intersecting family \mathcal{G} of k-sets such that $\mathcal{G} \supsetneqq \mathcal{F}$. Maximal intersecting families of k-sets are also known as k-uniform maximal cliques.

This notion was introduced by Erdős and Lovász in [1]. In this paper they proved the amazing result that any maximal intersecting family of k-sets has at most k^{k} blocks, and hence for any given k, there are only finitely many maximal intersecting families of k-sets. (This result may be viewed as a special case of [4, Theorem 2.3].) Therefore, Erdős and Lovász initiated the problem of finding or estimating the function $\mathrm{M}(k)$ defined by

$$
\mathrm{M}(k):=\max \{|\mathcal{F}|: \mathcal{F} \text { is a maximal intersecting family of } k-\text { sets }\} .
$$

In [1], Erdős and Lovász also proved:

Lemma 1. For $k \geqslant 2, \mathrm{M}(k) \geqslant 1+k \cdot \mathrm{M}(k-1)$.
Proof. Let \mathcal{F} be a maximal intersecting family of $(k-1)$-sets with $\mathrm{M}(k-1)$ blocks. Choose a k-set B disjoint from all the blocks of \mathcal{F}, and consider the family

$$
\widehat{\mathcal{F}}:=\{B\} \cup\{A \sqcup\{x\}: A \in \mathcal{F}, x \in B\}
$$

Then it is easy to verify that $\widehat{\mathcal{F}}$ is a maximal intersecting family of k-sets with $1+k \cdot \mathrm{M}(k-1)$ blocks.

Since $\mathrm{M}(1)=1$, using Lemma 1 and an easy induction on k, one deduces that

$$
\mathrm{M}(k) \geqslant k!\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{k!}\right)=\lfloor(e-1) k!\rfloor .
$$

Thus Erdős and Lovász showed

$$
\begin{equation*}
\lfloor(e-1) k!\rfloor \leqslant \mathrm{M}(k) \leqslant k^{k} . \tag{1}
\end{equation*}
$$

In [3], Lovász conjectured that the lower bound in (1) is sharp, i.e. $\mathrm{M}(k)=\lfloor(e-1) k!\rfloor$ for all k. In [2], Frankl et al. disproved this conjecture (for all $k \geqslant 4$) by an extremely elegant but complicated family of counterexamples. Indeed, it is hard to verify that their construction actually yields a maximal intersecting family of k-sets. (We addressed this question in a recent paper [5] with Mukherjee.) There appears to be a gap in the proof sketched in [2]. Specifically, the Claim 2 in [2] seems to be incorrect. Therefore, it seems desirable to present a simpler construction (with short and complete proof) reproving this result.

In this note we prove:

Theorem 2.

$$
\mathrm{M}(k) \geqslant \begin{cases}\left(\frac{k}{2}+1\right)^{k-1}+(k-1)\left(\frac{k}{2}+1\right)^{\frac{k}{2}-1} & \text { for even } k, \\ 1+k\left(\frac{k+1}{2}\right)^{k-2}+k(k-2)\left(\frac{k+1}{2}\right)^{\frac{k-3}{2}} & \text { for odd } k\end{cases}
$$

Note that this lower bound is asymptotic to $e^{2}\left(\frac{k}{2}\right)^{k-1}$ through even k and $2 e\left(\frac{k}{2}\right)^{k-1}$ through odd k. Since k ! grows roughly like $\left(\frac{k}{e}\right)^{k}$, the bound in Theorem 2 beats the lower bound of (1) by the exponential factor $\left(\frac{e}{2}\right)^{k}($ (roughly). This bound is comparable to the explicit bound of [2], but the latter is somewhat better. Our bound beats the lower bound of (1) for $k \geqslant 8$, while the bound in [2] is better than (1) for $k \geqslant 4$. In a final remark in section 2, we indicate how the lower bound of Theorem 2 may be sharpened.

2 The construction

In this section, k is an even number. We construct a family \mathbb{G}_{k} as follows.

Construction. Let $X_{n}, 0 \leqslant n \leqslant k-2$ be pairwise disjoint sets, where each X_{n} is of size $1+\frac{k}{2}$. Let α be a new symbol which does not belong to any of the X_{n} 's. The blocks of \mathbb{G}_{k} are of two types. The blocks of type 1 are the sets $X_{n} \sqcup\left\{x_{i}: 1 \leqslant i \leqslant \frac{k}{2}-1\right\}$, where $0 \leqslant n \leqslant k-2$, and $x_{i} \in X_{n+i}$ for $1 \leqslant i \leqslant \frac{k}{2}-1$. Here the addition in the suffix is modulo $k-1$. The blocks of type 2 are the sets $\{\alpha\} \sqcup\left\{x_{i}: 0 \leqslant i \leqslant k-2\right\}$, where $x_{i} \in X_{i}$ for $0 \leqslant i \leqslant k-2$.

To appreciate the following proof, it may be helpful to visualize the sets X_{n} as $k-1$ equally spaced blobs arranged on a circle.

Theorem 3. For each even number k, \mathbb{G}_{k} is a maximal intersecting family of k-sets.
Proof. Clearly \mathbb{G}_{k} is a family of k-sets. For indices m, n in the range $0 \leqslant m, n \leqslant k-2$, let us write $m \rightarrow n$ to denote that $n \equiv m+i(\bmod k-1)$, for some i in the range $1 \leqslant i \leqslant \frac{k}{2}-1$. Notice that, for $m \neq n$, exactly one of the relations $m \rightarrow n$ and $n \rightarrow m$ holds true.

Clearly any block of type 2 intersects all the blocks of \mathbb{G}_{k}. Let B_{1} and B_{2} be two blocks of type 1 . Then there are two indices m, n such that $B_{1} \supseteq X_{m}$ and $B_{2} \supseteq X_{n}$. If $m=n$, then B_{1} and B_{2} intersect at least in X_{m}. Otherwise, we may assume without loss of generality that $m \rightarrow n$. Then every block containing X_{m} intersects X_{n}. Therefore B_{1} and B_{2} intersect in this case also. Thus, \mathbb{G}_{k} is an intersecting family of k-sets.

Let C be a set of size k which intersects all the blocks of \mathbb{G}_{k}. To prove that \mathbb{G}_{k} is maximal, it suffices to show that C must be a block.
Case A: $\alpha \notin C$. Since C intersects all the blocks of type 2, it follows that there is an index m such that $C \supseteq X_{m}$. Since C is a k-set and the X 's are pairwise disjoint sets of size $\frac{k}{2}+1$, this index m is unique. Suppose, if possible, that there is an index n such that $C \cap X_{n}=\emptyset$ and $m \rightarrow n$. Since C intersects all the blocks containing X_{n}, it follows there must exist an index l such that $X_{l} \subset C$ and $n \rightarrow l$. By the uniqueness of the index m, we get $l=m$. Therefore, $m \rightarrow n$ and $n \rightarrow m$, a contradiction. Thus, C intersects all the $\left(\frac{k}{2}-1\right)$ sets X_{n} such that $m \rightarrow n$. Since, also, $C \supseteq X_{m}$ it follows that there is a block $B \supseteq X_{m}$ such that $C \supseteq B$. Since $|C|=k=|B|$, we get that $C=B$ is a block of type 1 in this case.
Case B: $\alpha \in C$. Let $T=C \backslash\{\alpha\}$. Thus T is a set of size $k-1$ which intersects all the type 1 blocks. Suppose, if possible, that there is an index n such that $T \cap X_{n}=\emptyset$. Then arguing as in the previous case, we see that there is a unique index m such that $T \supseteq X_{m}$. Also, $n \rightarrow m$ for all indices n for which $T \cap X_{n}=\emptyset$. Contrapositively, $X_{n} \cap T \neq \emptyset$ for all the $\frac{k}{2}-1$ indices n such that $m \rightarrow n$. Since $T \supseteq X_{m}$ and $\left|X_{m}\right|=\frac{k}{2}+1$, it follows that $|T| \geqslant \frac{k}{2}+1+\frac{k}{2}-1=k$, and hence $|C|>k$, a contradiction. Thus, $T \cap X_{n} \neq \emptyset$ for all n. Since there are $k-1=|T|$ pairwise disjoint sets X_{n}, it follows that $\left|T \cap X_{n}\right|=1$ for all n. Hence C is a block of type 2 in this case.

Proof of Theorem 2. First let k be an even positive integer. Note that \mathbb{G}_{k} has $\left(\frac{k}{2}+1\right)^{k-1}$ blocks of type 2 and $(k-1)\left(\frac{k}{2}+1\right)^{\frac{k}{2}-1}$ blocks of type 1 . Therefore the total number of blocks in \mathbb{G}_{k} is $\left(\frac{k}{2}+1\right)^{k-1}+(k-1)\left(\frac{k}{2}+1\right)^{\frac{k}{2}-1}$. Since by Theorem $3, \mathbb{G}_{k}$ is a maximal intersecting family of k-sets, this number is a lower bound on $\mathrm{M}(k)$.

Next let $k>1$ be an odd integer. (The result is trivial for $k=1$.) Using Lemma 1 and the above bound (with $k-1$ in place of k) we get $\mathrm{M}(k) \geqslant 1+k \cdot \mathrm{M}(k-1) \geqslant$ $1+k\left(\frac{k+1}{2}\right)^{k-2}+k(k-2)\left(\frac{k+1}{2}\right)^{\frac{k-3}{2}}$.
Remark. When k is an odd positive integer, we may modify the above construction by putting

$$
\left|X_{n}\right|= \begin{cases}\frac{k+1}{2} & \text { if } 0 \leqslant n \leqslant \frac{k-1}{2}-1 \\ \frac{k+1}{2}+1 & \text { if } \frac{k-1}{2} \leqslant n \leqslant k-2\end{cases}
$$

and taking the type 1 blocks of \mathbb{G}_{k} to be the sets $X_{m} \sqcup\left\{x_{i}: 1 \leqslant i \leqslant k-\left|X_{m}\right|\right\}$, where $0 \leqslant m \leqslant k-2$ and $x_{i} \in X_{m+i}$ for all i. Here addition in the suffix is modulo $k-1$. The type 2 blocks are as before. Then it can be shown that the resulting family \mathbb{G}_{k} is again a maximal intersecting family of k-sets. The proof is similar, but a little more complicated. Using this construction (together with the preceding construction for even positive integer k) we can prove the following estimate, which improves upon Theorem 2.

Theorem 4.

$\mathrm{M}(k) \geqslant\left|\mathbb{G}_{k}\right|= \begin{cases}(k-1)\left(\frac{k}{2}+1\right)^{\frac{k}{2}-1}+\left(\frac{k}{2}+1\right)^{k-1} & \text { if } k \text { is an even integer } \\ \frac{k+5}{2}\left\{\left(\frac{k+3}{2}\right)^{\frac{k-1}{2}}-\left(\frac{k+1}{2}\right)^{\frac{k-1}{2}}\right\}+\left(\frac{k+1}{2}\right)^{\frac{k-1}{2}}\left(\frac{k+3}{2}\right)^{\frac{k-1}{2}} & \text { if } k \text { is an odd integer. }\end{cases}$
This lower bound is asymptotic to $e^{2}\left(\frac{k}{2}\right)^{k-1}$ as $k \rightarrow \infty$. It seems safe to propose:
Conjecture. $\mathrm{M}(k)$ is asymptotic to $e^{2}\left(\frac{k}{2}\right)^{k-1}$ as $k \rightarrow \infty$.

Acknowledgement

The author's sincere thanks go to Professor Bhaskar Bagchi for his constant help in preparing this note.

References

[1] Paul Erdős and László Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Infinite and finite sets Vol.-II, North-Holland, Amsterdam, 1975, pp. 609-627. Colloquia Mathematica Societatis János Bolyai 10.
[2] Péter Frankl, Katsuhiro Ota and Norihide Tokushige, Covers in uniform intersecting families and a counterexample to a conjecture of Lovász, J. Combin. Theory Ser. A 74 (1996), No. 1, 33-42.
[3] LÁszló Lovász, On minimax theorems of combinatorics, Matematikai Lapok 26 (1975), No. 3-4, 209-264.
[4] Kaushik Majumder, On the maximum number of points in a maximal intersecting family of finite sets, Combinatorica, to appear. http://dx.doi.org/10.1007/ s00493-015-3275-8
[5] Kaushik Majumder and Satyaki Mukherjee, A note on the transversal size of a series of families constructed over cycle graph, arXiv:1501.02178 (2015).

