A better lower bound on average degree of 4-list-critical graphs

Landon Rabern
LBD Data
314 Euclid Ave.
Mount Gretna, Pennsylvania, USA
landon@lbd-data.com

Submitted: Feb 27, 2016; Accepted: Aug 10, 2016; Published: Aug 19, 2016
Mathematics Subject Classifications: 05C15

Abstract

This short note proves that every non-complete k-list-critical graph has average degree at least $k - 1 + \frac{k-3}{k^2-2k+2}$. This improves the best known bound for $k = 4, 5, 6$. The same bound holds for online k-list-critical graphs.

1 Introduction

A graph G is k-list-critical if G is not $(k-1)$-choosable, but every proper subgraph of G is $(k-1)$-choosable. For further definitions and notation, see [5, 2]. Table 1 shows some history of lower bounds on the average degree of k-list-critical graphs.

Main Theorem. Every non-complete k-list-critical graph has average degree at least

$$k - 1 + \frac{k-3}{k^2-2k+2}.$$

Main Theorem gives a lower bound of $3 + \frac{1}{10}$ for 4-list-critical graphs. This is the first improvement over Gallai’s bound of $3 + \frac{1}{13}$. The same proof shows that Main Theorem holds for online k-list-critical graphs as well. Our primary tool is a lemma proved with Kierstead [6] that generalizes a kernel technique of Kostochka and Yancey [8].

Definition. The maximum independent cover number of a graph G is the maximum $\text{mic}(G)$ of $\|I, V(G) \setminus I\|$ over all independent sets I of G.

Kernel Magic (Kierstead and R. [6]). Every k-list-critical graph G satisfies

$$2 \|G\| \geq (k-2)|G| + \text{mic}(G) + 1.$$
Table 1: History of lower bounds on the average degree $d(G)$ of k-critical and k-list-critical graphs G.

The previous best bounds in Table 1 for k-list-critical graphs hold for k-Alon-Tarsi-critical graphs as well. Since Kernel Magic relies on the Kernel Lemma, our proof does not work for k-Alon-Tarsi-critical graphs. Any improvement over Gallai’s bound of $3 + \frac{1}{13}$ for 4-Alon-Tarsi-critical graphs would be interesting.

2 The Proof

The connected graphs in which each block is a complete graph or an odd cycle are called **Gallai trees**. Gallai [4] proved that in a k-critical graph, the vertices of degree $k - 1$ induce a disjoint union of Gallai trees. The same is true for k-list-critical graphs [1, 3]. For a graph T and $k \in \mathbb{N}$, let $\beta_k(T)$ be the independence number of the subgraph of T induced on the vertices of degree $k - 1$ in T. When k is defined in the context, put $\beta(T) := \beta_k(T)$.

Lemma 1. If $k \geq 4$ and $T \neq K_k$ is a Gallai tree with maximum degree at most $k - 1$, then

$$2 ||T|| \leq (k - 2)||T|| + 2\beta(T).$$

Proof. Suppose the lemma is false and choose a counterexample T minimizing $|T|$. Plainly, T has more than one block. Let A be an endblock of T and let x be the unique cutvertex of T with $x \in V(A)$. Consider $T' := T - (V(A) \setminus \{x\})$. By minimality of $|T|$,

$$2 ||T|| - 2 ||A|| \leq (k - 2)(|T| + 1 - |A|) + 2\beta(T').$$

Since T is a counterexample, $2 ||A|| > (k - 2)(|A| - 1)$. So, if $k > 4$, then $A = K_{k-1}$ and if $k = 4$, then A is an odd cycle. In both cases, $d_T(x) = k - 1$. Consider $T^* := T - V(A)$. By minimality of $|T|$,

$$2 ||T|| - 2 ||A|| - 2 \leq (k - 2)(|T| - |A|) + 2\beta(T^*).$$
Since \(T \) is a counterexample, \(2 \| A \parallel + 2 > (k - 2) |A| + 2(\beta(T) - \beta(T^*)) \). In \(T^* \), all of \(x \)'s neighbors have degree at most \(k - 2 \). But \(d_T(x) = k - 1 \), so some vertex in \(\{x\} \cup N(x) \) is in a maximum independent set of degree \(k - 1 \) vertices in \(T \). Hence \(\beta(T^*) \leq \beta(T) - 1 \), which gives

\[
2 \| A \parallel > (k - 2) |A|
\]

a contradiction since \(k \geq 4 \). \(\square \)

Proof of Main Theorem. Let \(G \neq K_k \) be a \(k \)-list-critical graph. The theorem is trivially true if \(k \leq 3 \), so suppose \(k \geq 4 \). Let \(L \subseteq V(G) \) be the vertices with degree \(k - 1 \) and let \(H = V(G) \setminus L \). Put \(\|L\| := ||G[L]|| \) and \(\|H\| := ||G[H]|| \). By Lemma 1,

\[
2 \|L\| \leq (k - 2) |L| + 2\beta(L)
\]

Hence,

\[
2 \|G\| = 2 \|H\| + 2 \|H, L\| + 2 \|L\|
= 2 \|H\| + 2((k - 1) |L| - 2 \|L\|) + 2 \|L\|
= 2 \|H\| + 2(k - 1) |L| - 2 \|L\|
\geq 2 \|H\| + k |L| - 2\beta(L),
\]

which is

\[
\beta(L) \geq \|H\| + \frac{k}{2} |L| - \|G\|.
\]

Let \(M \) be the maximum of \(\|I, V(G) \setminus I\| \) over all independent sets \(I \) of \(G \) with \(I \subseteq H \). Since the vertices in \(L \) with \(k - 1 \) neighbors in \(L \) have no neighbors in \(H \),

\[
\text{mic}(G) \geq M + (k - 1)\beta(L).
\]

Applying Kernel Magic and using (1) gives

\[
2 \|G\| \geq (k - 2) |G| + M + (k - 1)\beta(L) + 1
\geq (k - 2) |G| + M + (k - 1) \left(\|H\| + \frac{k}{2} |L| - \|G\| \right) + 1
= (k - 2) |G| + M + (k - 1) \|H\| + \frac{k(k - 1)}{2} |L| - (k - 1) \|G\| + 1.
\]

Hence

\[
(k + 1) \|G\| \geq (k - 2) |G| + M + (k - 1) \|H\| + \frac{k(k - 1)}{2} |L| + 1
\]

(2)

Let \(C \) be the components of \(G[H] \). Then \(\alpha(C) \geq \frac{|C|}{\chi(C)} \) for all \(C \in C \). Whence

\[
M + (k - 1) \|H\| \geq \sum_{C \in C} k \frac{|C|}{\chi(C)} + (k - 1) \|C\|.
\]

(3)
If $\mathcal{L} = \emptyset$, then G has average degree at least $k \geq k - 1 + \frac{k - 3}{k^2 - 2k + 2}$. So, assume $\mathcal{L} \neq \emptyset$. Then $G[H]$ is $(k-1)$-colorable by k-list-criticality of G. In particular, $\chi(C) \leq k - 1$ for every $C \in \mathcal{C}$. For every $C \in \mathcal{C}$,

$$k \frac{|C|}{\chi(C)} + (k - 1) ||C|| \geq \left(k - \frac{1}{2} \right) |C|.$$

To see this, first suppose $C \in \mathcal{C}$ is not a tree. Then $||C|| \geq |C|$ and hence $k \frac{|C|}{\chi(C)} + (k - 1) ||C|| \geq k \frac{|C|}{k - 1} + (k - 1) |C| \geq (k - \frac{1}{2}) |C|$. If C is a tree, then $\chi(C) \leq 2$ and hence $k \frac{|C|}{\chi(C)} + (k - 1) ||C|| \geq k \frac{|C|}{2} + (k - 1)(|C| - 1) \geq (k - \frac{1}{2}) |C|$ unless $|C| = 1$. This proves (4) since the bound is trivially satisfied when $|C| = 1$.

Now combining (2), (3) and (4) with the basic bound

$$|\mathcal{L}| \geq k |G| - 2 \|G||,$$

gives

$$(k + 1) \|G|| \geq (k - 2) |G| + \left(k - \frac{1}{2} \right) |\mathcal{H}| + \frac{k(k - 1)}{2} |\mathcal{L}| + 1$$

$$= \left(2k - \frac{5}{2} \right) |G| + \frac{k^2 - 3k + 1}{2} |\mathcal{L}| + 1$$

$$\geq \left(2k - \frac{5}{2} \right) |G| + \frac{k^2 - 3k + 1}{2} (k |G| - 2 \|G||) + 1.$$

After some algebra, this becomes

$$2 \|G|| \geq \left(k - 1 + \frac{k - 3}{k^2 - 2k + 2} \right) |G| + \frac{2}{k^2 - 2k + 2}.$$

That proves the theorem. \hfill \Box

The right side of equation (4) in the above proof can be improved to $k |C|$ unless C is a K_2 where both vertices have degree k in G. If these K_2’s could be handled, the average degree bound would improve to $k - 1 + \frac{k - 3}{(k - 1)^2}$.

Conjecture. Every non-complete (online) k-list-critical graph has average degree at least

$$k - 1 + \frac{k - 3}{(k - 1)^2}.$$

References

