A better lower bound on average degree of 4-list-critical graphs

Landon Rabern
LBD Data
314 Euclid Ave.
Mount Gretna, Pennsylvania, USA
landon@lbd-data.com

Submitted: Feb 27, 2016; Accepted: Aug 10, 2016; Published: Aug 19, 2016
Mathematics Subject Classifications: 05C15

Abstract

This short note proves that every non-complete k-list-critical graph has average degree at least $k-1+\frac{k-3}{k^{2}-2 k+2}$. This improves the best known bound for $k=4,5,6$. The same bound holds for online k-list-critical graphs.

1 Introduction

A graph G is k-list-critical if G is not $(k-1)$-choosable, but every proper subgraph of G is $(k-1)$-choosable. For further definitions and notation, see [5, 2]. Table 1 shows some history of lower bounds on the average degree of k-list-critical graphs.

Main Theorem. Every non-complete k-list-critical graph has average degree at least

$$
k-1+\frac{k-3}{k^{2}-2 k+2} .
$$

Main Theorem gives a lower bound of $3+\frac{1}{10}$ for 4 -list-critical graphs. This is the first improvement over Gallai's bound of $3+\frac{1}{13}$. The same proof shows that Main Theorem holds for online k-list-critical graphs as well. Our primary tool is a lemma proved with Kierstead [6] that generalizes a kernel technique of Kostochka and Yancey [8].

Definition. The maximum independent cover number of a graph G is the maximum $\operatorname{mic}(G)$ of $\|I, V(G) \backslash I\|$ over all independent sets I of G.

Kernel Magic (Kierstead and R. [6]). Every k-list-critical graph G satisfies

$$
2\|G\| \geqslant(k-2)|G|+\operatorname{mic}(G)+1
$$

	k-Critical G					k-List Critical G			
	Gallai $[4]$	Kriv $[9]$	KS $[7]$	KY $[8]$	KS $[7]$	KR $[5]$	CR $[2]$	Here	
k	$d(G) \geqslant$								
4	3.0769	3.1429	-	3.3333	-	-	-	$\mathbf{3 . 1 0 0 0}$	
5	4.0909	4.1429	-	4.5000	-	4.0984	4.1000	$\mathbf{4 . 1 1 7 6}$	
6	5.0909	5.1304	5.0976	5.6000	-	5.1053	5.1076	$\mathbf{5 . 1 1 5 3}$	
7	6.0870	6.1176	6.0990	6.6667	-	6.1149	$\mathbf{6 . 1 1 9 2}$	6.1081	
8	7.0820	7.1064	7.0980	7.7143	-	7.1128	$\mathbf{7 . 1 1 6 7}$	7.1000	
9	8.0769	8.0968	8.0959	8.7500	8.0838	8.1094	$\mathbf{8 . 1 1 3 0}$	8.0923	
10	9.0722	9.0886	9.0932	9.7778	9.0793	9.1055	$\mathbf{9 . 1 0 8 8}$	9.0853	
15	14.0541	14.0618	14.0785	14.8571	14.0610	14.0864	$\mathbf{1 4 . 0 8 8 4}$	14.0609	
20	19.0428	19.0474	19.0666	19.8947	19.0490	19.0719	$\mathbf{1 9 . 0 7 3 3}$	19.0469	

Table 1: History of lower bounds on the average degree $d(G)$ of k-critical and k-list-critical graphs G.

The previous best bounds in Table 1 for k-list-critical graphs hold for k -Alon-Tarsicritical graphs as well. Since Kernel Magic relies on the Kernel Lemma, our proof does not work for k-Alon-Tarsi-critical graphs. Any improvement over Gallai's bound of $3+\frac{1}{13}$ for 4-Alon-Tarsi-critical graphs would be interesting.

2 The Proof

The connected graphs in which each block is a complete graph or an odd cycle are called Gallai trees. Gallai [4] proved that in a k-critical graph, the vertices of degree $k-1$ induce a disjoint union of Gallai trees. The same is true for k-list-critical graphs [1, 3]. For a graph T and $k \in \mathbb{N}$, let $\beta_{k}(T)$ be the independence number of the subgraph of T induced on the vertices of degree $k-1$ in T. When k is defined in the context, put $\beta(T):=\beta_{k}(T)$.

Lemma 1. If $k \geqslant 4$ and $T \neq K_{k}$ is a Gallai tree with maximum degree at most $k-1$, then

$$
2||T|| \leqslant(k-2)|T|+2 \beta(T)
$$

Proof. Suppose the lemma is false and choose a counterexample T minimizing $|T|$. Plainly, T has more than one block. Let A be an endblock of T and let x be the unique cutvertex of T with $x \in V(A)$. Consider $T^{\prime}:=T-(V(A) \backslash\{x\})$. By minimality of $|T|$,

$$
2\|T\|-2\|A\| \leqslant(k-2)(|T|+1-|A|)+2 \beta\left(T^{\prime}\right)
$$

Since T is a counterexample, $2\|A\|>(k-2)(|A|-1)$. So, if $k>4$, then $A=K_{k-1}$ and if $k=4$, then A is an odd cycle. In both cases, $d_{T}(x)=k-1$. Consider $T^{*}:=T-V(A)$. By minimality of $|T|$,

$$
2\|T\|-2\|A\|-2 \leqslant(k-2)(|T|-|A|)+2 \beta\left(T^{*}\right)
$$

Since T is a counterexample, $2\|A\|+2>(k-2)|A|+2\left(\beta(T)-\beta\left(T^{*}\right)\right)$. In T^{*}, all of x 's neighbors have degree at most $k-2$. But $d_{T}(x)=k-1$, so some vertex in $\{x\} \cup N(x)$ is in a maximum independent set of degree $k-1$ vertices in T. Hence $\beta\left(T^{*}\right) \leqslant \beta(T)-1$, which gives

$$
2\|A\|>(k-2)|A|,
$$

a contradiction since $k \geqslant 4$.
Proof of Main Theorem. Let $G \neq K_{k}$ be a k-list-critical graph. The theorem is trivially true if $k \leqslant 3$, so suppose $k \geqslant 4$. Let $\mathcal{L} \subseteq V(G)$ be the vertices with degree $k-1$ and let $\mathcal{H}=V(G) \backslash \mathcal{L}$. Put $\|\mathcal{L}\|:=\|G[\mathcal{L}]\|$ and $\|\mathcal{H}\|:=\|G[\mathcal{H}]\|$. By Lemma 1,

$$
2\|\mathcal{L}\| \leqslant(k-2)|\mathcal{L}|+2 \beta(\mathcal{L})
$$

Hence,

$$
\begin{aligned}
2\|G\| & =2\|\mathcal{H}\|+2\|\mathcal{H}, \mathcal{L}\|+2\|\mathcal{L}\| \\
& =2\|\mathcal{H}\|+2((k-1)|\mathcal{L}|-2\|\mathcal{L}\|)+2\|\mathcal{L}\| \\
& =2\|\mathcal{H}\|+2(k-1)|\mathcal{L}|-2\|\mathcal{L}\| \\
& \geqslant 2\|\mathcal{H}\|+k|\mathcal{L}|-2 \beta(\mathcal{L})
\end{aligned}
$$

which is

$$
\begin{equation*}
\beta(\mathcal{L}) \geqslant\|\mathcal{H}\|+\frac{k}{2}|\mathcal{L}|-\|G\| . \tag{1}
\end{equation*}
$$

Let M be the maximum of $\|I, V(G) \backslash I\|$ over all independent sets I of G with $I \subseteq \mathcal{H}$. Since the vertices in \mathcal{L} with $k-1$ neighbors in \mathcal{L} have no neighbors in \mathcal{H},

$$
\operatorname{mic}(G) \geqslant M+(k-1) \beta(\mathcal{L}) .
$$

Applying Kernel Magic and using (1) gives

$$
\begin{aligned}
2\|G\| & \geqslant(k-2)|G|+M+(k-1) \beta(\mathcal{L})+1 \\
& \geqslant(k-2)|G|+M+(k-1)\left(\|\mathcal{H}\|+\frac{k}{2}|\mathcal{L}|-\|G\|\right)+1 \\
& =(k-2)|G|+M+(k-1)\|\mathcal{H}\|+\frac{k(k-1)}{2}|\mathcal{L}|-(k-1)\|G\|+1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(k+1)\|G\| \geqslant(k-2)|G|+M+(k-1)\|\mathcal{H}\|+\frac{k(k-1)}{2}|\mathcal{L}|+1 \tag{2}
\end{equation*}
$$

Let \mathcal{C} be the components of $G[\mathcal{H}]$. Then $\alpha(C) \geqslant \frac{|C|}{\chi(C)}$ for all $C \in \mathcal{C}$. Whence

$$
\begin{equation*}
M+(k-1)\|\mathcal{H}\| \geqslant \sum_{C \in \mathcal{C}} k \frac{|C|}{\chi(C)}+(k-1)\|C\| . \tag{3}
\end{equation*}
$$

If $\mathcal{L}=\emptyset$, then G has average degree at least $k \geqslant k-1+\frac{k-3}{k^{2}-2 k+2}$. So, assume $\mathcal{L} \neq \emptyset$. Then $G[\mathcal{H}]$ is $(k-1)$-colorable by k-list-criticality of G. In particular, $\chi(C) \leqslant k-1$ for every $C \in \mathcal{C}$. For every $C \in \mathcal{C}$,

$$
\begin{equation*}
k \frac{|C|}{\chi(C)}+(k-1)\|C\| \geqslant\left(k-\frac{1}{2}\right)|C| . \tag{4}
\end{equation*}
$$

To see this, first suppose $C \in \mathcal{C}$ is not a tree. Then $\|C\| \geqslant|C|$ and hence $k \frac{|C|}{\chi(C)}+(k-$ 1) $\|C\| \geqslant k \frac{|C|}{k-1}+(k-1)|C| \geqslant\left(k-\frac{1}{2}\right)|C|$. If C is a tree, then $\chi(C) \leqslant 2$ and hence $k \frac{|C|}{\chi(C)}+(k-1)\|C\| \geqslant k \frac{|C|}{2}+(k-1)(|C|-1) \geqslant\left(k-\frac{1}{2}\right)|C|$ unless $|C|=1$. This proves (4) since the bound is trivially satisfied when $|C|=1$.

Now combining (2), (3) and (4) with the basic bound

$$
|\mathcal{L}| \geqslant k|G|-2\|G\|,
$$

gives

$$
\begin{aligned}
(k+1)\|G\| & \geqslant(k-2)|G|+\left(k-\frac{1}{2}\right)|\mathcal{H}|+\frac{k(k-1)}{2}|\mathcal{L}|+1 \\
& =\left(2 k-\frac{5}{2}\right)|G|+\frac{k^{2}-3 k+1}{2}|\mathcal{L}|+1 \\
& \geqslant\left(2 k-\frac{5}{2}\right)|G|+\frac{k^{2}-3 k+1}{2}(k|G|-2\|G\|)+1 .
\end{aligned}
$$

After some algebra, this becomes

$$
2\|G\| \geqslant\left(k-1+\frac{k-3}{k^{2}-2 k+2}\right)|G|+\frac{2}{k^{2}-2 k+2} .
$$

That proves the theorem.
The right side of equation (4) in the above proof can be improved to $k|C|$ unless C is a K_{2} where both vertices have degree k in G. If these K_{2} 's could be handled, the average degree bound would improve to $k-1+\frac{k-3}{(k-1)^{2}}$.
Conjecture. Every non-complete (online) k-list-critical graph has average degree at least

$$
k-1+\frac{k-3}{(k-1)^{2}} .
$$

References

[1] O.V. Borodin, Criterion of chromaticity of a degree prescription, Abstracts of IV All-Union Conf. on Th. Cybernetics, 1977, pp. 127-128.
[2] D. Cranston and L. Rabern, Edge lower bounds for list critical graphs, via discharging, arXiv:1602. 02589 (2016).
[3] P. Erdős, A.L. Rubin, and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 26, 1979, pp. 125-157.
[4] T. Gallai, Kritische Graphen I., Publ. Math. Inst. Hungar. Acad. Sci 8 (1963), 165192 (in German).
[5] H.A. Kierstead and L. Rabern, Improved lower bounds on the number of edges in list critical and online list critical graphs, arXiv:1406.7355 (2014).
[6] , Extracting list colorings from large independent sets, arXiv:1512.08130 (2015).
[7] A.V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs and hypergraphs, Journal of Combinatorial Theory, Series B 87 (2003), no. 2, 374-402.
[8] A.V. Kostochka and M. Yancey, Ore's conjecture on color-critical graphs is almost true, J. Combin. Theory Ser. B 109 (2014), 73-101.
[9] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997), no. 3, 401-426.

