Representations of bicircular lift matroids

Rong Chen* Zifei Gao
Center for Discrete Mathematics
Fuzhou College
Fuzhou, P. R. China
rongchen@fzu.edu.cn, zifeigao123@gmail.com

Submitted: Nov 3, 2015; Accepted: Aug 15, 2016; Published: Sep 2, 2016
Mathematics Subject Classifications: 05C22, 52B40

Abstract

Bicircular lift matroids are a class of matroids defined on the edge set of a graph. For a given graph \(G \), the circuits of its bicircular lift matroid are the edge sets of those subgraphs of \(G \) that contain at least two cycles, and are minimal with respect to this property. The main result of this paper is a characterization of when two graphs give rise to the same bicircular lift matroid, which answers a question proposed by Irene Pivotto. In particular, aside from some appropriately defined “small” graphs, two graphs have the same bicircular lift matroid if and only if they are 2-isomorphic in the sense of Whitney.

Keywords: bicircular lift matroids, representation

1 Introduction

We assume the reader is familiar with fundamental definitions in matroid and graph theory. For a graph \(G \), a set \(X \subseteq E(G) \) is a cycle if \(G|X \) is a connected 2-regular graph. Bicircular lift matroids are a class of matroids defined on the edge set of a graph. For a given graph \(G \), the circuits of its bicircular lift matroid \(L(G) \) are the edge sets of those subgraphs of \(G \) that contain at least two cycles, and are minimal with respect to this property. That is, the circuits of \(L(G) \) consists of the edge sets of two edge-disjoint cycles with at most one common vertex, or three internally disjoint paths between a pair of distinct vertices. Bicircular lift matroids are a special class of lift matroids that arises from biased graphs. Biased graphs and lift matroids were introduced by Zaslavsky in [8, 9].

*Supported by NSFC (No.11201076 and No. 11471076).
graphs have isomorphic graphic frame matroids. Matthews [4] characterized which graphs give rise to isomorphic bicircular matroids that are graphic. Coullard, del Greco and Wagner [3, 7] characterized which graphs give rise to isomorphic bicircular matroids. In this paper, we characterize which graphs give rise to isomorphic bicircular lift matroids, which answers a question proposed by Pivotto in the Matroid Union blog [5]. In particular, except for some special graphs, each of which is a subdivision of a graph on at most four vertices, two graphs have the same bicircular lift matroid if and only if they are 2-isomorphic in the sense of Whitney [6]. The main result is used in [1] to prove that the class of matroids that are graphic or bicircular lift has a finite list of excluded minors.

To state our result completely we need more definitions. Let \(k, l, m \) be positive integers. We denote by \(K_m \) the complete graph with \(m \) vertices. We denote by \(K_2^m \) the graph obtained from \(K_2 \) with its unique edge replaced by \(m \) parallel edges. And we denote by \(K_3^{k,l,m} \) the graph obtained from \(K_3 \) with its three edges replaced by \(k, l, m \) parallel edges respectively. A graph obtained from graph \(G \) by replacing some edges of \(G \) with internally disjoint paths is a subdivision of \(G \). Note that \(G \) is a subdivision of itself. A path \(P \) of a connected graph \(G \) is an ear if each internal vertex of \(P \) has degree two and each end-vertex has degree at least three in \(G \), and \(P \) is contained in a cycle. A graph \(G \) is 2-edge-connected if each edge of \(G \) is contained in some cycle. Let \(M(G) \) denote the graphic matroid of a graph \(G \).

Given a set \(X \) of edges, we let \(G[X] \) denote the subgraph of \(G \) with edge set \(X \) and no isolated vertices. Let \((X_1, X_2)\) be a partition of \(E(G) \) such that \(V(G[X_1]) \cap V(G[X_2]) = \{u_1, u_2\} \). We say that \(G' \) is obtained by a Whitney Switching on \(G \) on \(\{u_1, u_2\} \) if \(G' \) is a graph obtained by identifying vertices \(u_1, u_2 \) of \(G[X_1] \) with vertices \(u_2, u_1 \) of \(G[X_2] \), respectively. A graph \(G' \) is 2-isomorphic to \(G \) if \(G' \) is obtained from \(G \) by a sequence of the operations: Whitney switchings, identifying two vertices from distinct components of a graph, or partitioning a graph into components each of which is a block of the original graph.

Theorem 1. (Whitney’s 2-Isomorphism Theorem) Let \(G_1 \) and \(G_2 \) be graphs. Then \(M(G_1) \cong M(G_2) \) if and only if \(G_1 \) and \(G_2 \) are 2-isomorphic.

It follows from Theorem 1 that if \(G_1 \) and \(G_2 \) are 2-isomorphic, then \(L(G_1) = L(G_2) \). The converse, however, is not true. This can be seen by choosing \(G_1 \) and \(G_2 \) to be isomorphic to \(K_4 \), but not to each other. Much of the remainder of the paper is aimed at characterizing when the converse to this statement is not true.

Let \(G_1 \) and \(G_2 \) be graphs with \(L(G_1) = L(G_2) \). Since \(E(G_i) \) is independent in \(L(G_i) \) if and only if \(G_i \) has at most one cycle, we may assume that \(G_1 \) and \(G_2 \) have at least two cycles. Moreover, since \(e \) is a cut-edge of \(G_1 \) if and only if \(e \) is a cut-edge of \(G_2 \) or \(G_2 \backslash e \) is a forest, an edge is a cut-edge of \(G_1 \) if and only if it is a cut-edge of \(G_2 \). Hence, to simplify the analysis below, it will be assumed for the remainder of the paper that \(G_1 \) and \(G_2 \) are 2-edge-connected. Observe that when \(L(G_1) \) has only one circuit, it is straightforward to characterize the structure of both \(G_1 \) and \(G_2 \). Thus, the remainder of the paper will further restrict the analysis to the case that \(L(G_1) \) has at least two circuits. In the paper, we prove
Theorem 2. Let G_1 be a 2-edge-connected graph such that $L(G_1)$ contains at least two circuits. Let G_2 be a graph with $L(G_1) = L(G_2)$. Then at least one of the following holds.

(1) G_1 and G_2 are 2-isomorphic.

(2) G_1 and G_2 are 2-isomorphic to subdivisions of K_4, where the edge set of an ear of G_1 is also the edge set of an ear of G_2.

(3) G_1 and G_2 are 2-isomorphic to subdivisions of $K_3^{m,2,n}$ for some $m \in \{1, 2\}$ and $n \geq 2$, where the edge set of an ear of G_1 is also the edge set of an ear of G_2. Moreover, when $n \geq 3$, the n ears in G_1 having the same ends also have the same ends in G_2.

(4) G_1 and G_2 are 2-isomorphic to the graphs pictured in Figure 1.

![Figure 1: In (a) and (b), $n \geq 3$; and in (c), $n \geq 2$](image)

The following result, which is an easy consequences of Theorem 2, is used in [1] to prove that the class of matroids that are graphic or bicircular lift matroids has a finite list of excluded minors.

Two elements are a series pair of a graph G if and only if each cycle can not intersect them in exactly one element. A series class is a maximal set $X \subseteq E(G)$ such that every two edges of X form a series pair. Let co(G) denote a graph obtained from G by
contracting all cut-edges from G and then, for each series class X, contracting all but one distinguished element of X.

Corollary 3. Let G_1 and G_2 be connected graphs with $L(G_1) = L(G_2)$ and such that $L(G_1)$ has at least two circuits. If $|V(\text{co}(G_1))| \geq 5$ then G_1 and G_2 are 2-isomorphic.

2 Proof of Theorem 2

Let G be a graph, and $e, f \in E(G)$. We say that e is a *link* if it has distinct end-vertices; otherwise e is a *loop*. If $\{e, f\}$ is a cycle, then e and f are *parallel*. A *parallel class* of G is a maximal subset P of $E(G)$ such that any two members of P are parallel and no member is a loop. Moreover, if $|P| \geq 2$ then P is *non-trivial*; otherwise P is trivial. Let $\text{si}(G)$ denote the graph obtained from G by deleting all loops and all but one distinguished element of each non-trivial parallel class. Obviously, the graph we obtain is uniquely determined up to a renaming of the distinguished elements. If G has no loops and no non-trivial parallel class, then G is simple.

The following result is implied in ([9], Theorem 3.6.).

Lemma 4. Let e be an edge of a graph G. Then we have

1. $L(G\setminus e) = L(G)\setminus e$;
2. when e is a loop, $L(G)/e = M(G\setminus e)$;
3. when e is a link, $L(G)/e = L(G/e)$.

Corollary 5. Let G_1, G_2 be graphs with $L(G_1) = L(G_2)$, and e a loop of both G_1 and G_2. Then G_1 and G_2 are 2-isomorphic.

The idea used to prove the following Lemma was given by the referee.

Lemma 6. Let G_1 and G_2 be connected graphs without loops and with $|V(G_1)| = |V(G_2)|$ and $E(G_1) = E(G_2)$. Assume that for each edge $e \in E(G_1)$ the graphs G_1/e and G_2/e are 2-isomorphic. Then G_1 and G_2 are 2-isomorphic.

Proof. By Whitney’s 2-Isomorphism Theorem, to prove the result it suffices to show that each spanning tree of G_1 is also a spanning tree of G_2. Let T_1 be a spanning tree of G_1, and let T_2 be the subgraph of G_2 induced by $E(T_1)$. Assume that T_2 is not a spanning tree of G_2. Since $|V(G_1)| = |V(G_2)|$, the subgraph T_2 contains a cycle C. Let e be an edge in $E(T_1)$. Then T_1/e is acyclic and T_2/e is not, and so G_1/e and G_2/e are not 2-isomorphic; a contradiction.

Lemma 7. Let G_1 be a 2-edge-connected graph such that $L(G_1)$ contains at least two circuits. Let G_2 be a graph with $L(G_1) = L(G_2)$. Assume that G_1 has a link e such that e is a loop of G_2. Then G_1 and G_2 are 2-isomorphic to the graphs pictured in Figure 2.
Proof. Since \(L(G_1)\) contains at least two circuits and \(L(G_1) = L(G_2)\), the graph \(G_2 - \{e\}\) has cycles \(C_1\) and \(C_2\) such that \(C_1 \cup C_2\) is a circuit of \(L(G_2)\). Since \(e\) is a loop of \(G_2\), for some integer \(k \in \{2, 3\}\) there is a partition \((P_1, P_2, \ldots, P_k)\) of \(E(C_1 \cup C_2)\) such that when \(k = 2\) the sets \(P_1 \cup \{e\}\) and \(P_2 \cup \{e\}\) are circuits of \(L(G_1)\), and when \(k = 3\) the sets \(P_1 \cup P_2 \cup \{e\}\), \(P_2 \cup P_3 \cup \{e\}\) and \(P_1 \cup P_3 \cup \{e\}\) are circuits of \(L(G_1)\). Since \(E(C_1 \cup C_2)\) is also a circuit of \(L(G_1)\) and \(e\) is a link of \(G_1\), it is easy to verify that \(k = 3\) (that is, \(C_1 \cup C_2\) is a theta-subgraph of \(G_2\).) and (1) \(G_1|_{C_1 \cup C_2 \cup \{e\}}\) is 2-isomorphic to graphs pictured in Figure 3. Hence, by the arbitrary choice of \(C_1\) and \(C_2\), (2) no two cycles in \(G_2\) have at most one common vertex; and (3) each ear of a theta-subgraph of \(G_2\) is a cycle in \(G_1\) or a path connecting the end-vertices of \(e\) in \(G_1\).

For each edge \(f \in E(G_2) - (C_1 \cup C_2 \cup \{e\})\), there is a set \(X\) with \(f \in X \subseteq E(G_2) - (C_1 \cup C_2 \cup \{e\})\) such that \(G_2|_{C_1 \cup C_2 \cup X}\) is 2-edge-connected. By (2) \(G_2|_{C_1 \cup C_2 \cup X}\) is a subdivision of \(K_4\) or \(K_4^2\). (1) and (3) imply that \(G_2|_{C_1 \cup C_2 \cup X}\) is a subdivision of \(K_4^2\). Repeating the process several times, we have that \(G_2 - \{e\}\) is a \(K_n^2\)-subdivision for some integer \(n \geq 3\). Hence, \(G_1\) and \(G_2\) are 2-isomorphic to the graphs pictured in Figure 2.

By Lemma 7, to prove Theorem 2 we only need to consider the case that an edge is a
link in G_1 if and only if it is a link in G_2.

Lemma 8. Let G_1 and G_2 be connected and 2-edge-connected graphs with $L(G_1) = L(G_2)$ such that $L(G_1)$ has at least two circuits and such that each series class of G_i is an ear of G_i for each $i \in \{1, 2\}$. Then a set of edges is the edge set of an ear of G_1 if and only if it is the edge set of an ear of G_2.

Proof. Assume otherwise. Without loss of generality assume that e and f are contained in some ear of G_1, but not in the same ear of G_2. Evidently, e is not in any cycle of $G_1 - \{f\}$ and $L(G_1 - \{f\})$ has a circuit as $L(G_1)$ has at least two circuits. Moreover, since $L(G_1 - \{f\}) = L(G_2 - \{f\})$, the edge e is a coloop of $G_2 - \{f\}$; so $\{e, f\}$ is a bond of G_2. Then e and f are contained in the same ear of G_2 as each series class of G_2 is an ear of G_2, a contradiction. □

By possibly applying a sequence of Whitney’s switching we can assume that each series class in a graph G is an ear of G. Furthermore, by Lemma 8 we can further assume that a set of edges is the edge set of an ear of G_1 if and only if it is the edge set of an ear of G_2. Hence, we only need consider cosimple graphs, where a graph is *cosimple* if it has no cut-edges or non-trivial series classes.

Let $\text{loop}(G)$ be the set consisting of loops of G.

\[\begin{align*} G_1 & \quad \quad e_1 \quad e_2 \quad e_3 \quad \cdots \quad e_n \\ G_2 & \quad \quad e_1 \quad e_2 \quad e_3 \quad \cdots \quad e_{n-1} \end{align*} \]

\[\begin{align*} (a) & \quad \quad e_1 \quad e_2 \quad e_3 \quad \cdots \quad e_n \\ (b) & \quad \quad e_1 \quad e_2 \quad e_3 \quad \cdots \quad e_{n-1} \end{align*} \]

Figure 4: $n \geq 3$.

Lemma 9. Let G_1 and G_2 be cosimple 2-edge-connected graphs with $2 \leq |V(G_1)| = |V(G_2)| \leq 3$. Assume that $L(G_1) = L(G_2)$ and $L(G_1)$ contains at least two circuits. Then exactly one of the following holds.

1. G_1 and G_2 are 2-isomorphic.
(2) \(|V(G_1)| = 2\), the graphs \(G_1\) and \(G_2\) are isomorphic to the graphs pictured in Figure 4.

(3) \(G_1\) and \(G_2\) are 2-isomorphic to \(K_{3,2}^m\) for some integers \(m \in \{1, 2\}\) and \(n \geq 2\), moreover, the \(n\) parallel edges in \(G_1\) are also the \(n\) parallel edges in \(G_2\) when \(n \geq 3\).

Proof. By Lemma 7 we may assume that \(\text{loop}(G_1) = \text{loop}(G_2)\). Then the lemma holds when \(|V(G_1)| = 2\). So assume that \(|V(G_1)| = 3\). Since \(\text{loop}(G_1) = \text{loop}(G_2)\), each non-trivial parallel class of \(G_1\) with at least three edges must be also a non-trivial parallel class of \(G_2\). Hence, when \(G_1\) has two parallel classes with at least three edges, (1) holds. So we may assume that \(G_1\) has at most one parallel class with at least three edges. On the other hand, since \(G_1\) and \(G_2\) are cosimple, \(G_1\) and \(G_2\) have three parallel classes and at least two of them are non-trivial. Hence, when \(G_1\) has no loops, (3) obviously holds; when \(G_1\) has a loop, since \(\text{loop}(G_1) = \text{loop}(G_2)\), Corollary 5 implies that \(G_1\) and \(G_2\) are 2-isomorphic, that is, (1) holds.

The star of a vertex \(v\) in a graph \(G\), denoted by \(st_G(v)\), is the set of edges of \(G\) incident with \(v\).

Lemma 10. Let \(G_1\) and \(G_2\) be 2-edge-connected cosimple graphs with exactly four vertices and without loops. Assume that \(L(G_1) = L(G_2)\) and \(L(G_1)\) has at least two circuits. Then at least one of the following holds.

(1) \(G_1\) and \(G_2\) are 2-isomorphic;

(2) \(G_1\) and \(G_2\) are isomorphic to \(K_4\);

(3) \(G_1\) and \(G_2\) are 2-isomorphic to the graphs pictured in Figure 5.

![Figure 5: n ≥ 7.](image-url)
three vertices, by Lemma 9 we have that (a) the graphs G_1/f and G_2/f are isomorphic to $K_3^{m,n}$ for some integers $m \in \{1, 2\}$ and $n \geq 2$; moreover, when $n \geq 3$ the n parallel edges in G_1 are also the n parallel edges in G_2.

10.1. Two edges are parallel in G_1 if and only if they are parallel in G_2.

Subproof. If two edges are parallel in G_1 but not G_2, then contracting one of the edges produces a counterexample to Lemma 7.

The simple proof of 10.1 is given by the referee. Since no non-trivial parallel classes in G_1 or G_2 contains f by (a), 10.1 implies

10.2. Each 2-edge path joining the end-vertices of a non-trivial parallel class of G_1 is also a 2-edge path joining the end-vertices of the non-trivial parallel class of G_2.

10.3. Let P_1, P_2 be non-trivial parallel classes of G_1. Then $\text{si}(G_1|P_1 \cup P_2 \cup f)$ is a triangle.

Subproof. Since G_1/f has no loop, neither P_1 nor P_2 contains f. If P_1 and P_2 are not contained in a parallel class of G_1/f, then P_1 and P_2 are contained in two different non-trivial parallel classes of G_1/f. Moreover, since P_1 and P_2 are also non-trivial parallel classes of G_2 by 10.1, by (a) we have that G_1/f and G_2/f are isomorphic, a contradiction. So P_1 and P_2 are contained in a parallel class of G_1/f. Then $\text{si}(G_1|P_1 \cup P_2 \cup f)$ is a triangle.

First we consider the case that G_1/f is isomorphic to $K_3^{2,2,n}$. By 10.3, G_1 is obtained from G_1/f by splitting a degree-4 vertex. Since G_1 is cosimple, G_1 is isomorphic to the graph pictured in Figure 5 with e_5 relabelled by f. Let P be the unique non-trivial parallel class of G_1 with n edges. Since P is a also non-trivial parallel class of G_2 by 10.1 and the fact that G_2/f is isomorphic to $K_3^{2,2,n}$, the graph G_2 is isomorphic to the graph pictured in Figure 5 with e_5 relabelled by f. So (3) holds.

Secondly we consider the case that G_1/f is isomorphic to $K_3^{1,2,n}$. Let e_i be the edge of G_1/f that is not in a parallel class for $1 \leq i \leq 2$. Evidently, when $n \geq 3$, since G_1/f and G_2/f are not 2-isomorphic, $e_1 \neq e_2$. Since each vertex of G_1 has degree at least three, by 10.3 the graph G_1 is obtained from G_1/f by splitting the vertex v incident with two non-trivial parallel classes. When $|st_{G_1/f}(v)| = 4$, since G_1 is cosimple G_1 is isomorphic to K_4. By symmetry G_2 is also isomorphic to K_4. So (2) holds.

Assume that $|st_{G_1/f}(v)| \geq 5$, that is, a non-trivial parallel class P incident with v in G_1/f has at least three edges. Then some proper subset P' of P is a non-trivial parallel class in G_1 as G_1 is cosimple. Let $\{f_1, f_2\}$ be the 2-edge parallel class in G_1/f. Since $\{f, f_1, f_2\}$ is a cycle in G_1 and $\{e_1, f_1, f_2\}$ is the neighbourhood of a degree-3 vertex in G_1/f and G_1, by symmetry we may assume that e_1, f_1 is a 2-edge path joining the end-vertices of P' in G_1 and f_2 is not incident with P'. On the other hand, by symmetry, e_2 is also contained in a 2-edge path joining the end-vertices of P' in G_2. So $f_1 = e_2$ as $e_2 \in \{f_1, f_2\}$, consequently, $|P - P'| = 1$, for otherwise there are two such P', which is not possible. Therefore, (3) holds.
Lemma 11. Let G_1 and G_2 be 2-edge-connected cosimple graphs with five vertices and without loops. Assume that $L(G_1) = L(G_2)$ and $L(G_1)$ has at least two circuits. Then G_1 and G_2 are 2-isomorphic.

Proof. By Lemma 4 (3), for each edge $e \in E(G_1)$ we have $L(G_1/e) = L(G_2/e)$. If G_1/e and G_2/e are 2-isomorphic for each edge $e \in E(G_1)$, then Lemma 6 implies that G_1 and G_2 are 2-isomorphic. So we may assume that for some edge $f \in E(G_1)$ we have $L(G_1/f) = L(G_2/f)$ but G_1/f and G_2/f are not 2-isomorphic.

We claim that G_1/f and G_2/f have no loops. Since $L(G_1/f)$ has at least two circuits, Lemma 7 implies that $\text{loop}(G_1/f) = \text{loop}(G_2/f)$. If $\text{loop}(G_1/f) \neq \emptyset$, then Corollary 5 implies that G_1/f and G_2/f are 2-isomorphic, a contradiction.

Since G_1/f and G_2/f are cosimple with four vertices and without loops, Lemma 10 implies that G_1/f and G_2/f are either 2-isomorphic to K_4 or to the graphs pictured in Figure 5. Since each vertex in K_4 has degree three and G_1 and G_2 are cosimple, neither G_1/f nor G_2/f is 2-isomorphic to K_4. So G_1/f and G_2/f are 2-isomorphic to the graphs pictured in Figure 5 with G_1 replaced by G_1/f and all other labeling the same. Let P be the non-trivial parallel class in G_1/f and G_2/f. For each $i \in \{1, 2\}$, let u_i and v_i be the end-vertices of f in G_i, let x_i be the vertex of degree at least four in G_i/f incident with e_i, and y_i be the vertex of degree at least four in G_i/f incident with e_3.

Since $|st_{G_i}(u_i)|, |st_{G_i}(v_i)| \geq 3$, the graph G_i is obtained from G_i/f by splitting x_i or y_i. Without loss of generality we may assume that G_1 is obtained from G_1/f by splitting x_i for each $i \in \{1, 2\}$.

We claim that $|E(G_1/f)| = 7$, that is, $|P| = 2$. Assume otherwise. Then there is a subset P' of P with $|P'| \geq 2$ such that P' is also a parallel class in G_1. Using a similar analysis to the one in the proof of 10.1 we have that P' is also a parallel class in G_2. Assume that e_1, e_2 are adjacent in G_1. Since a union of any two edges in P' and $\{e_1, e_2, e_3\}$ or $\{e_3, e_4, e_5\}$ is a circuit of $L(G_1)$, we deduce that $\{e_1, e_4, e\} \cup P'$ are contained in $st_{G_2}(u_2)$ or $st_{G_2}(v_2)$. Hence, $|P - P'| \leq 1$, implying that $(P - P') \cup \{f\}$ is a bond of G_2 with at most two edges, a contradiction as G_2 is cosimple. So e_1, e_2 are not adjacent in G_1. By symmetry we may assume that $st_{G_1}(v_i) = \{e_2, f\} \cup P'$. Since P' is a parallel class of G_2 and the union of $\{e_3, e_4, e_5\}$ and any two edges in P' is a circuit of $L(G_1)$, by symmetry we may assume that $\{e_4, f\} \cup P'$ are incident with v_2. Hence, $|P - P'| = 1$ and $st_{G_1}(u_1) = st_{G_2}(u_2) = (P - P') \cup \{e_1, f\}$. Set $\{e_6\} = P - P'$. See Figure 6. Then $\{e_1, e_2, e_3, e_5, e_6, f\}$ is a circuit of $L(G_1)$ but is not a circuit of $L(G_2)$, a contradiction. So $|E(G_1/f)| = 7$. Set $E(G_1/f) := \{e_1, e_2, \ldots, e_7\}$.

Since G_1 and G_2 are cosimple and $|E(G_1/f)| = 7$, we have $|st_{G_i}(u_i)| = |st_{G_i}(v_i)| = 3$ for each $i \in \{1, 2\}$. By symmetry, there are two cases to consider. First we consider the case $st_{G_1}(u_1) = \{f, e_1, e_2\}$. Since $\{e_1, e_2, e_3, e_4, e_5\}$ is a circuit of $L(G_1)$, by symmetry we can assume $st_{G_2}(v_2) = \{f, e_1, e_4\}$. Then $\{e_2, e_3, e_5, e_6, e_7, f\}$ is a circuit of $L(G_1)$ but is not a circuit of $L(G_2)$, a contradiction.

Secondly consider the case $st_{G_1}(u_1) = \{f, e_1, e_6\}$. Then $\{e_1, e_3, e_4, e_5, e_6\}$ is a circuit of $L(G_1)$. On the other hand, by symmetry and the analysis in the last paragraph we have $\{f, e_1, e_4\} \neq \{N_{G_2}(u_2), N_{G_2}(v_2)\}$. So $\{e_1, e_3, e_4, e_5, e_6\}$ is not a circuit of $L(G_2)$, a contradiction. □
Figure 6:

For convenience, Theorem 2 is restated here.

Theorem 12. Let G_1 be a 2-edge-connected graph such that $L(G_1)$ contains at least two circuits. Let G_2 be a graph with $L(G_1) = L(G_2)$. Then at least one of the following holds.

1. G_1 and G_2 are 2-isomorphic.
2. G_1 and G_2 are 2-isomorphic to subdivisions of K_4, where the edge set of an ear of G_1 is also the edge set of an ear of G_2.
3. G_1 and G_2 are 2-isomorphic to subdivisions of $K_{3,m,2,n}^n$ for some $m \in \{1, 2\}$ and $n \geq 2$, where the edge set of an ear of G_1 is also the edge set of an ear of G_2. Moreover, when $n \geq 3$, the n ears in G_1 having the same ends also have the same ends in G_2.
4. G_1 and G_2 are 2-isomorphic to the graphs pictured in Figure 1.

Proof. If some loop e of G_1 is also a loop of G_2, then by Corollary 5 we have that $G_1 \setminus e$ and $G_2 \setminus e$ are 2-isomorphic. So G_1 and G_2 are 2-isomorphic. Moreover, when some link of G_1 is a loop of G_2, Lemma 7 implies that (4) holds. Therefore, we may assume that neither G_1 nor G_2 has loops. By Whitney’s 2-Isomorphism Theorem we can further assume that G_1 and G_2 are connected, and each series class of G_i is an ear of G_i for each $i \in \{1, 2\}$. Using Lemma 8 we may assume that a subset of $E(G_i)$ is the edge set of an ear of G_1 if and only if it is the edge set of an ear of G_2. Therefore, we may assume that G_1 and G_2 are cosimple.

Since the rank of $L(G_i)$ is equal to $|V(G_i)|$, we have $|V(G_1)| = |V(G_2)|$. When $|V(G_1)| \leq 4$, Lemmas 9 and 10 imply that the result holds. We claim that when $|V(G_1)| \geq 5$ we have that G_1 and G_2 are 2-isomorphic. When $|V(G_1)| = 5$, the claim follows from Lemma 11. So we may assume that $|V(G_1)| \geq 6$. For each edge $e \in E(G_1)$, by Lemma 4 (3) we have $L(G_1/e) = L(G_2/e)$. By induction G_1/e and G_2/e are 2-isomorphic. So G_1 and G_2 are 2-isomorphic by Lemma 6.

Acknowledgements

The authors thank the referee pointing out a short proof to our main result and other improvements.
References

[1] R. Chen. The excluded minors for the class of matroids that are graphic or bicircular lift. submitted.

