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Abstract

A total dominating set of a graph G is a set D of vertices of G such that
every vertex of G has a neighbor in D. A locating-total dominating set of G is a
total dominating set D of G with the additional property that every two distinct
vertices outside D have distinct neighbors in D; that is, for distinct vertices u and
v outside D, N(u) ∩D 6= N(v) ∩D where N(u) denotes the open neighborhood of
u. A graph is twin-free if every two distinct vertices have distinct open and closed
neighborhoods. The location-total domination number of G, denoted γLt (G), is the
minimum cardinality of a locating-total dominating set in G. It is well-known that
every connected graph of order n > 3 has a total dominating set of size at most 2

3n.
We conjecture that if G is a twin-free graph of order n with no isolated vertex, then
γLt (G) 6 2

3n. We prove the conjecture for graphs without 4-cycles as a subgraph.
We also prove that if G is a twin-free graph of order n, then γLt (G) 6 3

4n.

Keywords: Locating-dominating sets; Total dominating sets; Dominating sets.

1 Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex outside
D is adjacent to a vertex in D. The domination number, γ(G), of G is the minimum
cardinality of a dominating set in G. A total dominating set, abbreviated TD-set, of G
is a set D of vertices of G such that every vertex of G is adjacent to a vertex in D. The
total domination number of G, denoted by γt(G), is the minimum cardinality of a TD-set

∗Part of this research was done while this author was a postdoctoral researcher at LIMOS, Université
Blaise Pascal, Clermont-Ferrand, France.
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in G. The literature on the subject of domination parameters in graphs up to the year
1997 has been surveyed and detailed in the two books [14, 15], and a recent book on total
dominating sets is also available [21].

Among the existing variations of (total) domination, the ones of location-domination
and location-total domination are widely studied. A set D of vertices locates a vertex v
if the neighborhood of v within D is unique among all vertices in V (G) \D. A locating-
dominating set is a dominating set D that locates all the vertices, and the location-
domination number of G, denoted γL(G), is the minimum cardinality of a locating-
dominating set in G. A locating-total dominating set, abbreviated LTD-set, is a TD-
set D that locates all the vertices, and the location-total domination number of G, de-
noted γLt (G), is the minimum cardinality of a LTD-set in G. The concept of a locating-
dominating set was introduced and first studied by Slater [24, 25] (see also [9, 10, 12, 23,
26]), and the additional condition that the locating-dominating set be a total dominating
set was first considered in [16] (see also [1, 2, 3, 5, 6, 7, 18, 19]).

We remark that there are (twin-free) graphs with total domination number two and
arbitrarily large location-total domination number. For k > 3, let Gk be the graph
obtained from K2,k as follows: select one of the two vertices of degree k and subdivide
every edge incident with it; then, add an edge joining the two vertices of degree k; finally,
add two new vertices of degree 1, each adjacent to one of the degree k-vertices. The
resulting graph, Gk, has order 2k + 4, total domination number 2, and we claim that
its location-total domination number is exactly one-half the order (namely, k + 2). One
possible LTD-set of Gk consists of the two vertices of degree k + 1, and for each pair of
adjacent vertices of degree 2, one of the vertices of that pair belongs to the LTD-set. The
graph G4, for example, is illustrated in Figure 1, where the darkened vertices form an
LTD-set in G4. To see that no smaller LTD-set exists, observe first that the two vertices
of degree k+ 1 must belong to any LTD-set of Gk (otherwise, the two vertices of degree 1
are not totally dominated). Moreover, consider any set of two pairs of adjacent vertices
of degree 2 in Gk. In order for these four vertices to be located, at least one of them must
belong to any LTD-set (otherwise, the ones adjacent to the same vertex of degree k + 1
are not located). This shows that for at least k − 1 pairs of adjacent degree 2-vertices,
one member of that pair belongs to any LTD-set of Gk. Thus, any LTD-set of Gk has
size at least k + 1. Assuming that we have an LTD-set of size exactly k + 1, then we
have a pair of adjacent vertices of degree 2 not belonging to the LTD-set, and moreover
none of the degree 1-vertices belongs to the LTD-set. But then each of the two above
degree 2-vertices and each degree 1-vertex of Gk is totally dominated only by its neighbor
of degree k + 1 and is therefore not located, a contradiction. Hence γLt (Gk) = k + 2, as
claimed.

Figure 1: The twin-free graph G4.
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A classic result due to Cockayne et al. [8] states that every connected graph of order
at least 3 has a TD-set of cardinality at most two-thirds its order. While there are
many graphs (without isolated vertices) which have location-total domination number
much larger than two-thirds their order, the only such graphs that are known contain
many twins, that is, pairs of vertices with the same closed or open neighborhood. We
conjecture that in fact, twin-free graphs have location-total domination number at most
two-thirds their order. In this paper we initiate the study of this conjecture.

Definitions and notations. For notation and graph theory terminology, we in general
follow [14]. Specifically, let G be a graph with vertex set V (G), edge set E(G) and with
no isolated vertex. The open neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V |uv ∈
E(G)} and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. The degree of v
is dG(v) = |NG(v)|. For a set S ⊆ V (G), its open neighborhood is the set NG(S) =⋃
v∈S NG(v), and its closed neighborhood is the set NG[S] = NG(S) ∪ S. Given a set

S ⊂ V (G) and a vertex v ∈ S, an S-external private neighbor of v is a vertex outside
S that is adjacent to v but to no other vertex of S in G. The set of all S-external
private neighbors of v, abbreviated epnG(v, S), is the S-external private neighborhood.
The subgraph induced by a set S of vertices in G is denoted by G[S]. If the graph G is
clear from the context, we simply write V , E, N(v), N [v], N(S), N [S], d(v) and epn(v, S)
rather than V (G), E(G), NG(v), NG[v], NG(S), NG[S], dG(v) and epnG(v, S), respectively.

Given a set S of edges in G, we will denote by G− S the subgraph obtained from G
by deleting all edges of S. For a set S of vertices, G−S is the graph obtained from G by
removing all vertices of S and removing all edges incident to vertices of S. A cycle on n
vertices is denoted by Cn and a path on n vertices by Pn. The girth of G is the length of
a shortest cycle in G.

A set D is a dominating set of G if N [v] ∩ D 6= ∅ for every vertex v in G, or,
equivalently, N [D] = V (G). A set D is a TD-set of G if N(v) ∩D 6= ∅ for every vertex
v in G, or, equivalently, N(D) = V (G). Two distinct vertices u and v in V (G) \ D are
located by D if they have distinct neighbors in D; that is, N(u) ∩ D 6= N(v) ∩ D. If a
vertex u ∈ V (G) \D is located from every other vertex in V (G) \D, we simply say that
u is located by D.

A set S is a locating set of G if every two distinct vertices outside S are located by S. In
particular, if S is both a dominating set and a locating set, then S is a locating-dominating
set. Further, if S is both a TD-set and a locating set, then S is a locating-total dominating
set. We remark that the only difference between a locating set and a locating-dominating
set in G is that a locating set might have a unique non-dominated vertex.

Two distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed
twins if N [u] = N [v]. Further, u and v are twins in G if they are open twins or closed
twins in G. A graph is twin-free if it has no twins.

For two vertices u and v in a connected graph G, the distance dG(u, v) between u and
v is the length of a shortest (u, v)-path in G. The maximum distance among all pairs of
vertices of G is the diameter of G, which is denoted by diam(G). A nontrivial connected
graph is a connected graph of order at least 2. A leaf of graph G is a vertex of degree 1,
while a support vertex of G is a vertex adjacent to a leaf.
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A rooted tree T distinguishes one vertex r called the root. For each vertex v 6= r of
T , the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any
other neighbor of v. A descendant of v is a vertex u 6= v such that the unique (r, u)-path
contains v. Thus, every child of v is a descendant of v. We let D(v) denote the set of
descendants of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree at v is the
subtree of T induced by D[v], and is denoted by Tv.

The 2-corona of a graph H is the graph of order 3|V (H)| obtained from H by adding
a vertex-disjoint copy of a path P2 for each vertex v of H and adding an edge joining v
to one end of the added path.

We use the standard notation [k] = {1, 2, . . . , k}. If A and B are sets, then A× B =
{(a, b) | a ∈ A, b ∈ B}.
Conjectures and known results. As a motivation for our study, we pose and state the
following conjecture.

Conjecture 1. Every twin-free graph G of order n without isolated vertices satisfies
γLt (G) 6 2

3
n.

In an earlier paper, Henning and Löwenstein [18] proved that every connected cubic
claw-free graph (not necessarily twin-free) has a LTD-set of size at most one-half its order,
which implies that Conjecture 1 is true for such graphs. Moreover they conjectured this
to be true for every connected cubic graph, with two exceptions — which, if true, would
imply Conjecture 1 for all cubic graphs.

A similar conjecture for locating-dominating sets, that motivated the present study,
was posed in [13], and was strengthened in [12].1

Conjecture 2 (Garijo, González, Márquez [13]). There exists an integer n1 such that
for any n > n1, the maximum value of the location-domination number of a connected
twin-free graph of order n is bn

2
c.

Conjecture 3 (Foucaud, Henning, Löwenstein, Sasse [11, 12]). Every twin-free graph G
of order n without isolated vertices satisfies γL(G) 6 n

2
.

Conjecture 3 remains open, although it was proved for a number of graph classes such
as bipartite graphs and graphs with no 4-cycles [13], split and co-bipartite graphs [12], and
cubic graphs [11]. Some of these results were obtained using selected vertex covers and
matchings, but none of these techniques seems to be useful in the study of Conjecture 1.

Our results. We prove the bound γLt (G) 6 3
4
n in Section 3. We then give support

to Conjecture 1 by proving it for graphs without 4-cycles in Section 4, where we also
characterize all extremal examples without 4-cycles. (In this paper, by “graph with no
4-cycles”, we mean that the graph does not contain any 4-cycle as a subgraph, whether
the 4-cycle is induced or not.) We also discuss Conjecture 1 in relation with the minimum
degree in Section 5, and we conclude the paper in Section 6.

1Note that in [12], we mistakenly attributed Conjecture 3 to the authors of [13]. We discuss this in
more detail in [11].
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2 Preliminaries

This section contains a number of preliminary results that will be useful in the next
sections.

Theorem 4 (Cockayne et al. [8]; Brigham et al. [4]). If G is a connected graph of order
n > 3, then γt(G) 6 2

3
n. Further, γt(G) = 2

3
n if and only if G is isomorphic to a 3-cycle,

a 6-cycle, or the 2-corona of some connected graph H.

We will need the following property of minimum TD-sets in a graph established in [17].

Theorem 5 ([17]). If G is a connected graph of order n > 3, and G 6∼= Kn, then G has
a minimum TD-set S such that every vertex v ∈ S satisfies |epn(v, S)| > 1 or has a
neighbor x in S of degree 1 in G[S] satisfying |epn(x, S)| > 1.

Given a graph G, the set L ∪ T , where L is a locating-dominating set of G, and T is
a TD-set of G is both a TD-set and a locating set, implying the following observation.

Observation 6. For every graph G without isolated vertices, we have

γLt (G) 6 γL(G) + γt(G).

3 A general upper bound of three-quarters the order

In this section we prove a general upper bound on the location-total domination number
of a graph in terms of its order. The proof is similar to the bound γL(G) 6 2

3
n proved for

locating-dominating sets in [12].

Theorem 7. If G is a twin-free graph of order n without isolated vertices, then γLt (G) 6
3
4
n.

Proof. By linearity, we may assume that G is connected. By the twin-freeness of G, we
note that n > 4 and that G 6∼= Kn. For an arbitrary subset S of vertices in G, let PS
be a partition of S = V (G) \ S with the property that all vertices in the same part of
the partition have the same open neighborhood in S and vertices from different parts of
the partition have different open neighborhood in S. Let |PS| = k(S). Let XS be the
set of vertices in S that belong to a partition set in PS of size 1 and let YS = S \ XS.
Hence every vertex in YS belongs to a partition set of size at least 2. Let n1(S) = |XS|
and let n2(S) = k(S)− n1(S). Let S be a minimum TD-set in G with the property that
every vertex v ∈ S satisfies |epn(v, S)| > 1 or has a neighbor v′ in S of degree 1 in G[S]
satisfying |epn(v′, S)| > 1. Such a set exists by Theorem 5. We note that at least half the
vertices in S have an S-external private neighbor, implying that n1(S) + n2(S) > 1

2
|S|.

Among all supersets S ′ of S with the property that n1(S
′) + n2(S

′) > 1
2
|S ′|, let D be

chosen to be inclusion-wise maximal. (Possibly, D = S.)

Claim 7.A. The vertices in each partition set of size at least 2 in PD have distinct
neighborhoods in XD, and D ∪XD is a LTD-set of G.
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Proof of Claim 7.A. Let u and v be two vertices that belong to a partition set T , of size
at least 2 in PD. Since G is twin-free, there exists a vertex w /∈ {u, v} that is adjacent to
exactly one of u and v. Since u and v have the same neighbors in D, we note that w /∈ D.
Hence, w ∈ D = V (G)\D. Suppose that w ∈ YD and consider the set D′ = D∪{w}. Let
R be an arbitrary partition set in PD that might or might not contain w. If w is either
adjacent to every vertex of R \ {w} or adjacent to no vertex in R \ {w}, then R \ {w}
is a partition set in PD′ . If w is adjacent to some, but not all, vertices of R \ {w}, then
there is a partition R \ {w} = (R1, R2) of R \ {w} where R1 are the vertices in R \ {w}
adjacent to w and R2 are the remaining vertices in R \ {w}. In this case, both sets
R1 and R2 form a partition set in PD′ . In particular, we note that there is a partition
T \ {w} = (T1, T2) of T \ {w} where both sets T1 and T2 form a partition set in PD′ .
Therefore, n1(D

′) + n2(D
′) > n1(D) + n2(D) + 1 > 1

2
|D| + 1 > 1

2
(|D| + 1) = 1

2
|D′|,

contradicting the maximality of D. Hence, w /∈ YD. Therefore, w ∈ XD. Hence, u and
v are located by the set XD in G. Moreover, D ∪ XD is a TD-set since D itself is a
TD-set. (�)

Let Y ′D be obtained from YD by deleting one vertex from each partition set of size at
least 2 in PD, and let D′ = D ∪ Y ′D. Then, |D′| = n − n1(D) − n2(D). By definition of
the partition PD, every vertex in V (G) \D′ has a distinct nonempty neighborhood in D
and therefore in D′. Moreover, D′ is a TD-set since D itself is a TD-set. Hence we have
the following claim.

Claim 7.B. The set D′ is a LTD-set of G.

Let n1 = n1(D) and n2 = n2(D). By Claim 7.A, the set D ∪XD is a LTD-set of G of
cardinality |D|+n1. By Claim 7.B, the set D′ is a LTD-set of G of cardinality n−n1−n2.
Hence,

γLt (G) 6 min{|D|+ n1, n− n1 − n2}. (1)

Inequality (1) implies that if n−n1−n2 6 3
4
n, then γL(G) 6 3

4
n. Hence we may assume

that n−n1−n2 >
3
4
n, for otherwise the desired upper bound on γLt (G) follows. With this

assumption, n1 + n2 <
1
4
n. By our choice of the set D, we recall that |D| 6 2(n1 + n2).

Therefore,

|D|+ n1 6 3n1 + 2n2 6 3(n1 + n2) <
3

4
n.

Hence, by Inequality (1), γLt (G) < 3
4
n. This completes the proof of Theorem 7.

4 Graphs without 4-cycles

In this section, we prove Conjecture 1 for graphs with no 4-cycles. We also characterize
all graphs with no 4-cycles that achieve the bound of Conjecture 1. Surprisingly, these are
precisely those graphs that have no 4-cycles and no twins and that are extremal for the
bound on the total domination number from Theorem 4. This is in stark contrast with
Conjecture 3 for the location-domination number, where many graphs (without 4-cycles)
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are known that are extremal for the conjecture but have much smaller domination number
than one-half the order, see [12].

Theorem 8. Let G be a twin-free graph of order n without isolated vertices and 4-cycles.
Then, γLt (G) 6 2

3
n. Further, γLt (G) = 2

3
n if and only if G is isomorphic to a 6-cycle or

is the 2-corona of some connected nontrivial graph that contains no 4-cycles.

Proof. We prove the theorem by induction on n. By linearity, we may assume that G is
connected, for otherwise we apply induction to each component of G and we are done. By
the twin-freeness of G, we note that n > 4. Further if n = 4, then since G is C4-free, the
graph G is the path P4 and γLt (P4) = 2 < 2

3
n. This establishes the base case. Let n > 5

and assume that every twin-free graph G′ without isolated vertices and with no 4-cycles
of order n′, where n′ < n, satisfies γLt (G′) 6 2

3
n′, and that the only graphs achieving the

bound are the extremal graphs described in Theorem 4 that are twin-free and have no
4-cycles. Let G be a twin-free graph without isolated vertices and with no 4-cycles of
order n. The general idea will be to partition V (G) into two sets V1 and V2. If G[V1]
and/or G[V2] are twin-free, we apply induction, and use the obtained LTD-sets of G[V1]
and/or G[V2] to build one of G. We proceed further with the following series of claims.

Claim 8.A. If G is a tree, then γLt (G) 6 2
3
n. Further, γLt (G) = 2

3
n if and only if G is

the 2-corona of a nontrivial tree.

Proof of Claim 8.A. Suppose that G is a tree. Since n > 5, we note that diam(G) > 4
(otherwise G contains twin vertices of degree 1). For the same reason, if diam(G) = 4,
then either G = P5 or G is obtained from a star K1,k+1, where k > 2, by subdividing at
least k edges of the star exactly once. In this case, the set of vertices of degree at least 2 in
G forms a LTD-set of size strictly less than two-thirds the order. Hence, we may assume
that diam(G) > 5, for otherwise the desired result follows.

Let P be a longest path in G and let P be an (r, u)-path. Necessarily, both r and u
are leaves. Since diam(G) > 5, we note that P has length at least 5. We now root the
tree at the vertex r. Let v be the parent of u, and let w be the parent of v, x the parent
of w, and y the parent of x in the rooted tree. Since |V (P )| > 6, we note that y 6= r.
Since G is twin-free, the vertex w has at most one leaf-neighbor and every child of w that
is not a leaf has degree 2 in G. In particular, dG(v) = 2. We now consider the subtree Gw

of G rooted at the vertex w. If dG(w) = 2, then Gw = P3, while if dG(w) > 3, then Gw

is obtained from a star K1,k+1, where k > 1, by subdividing at least k edges of the star
exactly once. Let G′ = G− V (Gw).

We now define the subtrees G1 and G2 of G as follows. We distinguish two cases; in
both of them, G2 is twin-free.

• If the tree G′ is twin-free, then we let V1 = V (Gw) and V2 = V (G) \ V1, and we let
G1 = G[V1] and G2 = G[V2]. We note that in this case, G2 = G′.

• If the tree G′ is not twin-free, then necessarily, the parent x of w has a twin x′

in G′, and NG(x′) = NG(x) \ {w} = {y}. Thus, dG(x) = 2 and the vertex x′ is
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a leaf-neighbor of y in G. Moreover, we claim that if x′ = r, then we are done.
Indeed, in this case, our choice of P as a longest path in G implies that G′ is the
path ryx. If now Gw 6= P3, then the set of vertices of degree at least 2 in G forms a
LTD-set of G of size strictly less than two-thirds the order, while if Gw = P3, then
G is the path P6, which is the 2-corona of a tree K2, and γLt (G) = 2

3
n. In both cases

we are done. Thus, we may assume that x′ 6= r. We now let V1 = V (Gw) ∪ {x},
V2 = V (G) \ V1, and we let G1 = G[V1] and G2 = G[V2]. We note that in this case,
G2 = G′ − x. Our assumption that x′ 6= r implies that G2 is a twin-free tree.

Let D2 be a minimum LTD-set of G2. Applying the induction hypothesis to the twin-
free tree G2, the set D2 satisfies |D2| 6 2

3
|V2|. Further, if |D2| = 2

3
|V2|, then G2 is the

2-corona of a nontrivial tree. Let D1 consist of w and every child of w of degree 2. Then,
|D1| 6 2

3
|V1| with strict inequality if G1 is not the path uvw. We claim that D = D1∪D2

is a LTD-set of G. Since D1 and D2 are TD-sets of G1 and G2, respectively, the set D
is a TD-set of G. Every vertex of G is located by D except possibly for the vertex x
and a leaf-neighbor of w in G, if such a leaf-neighbor exists. If x ∈ V (G2), then it is
located in G2 and hence in G. If x ∈ V (G1), then its twin x′ in G′ is a leaf-neighbor of
y, implying that in G2 the support vertex y ∈ D2. Thus, x is located by w and y. If w
has a leaf-neighbor in G, then such a leaf-neighbor is located by w only. Therefore, D is
a LTD-set of G, and so

γLt (G) 6 |D| = |D1|+ |D2| 6
2

3
|V1|+

2

3
|V2| =

2

3
n. (2)

This establishes the desired upper bound. Suppose next that γLt (G) = 2
3
n. Then

we must have equality throughout the Inequality Chain (2). In particular, |D1| = 2
3
|V1|

and |D2| = 2
3
|V2|, implying that G1 = P3 (and G1 consists of the path uvw) and G2 is

the 2-corona of a nontrivial tree, say T2. Let A and B be the set of leaves and support
vertices, respectively, in G2, and let C be the remaining vertices of G2. We note that
C = V (T2) = V2 \ (A∪B) and |C| > 2 (since T2 is a nontrivial tree). If x ∈ A, then x is a
leaf in G2 and its neighbor y is a support vertex in G2 and belongs to the set B. If x ∈ B,
then x is a support vertex in G2 and its parent y belongs to C. In both cases, the set
(B ∪C ∪ {v, w}) \ {y} is a LTD-set of G of size |D1|+ |D2| − 1 = 2

3
n− 1, a contradiction

to our supposition that γLt (G) = 2
3
n. Hence, x ∈ C, implying that G is the 2-corona of a

nontrivial tree, namely the tree G[C ∪ {w}] obtained from T2 by adding to it the vertex
w and the edge wx. This completes the proof of Claim 8.A. (�)

By Claim 8.A, we may assume that G is not a tree, for otherwise the desired result
follows. Hence, G contains a cycle. We consider next the case when G contains a triangle.

Claim 8.B. If G contains a triangle, then γLt (G) 6 2
3
n. Further, γLt (G) = 2

3
n if and only

if G is isomorphic to a 6-cycle or is the 2-corona of some connected nontrivial graph that
contains no 4-cycles but contains a triangle.

Proof of Claim 8.B. Suppose that G contains a triangle C. Let G′ = G−V (C). We build
a subset V1 of vertices of G as follows. Let V0 consist of V (C) together with all vertices
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that belong to a component C ′ of G′ isomorphic to P1, P2 or P3. We remark that if C ′

is a P1- or P2-component of G′, then at most one edge joins it to C, for otherwise there
would be a 4-cycle or a pair of twins in G. Suppose that S is a set of mutual twins of
G−V0. Since G is twin-free, all but possibly one vertex in S must be adjacent to a vertex
of C. For each such set S of mutual twins of G−V0, we select |S|−1 vertices from S that
have a neighbor in C, and add these vertices to the set V0 to form the set V1 (possibly,
V1 = V0). Let V2 = V (G) \ V1. Let G1 = G[V1] and if V2 6= ∅, let G2 = G[V2]. We note
that G1 is connected, while G2 may possibly be disconnected.

Subclaim 8.B.1 G2 is twin-free and has no isolated vertices.

Proof of Subclaim 8.B.1. We first prove that G2 is twin-free. Suppose, to the contrary,
that there is a pair {t, t′} of twins in G2. By construction of V2, the vertices t and t′ are
not twins in G−V0, implying that there exists a vertex v in V1 \V0 such that v is adjacent
to exactly one of t and t′, say to t. Let v′ be the twin of v in G− V0 that was not added
to the set V1 (recall that by construction, all but one vertex from a set of mutual twins
in G − V0 is added to the set V1). But then, v′ is a vertex in G2 that is adjacent to t
but not to t′, contradicting our supposition that t and t′ are twins in G2. Therefore, G2

is twin-free. The proof that G2 has no isolated vertices, again by the construction, an
isolated vertex x would have been a neighbor of a set of twins of G−V0. But at least one
twin still belongs to G2, and x is not isolated. (�)

By Subclaim 8.B.1, G2 is twin-free. Let D2 be a minimum LTD-set of G2. Applying
the induction hypothesis to each component of G2, the set D2 satisfies |D2| 6 2

3
|V2|.

Further, if |D2| = 2
3
|V2|, then each component of G2 is isomorphic to a 6-cycle or is the

2-corona of some connected nontrivial graph that contains no 4-cycles.
We note that the graph G1 could have twins. For example, this would occur if V1 =

V (C), in which case G1 is the 3-cycle C. A more complicated possibility is if there were
twins t and t′ in G − V0; then at least one of them belongs to G1 and could be, in G1,
a twin with the vertex of some P1-component of G′. Let us build a set D1 ⊂ V1. As
observed earlier, if C ′ is a P1- or P2-component of G′, then at most one edge joins it
to C. For every P3-component C ′ of G′, select the central vertex of C ′ and one of its
neighbors in C ′ that is not a leaf in G and add these two vertices of C ′ to D1. For every
P2-component C ′ of G′, add to D1 the unique vertex of C ′ adjacent to a vertex of C, as
well as its neighbor in C. For every P1-component of G′ consisting of a vertex v′, add to
D1 the unique neighbor of v′ in C. For every vertex in V1 \ V0 that had a twin in G− V0,
add its neighbor in C to D1. Now, if there is at most one vertex of C in the resulting set
D1, then we augment D1 so that exactly two vertices of C belong to D1. By construction
the resulting set D1 is a TD-set of G1 and |D1| 6 2

3
|V1|.

Subclaim 8.B.2 D = D1 ∪D2 is a LTD-set of G.

Proof of Subclaim 8.B.2. Since D1 and D2 are TD-sets of G1 and G2, respectively, the
set D is a TD-set of G. Suppose, to the contrary, that D is not locating. Then there is
a pair of vertices, u and v, that is not located by D. If (u, v) ∈ V1 × V2 (that is, u ∈ V1
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and v ∈ V2), then u is dominated by a vertex of D1 and v is dominated by a vertex of
D2. Hence, u and v must both be dominated by these two vertices. But then we have
a 4-cycle in G, a contradiction. Hence, (u, v) /∈ V1 × V2. Analogously, (u, v) /∈ V2 × V1.
Since D2 is locating in G2, we note that (u, v) /∈ V2× V2. Hence, (u, v) ∈ V1× V1; that is,
both u and v belong to G1. Moreover u cannot belong to C, for otherwise u is dominated
by two vertices in D1 ∩ C and is located. Similarly, v /∈ C. Analogously, u and v cannot
belong to a P1-, P2- or P3-component of G′, for otherwise it would be the only vertex in
V (G) \D that is dominated only by its unique neighbor in D1. Therefore, both u and v
belong to V1 \ V0 and had a twin in G − V0. Let u′ be the twin of u in G − V0 that was
not added to the set V1, and so u′ ∈ V2. If u and u′ are open twins in G− V0, then u′ is a
vertex of degree 1 in G, for otherwise u and u′ belong to a 4-cycle. For the same reason,
if u and u′ are closed twins, then u′ has degree 2 in G. In both cases, u′ has degree 1 in
G2. The unique common neighbor of u and u′ therefore belongs to D2 in order to totally
dominate the vertex u′ in G2. Thus, u is dominated by a vertex of D1 and a vertex of D2.
Since u and v are not located, v is also dominated by these two vertices, which implies
that u and v belong to a common 4-cycle of G, a contradiction. Therefore, D is a LTD-set
of G. (�)

By Subclaim 8.B.2, the set D = D1∪D2 is a LTD-set of G, implying that the Inequality
Chain (2) presented in the proof of Claim 8.A holds. This establishes the desired upper
bound.

Suppose next that γLt (G) = 2
3
n. Then we must have equality throughout the Inequal-

ity Chain (2). In particular, |D1| = 2
3
|V1| and |D2| = 2

3
|V2|. Since |D1| = 2

3
|V1|, our

construction of the set D1 implies that no component of G′ is isomorphic to P1 and that
V1 = V0. Further, if G′ contains a P2-component, then it has exactly three P2-components
each being joined via exactly one edge to a distinct vertex of C. In addition, there may
be some, including the possibility of none, P3-components in G′. Suppose that P ′ is a
P3-component in G′ and x is a vertex of P ′ that is adjacent to a vertex of C. Then, x is
a leaf of P ′ and is adjacent to exactly one vertex of C, since G is twin-free and has no
4-cycles. Suppose, further, that both leaves of P ′ are adjacent to (distinct) vertices of C.
Let u and v be two (distinct) vertices of C joined to P ′. If exactly one of u and v belong
to D1, then by our earlier observations, G′ contains no P2-component. But then by the
way in which the set D1 is constructed and recalling that G′ contains no P1-component
and that V1 = V0, we would have chosen two arbitrary vertices of C to add to D1. Hence,
we can replace the two vertices of C that currently belong to D1 with the two vertices
u and v. We may therefore assume that D1 is chosen to contain both u and v. With
this assumption, we can replace the two vertices of P ′ that currently belong to D1 with
one of the leaves of P ′ to produce a new LTD-set of G of size |D| − 1 = γLt (G) − 1, a
contradiction. Therefore, P ′ is joined via exactly one edge to a vertex of C. Thus, there
are two possible structures of the graph G1, described as follows.

Structure 1. The graph G1 is obtained from the 3-cycle C by adding any number of
vertex-disjoint copies of P3, including the possibility of zero, and joining an end from each
such added path to exactly one vertex of C.
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Structure 2. The graph G1 is obtained from the 2-corona of the 3-cycle C by adding any
number of vertex-disjoint copies of P3, including the possibility of zero, and joining an
end from each such added path to exactly one vertex of C.

We note that if G1 has the structure described in Structure 2, then G1 is the 2-corona
of some connected nontrivial graph, say H1, that contains the triangle C and contains no
4-cycles. Further we note that if x ∈ V (H1), then either x ∈ V (C) or x is the vertex of a
P3-component in G′ that is adjacent to a vertex of C.

Subclaim 8.B.3 If G = G1, then the graph G is the 2-corona of some connected non-
trivial graph that contains the triangle C and contains no 4-cycles.

Proof of Subclaim 8.B.3. Suppose that G = G1, i.e., V2 = ∅. We first show that G has
the structure described in Structure 2. Suppose to the contrary that G has the structure
described in Structure 1. Then, since G is twin-free, the graph G is obtained from the
3-cycle C by adding k > 2 vertex-disjoint copies of P3 and joining an end from each such
added path to exactly one vertex of C. Further, by the twin-freeness of G, at least two
vertices of C are joined to an end of an added path. Let u and v be two (distinct) vertices
of C are joined to ends of added paths P3. The set of 2k vertices of degree 2 in G that
belong to added paths, together with the vertex u, forms a LTD-set of G of size 2

3
n− 1, a

contradiction. Therefore, G has the structure described in Structure 2. Thus, the graph
G is the 2-corona of some connected nontrivial graph that contains the triangle C and
contains no 4-cycles. (�)

By Subclaim 8.B.3, we may assume that G 6= G1, for otherwise the desired result
follows. Hence, V2 6= ∅. Since |D2| = 2

3
|V2|, applying the inductive hypothesis to each

component of G2, we deduce that each component of G2 is isomorphic to a 6-cycle or is
the 2-corona of some connected nontrivial graph that contains no 4-cycles.

Subclaim 8.B.4 No component of G2 is isomorphic to a 6-cycle.

Proof of Subclaim 8.B.4. Suppose, to the contrary, that G2 contains a component C ′

that is isomorphic to a 6-cycle. Since G is connected, there is an edge that joins a vertex
x ∈ V (C) and a vertex y ∈ V (C ′). Let C ′ be given by y1y2 . . . y6y1, where y = y1. If
G1 has the structure described in Structure 1, then we can choose D1 to contain any
two vertices of C. Hence we may assume that in this case, D1 is chosen to contain
the vertex x. If G1 has the structure described in Structure 2, then V (C) ⊂ D1. In
particular, x ∈ D1. Hence, in both cases, x ∈ D1. Replacing the four vertices of D that
belong to the component C ′ with the three vertices {y3, y4, y5} produces a LTD-set of G
of size |D| − 1 = 2

3
n− 1, a contradiction. (�)

By Subclaim 8.B.4, each component of G2 is the 2-corona of some connected nontrivial
graph that contains no 4-cycles, implying that the graph G2 is the 2-corona of some graph,
say H2, that contains no 4-cycles. Moreover, since G2 is twin-free, each component of H2

is nontrivial. Let A2 and B2 be the set of leaves and support vertices, respectively, in G2,
and let C2 be the remaining vertices of G2. We note that C2 = V (H2) = V2 \ (A2 ∪B2).
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Subclaim 8.B.5 G1 has the structure described in Structure 2.

Proof of Subclaim 8.B.5. Suppose, to the contrary, that G1 has the structure described
in Structure 1. Then, the graph G1 is obtained from the 3-cycle C by adding k > 0
vertex-disjoint copies of P3 and joining an end from each such added path to exactly one
vertex of C. Let V (C) = {u, v, w}. If at least two vertices of C are joined to an end of an
added path, then analogously as in the proof of Subclaim 8.B.3, we produce a LTD-set
of G of size 2

3
n − 1, a contradiction. Hence, either G1 = C3 or G1 is obtained from the

3-cycle C by adding k > 1 vertex-disjoint copies of P3 and joining an end from each such
added path to the same vertex of C, say to u. In both cases, both v and w have degree 2
in G1. Since G is twin-free, at least one of v and w, say v, is adjacent to a vertex of V2. If
v is adjacent to a vertex of A2 ∪B2, then an analogous argument as in the last paragraph
of the proof of Claim 8.A produces a LTD-set of G of size 2

3
n− 1, a contradiction. Hence,

the neighbors of v in V2 all belong to C2. Analogously, the neighbors of u and w in V2,
if any exist, all belong to C2. The set of 2k vertices of degree 2 in G that belong to the
added P3-paths in G1, together with the set B2∪C2∪{v}, is a LTD-set of G of size 2

3
n−1,

a contradiction. (�)

By Subclaim 8.B.5, G1 has the structure described in Structure 2, implying that G1

is the 2-corona of some connected nontrivial graph, say H1, that contains the triangle
C and contains no 4-cycles. Let A1 and B1 be the set of leaves and support vertices,
respectively, in G1, and let C1 be the remaining vertices of G1. We note that C1 =
V (H1) = V1 \ (A1 ∪B2).

Since G is connected, there is an edge in G joining a vertex x ∈ V1 and a vertex y ∈ V2.
Let a1b1c1 be the path in G1 containing x, where a1 ∈ A1, b1 ∈ B1 and c1 ∈ C1. Similarly,
let a2b2c2 be the path in G2 containing y, where a2 ∈ A2, b2 ∈ B2 and c2 ∈ C2. We show
that x = c1. Suppose, to the contrary, that x ∈ {a1, b1}. Let D∗ = C1 ∪ C2 ∪ B1 ∪ B2. If
xy = a1a2, let X = (D∗∪{a1, a2})\{b1, b2, c1}. If xy ∈ {a1b2, a1c2}, let X = (D∗∪{a1})\
{b1, c1}. If xy = b1a2, let X = (D∗ ∪ {a2}) \ {b2, c2}. If xy = b1b2, let X = D∗ \ {c2}. If
xy = b1c2, let X = D∗ \ {c1}. Note that in all cases, X is clearly a TD-set. To see that
it is also locating, we observe that any vertex of Gi, i ∈ [2], not in X has a neighbor in
X ∩V (Gi) (to this end, also recall that H1 and H2 have no isolated vertices). Thus, if we
had two vertices that are not located by X, we would have a 4-cycle in G, a contradiction.
Hence, in each case the set X is a LTD-set of G of size |D| − 1 = 2

3
n− 1, a contradiction.

Therefore, x = c1. Analogously, y = c2. This is true for every edge xy joining a vertex
x ∈ V1 and a vertex y ∈ V2, implying that G is the 2-corona of some connected nontrivial
graph that contains no 4-cycles but contains a triangle. This completes the proof of
Claim 8.B. (�)

By Claim 8.B, the graphG contains no triangle, for otherwise the desired result follows.
Hence, the girth of G is at least 5. Let C : u0u1 . . . uk−1u0 (k > 5) be a smallest cycle in
G. Let G′ = G− V (C). We build a subset V1 of vertices of G as follows (similarly to the
proof of Claim 8.B). Let V0 consist of V (C) together with all vertices that belong to a
component of G′ isomorphic to P1, P2 or P3. Since G is twin-free and has girth at least 5,
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we note that G[V0] is twin-free. Suppose that S is a set of mutual twins of G− V0. Since
G is twin-free, all but possibly one vertex in S must be adjacent to a vertex of C. For
each such set S of mutual twins of G− V0, we select |S| − 1 vertices from S that have a
neighbor in C, and add these vertices to the set V0 to form the set V1 (possibly, V1 = V0).
Let T = V1 \ V0. We note that since G has girth at least 5, the vertices in each set S of
mutual twins of G− V0 are open twins, and have degree 1 in G− V0 (if they were closed
twins, they could not have a common neighbor since G has girth at least 5, but then they
would form a P2-component of G′). Moreover they can have at most one neighbor in V0,
for otherwise they would have two or more neighbors in V (C), but this would create a
shorter cycle than C, contradicting its minimality. Hence, every vertex in T has exactly
one neighbor in V0 (more precisely, in V (C)). Let V2 = V (G) \ V1. Let G1 = G[V1] and if
V2 6= ∅, let G2 = G[V2].

Claim 8.C. If G = G1, then γLt (G) 6 2
3
n. Further, γLt (G) = 2

3
n if and only if G is

isomorphic to a 6-cycle or is the 2-corona of the cycle C.

Proof of Claim 8.C. Suppose that G = G1. If T 6= ∅, then this would imply that V2 6= ∅,
contradicting our supposition that V (G) = V1. Hence, T = ∅, and so V1 = V0. Thus,
either G is the k-cycle C or V (G) 6= V (C) and every component in G′ = G − V (C) is
isomorphic to P1, P2 or P3. Suppose that G = C. Then, n = k. If k = 5, then G = C5

and γLt (G) = 3 < 2
3
n. If k = 6, then G = C6 and γLt (G) = 2

3
n. If G = C and k > 6,

then, as observed in [16], γLt (G) = γt(G) = bn/2c+ dn/4e− bn/4c 6 1
2
n+ 1 < 2

3
n. Hence

we may assume that G 6= C, for otherwise the desired result follows. As observed earlier,
every component of G′ is isomorphic to P1, P2 or P3. Among all components of G′, let
P ′ be chosen so that its order is maximum. We now consider the graph F = G− V (P ′).
Clearly, F is twin-free, since G is twin-free and removing P ′ from G cannot create any
twins. Applying the inductive hypothesis to the graph F , γLt (F ) 6 2

3
|V (F )|. Further,

γLt (F ) = 2
3
|V (F )| if and only if F is isomorphic to a 6-cycle, C6, or is the 2-corona of

some connected nontrivial graph that contains no 4-cycles.

Subclaim 8.C.1 If γLt (F ) < 2
3
|V (F )|, then the desired result of Claim 8.C holds.

Proof of Subclaim 8.C.1. Suppose that γLt (F ) < 2
3
|V (F )|. If P ′ = P3, consider a minimum

LTD-set DF of F , and note that DF together with the two vertices of P ′ that have degree
at least 2 in G, forms a LTD-set of G of size strictly less that 2

3
n. Hence, we may assume

that P ′ is isomorphic to P1 or P2. By our choice of P ′, this implies that every component
of G′ is isomorphic to P1 or P2. We now construct a set Q with V (P ′) ⊂ Q. Renaming
vertices of C, if necessary, we may assume that u1 is the vertex of C adjacent to a vertex
of P ′. We initially define Q to contain both u1 and u2, as well as all vertices that belong to
a P1- or P2-component of G−{u1, u2}. If u3 has degree 2 in G and u4 has a leaf-neighbor
in G, say u′4, then u3 and u′4 are (open) twins in G− Q. In this case, we add the vertex
u3 to the set Q. Analogously, if u0 has degree 2 in G and uk−1 has a leaf-neighbor in G,
then we add the vertex u0 to the set Q. By construction, the resulting graph G − Q is
twin-free, unless we have the special case when k = 5, both u0 and u3 have degree 2 in G,
and u4 has degree 3 in G with a leaf-neighbor in G. In this case, graph G is determined
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and the set {u0, u1, u2, u4} together with the vertices of every P2-component in G′ that
have a neighbor in V (C) forms a LTD-set of G of size strictly less that 2

3
n. Hence, we

may assume that the graph F ′ = G−Q is twin-free.
Applying the inductive hypothesis to the graph F ′ there exists a LTD-set, D′F , of F ′ of

size at most 2
3
|V (F ′)|. Although G[Q] is not necessarily twin-free, by similar arguments

as before we can easily choose a set DQ of size at most 2
3
|Q| such that D′F ∪ DQ is a

LTD-set of G of size at most 2
3
n. Moreover, if |D′F ∪DQ| = 2

3
n, then F ′ must be either

the 2-corona of the path G[V (C) \ Q], or F ′ = P6. Furthermore, |Q| = 6 and G[Q] is
either a P6, a P4 with an additional leaf attached to each central vertex, or a P5 with an
additional leaf forming a twin with another leaf. If F ′ = P6 or G[Q] 6= P6, we can readily
find a LTD-set of G strictly smaller than 2

3
n. Otherwise, G is the 2-corona of C, and we

are done. This completes the proof of Subclaim 8.C.1. (�)

By Subclaim 8.C.1, we may assume that γLt (F ) = 2
3
|V (F )|, for otherwise the desired

result follows. If F = C6, then γLt (G) < 2
3
n, irrespective of whether P ′ is isomorphic to

P1, P2 or P3. Hence, we may assume that F 6= C6, for otherwise the desired result follows.
Thus, F is the 2-corona of some connected nontrivial graph, say F ′, that contains no
4-cycles. Let AF and BF be the set of leaves and support vertices, respectively, in F , and
let CF be the remaining vertices of F . Thus, F ′ = F [CF ]. If P ′ is not isomorphic to P3,
or if P ′ is isomorphic to P3 and contains a vertex adjacent to AF or BF , then it is a simple
exercise to see that γLt (G) < 2

3
n. Further, if P ′ is isomorphic to P3 and contains two or

more vertices adjacent to vertices of CF , then γLt (G) < 2
3
n. If P ′ is isomorphic to P3 and

contains exactly one vertex adjacent to vertices of CF , then γLt (G) = 2
3
n and G is the

2-corona of some connected nontrivial graph that contains no 4-cycles. This completes
the proof of Claim 8.C. (�)

By Claim 8.C, we may assume that G 6= G1, i.e., V2 6= ∅. An identical proof as in
the proof of Subclaim 8.B.1 shows that G2 is twin-free. Let D2 be a minimum LTD-set
of G2. Applying the induction hypothesis to each component of G2, the set D2 satisfies
|D2| 6 2

3
|V2|. Further, if |D2| = 2

3
|V2|, then each component of G2 is isomorphic to a

6-cycle or is the 2-corona of some connected nontrivial graph that contains no 4-cycles.
Recall that G[V0] is twin-free. We now build sets V ′1 and T ′ such that V0 ⊆ V ′1 ⊆

V1 = V0 ∪ T and T ′ ⊆ T , as follows. Initially, we let V ′1 = V0 and T ′ = T . We consider
the vertices of T sequentially. Let t be a vertex in T , and recall that t has exactly one
neighbor, say ut, in V0, and such a neighbor belongs to V (C). If ut has no leaf-neighbor
in G[V ′1 ], we add t to V ′1 and remove t from T ′. We iterate this process until all vertices
of T have been considered. Let G′1 be the resulting graph G[V ′1 ]. This process yields a
new partition of V (G) into sets V2, V

′
1 and T ′. Since G[V0] is twin-free, by construction

of the set V ′1 , the graph G′1 is also twin-free. Since V2 6= ∅, the order of G′1 is less than n
and we can therefore apply the induction hypothesis to the connected twin-free graph G′1.
Let D′1 be a minimum LTD-set of G′1. By the induction hypothesis, the set D′1 satisfies
|D′1| 6 2

3
|V ′1 | 6 2

3
|V1|. Further, if |D′1| = 2

3
|V ′1 |, then G′1 is isomorphic to a 6-cycle or is the

2-corona of some connected nontrivial graph that contains no 4-cycles.
We claim that D = D′1 ∪D2 is a LTD-set of G. By the construction of the set T ′, for
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each vertex t of T ′, there is a twin, say t′, of t in G−V0 that belongs to V2 and has degree 1
in G2. The common neighbor of t and t′ in V2 must belong to D2. Further, since t has
not been removed from T ′ during the construction of T ′, the vertex t has a neighbor ut in
V (C) which has a leaf-neighbor in G′1, implying that the vertex ut belongs to D′1. Hence,
t is dominated by two vertices of D′1 ∪D2 and is therefore located by D, for otherwise we
would have a 4-cycle in G. Thus, every vertex of T ′ is located by D. Since D′1 and D2

are TD-sets of G′1 and G2, respectively, and since every vertex in T ′ is dominated by D,
the set D is a TD-set of G. Suppose, to the contrary, that D is not locating. Then there
is a pair of vertices, u and v, that is not located by D. As observed earlier, neither u nor
v belong to T ′. Since D2 is locating in G2, we note that (u, v) /∈ V2 × V2. Analogously,
since D′1 is locating in G′1, we note that (u, v) /∈ V ′1 × V ′1 . If (u, v) ∈ V ′1 × V2, then u
is dominated by a vertex of D′1 and v is dominated by a vertex of D2. Hence, u and v
must both be dominated by these two vertices. But then these four vertices would form
a 4-cycle, a contradiction. Hence, (u, v) /∈ V ′1 × V2. Analogously, (u, v) /∈ V2 × V ′1 . This
contradicts our supposition that u and v are not located by D. Therefore, D is a LTD-set
of G, and so

γLt (G) 6 |D| = |D′1|+ |D2| 6
2

3
|V ′1 |+

2

3
|V2| 6

2

3
|V1|+

2

3
|V2| =

2

3
n. (3)

This establishes the desired upper bound. Suppose next that γLt (G) = 2
3
n. Then we

must have equality throughout the Inequality Chain (3). In particular, |D′1| = 2
3
|V ′1 | =

2
3
|V1| and |D2| = 2

3
|V2|. This in turn implies that T ′ = ∅. Using an analogous proof as

in the proof when equality holds in the Inequality Chain (2) in the proof of Claim 8.B,
the graph G can be shown to be the 2-corona of some connected nontrivial graph that
contains no 4-cycles. Since the proof is very similar, we omit the details. This completes
the proof of Theorem 8.

5 Graphs with given minimum degree

We now discuss the special case of graphs of given minimum degree.

5.1 Minimum degree two

If we forbid a certain set of six graphs (each of them of order at most 10), then it is known
(see [17]) that every connected graph G of order n with δ(G) > 2 satisfies γt(G) 6 4n/7.
However, for graphs with minimum degree 2, the location-total domination number can
be much larger than the total domination number. For example, let G be the graph
obtained by taking the disjoint union of k > 2 5-cycles, adding a new vertex v and joining
v with an edge to exactly one vertex from each 5-cycle. The resulting twin-free graph G
has order n = 5k+ 1, minimum degree δ(G) = 2 and satisfies γLt (G) = 3k = 3

5
(n− 1) and

γt(G) = 2(k + 1) = 2
5
(n− 1) + 2.

We believe that Conjecture 1 can be strengthened for graphs with minimum degree at
least 2 and pose the following question.
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Question 9. Is it true that every twin-free graph with order n, no isolated vertices and
minimum degree 2 satisfies γLt (G) 6 3n

5
?

If Question 9 is true, then the bound is asymptotically tight by the examples given
earlier.

5.2 Large minimum degree

The following is an upper bound on γt(G) according to the minimum degree δ of G.

Theorem 10 (Henning,Yeo [20]). If G is a graph with minimum degree δ > 1 and order n,
then

γt(G) 6

(
1 + ln δ

δ

)
n.

Using Observation 6, we obtain the following corollary of the results in [12, 13] and
Theorem 10.

Corollary 11. Let G be a twin-free graph of minimum degree δ > 1. We have

γLt (G) 6

(
2

3
+

1 + ln δ

δ

)
n.

Moreover, if G is a bipartite, co-bipartite or split graph, then

γLt (G) 6

(
1

2
+

1 + ln δ

δ

)
n.

If Conjecture 3 holds, we always have γLt (G) 6
(
1
2

+ 1+ln δ
δ

)
n.

It follows from Corollary 11 that Conjecture 1 asymptotically holds for large minimum
degree, in the sense that limδ→∞

(
2
3

+ 1+ln δ
δ

)
= 2

3
. Moreover, Conjecture 1 holds for bipar-

tite, co-bipartite, and split graphs with minimum degree δ > 26. Finally, if Conjecture 3
holds, then Conjecture 1 holds whenever δ > 26.

6 Conclusion

A classic result in total domination theory in graphs is that every connected graph of order
n > 3 has a total dominating set of size at most 2

3
n. In this paper, we conjecture that

every twin-free graph of order n with no isolated vertex has a locating-total dominating
set of size at most 2

3
n and we prove our conjecture for graphs with no 4-cycles. We also

prove that our conjecture, namely Conjecture 1, holds asymptotically for large minimum
degree. Since Conjecture 3 was proved for bipartite graphs [13] and cubic graphs [11], can
we prove Conjecture 1 for these classes as well?
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