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Abstract

We establish the existence of an irreducible representation of An whose dimension
does not occur as the dimension of an irreducible representation of Sn, and vice
versa. This proves a conjecture by Tong-Viet. The main ingredient in the proof is
a result on large prime factors in short intervals.
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1 Introduction and statement of results

To what extent are groups determined by their characters? On the one hand, there are
examples known of non-isomorphic groups with exactly the same character table, e.g.
Q8 and D8. On the other hand, for nonabelian simple groups, a conjecture by Huppert
predicts quite a different behaviour.

Conjecture. Let G be a finite group and H be a finite nonabelian simple group such that
the sets of character degrees of G and H are the same. Then there exists an abelian group
A such that G ∼= H × A.

This conjecture has been verified for many simple groups, but remains open for the
alternating groups An when n > 14.

In this regard, Tong-Viet proved that the multiset of dimensions of irreducible rep-
resentations of An determines An in [8]. He conjectured that the set of dimensions of
irreducible representations is different for An and Sn in [7], and proved it for the special
case that n is of the form 2p+ 1.

We will prove the following theorem, which proves Tong-Viet’s conjecture, and gives
some indication in favour of Huppert’s Conjecture.
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Theorem 1.1. The set {dim ρ | ρ irreducible representation of Sn} is not equal to the set
{dim ρ | ρ irreducible representation of An}, for all n > 3.

In fact, for n > 5, the proof is constructive and gives a specific irreducible representa-
tion of Sn whose dimension does not occur as a dimension of any irreducible representation
of An, and a specific irreducible representation of An whose dimension does not occur as
a dimension of any irreducible representation of Sn.

The proof depends on the size of n in the following way. For large n we give a proof
using a lemma on the existence of prime numbers in relatively short intervals. For medium
sized n we verify this lemma by computer, and for very large n this is implied by a theorem
by Schoenfeld [6]. For small n on the other hand, we need to verify the theorem directly,
with the help of a computer.

The proof uses the well known description of the irreducible representations of Sn and
An in terms of Young diagrams of partitions. We introduce some notation. A partition of
a natural number n is a non-increasing sequence λ = (λ1, λ2, · · · , λs) of natural numbers
with sum

∑
λi = n. The corresponding Young diagram consists of boxes for each i, j > 1

such that j 6 λi. We use the matrix notation and refer to the box on the i-th row and
j-th column by (i, j). The conjugate partition λ∗ is the partition corresponding to the
transpose of the diagram corresponding to λ. Given a box at position (i, j), its arm is
the set of boxes at positions {(i, k) | j < k} and its leg is the set of boxes at positions
{(k, j) | i < k}. The arm length (respectively leg length) of a box is defined as the
cardinality of its arm (respectively its leg). The hook length h(λ)(i,j) of a box is the sum
of its arm length and leg length plus one. The hook product of a diagram is the product
of the hook lengths of all boxes. The hook product of the diagram corresponding to the
partition λ will be denoted by Π(λ).

The irreducible representations of Sn correspond one-to-one to partitions λ of n. For
each partition λ, the dimension of the irreducible representation ρλ can be recovered from
the hook product Π(λ) of the Young diagram corresponding to λ through the formula
dim ρλ = n!

Π(λ)
.

For An, the correspondence is a bit more subtle. Each pair (λ, λ∗) of conjugate par-
titions of n, where λ 6= λ∗, corresponds to an irreducible representation ρλ of An, where
the formula for the dimension is the same as above; dim ρλ = n!

Π(λ)
. Each self-conjugate

partition λ corresponds to a pair of irreducible representations (ρλ,1, ρλ,2), both having
dimension dim ρλ,i = n!

2Π(λ)
. For details we refer the reader to [3, Chapter 4 and 5]

2 Proofs

We will use two facts about prime numbers in short intervals. The first fact holds only for
k > 337, and this is the reason why we have to restrict to this range in the main theorem
of this section.

Lemma 2.1. For all integers k > 337 the interval [k−b k
20
c, k] contains at least two prime

numbers.
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Proof. A result by Schoenfeld [6] states that there is always a prime in (x, x + x
16597

] for
all x > 2010760, which proves the lemma for k > 2010760. We have checked the result
for the remaining values of k with the help of a computer.

This type of short interval suffices for our purposes, but it should be noted that much
stronger results exist, at least asymptotically. It is known [1] that there exists an integer
k0 such that for all k > k0 there is a prime in the interval [k − k21/40, k]. However, the
result is ineffective – it gives no upper bound on k0.

The following is a special case of Lemma 3.3 from [2].

Lemma 2.2. If 1 6 h 6 y < k are integers for which(
k

h

)h
> (k + h)π(y),

then one of the integers k + 1, . . . , k + h has a prime factor bigger than y.

We apply this lemma to guarantee the existence of large prime factors in the type of
short intervals we need.

Lemma 2.3. For all integers k > 337 and 1
2

√
k 6 h 6 3k

20
, there exists a prime p > 3h

such that

p |
h∏
i=1

(k + i).

Proof. If k > 2010760, and h 6 3k
1000

, we use Lemma 2.2, with y = 3h. We plug in the
inequality π(y) 6 1.25506 y

log(y)
proved by Schoenfeld in [6]. It suffices to show that(
k

h

)h
>

(
1003

1000
k

)3.77 h
log(3h)

.

Upon taking logarithms, we need to show that

log(3h) log(k/h) > 3.77 log(k) + 3.77 log

(
1003

1000

)
.

The left hand side is a quadratic function in log(h) with negative leading coefficient, thus
in any interval the minimum value is in one of the endpoints. Thus we check that the
equality holds for h = 1

2

√
k and for h = 3k

1000
. Putting h = 1

2

√
k, we need to show that(

log(3/2) +
1

2
log(k)

)(
log(2) +

1

2
log(k)

)
> 3.77 log(k) + 3.77 log

(
1003

1000

)
.

This inequality holds whenever log(2) + 1
2

log(k) > 7.54, which holds from k > 885322.
Setting h = 3k

1000
, we need to show that

log

(
9

1000
k

)
log

(
1000

3

)
> 3.77 log(k) + 3.77 log

(
1003

1000

)
,
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which is valid for k > 676712. This proves the lemma for all k > 2010760, and h 6 3k
1000

.
If k > 2010760 and 3k

1000
6 h 6 3k

20
, we have the stronger result by Schoenfeld [6] which

tells us that there is a prime in (x, x+ x
16597

] for x > 2010760, which implies us that there
is a prime p in [k + 1, k + h], which is automatically bigger than 3h. This proves the
lemma for all k > 2010760.

In the remaining range of 337 6 k 6 2010760 we have checked the statement of the
lemma with the help of a computer. In fact, a much stronger statement holds in this
range of k. For each 337 6 k 6 2010760, with 51 exceptions, there is a prime in the
interval [k + 1, k + b

√
k/2c]. We run through the prime pairs (pn, pn+1) and check that

pn +
√
pn/2 > pn+1, so that for all k ∈ [pn, pn+1), pn+1 ∈ [k + 1, k + b

√
k/2c]. For the

exceptional values of k we check the lemma directly.

We need to include the possibility of h being as big as a linear function in k because
the primes we get from Lemma 2.1 could be smaller than k by a linear term in k. Much
stronger results are available in shorter intervals, for example Ramachandra proved [5]
that for a certain α < 1/2, there is an integer in the interval [x, x+xα] with a prime factor
as big as x15/26. The strongest result to date of this kind is [4], namely the existence of a
prime factor of magnitude x0.738... in the interval [x, x+ x1/2].

We will repeatedly make use of the following two lemmata.

Lemma 2.4. For all nonnegative integers x, y such that x− y is nonnegative, we have

(x+ y)!(x− y)! 6 x!2
e2

2π
min

(
e

x+y
x−y

y2

x , e2 y2

x

)
.

Proof. We use the inequalities
√

2πnn+1/2e−n 6 n! 6 enn+1/2e−n, combined with the
following computations

(x+ y)x+y(x− y)x−y

x2x
=

(x2 − y2)x

x2x

(
x+ y

x− y

)y
=

(
1− y2

x2

)x(
1 +

2y

x− y

)y
6 e−

y2

x
+ 2y2

x−y = e
x+y
x−y

y2

x ,

(x+ y)x+y(x− y)x−y

x2x
= (1 +

y

x
)x+y(1− y

x
)x−y

6 e
y
x

(x+y)− y
x

(x−y) = e2 y2

x .

Lemma 2.5. Let λ be a partition of n. Let h be the hook length of a box not on position
(1, 1). If 2h− n > 0, then (2h− n)! divides the hook product Π(λ).

Proof. Since the hook length increases when decreasing either of the coordinates of a box,
and since conjugate partitions have the same hook product, we may assume that the box
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(1, 2) has hook length h′ > h. Let t = λ1−λ2 and let a be the leg length of the box (1, 2).
Then h′ = a+ λ1 − 1. The total number of boxes is at most n, so

2(a− 1) + λ1 + λ2 6 n

⇐⇒ 2h′ − λ1 + λ2 6 n

⇐⇒ t > 2h′ − n,

thus also t > 2h − n. It now suffices to note that the hook lengths of the t boxes in
positions {(1, k) | λ2 < k 6 λ1} are t, t− 1, . . . , 1.

The following three lemmata will be useful in bounding hook products of partitions.

Lemma 2.6. Let N be a natural number. For any tuple (c1, c2, . . . , ck) of positive integers,
we have

k∏
j=1

(N − j + cj) 6
N

N −
∑k

j=1 cj

k∏
j=1

(N − j).

Proof. When (c1, c2, . . . , ck) = (1, 1, · · · , 1), we have equality for every k. For the induc-
tion step, assume that the statement holds for the tuple (c1, c2, . . . , ck). We will show
that the statement then also holds for the tuple (c1, c2, . . . , ci + ck, . . . , ck−1). Note that
any tuple of positive integers can be reached using this operation multiple times, starting
from a tuple (1, 1, . . . , 1).

In order to show the induction step, it suffices to check that

N − i+ ci + ck
(N − k + ck)(N − i+ ci)

6
1

N − k
.

Indeed, this reduces to

(N − k)(N − i+ ci + ck) 6 (N − k + ck)(N − i+ ci)

⇐⇒ ck(N − k) 6 ck(N − i+ ci)

⇐⇒ i 6 k + ci.

Lemma 2.7. Let λ = (A+ 1, 1B) be a hook partition. Let τ be a partition of t with first
part τ1 6 A and with number of parts τ ∗1 6 B. Let µ be the partition obtained by inserting
the Young diagram of τ into positions {(i, j) | 2 6 i 6 τ1 + 1, 2 6 j 6 τ ∗1 + 1} of the
Young diagram of λ. Then

Π(µ) 6 Π(λ)Π(τ)
A+ 1

A+ 1− t
B + 1

B + 1− t
.

Proof. The hook product Π(µ) of µ equals

Π(τ)h(λ)(1,1)

τ1∏
j=1

(h(λ)(1,j+1) + τ ∗j )
A∏

j=τ1+1

h(λ)(1,j+1)

τ∗1∏
i=1

(h(λ)(i+1,1) + τi)
B∏

i=τ∗1 +1

h(λ)(i+1,1).
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Now note that h(λ)(1,j+1) = A+ 1− j and h(λ)(i+1,1) = B + 1− i. Using Lemma 2.6 with
N = A+ 1 and with the conjugate partition τ ∗, we get

τ1∏
j=1

(h(λ)(1,j+1) + τ ∗j )
A∏

j=τ1+1

h(λ)(1,j+1) 6
A+ 1

A+ 1− t
A!.

Similarly using Lemma 2.6 with N = B + 1 and with the partition τ , we get

τ∗1∏
i=1

(h(λ)(i+1,1) + τi)
B∏

i=τ∗1 +1

h(λ)(i+1,1) 6
B + 1

B + 1− t
B!.

Thus

Π(µ) 6 Π(λ)Π(τ)
A+ 1

A+ 1− t
B + 1

B + 1− t
,

since Π(λ) = (A+B + 1)A!B!.

Lemma 2.8. Let λ = (A + 1, B) be a partition. Let τ = (τ1, . . . , τs) be a partition of t
with first part τ1 6 B. Let µ be the partition (A+ 1, B, τ1, . . . , τs). Then

Π(µ) 6 Π(λ)Π(τ)
A+ 3

A+ 3− t
B + 1

B + 1− t
.

Proof. The hook product of µ equals

Π(µ) = Π(τ)

τ1∏
j=1

(h(λ)(1,j) + τ ∗j )
A+1∏

j=τ1+1

h(λ)(1,j)

τ1∏
i=1

(h(λ)(2,i) + τ ∗i )
B∏

i=τ1+1

h(λ)(2,i).

Now note that h(λ)(1,j) = A + 3− j for j 6 B and h(λ)(1,j) = A + 2− j for j > B > τ1.
As before we use Lemma 2.6 with N = A + 3 and with the conjugate partition τ ∗. We
get

τ1∏
j=1

(h(λ)(1,j) + τ ∗j )
A+1∏

j=τ1+1

h(λ)(1,j) 6
A+ 3

A+ 3− t
(A+ 2)!

A+ 2−B
.

Now note that h(λ)(2,i) = B + 1− i. Again we use Lemma 2.6, with N = B + 1 and the
same partition τ ∗. We get

τ1∏
i=1

(h(λ)(2,i) + τ ∗i )
B∏

i=τ1+1

h(λ)(2,i) 6
B + 1

B + 1− t
B!.

Thus

Π(µ) 6 Π(λ)Π(τ)
A+ 3

A+ 3− t
B + 1

B + 1− t
,

since Π(λ) = (A+2)!B!
A+2−B .
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The following lemma contains a computation that will be used several times in the
proof of Theorem 2.10. Neither the assumption nor the conclusion is sharp, but it suffices
for our purposes.

Lemma 2.9. Let k, r, ε be three integers satisfying

k > 337, r 6
3k

20
+ 1, 0 6 ε 6 2r + 1,

and let η be zero or one. Assume that

X =
2e2

π
e

k+r
k−r

r2

k ε!

(
1

k + r − ε

)ε−η
>

1

2
.

Then we can conclude that either

r − 2ε >
√
k/2, and 5ε 6 r − 2,

or we have that ε ∈ {0, η}.

Proof. First, note that

k + r

k − r
6

23
20
k + 1

17
20
k − 1

6
23
20

337 + 1
17
20

337− 1
= 1.361 . . . 6 7/5.

We assume that ε /∈ {0, η} and we will show that ε is quite small, and r quite large. We
use that ε! 6 e

√
ε(ε/e)ε for ε > 1, and that

eε 6 6e
k

20
+ 3e 6

17

20
k − 2 6 k − r − 1 6 k + r − ε, (k > 337) (2.1)

to bound

X 6
2e3

π
e

7r2

5k
√
ε

(
1

e2

)ε
(k + r − ε)η. (2.2)

We can now prove that ε 6 7
10
r2

k
+ k1/3. Assume for the sake of contradiction that ε

were bigger. Then we could bound

X 6
2e3

π

√
(6 k

20
+ 3)(k + 3k

20
+ 1)η

e2k1/3
<

1

2
, (k > 337)

a contradiction. Thus we have that

ε 6
7

10

r2

k
+ k1/3. (2.3)

Now that we know that ε is fairly small, we can use this to show that ε is even smaller.
Note that

7

10

r2

k
+ k1/3 6

7

10

(
3

20
+

1

337

)(
3k

20
+ 1

)
+

k

3372/3
6 0.108 + 0.037k.
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In place of (2.1), we have

e3ε 6 e3(0.108 + 0.037k) 6
17

20
k − 2 6 k − r − 1 6 k + r − ε, (k > 337) (2.4)

so that in place of (2.2) we even have

X 6
2e3

π
e

7r2

5k
√
ε

(
1

e4

)ε
(k + r − ε)η. (2.5)

As we concluded our bound (2.3) from (2.2), we can now conclude from (2.5) that

ε 6
7

20

r2

k
+
k1/3

2
. (2.6)

We now claim that r > 7
5

√
k. Assume for the sake of contradiction that r were smaller.

Then, using the definition of X, we could bound

X 6
2e2

π
e(7/5)3 ε!

(k + r − ε)ε
(k + r − ε)η. (2.7)

Since ε!
(k+r−ε)ε is a decreasing function of ε in our range of ε (e.g. in the range ε 6 k/3),

we may bound (2.7) by putting ε = η + 1 and obtaining

X 6
2e2

π

e(7/5)32

k − ε
<

1

2
, (k > 337)

a contradiction. Hence r > 7
5

√
k. This, together with the bound (2.6) is enough to prove

that the two desired inequalities hold.

r − 2ε > r

(
1− 7r

10k

)
− k1/3 > r

(
1− 21

200
− 7

10k

)
− k1/3

> 0.89r − k1/3

> 1.246
√
k − k1/3 >

√
k

2
, (k > 337)

5ε 6
7

4

r2

k
+

5

2
k1/3 6 r

(
21

80
+

7

4k

)
+

5

2
k1/3

6 0.227r +
5

2
k1/3

6 r − 2 +

(
5

2
k1/3 + 2− 0.733

7

5

√
k

)
6 r − 2 + 0.56. (k > 337)

Since ε and r are integers, this implies 5ε 6 r − 2.

We can now give the proof of Theorem 1.1 for big enough n.
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Theorem 2.10. The set {dim ρ | ρ irreducible representation of Sn} is not equal to the
set {dim ρ | ρ irreducible representation of An}, for all n > 677.

Proof. For odd n = 2k + 1, we consider the partition

λk = (k + 1, 1k),

whereas for even n = 2k + 2, we consider the partition

λ
′

k = (k + 1, 2, 1k).

Since the proof for odd and even n is completely analogous, we only give the proof for
odd n. The partition λk has a symmetric Young diagram corresponding to an irreducible
representation ρk in Sn, and a pair of irreducible representations of An which we will
denote by (ρk,1, ρk,2). Then dim ρk = 2 dim ρk,i. The hook product of λk is

Πk = (2k + 1)k!2. (2.8)

To prove that there is no other irreducible representation of either Sn or An with the same
dimension as ρk or ρk,i, we show that there does not exist any other partition with a hook
product equal to Πk, 2Πk or 1

2
Πk, so that the result follows by the hook product formula.

We first reduce the possible shape of a partition with a such hook product by using
Lemma 2.1 and considering two primes p, q in the interval [k −

⌊
k
20

⌋
, k]. Since p2q2 | Πk,

the diagram contains two boxes of hook length a multiple of p and two boxes of hook length
a multiple of q. In the case of n even, we have Π(λ

′

k) = Π
′

k = (2k + 1)(k + 1)2(k − 1)!2.
In order to guarantee that again p2q2 | Π′k, we must apply Lemma 2.1 to k − 1, which is
why the theorem assumes k > 338.

A partition of 2k+ 1 cannot have a box of hook length 3p or higher since 3p > 2k+ 1.
So unless there is a box of hook length 2p, there are two boxes of hook length p.

The first step is to show that there cannot both be a box of hook length 2p and 2q.
Assume for the sake of contradiction that there are boxes of hook length 2p and 2q. Then
there is a box not on position (1, 1) with hook length at least 2 min(p, q). By Lemma 2.5
we have that (4 min(p, q)− 2k − 1)! divides the hook product of the partition. However,
since certainly

4 min(p, q)− 2k − 1 > 2k − 4

⌊
k

20

⌋
− 1 >

3

2
k,

Lemma 2.1 implies that there is a prime in the interval [k+ 1, 4 min(p, q)− 2k+ 1] which
divides the hook product but does not divide Πk, 2Πk or 1

2
Πk.

So, possibly switching q for p, we may assume the diagram to have the shape indicated
in Figure 1. We denote the arms of the boxes by α and γ, and the legs of the boxes by β
and δ We denote the number of boxes in α, β, γ, δ by a, b, c, d. Thus{

a+ b = p− 1

c+ d = p− 1
.
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Figure 1: Shape of hypothetical partition with hook product Πk

Now note that the two boxes of hook length p together with their arms and legs already
cover 2p or 2p− 1 of the 2k+ 1 boxes, so there are at most 2k+ 1− (2p− 1) 6 2

⌊
k
20

⌋
+ 2

boxes elsewhere. One important consequence is that if it holds that c > 2
⌊
k
20

⌋
+2, we can

conclude that γ lies on the second row; a row above α or between α and γ would imply
there to be more than 2p+ c > 2k + 1 boxes. Similarly, if b > 2

⌊
k
20

⌋
+ 2 then β is on the

second column.
We now distinguish three cases of different qualitative behaviour.

Case one : a, d 6 k − 3
⌊

k
20

⌋
− 3

Figure 2: Shape of partition in Case 1

In this case,

c = p− 1− d > p− 1− k + 3

⌊
k

20

⌋
+ 3 > 2

⌊
k

20

⌋
+ 2,

which implies that γ lies on the second row. Similarly, β lies on the second column. This
fixes the position of the two boxes of hook length p to be (1, 2) and (2, 1). Then we can
assume that Case 1 does not occur; consider the prime q. There cannot be a box of hook
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length 2q since this would be the upper left box and we would have

2q = a+ d+ 3 6 2k − 6

⌊
k

20

⌋
− 3 < 2k − 4

⌊
k

20

⌋
6 2q,

which is impossible. After switching q for p, we are no longer in Case 1 since (1, 2) and
(2, 1) do not have hook length q.
Case two : a, d > k − 3

⌊
k
20

⌋
− 3

Figure 3: Shape of partition in Case 2

This implies that α is on the first row and δ is on the first column. Denote by ε the
number of boxes not on the first row or column. Let r be such that the first row consists
of k + r − ε+ 1 boxes. It follows that the first column consists of k − r + 1 boxes. Since
k − r + 1 > 2 + d > k − 3b k

20
c, we have that

r 6 3

⌊
k

20

⌋
+ 1.

Since k + r − ε+ 1 > 2 + a > k − 3b k
20
c, we also have that

ε 6 6

⌊
k

20

⌋
+ 2.

We may use Lemma 2.7 to bound the hook product of the partition

Π 6 (2k + 1− ε)(k + r − ε)!(k − r)!ε! k + r − ε+ 1

k + r − 2ε+ 1

k − r + 1

k − r − ε+ 1

6 4(2k + 1)(k + r)!(k − r)! 1

(k − r − ε)ε
ε!,

since the two last factors are easily seen to be bounded by 2 by using the upper bounds
on ε and r. We use Lemma 2.4 to further bound the hook product

Π 6 Πk
2e2

π
e

k+r
k−r

r2

k

(
1

k + r − ε

)ε
ε!.
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Since by assumption Π is either 1
2
Πk, Πk or 2Πk, we deduce that

1

2
6

2e2

π
e

k+r
k−r

r2

k

(
1

k + r − ε

)ε
ε!.

This means that our situation satisfies the conditions of Lemma 2.9, with η = 0, and
we may conclude that either ε = 0 or r − 2ε >

√
k/2, and 5ε 6 r − 2. We deal with the

case ε 6= 0 first.
We now consider the prime factors of the hook product. We see that the hook product

contains as factors (k + r − 2ε)!, and (k − r − ε)!. Since r − 2ε 6 r − 2 6 3
20
k, and

r − 2ε >
1

2

√
k,

we can consider, according to Lemma 2.3 a prime p′ > 3(r − 2ε) such that p′ | (k+r−2ε)!
k!

.
Now since 5ε 6 r − 2, we deduce that p′ > 2r − ε and so p′ - k!

(k−r−ε)! , and arrive at a

contradiction; there are more factors of p′ in Π than there are in Πk. We conclude that
no partition satisfying the conditions of Case 2 with ε 6= 0 has a hook product equal to
1
2
Πk,Πk, or 2Πk.

Finally, we address the case ε = 0. The hook product (2k + 1)(k + r)!(k − r)! is then
strictly bigger than Πk, and if r 6 1

2

√
k were to hold, smaller than

(2k + 1)k!2
e2

2π
e

7r2

5k <
e2

2π
e7/20Πk < 2Πk.

Thus we have r − 2ε > 1
2

√
k and we may finish as above.

Case three : a > k − 3
⌊

k
20

⌋
− 3 > d.

Figure 4: Shape of partition in Case 3

As in Case 1, we have that c > 2
⌊
k
20

⌋
+2, and so we immediately deduce that γ lies on

the second row, so that the boxes of hook length p lie on the first and second row. Now
consider the prime q. There cannot be a box of hook length 2q because its arm cannot
cover both α and γ and the total number of boxes would be at least

2q + min(a, c) > 2k + 2,
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more than the total number of available boxes. Thus there are two boxes of hook length
q. We now claim that these also lie on the first and second row. If not, since a box of
hook length q not on the first two rows can only lie in one of β and δ, the number of boxes
would be at least

q + min(b, d) + a+ c+ 1 = q + p+ min(a, c) > 2k + 2.

Thus, there are boxes of hook length p and q on both the first and second row. This
forces δ to be very short. Assume that p is the largest of the two primes. Then δ is
disjoint from the two hooks of the boxes of hook length q, so d+ 2 + 2q 6 2k + 1, so

d 6 2k − 1− 2q 6 2

⌊
k

20

⌋
− 1.

If q is the largest of the two primes, then d+ 2 + p+ q 6 2k + 1 and we also deduce that
d 6 2

⌊
k
20

⌋
− 1.

Denote by ε the number of boxes not on the first or second row. Let r be such that
the first row consists of k + r − ε + 1 boxes. It follows that the second row consists of
k− r boxes, and so ε 6 2r+ 1. Since k− r > 1 + c = p− d > k− 3b k

20
c+ 1, we have that

r 6 3

⌊
k

20

⌋
− 1 6

3

20
k, and ε 6 6

⌊
k

20

⌋
− 1.

We use Lemma 2.8 to bound the hook product of this partition

Π 6
(k + r − ε+ 2)!(k − r)!

2r − ε+ 1
ε!
k + r − ε+ 3

k + r − 2ε+ 3

k − r + 1

k − r + 1− ε

6 4
(k + r)!(k − r)!

(2r − ε+ 1)(k + r − ε+ 2)ε−2
!ε!,

since the two last factors are easily seen to be bounded by 2 by using the upper bounds
on ε and r. We use Lemma 2.4 to further bound the hook product

Π 6 (2k + 1)k!2
2e2

π
e

k+r
k−r

r2

k

(
1

k + r − ε

)ε−1

ε!.

Since by assumption Π is either 1
2
Πk, Πk or 2Πk, we deduce that

1

2
6

2e2

π
e

k+r
k−r

r2

k

(
1

k + r − ε

)ε−1

ε!.

This means that our situation satisfies the conditions of Lemma 2.9, with η = 1 and
we may conclude that either ε = 0, 1 or r− 2ε >

√
k/2, and 5ε 6 r− 2. We deal with the

case ε 6= 0 first. We now consider the prime factors of the hook product. We see that the
hook product contains as factors (k+r−2ε)!

2r−ε+2
, and (k − r − ε)!. Since r − 2ε 6 r 6 3

20
k, and
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r − 2ε >
1

2

√
k,

we can consider, according to Lemma 2.3 a prime p′ > 3(r − 2ε) such that p′ | (k+r−2ε)!
k!

.
Now since

5ε 6 r − 2,

we deduce that p′ > 2r − ε + 2 and so p′ - k!
(k−r−ε)! , and arrive at a contradiction; there

are more factors of p′ in Π then there are in Πk. We conclude that no partition satisfying
the conditions of Case 3 with ε 6= 0, 1 has a hook product equal to 1

2
Πk,Πk, or 2Πk.

Finally, we consider the cases ε = 0, 1. If ε = 0, then the hook product of the partition
is too big;

(k + r + 2)!(k − r)!
2r + 2

=
k + r + 2

2r + 2
(k + r + 1)(k + r)!(k − r)! > 2Πk.

If ε = 1, then the hook product equals

(k + r + 2)!(k − r + 1)!

(2r + 1)(k + r + 1)(k − r)
=
k + r + 2

2r + 1

k − r + 1

k − r
(k − r)!(k + r)!.

Since for r = 0, the hook product does not equal 1
2
Πk,Πk, or 2Πk, the hook product is

smaller than k
2
(k−r)!(k+r)!. It would be strictly smaller than 1

2
Πk unless (k−r)!(k+r)! >

2k!2, thus, using Lemma 2.4
e2

2π
e

2r2

k > 2.

This immediately implies that we have r >
√
k/2, and we can proceed as in the case

ε 6= 0.
The fourth case, d > k−3

⌊
k
20

⌋
−3 > a, corresponds to the partitions conjugate to those

that we considered in Case 3. Since conjugate partitions have the same hook product,
no partition in this case has hook product equal to 1

2
Πk,Πk, or 2Πk, which finishes the

proof.

3 Computer check

In this section we describe the computer calculations we performed to check the remainder
range of n in Theorem 1.1. We start with the odd case where n = 2k + 1, and we
postpone the discussion regarding even n to the end of this section. We have used the
computer algebra program SAGE, because of its great functionality for integer partitions.
The SAGE worksheet we used is available on the author’s website. We will say that a
partition µ = (µ1, . . . , µs) is contained in a partition ν = (ν1, . . . , νr) if s 6 r and µi 6 νi
for all i = 1, . . . , s. The following fact completes the proof of Theorem 1.1 for all odd
n > 5. Recall that λk = (k + 1, 1k) and Πk = (2k + 1)k!2.
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Fact 1. The only partition of 2k + 1 with hook product equal to 1
2
Πk, Πk, or 2Πk, is λk,

for all 2 6 k 6 337.

The first step is to use a naive algorithm for all 2 6 k 6 34, that is, simply running
over all partitions of 2k + 1 and computing the hook product; this can be done in 30
minutes.

We define our auxiliary primes as follows. We let q < p 6 k be the two biggest primes
in [1, k], and let r be the biggest prime in [1, bk/2c]. We note the following preliminary
claim, which implies all inequalities we use further on.

Claim 3.1. For all k ∈ [35, 337], and q, p, r as defined above, we have that{
3q > 2k + 1

2q + p−1
2

+ 2 > 2k + 1
.

When k 6= 40, 57, we furthermore have that
2q + r > 2k + 1

q + 3r > 2k + 1

3r < 2q

5r > 2k + 1

.

Verification. This is a straightforward check by computer.

The strategy is now to use the fact that p2q2r4 | Πk, to restrict the possibilities for the
shape of the partitions that have 1

2
Πk, Πk, or 2Πk as a hook product.

Claim 3.2. For all k ∈ [35, 337], a partition of 2k + 1 with hook product equal to 1
2
Πk,

Πk, or 2Πk, cannot have a box of hook length 2p or 2q.

Verification. We first show that a hypothetical box of hook length 2p or 2q should lie on
position (1, 1). If that is not the case, Lemma 2.5 gives us that (4q− 2k− 1)! divides the
hook product. Note that by definition 4q−2k−1 < 2k+1. However, one may verify that
there is prime in [k + 1, 4q − 2k − 1] for all 35 6 k 6 337, which then divides the hook
product of this partition but does not divide 1

2
Πk, Πk, or 2Πk. So a box of hook length

2p or 2q can only be present on position (1, 1).
Now we eliminate the possibility that the box on position (1, 1) has hook length 2p.

We use a computer to run over all partitions of 2k + 1 having a box of hook length 2p
on position (1, 1), and having a box of hook length q in both the first row and column –
which they necessarily have since 2p + q > 2k + 1. Denote by a the number of boxes in
the leg of the box of hook length q on position (1, c+ 1), and let b be the number of boxes
in the arm of the box of hook length q on position (d + 1, 1). Since this is a partition,
b > c ⇐⇒ a > d. Because conjugate partitions have the same hook product, we may
assume c > d. Furthermore it holds that

2p = 2q − 1 + d+ c− a− b,
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and since the total number of boxes should be at most 2k + 1,

2p+ bd+ max(a(c− b), 0) + max(c(a− d), 0) 6 2k + 1. (3.1)

We will check for all possible tuples (a, b, c) – which fixes the value of d – that the
hook product of all corresponding partitions does not equal 1

2
Πk,Πk or 2Πk. We bound the

range of the variables using the inequalities a+b+2p 6 2k+1 and c+d−1+2q−1 6 2k+1.
We run over the tuples (a, b, c) in the following range

a ∈ [0, 2k + 1− 2p]

b ∈ [0, 2k + 1− 2p− a]

c ∈ [1, 2k + 1− 2q + 1]

d = 2p− 2q + 1− c+ a+ b

,

and in each loop we first check that (3.1) holds, that 1 6 d 6 c and that b > c⇐⇒ a > d
holds. Then we compute the hook products of all partitions of this form. To make sure
we only consider partitions corresponding to the described situation, we distinguish two
cases. If b < c, we check all partitions containing

(c+ q − a, (c+ 1)a, (b+ 1)d−a, 1q−b−1),

and which are contained in

((c+ q − a)a+1, cd−a−1, (b+ 1)q−b).

If b > c, we check all partitions containing

(c+ q − a, (b+ 1)d, (c+ 1)a−d, 1q−b−1−(a−d)),

and which are contained in

((c+ q − a)d, (b+ 1)a−d+1, cq−b−1−(a−d)).

However, this check is impractically slow to implement, in particular for those k with
small q. Therefore, we consider also the position of the four boxes that have hook length
a multiple of r, when k 6= 40, 57. Since 2p+ r > 2k + 1, no box of hook length at least r
can occur outside the first row or column. Since 3r + q > 2k + 1, no box of hook length
at least 3r can occur on the first row or column, and we deduce that a box of hook length
2r (and r) must be present in both the first row and column. We may thus, for every
k 6= 40, 57, replace q by 2r to significantly speed up the algorithm.

Finally we check for the case of a box with hook length 2q on position (1, 1), and boxes
of hook length p on both the first row and column, completely analogously as above with
p and q interchanged. Again, since 2q + r > 2k + 1 and 3r + p > 2k + 1, we may use 2r
instead of p for k 6= 40, 57.

This check has been successfully performed for all integers k ∈ [35, 337] in one hour.
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We now reduce the possible shape of a partition of 2k+ 1 with hook product 1
2
Πk,Πk,

or 2Πk to three qualitative cases.

Claim 3.3. For all k ∈ [35, 337], a partition of 2k+ 1 with hook product 1
2
Πk,Πk, or 2Πk

either has boxes of hook length p and q on both the first row and column, on both the first
and second row, or on both the first and second column.

Verification. Since 3q > 2k+1, there cannot be any boxes of hook length 3q or larger. By
Claim 3.2, boxes of hook length 2p or 2q are also impossible, so that we have two boxes
of hook length p and two boxes of hook length q. Denote the arms and legs of the two
boxes of hook length p by α, β, γ, δ, and let a, b, c, d be the number of boxes in α, β, γ, δ,
as in the proof of Theorem 2.10. Each box of hook length p has one leg containing at
least p−1

2
boxes. There are then four cases to be distinguished:

Case 1: a, c > p−1
2

. Since 2p− 1 + p−1
2
> 2k+ 1, this means that α and γ and are on the

first and second row. If there would be a box of hook length q not on the first two rows,
then the number of boxes would be at least p+ q + (p− 1)/2 > 2k + 1, a contradiction.
Case 2: a, d > p−1

2
. As before, this implies that α and δ are on the first row and column.

If there would a box of hook length q not on the first row or column, then the number of
boxes would be at least 2q + (p− 1)/2 + 2 > 2k + 1, contradiction.
Case 3: b, c > p−1

2
. As before, this implies that β and γ are on the second row and

column, so that the boxes of hook length p are in positions (1, 2) and (1, 2). It follows
that a > c − 1 > p−3

2
, and likewise d > p−3

2
. There can potentially be a box of hook

length q on position (2, 2), but the other box of hook length q has one coordinate at least
3. Thus the number of boxes is at least p + q + p−1

2
> 2k + 1, which is a contradiction,

and so this case cannot occur.
Case 4: b, d > p−1

2
. This occurs exactly for the conjugates of the partitions in Case 1.

This then corresponds to the case where there is a box of hook length p and q are on both
the first and second column.

We thus have 3 possible configurations of the boxes of hook length p and q. In the
following two claims, we check that in each of the 3 cases, such partitions do not have
hook product equal to 1

2
Πk,Πk, or 2Πk.

Claim 3.4. For all k ∈ [35, 337], a partition of 2k+ 1 with hook product 1
2
Πk,Πk, or 2Πk

cannot have boxes of hook length p and q on both the first and second row.

Verification. We introduce some notation. Let the boxes of hook length p be on positions
(2, x) and (1, y), with legs numbering a and c boxes respectively, and let the boxes of hook
length q be on positions (2, z) and (1, u), with legs containing b and d boxes respectively.
The number of boxes on the first and second row will be denoted by R1 and R2.

We first state some immediate observations using the definition of the hook length
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and the fact that this is a partition,
x+ p− a− 1 = R2

z + q − b− 1 = R2

y + p− c− 1 = R1

u+ q − d− 1 = R1

,


x < y

x < z

y < u

z < u

,

{
a > b

c > d
.

It follows that {
z 6 x+ (p− q)
u 6 y + (p− q)

.

We will check for all possible tuples (x, y, z, u, R1, R2) – which fixes the values of
a, b, c, d – that the hook product of all corresponding partitions does not equal 1

2
Πk,Πk

or 2Πk.
We deduce bounds for the length of the two rows. Since d− 1 + 2p 6 2k+ 1, we have

that
R1 > u+ q − (2k + 1)− 2p− 2.

If z 6= y, we have that b+ 2p 6 2k + 1, and also z > 2, so that

z 6= y =⇒ R2 > q + 2p− 2k.

We also have that d > 0 and so R1 6 u+ q − 1. Also note that 2x− 1 + 2p− 1 6 2k + 1
and so

x 6 k − p+ 1.

We now distinguish 3 different cases according to the relative position of the box of
hook length p on the first row and the box of hook length q on the second row.
Case 1: x < z < y < u, and so a > b > c− 1 > d− 1.

From b > c− 1 it follows that R1−R2 > y− z+ (p− q)− 1. Note that y− 1 +x− 1 6
2k+1− (2p−1). We can now run over the tuples (x, y, z, u, R1, R2) in the following range

x ∈ [1, k − p+ 1]

z ∈ [x+ 1, x+ (p− q)]
y ∈ [z + 1, 2k − 2p+ 4− x]

u ∈ [y + 1, y + (p− q)]
R1 ∈ [u+ q − (2k + 1)− 2p− 2, u+ q − 1]

R2 ∈ [q + 2p− 2k,R1 − y + z − (p− q) + 1]

.

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +R2 +
(d−1)u+ (c−d)y+ (b− c+ 1)z+ (a− b)x 6 2k+ 1. Then we compute the hook products
of all partitions of this form; more precisely of all partitions containing

(R1, R2, u
d−1, yc−d, zb−c+1, xa−b),
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which are contained in the partition

(R1, R
d
2, (u− 1)c−d, (y − 1)b−c+1, (z − 1)a−b, (x− 1)2k+1).

Case 2: x < y = z < u, and so a > b = c− 1 > d− 1.
From b = c − 1 it follows that R1 − R2 = y − z + (p − q) − 1. We can now run over

the tuples (x, y, z, u, R1, R2) in the following range

x ∈ [1, k − p+ 1]

y ∈ [x+ 1, x+ (p− q)]
u ∈ [y + 1, y + (p− q)]
R1 ∈ [u+ q − (2k + 1)− 2p− 2, u+ q − 1]

R2 = R1 + 1− (p− q).

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +R2 +
(d− 1)u + (c− d)y + (a− c + 1)x 6 2k + 1. Then we compute the hook products of all
partitions of this form; more precisely of all partitions containing

(R1, R2, u
d−1, yc−d, xa−c+1),

which are contained in the partition

(R1, R
d
2, (u− 1)c−d, (y − 1)a−c+1, (x− 1)2k+1).

Case 3: x < y < z < u, and so a > c− 1 > b > d− 1.
From a > c− 1 > b > d− 1 it follows that{

y − x− 1

u− z − 1
6 R1 −R2 6 y − z + (p− q)− 1.

We can now run over the tuples (x, y, z, u, R1, R2) in the following ranges

x ∈ [1, k − p + 1]

y ∈ [x + 1, x + (p− q)− 1]

z ∈ [y + 1, x + (p− q)]

u ∈ [z + 1, y + (p− q)]

R1 ∈ [u + q − (2k + 1)− 2p− 2, u + q − 1]

R2 ∈ [max(q + 2p− 2k,R1 − y + z − (p− q) + 1),min(R1 − y + x + 1, R1 − u + z + 1)].

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +R2 +
(d− 1)u+ (b− d+ 1)z+ (c− b− 1)y+ (a− c+ 1)x 6 2k+ 1. Then we compute the hook
products of all partitions of this form; more precisely of all partitions containing

(R1, R2, u
d−1, zb−d+1, yc−b−1, xa−c+1),
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which are contained in the partition

(R1, R
d
2, (u− 1)b−d+1, (z − 1)c−b−1, (y − 1)a−c+1, (x− 1)2k+1).

As in Claim 3.2, we consider also the position of the four boxes that have hook length
a multiple of r, when k 6= 40, 57. Since p+ q+ r > 2k+1, no box of hook length at least r
can occur outside the first two rows. Since 3r+ q > 2k+ 1, no box of hook length at least
3r can occur, and we deduce that a box of hook length 2r (and r) must be present in both
the first two rows. We may thus, for every k 6= 40, 57, replace (p, q) by (p, 2r) or (2r, q),
depending on whether p > 2r > q or 2r > p, to significantly speed up the algorithm.

This check has been successfully performed for all integers k ∈ [35, 337] in about 5
minutes.

Clearly, this also shows that a partition with hook product 1
2
Πk,Πk, or 2Πk cannot

have boxes of hook length p and q on both the first and second column. The next claim
deals with the remaining option.

Claim 3.5. For all k ∈ [35, 337], a partition of 2k+1 different from λk with hook product
1
2
Πk,Πk, or 2Πk cannot have boxes of hook length p and q on both the first row and column.

Verification. We introduce some notation. Let the boxes of hook length p be on positions
(1, x+ 1) and (z+ 1, 1), with leg and arm respectively denoted by α and γ. Let the boxes
of hook length q be on positions (1, y + 1) and (u + 1, 1), with leg and arm respectively
denoted by β and δ. We will denote the cardinality of α, β, γ, δ by a, b, c, d. The number
of boxes on the first row and column will be denoted respectively by R1 and C1.

We first state some immediate observations using the definition of the hook length
and the fact that this is a partition,

x+ p− a = R1

y + q − b = R1

z + p− c = C1

u+ q − d = C1

,

{
x < y

d 6 c
,

{
a > b

z < u
.

It follows that {
y 6 x+ (p− q)
c < d+ (p− q)

.

We will check for all possible tuples (x, y, c, d, C1, R1) – which fixes the values of a, b, z, u
– that the hook product of all corresponding partitions does not equal 1

2
Πk,Πk or 2Πk,

unless the partition is λk.
Note that since conjugated partitions have the same hook product, we may assume

that z > x. From this we deduce that

C1 > x+ p− c,
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and also since x+ z − 1 + 2p− 1 6 2k + 1, that

x 6 k − p+ 1.

Since b > 0, we have that
R1 6 y + q.

Now note that zmin(c+ 1, x) + 2p− 1 6 2k + 1, from which it follows that

C1 6 p− c+
2k − 2p+ 2

min(c+ 1, x)
.

We distinguish 5 cases according to how many intersections there are between the
arms and legs α, β, γ, δ.
Case 0: 0 intersections : y > x > c > d, and so b 6 a < z < u.

From a < z it follows that 2p + x − c < C1 + R1. We can now run over the tuples
(x, y, c, d, C1, R1) in the following range

d ∈ [0, k − p]
c ∈ [d, d+ (p− q)− 1]

x ∈ [c+ 1, k − p+ 1]

y ∈ [x+ 1, x+ (p− q)]
C1 ∈ [x+ p− c, p− c+ b2k−2p+2

c+1
c]

R1 ∈ [2p− c+ x− C1 + 1, y + q].

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +C1−
1 + by + (a− b)x+ (z − a)c+ (u− z)d 6 2k + 1. Then we compute the hook products of
all partitions of this form; more precisely of all partitions containing

(R1, (y + 1)b, (x+ 1)a−b, (c+ 1)z−a, (d+ 1)u−z, 1C1−u−1),

which are contained in the partition

(Rb+1
1 , ya−b, xz−a−1, (c+ 1)u−z, (d+ 1)C1−u).

Case 1 : 1 intersection : y > c > x > d, and so b < z 6 a < u.
From b < z 6 a < u it follows that{

p+ q + y − c
p+ q + x− d

< C1 +R1 6 2p+ x− c.

We can now run over the tuples (x, y, c, d, C1, R1) in the following range

d ∈ [0, k − p]
x ∈ [d+ 1, k − p+ 1]

c ∈ [x, d+ (p− q)− 1]

y ∈ [c+ 1, x+ (p− q)]
C1 ∈ [x+ p− c, p− c+ b2k−2p+2

x
c]

R1 ∈ [max(p+ q + y − c− C1, p+ q + x− d− C1) + 1,min(2p− c+ x− C1, y + q)].
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In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +C1−
1 + by + (z − b)c+ (a− z)x+ (u− a)d 6 2k + 1. Then we compute the hook products of
all partitions of this form; more precisely of all partitions containing

(R1, (y + 1)b, (c+ 1)z−b, (x+ 1)a−z, (d+ 1)u−z, 1C1−u−1),

which are contained in the partition

(Rb+1
1 , yz−b−1, (c+ 1)a−z+1, xu−a−1, (d+ 1)C1−u).

Case 2 : 2 intersections : We show that this case is actually impossible.
Up to conjugation, we are in the situation that c > y > x > d, and so z 6 b 6 a < u.

From this it follows that p−q = (y−x)+(a−b) < (c−d)+(u−z) = p−q, a contradiction.
Case 3 : 3 intersections : c > y > d > x, and so z 6 b < u 6 a.

From z 6 b < u 6 a it follows that

2q + y − d < C1 +R1 6

{
p+ q + y − c
p+ q + x− d

.

We can now run over the tuples (x, y, c, d, C1, R1) in the following range

x ∈ [1, k − p+ 1]

d ∈ [x, x+ (p− q)− 1]

y ∈ [d+ 1, x+ (p− q)]
c ∈ [y, d+ (p− q)− 1]

C1 ∈ [x+ p− c, p− c+ b2k−2p+2
x
c]

R1 ∈ [2q − d+ y − C1 + 1,min(p+ q + y − c− C1, p+ q + x− d− C1)]

.

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +C1−
1 + zc+ (b− z)y + (u− b)d+ (a− u)x 6 2k + 1. Then we compute the hook products of
all partitions of this form; more precisely of all partitions containing

(R1, (c+ 1)z, (y + 1)b−z, (d+ 1)u−b, (x+ 1)a−u, 1C1−a−1),

which are contained in the partition

(Rz
1, (c+ 1)b−z+2, yu−b−1, (d+ 1)a−u+1, xC1−a−1).

Case 4 : 4 intersections : c > d > y > x, and so z < u 6 b 6 a.
From u 6 b it follows that C1 +R1 6 2q + y − d. Note that xa 6 2k + 1− 2q, and so

R1 > x− p− b2k − 2q + 1

x
c.

the electronic journal of combinatorics 23(3) (2016), #P3.49 22



We also have that d−1 6 2k+1−2p, and we can now run over the tuples (x, y, c, d, C1, R1)
in the following range

x ∈ [1, k − p+ 1]

y ∈ [x+ 1, x+ (p− q)]
d ∈ [y, 2k − 2p+ 2]

c ∈ [d, d+ (p− q)− 1]

C1 ∈ [x+ p− c, p− c+ b2k−2p+2
x
c]

R1 ∈ [x+ p− b2k−2q+1
x
c, 2q − d+ y − C1]

.

In each loop we first check if there can be any partitions with this particular tuple by
checking that the number of boxes is at most 2k+ 1; that is we check whether R1 +C1−
1 + zc+ (u− z)d+ (b− u)y + (a− b)x 6 2k + 1. Then we compute the hook products of
all partitions of this form; more precisely of all partitions containing

(R1, (c+ 1)z, (d+ 1)u−z, (y + 1)b−u, (x+ 1)a−b, 1C1−a−1),

which are contained in the partition

(Rz
1, (c+ 1)u−z, (d+ 1)b−u+1, ya−b, xC1−a−1).

As in Claim 3.2, we consider also the position of the four boxes that have hook length
a multiple of r, when k 6= 40, 57. Since 2q + r > 2k + 1, no box of hook length at least r
can occur outside the first row and column. Since 3r+ q > 2k+ 1, no box of hook length
at least 3r can occur except on position (1, 1). Assuming that the hook length of the box
(1, 1) is not a multiple of r, we may deduce that a box of hook length 2r (and r) must
be present in both the first row and column. We may thus, for every k 6= 40, 57, replace
(p, q) by (p, 2r) or (2r, q), depending on whether p > 2r > q or 2r > p, to significantly
speed up the algorithm, provided we check also the case that the box on position (1, 1) is
3r or 4r, since 5r > 2k + 1.

In light of the bounds on R1 +C1 in each case, we see that 3r can only occur in Case 4,
since 3r < 2q. A box of hook length 4r cannot occur in Case 4 since 4r > 2q(for relevant
r), but could occur in Case 1 or 3 if q < 2r < p or in Case 0 if p < 2r.

This check has been successfully performed for all integers k ∈ [35, 337] in little over
one hour.

This completes the description of the computer verification of Fact 1. To complete the
proof of Theorem 1.1, we describe how to check the following fact by computer. Recall
that λ

′

k = (k + 1, 2, 1k−1), and Π
′

k = (2k + 1)(k + 1)2(k − 1)!2.

Fact 2. The only partition of 2k + 2 with hook product equal to 1
2
Π
′

k, Π
′

k, 2Π
′

k, is λ
′

k, for
all 2 6 k 6 337.

Only minor changes to the above strategy (and code) are required to check the even
case. One needs to define the auxiliary primes p, q, r slightly differently; q < p are the two
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biggest primes in [1, k − 1] ∪ {k + 1}, and r is the biggest prime in [1, bk−1
2
c], or r = k+1

2

if that is a prime. Thus it is again ensured that p2q2r4 | Π
′

k. Replacing all instances of
2k+ 1 by 2k+ 2, the proofs and verifications go through as above, except in the following
points

1. The analogue of the preliminary Claim 3.1 does not go through for k = 37 and
k = 41, which we therefore need to check by some other method. We use the naive
algorithm for k = 37, and for k = 41 we use the fact that 83 = 2k + 1 | Π

′

k, which
is a prime, so that there exists a box of hook product n − 1. A quick check then
suffices for this case.

2. The bounds on r in the analogue of the preliminary Claim 3.1 do not hold for k = 58,
and so for k = 58 we cannot speed up our algorithms using the prime r – just as we
could not use it for k = 40, 57 in the odd case.

Except for the naive verification of k = 37 which in itself takes half an hour, the even
case takes about as much time as the odd case, and has been verified in about 3 hours.
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