Hadwiger's conjecture for 3-arc graphs*

David R. Wood
School of Mathematical Sciences
Monash University
Melbourne, Australia
david.wood@monash.edu
Guangjun $\mathrm{Xu}^{\dagger} \quad$ Sanming Zhou
School of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010, Australia
\{gx,smzhou\}@ms.unimelb.edu.au

Submitted: Mar 25, 2015; Accepted: Oct 25, 2016; Published: Nov 10, 2016
Mathematics Subject Classifications: 05C15, 05C20, 05C83

Abstract

The 3 -arc graph of a digraph D is defined to have vertices the arcs of D such that two arcs $u v, x y$ are adjacent if and only if $u v$ and $x y$ are distinct arcs of D with $v \neq x, y \neq u$ and u, x adjacent. We prove Hadwiger's conjecture for 3 -arc graphs.

Keywords: Hadwiger's conjecture, graph colouring, graph minor, 3 -arc graph

1 Introduction

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. An H-minor is a minor isomorphic to H. The Hadwiger number $h(G)$ of G is the maximum integer k such that G contains a K_{k}-minor, where K_{k} is the complete graph with k vertices.

In 1943, Hadwiger [10] posed the following conjecture, which is thought to be one of the most important problems in graph theory:

Hadwiger's Conjecture. For every graph $G, h(G) \geqslant \chi(G)$.

[^0]Hadwiger's conjecture has been proved for graphs G with $\chi(G) \leqslant 6$ [19], and is open for graphs with $\chi(G) \geqslant 7$. This conjecture also holds for particular classes of graphs, including powers of cycles [14], proper circular arc graphs [2], line graphs [18], quasi-line graphs [6] and complements of Kneser graphs [24]. See [21] or more recently [20] for a survey.

In this paper we prove Hadwiger's conjecture for a large family of graphs. Such graphs are defined by means of a graph operator, called the 3-arc graph construction (see Definition 1), which bears some similarities with the line graph operator and path graph operator [4, 16]. This construction was first introduced by Li, Praeger and Zhou [15] in the study of a family of arc-transitive graphs whose automorphism group contains a subgroup acting imprimitively on the vertex set. (A graph is arc-transitive if its automorphism group is transitive on the set of oriented edges.) It was used in classifying or characterizing certain families of arc-transitive graphs $[9,11,15,17,25,26,27]$. Recently, various graphtheoretic properties of 3 -arc graphs have been investigated $[1,12,13,23]$.

The original 3-arc graph construction [15] was defined for a finite, undirected and loopless graph $G=(V(G), E(G))$. In G, an arc is an ordered pair of adjacent vertices. Denote by $A(G)$ the set of arcs of G. For adjacent vertices u, v of G, we use $u v$ to denote the arc from u to v, and $\{u, v\}$ the edge between u and v. We emphasise that each edge of G gives rise to two arcs in $A(G)$. A 3-arc of G is a 4-tuple of vertices (v, u, x, y), possibly with $v=y$, such that both (v, u, x) and (u, x, y) are paths of G. The 3 -arc graph of G is defined as follows:

Definition 1. [15, 26] Let G be an undirected graph. The 3-arc graph of G, denoted by $X(G)$, has vertex set $A(G)$ such that two vertices corresponding to arcs $u v$ and $x y$ are adjacent if and only if (v, u, x, y) is a 3 -arc of G.

The 3-arc graph construction can be generalised for a digraph $D=(V(D), A(D))$ as follows [12], where $A(D)$ is a multiset of ordered pairs (namely, arcs) of distinct vertices of $V(D)$. Here a digraph allows parallel arcs but not loops.

Definition 2. Let $D=(V(D), A(D))$ be a digraph. The 3-arc graph of D, denoted by $X(D)$, has vertex set $A(D)$ such that two vertices corresponding to arcs $u v$ and $x y$ are adjacent if and only if $v \neq x, y \neq u$ and u, x are adjacent.

Let D be the digraph obtained from an undirected graph G by replacing each edge $\{x, y\}$ by two opposite arcs $x y$ and $y x$. Then, $X(D)=X(G)$.

Knor, Xu and Zhou [12] introduced the notion of 3-arc colouring of a digraph, which can be defined as a proper vertex-colouring of $X(D)$. The minimum number of colours in a 3 -arc colouring of D is called the 3 -arc chromatic index of D, and is denoted by $\chi_{3}^{\prime}(D)$. Then $\chi(X(D))=\chi_{3}^{\prime}(D)$.

The main result of this paper is the following:
Theorem 3. Let D be a digraph without loops. Then $h(X(D)) \geqslant \chi(X(D))$.
Note that in the case of the 3 -arc graph of an undirected graph, we have obtained a much simpler proof of Theorem 3.

2 Preliminaries

We need the following notation. Let $D=(V(D), A(D))$ be a digraph. We denote by $A_{D}\{x, y\}$ the set of arcs between vertices x and y, and by $A_{D}(x)$ the set of arcs outgoing from x. Then vertices x and y are adjacent if and only if $A_{D}\{x, y\} \neq \emptyset$. When $\left|A_{D}\{x, y\}\right|=1$, we misuse the notation $A_{D}\{x, y\}$ to indicate the arc between x and y. An in-neighbour (respectively, out-neighbour) of a vertex x of D is a vertex y such that $y x \in A(D)$ (respectively, $x y \in A(D)$). The set of all in-neighbours (respectively, out-neighbours) of x is denoted by $N_{D}^{-}(x)$ (respectively, $N_{D}^{+}(x)$). The in-degree $d_{D}^{-}(x)$ (respectively, out-degree $d_{D}^{+}(x)$) is defined to be the number of in-neighbours (respectively, out-neighbours) of x. A vertex x is called a sink if $d_{D}^{+}(x)=0$. A digraph is simple if $\left|A_{D}\{x, y\}\right| \leqslant 1$ for all distinct vertices x and y of D. A tournament is a simple digraph whose underlying undirected graph is complete.

For an undirected graph G, the degree of a vertex v in G is denoted by $d_{G}(v)$, and the minimum and maximum degrees of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. We omit the subscript when there is no ambiguity. For notation not given here we refer to [3].

A K_{t}-minor in G can be thought of as t connected subgraphs in G that are pairwise disjoint such that there is at least one edge of G between each pair of subgraphs. Each such subgraph is called a branch set.

Lemma 4. Let D be a tournament on $n \geqslant 5$ vertices. Then $h(X(D)) \geqslant n$.
Proof. Since D is a tournament, $A\{x, y\}$ is interpreted as a single arc. Denote $V(D)=$ $\left\{x, v_{0}, v_{1}, \ldots, v_{n-2}\right\}$. We now construct a collection of n branch sets. For $0 \leqslant i \leqslant n-2$, let $B_{i}:=\left\{A\left\{x, v_{i}\right\}, A\left\{v_{i+1}, v_{i+2}\right\}\right\}$. Let $U:=\left\{A\left\{v_{i}, v_{i+2}\right\} \mid 0 \leqslant i \leqslant n-2\right\}$, where all subscripts are taken modulo $n-1$. Clearly, these branch sets are pairwise disjoint.

Now we show that each branch set is connected. Note that each B_{i} induces K_{2} in $X(D)$. Since $A\left\{v_{i}, v_{i+2}\right\}$ is adjacent to $A\left\{v_{i+1}, v_{i+3}\right\}$ in $X(D), U$ induces a subgraph that contains an $(n-1)$-cycle passing through each element of U.

Next we show that these branch sets are pairwise adjacent. For each pair of distinct B_{i}, B_{j}, if $j \neq i+1$ and $j \neq i+2$, then B_{i} and B_{j} are adjacent since $A\left\{v_{i+1}, v_{i+2}\right\}$ is adjacent to $A\left\{x, v_{j}\right\}$. If $j=i+1$, then $i \neq j+1$ and $i \neq j+2$ because $n-1 \geqslant 4$, so $A\left\{x, v_{i}\right\}$ is adjacent to $A\left\{v_{j+1}, v_{j+2}\right\}$. If $j=i+2$, then $A\left\{v_{j+1}, v_{j+2}\right\}$ is adjacent to $A\left\{v_{i+1}, v_{i+2}\right\}$ since $\left\{v_{j+1}, v_{j+2}\right\} \cap\left\{v_{i+1}, v_{i+2}\right\}=\emptyset$. Thus, B_{i} is adjacent to B_{j} as well. Since $A\left\{x, v_{i}\right\} \in B_{i}$ is adjacent to $A\left\{v_{i+1}, v_{i+3}\right\} \in U$, each B_{i} is adjacent to U.

Let v be a vertex of a digraph D. Let $A \subseteq A(v)$. An arc $x y$ is said to be A-feasible if $v x \in A, y \neq v$ and (v, x, y) is a directed path. A set $A^{f} \subseteq A(D)$ is A-feasible if each arc in A^{f} is A-feasible and no two arcs in A^{f} share a tail. An arc $x y$ of D is said to be A-compatible if $y \neq v, A\{v, x\} \neq \emptyset$ and $v x \notin A$. A set $A^{c} \subseteq A(D)$ is A-compatible if each arc in A^{c} is A-compatible. Note that each feasible arc $x y$ is adjacent in $X(D)$ to each arc in A except $v x$, and each compatible arc $x y$ is adjacent to each arc in A. For example, let $A=\left\{v v_{0}, v v_{1}, v v_{2}\right\}$ (see Fig. 1). Then each of $v_{0} v_{0}^{\prime}, v_{1} v_{1}^{\prime}$ and $v_{2} v_{2}^{\prime}$ is A-feasible, and each of $v_{3} v_{3}^{\prime}$ and $w w^{\prime}$ is A-compatible.

Figure 1: An illustration for A-feasibility and A-compatibility. Let $A=\left\{v v_{0}, v v_{1}, v v_{2}\right\}$, then each of $v_{0} v_{0}^{\prime}, v_{1} v_{1}^{\prime}$ and $v_{2} v_{2}^{\prime}$ is A-feasible, and each of $v_{3} v_{3}^{\prime}$ and $w w^{\prime}$ is A-compatible.

Let A^{f} be an A-feasible set, and A^{c} be an A-compatible set. An $\left(A, A^{f}, A^{c}\right)$-net of size p is a K_{p}-minor in $X(D)$ using only arcs in $A \cup A^{f} \cup A^{c}$ such that $p:=|A|$ and each branch set has exactly one arc in A. An $\left(A, A^{f}, A^{c}\right)$-net is called a net at v if v is the common tail of all arcs in A. It may happen that one of A^{f} and A^{c} is empty. The following lemma provides some sufficient conditions for the existence of an $\left(A, A^{f}, A^{c}\right)$-net.

Lemma 5. Let v be a vertex of a digraph D. Let $A \subseteq A(v)$ and $p:=|A|$. Let A^{f} be an A-feasible set. Let A^{c} be an A-compatible set. Then, in the following cases, D contains an $\left(A, A^{f}, A^{c}\right)$-net.
(1) $p=1$;
(2) $\left|A^{c}\right| \geqslant 1$ and $p=2$;
(3) $\left|A^{f}\right|=3$ and $p=3$;
(4) $\left|A^{f}\right| \geqslant 1$ and $\left|A^{c}\right| \geqslant 1$ and $p=3$;
(5) $\left|A^{c}\right| \geqslant 2$ and $p=3$;
(6) $\left|A^{f}\right|+\left|A^{c}\right| \geqslant p-1$ and $p \geqslant 4$.

Proof. Denote $A=\left\{v v_{0}, v v_{1}, \ldots, v v_{p-1}\right\}$, and without loss of generality, assume that $A\left(v_{j}\right)-\left\{v_{j} v\right\} \neq \emptyset$ for $0 \leqslant j \leqslant\left|A^{f}\right|-1$. Denote the elements of A^{f} by

$$
v_{0} v_{0}^{\prime}, v_{1} v_{1}^{\prime}, \ldots, v_{\left|A^{f}\right|-1} v_{\left|A^{f}\right|-1}^{\prime}
$$

Note that $\left(v, v_{j}, v_{j}^{\prime}\right)$ is a directed path for $0 \leqslant j \leqslant\left|A^{f}\right|-1$. Consider the following possibilities:
(1) $p=1$: Then $\left\{v v_{0}\right\}$ is a trivial $(A, \emptyset, \emptyset)$-net of size 1 .
(2) $\left|A^{c}\right| \geqslant 1$ and $p=2$: Let $w w^{\prime}$ be an A-compatible arc and $A^{c}:=\left\{w w^{\prime}\right\}$. Since $w w^{\prime}$ is adjacent to each arc of $A,\left\{v v_{0}\right\},\left\{v v_{1}, w w^{\prime}\right\}$ form an $\left(A, \emptyset, A^{c}\right)$-net of size 2. See Fig 1 .
(3) $\left|A^{f}\right|=3$ and $p=3$: Then $\left\{v v_{0}, v_{1} v_{1}^{\prime}\right\},\left\{v v_{1}, v_{2} v_{2}^{\prime}\right\}$ and $\left\{v v_{2}, v_{0} v_{0}^{\prime}\right\}$ form an $\left(A, A^{f}, \emptyset\right)$-net of size 3. See Fig 1 .
(4) $\left|A^{f}\right| \geqslant 1$ and $\left|A^{c}\right| \geqslant 1$ and $p=3$: Let $w w^{\prime}$ be an A-compatible arc and $A^{c}:=\left\{w w^{\prime}\right\}$. Note that $w w^{\prime}$ is adjacent to each $v v_{i}$, and $v_{0} v_{0}^{\prime}$ is adjacent to $v v_{2}$ in $X(D)$. So $\left\{v v_{0}, w w^{\prime}\right\}$, $\left\{v v_{1}, v_{0} v_{0}^{\prime}\right\}$ and $\left\{v v_{2}\right\}$ form an $\left(A, A^{f}, A^{c}\right)$-net of size 3.
(5) $\left|A^{c}\right| \geqslant 2$ and $p=3$: Similar to case (4), $\left\{v v_{0}, w w^{\prime}\right\},\left\{v v_{1}, y y^{\prime}\right\}$ and $\left\{v v_{2}\right\}$ form an $\left(A, A^{f}, A^{c}\right)$-net of size 3 , where A^{c} contains two A-compatible arcs $y y^{\prime}$ and $w w^{\prime}$.
(6) $\left|A^{f}\right|+\left|A^{c}\right| \geqslant p-1$ and $p \geqslant 4$: Let $\beta_{j}:=v_{j} v_{j}^{\prime}$ for $0 \leqslant j \leqslant\left|A^{f}\right|-1$. Since $\left|A^{c}\right| \geqslant p-1-\left|A^{f}\right|$, we can choose $p-1-\left|A^{f}\right|$ arcs from A^{c} and name them as $\beta_{\left|A^{f}\right|}$, $\beta_{\left|A^{f}\right|+1}, \ldots, \beta_{p-2}$. Define $B_{j}:=\left\{v v_{j}, \beta_{j+1}\right\}$ for $0 \leqslant j \leqslant p-3, B_{p-2}:=\left\{v v_{p-2}, \beta_{0}\right\}$, and $B_{p-1}:=\left\{v v_{p-1}\right\}$. For $0 \leqslant i<j \leqslant p-2$, observe that in $X(D), v v_{j} \in B_{j}$ is adjacent to α_{i} if $i \neq j-1$; and $v v_{i} \in B_{i}$ is adjacent to α_{j} if $i=j-1$, where $\alpha_{j} \in B_{j}-\left\{v v_{j}\right\}$ and $\alpha_{i} \in B_{i}-\left\{v v_{i}\right\}$. Thus, B_{j} and B_{i} are adjacent. In addition, since $v v_{p-1} \in B_{p-1}$ is adjacent in $X(D)$ to every β_{j}, B_{p-1} is adjacent to B_{j} with $j \leqslant p-2$. Thus, B_{0}, \ldots, B_{p-1} form an $\left(A, A^{f}, A^{c}\right)$-net of size p.

Note that if D contains an $\left(A, A^{f}, A^{c}\right)$-net of size p, then $X(D)$ contains a K_{p}-minor and $h(X(D)) \geqslant p$.

A graph G with chromatic number k is called k-critical if $\chi(H)<\chi(G)$ for every proper subgraph H of G. The following result is well known:

Lemma 6. Let G be a k-critical graph. Then
(a) G has minimum degree at least $k-1$, when $k \geqslant 2$ [7];
(b) no vertex-cut of G induces a clique when $k \geqslant 3$ and G is noncomplete [8].

Let D be a simple digraph. For each arc $u v \in A(D)$, define $S_{D}(u v):=d^{+}(u)+d^{+}(v)-1$.
Lemma 7. For a simple digraph D,

$$
\sum_{u v \in A(D)} S_{D}(u v)=\sum_{v \in V(D)} d^{+}(v)(d(v)-1),
$$

where $d(v)=d^{+}(v)+d^{-}(v)$.
Proof.

$$
\begin{aligned}
\sum_{u v \in A(D)} S_{D}(u v) & =\sum_{u v \in A(D)}\left(d^{+}(u)+d^{+}(v)-1\right) \\
& =\sum_{u v \in A(D)} d^{+}(u)+\sum_{u v \in A(D)} d^{+}(v)-\sum_{u v \in A(D)} 1 \\
& =\sum_{u \in V(D)} d^{+}(u) d^{+}(u)+\sum_{v \in V(D)} d^{+}(v) d^{-}(v)-\sum_{u \in V(D)} d^{+}(u) \\
& =\sum_{w \in V(D)} d^{+}(w)\left(d^{+}(w)+d^{-}(w)-1\right) \\
& =\sum_{w \in V(D)} d^{+}(w)(d(w)-1)
\end{aligned}
$$

3 Proof of Theorem 3

In this proof, we assume that, for every pair of distinct vertices u and v of D, there is at most one arc from u to v and at most one arc from v to u. That is, $A_{D}\{u, v\} \subseteq\{u v, v u\}$. That is because all the arcs from u to v can be assigned the same colour and deleting an arc does not increase $h(X(D))$.

Let D be a digraph. An arc $u v$ of D is called redundant if $A_{D}(u) \subseteq A_{D}\{u, v\}$ or $A_{D}(v) \subseteq A_{D}\{u, v\}$. Note that if $u v$ is redundant then so is $v u$ if it exists. Let D^{\prime} be the digraph obtained from D by deleting all redundant arcs. Let G be the (simple) underlying undirected graph of D^{\prime}. We have the following claim:

Claim 1. $\chi(X(D)) \leqslant \chi(G)$.
Proof. Since G is the underlying undirected graph of $D^{\prime}, V(G)=V\left(D^{\prime}\right)=V(D)$. Let $c: V(G) \rightarrow\{1,2, \ldots, \chi(G)\}$ be a $\chi(G)$-colouring of G. For each arc $u v \in A(D)$, define $f(u v):=c(u)$. We now show that f is a 3 -arc colouring of D. For every pair of arcs $u v, x y \in A(D)$ adjacent in $X(D)$, we have that $A_{D}\{u, x\} \neq \emptyset$ (that is, u, x are adjacent), and both $u v$ and $x y$ are not in $A_{D}\{u, x\}$. Thus, some arc between u and x is not redundant, and u and x are adjacent in G. So, $f(u v)=c(u) \neq c(x)=f(x y)$. It follows that f is a 3 -arc colouring of D and $\chi(X(D)) \leqslant \chi(G)$.

Hadwiger's conjecture is true for k-chromatic graphs with $k \leqslant 6$. So assume that $\chi(X(D)) \geqslant 7$. Let $k:=\chi(G)$ and let H be a k-critical subgraph of G. By Lemma 6(a), $\delta(H) \geqslant k-1$.

Let F be an orientation of H such that each arc $u v$ of F inherits the orientation of an arc in $A_{D}\{u, v\}$ and the number of out-degree 1 vertices in F is minimized. An arc $x y \in A(D)$ is called potential if $x y \notin A(F)$. In particular, every redundant arc is potential. F has the following property:

Property A. If $d_{F}^{+}(v)=1$ and $A_{F}(v)=\{v w\}$, then there exists one potential arc $v z$ outgoing from v in D such that $v z \neq v w$. If further $z v \in A(F)$, then $d_{F}^{+}(z)=2$.

Proof. Since $v w$ is not redundant, $A_{D}(v) \nsubseteq A_{D}\{v, w\}$. Let $v z \in A_{D}(v)-A_{D}\{v, w\}$. Then $v z \neq v w$. Since $v w$ is the unique outgoing arc from v in $F, v z$ is potential. Suppose that $z v \in A(F)$. If $d_{F}^{+}(z) \neq 2$, let F^{\prime} be obtained from F by replacing $z v$ by $v z$. Then $d_{F^{\prime}}^{+}(z) \neq 1, d_{F^{\prime}}^{+}(v)=2$ and the out-degree of every other vertex remains unchanged. Hence F^{\prime} is an orientation of H with fewer out-degree 1 vertices than F, which is a contradiction.

In addition, for each arc $x y$ of F, by the definition of $D^{\prime}, A_{D}(y) \nsubseteq A_{D}\{x, y\}$. That is, there is an arc other than $y x$ outgoing from y (hence, $d_{D}^{+}(y) \geqslant 1$) and there is a directed path in D of length 2 starting from the arc $x y$, even if $d_{F}^{+}(y)=0$. Note that F is a simple digraph and $d_{F}(v)=d_{F}^{+}(v)+d_{F}^{-}(v)=d_{H}(v) \geqslant k-1$ by Lemma 6(a).

By Claim 1, it suffices to prove that $h(X(D)) \geqslant k=\chi(G) \geqslant \chi(X(D))$.
Let $v \in V(F)$ be a vertex with maximum out-degree $\Delta_{F}^{+}(v)$. If $\Delta_{F}^{+}(v) \geqslant k$, let $A \subseteq A_{F}(v)$ with $|A|=k$, and let A^{f} be a maximal A-feasible set. Then $\left|A^{f}\right|=k \geqslant 6$ since there exists a directed path of length 2 starting from every arc of A. By Lemma
$5(6)$ with $p=k$, there exists an $\left(A, A^{f}, \emptyset\right)$-net of size k. Thus, $h(X(D)) \geqslant k$, and the result holds.

Now assume that $\Delta^{+}(F) \leqslant k-1$. By Lemma 7 and since F has minimum degree at least $k-1$,

$$
\begin{equation*}
\sum_{u v \in A(F)} S_{F}(u v)=\sum_{v \in V(F)} d_{F}^{+}(v)\left(d_{F}(v)-1\right) \geqslant(k-2) \sum_{v \in V(F)} d_{F}^{+}(v)=(k-2) e(F), \tag{1}
\end{equation*}
$$

where $e(F)$ is the number of arcs of F.
If $\sum_{u v \in A(F)} S_{F}(u v)=(k-2) e(F)$, then $d_{H}(x)=d_{F}(x)=k-1$ for every $x \in V(F)$. Since $\chi(H)=k$, by Brooks' Theorem [5], $H \cong K_{k}$ and F is a tournament. By Lemma 4, $h(X(D)) \geqslant h(X(F)) \geqslant k$, the result follows.

Now assume that $\sum_{u v \in A(F)} S_{F}(u v)>(k-2) e(F)$. We call a vertex v of F special if $d_{F}^{+}(v)=k-2$ and $d_{F}^{-}(v)=1$ and $d_{F}^{+}\left(v^{\prime}\right)=0$ for each $v v^{\prime} \in A_{F}(v)$. Let W be the set of all special vertices of F, and let $W^{+}:=\{x y \in A(F) \mid x \in W\}$. Let F^{\prime} be the digraph obtained from F by deleting the arcs in W^{+}. Then, for each vertex v of F^{\prime} with $d_{F^{\prime}}^{+}(v)=d_{F^{\prime}}(v)-1=k-2$, the head of (at least) one arc $v v^{\prime} \in A\left(F^{\prime}\right)$ is not a sink in F; that is, $d_{F}^{+}\left(v^{\prime}\right) \geqslant 1$. Since this outgoing arc at v^{\prime} in F is not redundant, $\left|d_{D}^{+}\left(v^{\prime}\right)\right| \geqslant 2$.

Denote by Q the set of sinks of F. Then each arc of W^{+}has its tail in W and head in Q. Note that W is independent in F, and $W \cap Q=\emptyset$. By Lemma 7,

$$
\begin{aligned}
& (k-2) e(F) \\
< & \sum_{u v \in A(F)} S_{F}(u v) \\
= & \sum_{v \in V(F)} d_{F}^{+}(v)\left(d_{F}(v)-1\right) \\
= & \sum_{v \in V(F)-(W \cup Q)} d_{F}^{+}(v)\left(d_{F}(v)-1\right)+\sum_{v \in Q} d_{F}^{+}(v)\left(d_{F}(v)-1\right)+\sum_{v \in W} d_{F}^{+}(v)\left(d_{F}(v)-1\right) \\
= & \left(\sum_{v \in V\left(F^{\prime}\right)-(W \cup Q)} d_{F^{\prime}}^{+}(v)\left(d_{F^{\prime}}(v)-1\right)\right)+0+(k-2)\left(\left|W^{+}\right|+\sum_{v \in W} d_{F^{\prime}}^{+}(v)\right) .
\end{aligned}
$$

Since vertices in $W \cup Q$ have outdegree 0 in F^{\prime},

$$
\begin{aligned}
(k-2) e(F) & <\left(\sum_{v \in V\left(F^{\prime}\right)} d_{F^{\prime}}^{+}(v)\left(d_{F^{\prime}}(v)-1\right)\right)+\left|W^{+}\right|(k-2) \\
& =\left(\sum_{u v \in A\left(F^{\prime}\right)} S_{F^{\prime}}(u v)\right)+\left|W^{+}\right|(k-2)
\end{aligned}
$$

Thus $\sum_{u v \in A\left(F^{\prime}\right)} S_{F^{\prime}}(u v)>(k-2)\left(e(F)-\left|W^{+}\right|\right)=(k-2) e\left(F^{\prime}\right)$. Let $u v$ be an arc of F^{\prime} with maximum $S_{F^{\prime}}(u v)$. Thus, $S_{F}(u v) \geqslant S_{F^{\prime}}(u v) \geqslant k-1$. If $v \in W$, then $d_{F^{\prime}}^{+}(v)=0$ and $d_{F^{\prime}}^{+}(u) \geqslant k$, which contradicts the assumption that $\Delta^{+}(F) \leqslant k-1$. Hence $v \notin W$.

Denote $A_{F}(u)=\left\{u v, u u_{1}, u u_{2}, \ldots, u u_{i}\right\}$ and $A_{F}(v)=\left\{v v_{1}, v v_{2}, \ldots, v v_{j}\right\}$, where $i+j=$ $S_{F}(u v) \geqslant k-1$. Set $T:=\left\{u_{1}, u_{2}, \ldots, u_{i}\right\} \cap\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$. Denote $N_{1}:=N_{F}(u)-\{v\}$

Figure 2: An illustration for $A_{F}(u), A_{F}(v), \varphi\left(u, x_{l}\right)$ and $\varphi\left(v, y_{l}\right)$ for a case with $i+j=$ $S_{F}(u v) \geqslant 6$, where $w_{1}=u_{1}=x_{1}=v_{1}=y_{1}, w_{2}=u_{2}=x_{2}=v_{2}=y_{2}, a=u_{3}=x_{3}=y_{3}$ and $u_{4}=x_{4}$.
and $N_{2}:=N_{F}(v)-\{u\}$. Say $N_{1}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, and $N_{2}=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Since F has minimum degree at least $k-1$, both r and s are at least $k-2$. See Fig. 2 for an illustration for a case with $k=7$, in which $A_{F}(u)=\left\{u v, u u_{1}=u w_{1}, u u_{2}=u w_{2}, u u_{3}=u a, u u_{4}\right\}$, $A_{F}(v)=\left\{v v_{1}=v w_{1}, v v_{2}=v w_{2}\right\}, T=\left\{w_{1}, w_{2}\right\}, N_{1}=\left\{x_{1}=w_{1}, x_{2}=w_{2}, x_{3}=a, x_{4}=\right.$ $\left.u_{4}, x_{5}\right\}$ and $N_{2}=\left\{y_{1}=w_{1}, y_{2}=w_{2}, y_{3}=a, y_{4}, y_{5}\right\}$.

Since the $\operatorname{arc} A_{F}\left\{u, x_{l}\right\}$ is not redundant, $A_{D}\left(x_{l}\right) \nsubseteq A_{D}\left\{u, x_{l}\right\}$. Thus, for each $x_{l} \in N_{1}$, to arc $A_{F}\left\{u, x_{l}\right\} \in A(F)$ we can associate an arc, denoted $\varphi\left(u, x_{l}\right)$, which is chosen from $A_{D}\left(x_{l}\right)-A_{D}\left\{u, x_{l}\right\}$. Similarly, for each $y_{l} \in N_{2}$, associate an arc, denoted $\varphi\left(v, y_{l}\right)$, in $A_{D}\left(y_{l}\right)-A_{D}\left\{v, y_{l}\right\}$ to arc $A_{F}\left\{v, y_{l}\right\} \in A(F)$. An illustration for the definition of $\varphi\left(u, x_{l}\right)$ and $\varphi\left(v, y_{l}\right)$ is given in Fig. 2.

Choose these arcs $\varphi\left(u, x_{l}\right)$ and $\varphi\left(v, y_{l}\right)$ such that if $\Sigma:=\cup_{l=1}^{r} \varphi\left(u, x_{l}\right)$ and $\Pi:=$ $\cup_{l=1}^{s} \varphi\left(v, y_{l}\right)$ then $t:=|\Sigma \cap \Pi|$ is minimized. We now prove that, for each $w w^{\prime} \in \Sigma \cap \Pi$, ww is the unique arc outgoing from w in $D, A_{F}\{u, w\}=u w, A_{F}\{v, w\}=v w$ and $w^{\prime} \notin\{u, v\}$. Since $w w^{\prime}=\varphi(u, w)=\varphi(v, w)$, we have $w^{\prime} \notin\{u, v\}$. Suppose that $\left|A_{D}(w)\right| \geqslant 2$, and $w w^{\prime \prime}$ is an arc outgoing from w other than $w w^{\prime}$ in D. Then at least one of u and v, say u, is not equal to $w^{\prime \prime}$. Now set $\varphi(u, w):=w w^{\prime \prime}$ and keep $\varphi(v, w)=w w^{\prime}$. Then $|\Sigma \cap \Pi|$ is decreased. Thus, $w w^{\prime}$ is the unique arc outgoing from w in D. Since $A_{D}(w)=\left\{w w^{\prime}\right\}$, we have that $A_{F}\{u, w\}=u w$ and $A_{F}\{v, w\}=v w$.

Denote $\Sigma \cap \Pi=\left\{w_{1} w_{1}^{\prime}, w_{2} w_{2}^{\prime}, \ldots, w_{t} w_{t}^{\prime}\right\}$. Then $w_{l} \in T$ for each $l \in[1, t]$ and $t \leqslant|T| \leqslant$ $\min \{i, j\}$. Consider the following cases:

Case 1. $S_{F}(u v) \geqslant k$.
In this case, we will construct an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} and a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B}, for some $A \subseteq A_{F}(u)-\{u v\}$ and $B \subseteq A_{F}(v)$, such that $\left(A \cup A^{f} \cup A^{c}\right) \cap\left(B \cup B^{f} \cup \mathrm{~B}^{c}\right)=\emptyset$. Since each branch set in \mathcal{A} contains an outgoing arc at u other than $u v$, and each branch set in \mathcal{B} contains an outgoing arc at v other than $v u$, each branch set in \mathcal{A} is adjacent in $X(D)$ to each branch set in \mathcal{B}. Since each branch set in \mathcal{A} is contained in $A \cup A^{f} \cup A^{c}$, and each branch set in \mathcal{B} is contained in $B \cup B^{f} \cup \mathrm{~B}^{c}$, no branch set in \mathcal{A} intersects a branch set in
\mathcal{B}. Hence $\mathcal{A} \cup \mathcal{B}$ defines a complete minor in $X(D)$ on $|\mathcal{A}|+|\mathcal{B}|$ vertices. In most cases we construct \mathcal{A} and \mathcal{B} such that $|\mathcal{A}|+|\mathcal{B}| \geqslant k$, giving a K_{k}-minor in $X(D)$, as desired. Finally, we always choose $A^{c} \subseteq \Sigma$ and $B^{c} \subseteq \Pi$ in such a way that $A^{c} \cap B^{c}=\emptyset$.

Note that $i+j \geqslant k$. By the assumption that $\Delta^{+}(F) \leqslant k-1$, we have $1 \leqslant i \leqslant k-2$ and $2 \leqslant j \leqslant k-1$.

Case 1.1. $j=k-1$: Then $i \geqslant 1$. Let $B:=A_{F}(v)$, and B^{f} be a maximal B-feasible set in D. For $y_{l} \in N_{2}$, since $A_{D}\left\{y_{l}, v\right\}$ is not redundant, $A_{D}^{+}\left(y_{l}\right)-A_{D}\left\{y_{l}, v\right\} \neq \emptyset$. Thus, $\left|B^{f}\right|=|B|=k-1 \geqslant 4$. By Lemma 5(6) with $p=\left|B^{f}\right|=k-1$ and $\left|B^{c}\right|=0$, there exists in D a $\left(B, B^{f}, \emptyset\right)$-net \mathcal{B} of size $k-1$. Then $\mathcal{B} \cup\left\{\left\{u u_{1}\right\}\right\}$ forms the k branch sets of a K_{k}-minor in $X(D)$, since each branch set of \mathcal{B} contains an outgoing arc at v other than $v u$ and is thus adjacent to $u u_{1}$ in $X(D)$ (since $v u \notin B$).

Case 1.2. $j \leqslant k-2$: Then $0 \leqslant t \leqslant k-2$. Recall that $t=|\Sigma \cap \Pi| \leqslant|T|$.
Case 1.2.1. $t=k-2 \geqslant 3$: Suppose first that $\Sigma-\Pi \neq \emptyset$. Let $x_{l} x_{l}^{\prime} \in \Sigma-\Pi$. Since $\left|A_{F}(u)-\{u v\}\right|=i \geqslant t \geqslant 3$, there are distinct arcs $u u_{a}, u u_{b}$ in $A_{F}(u)-\{u v\}$ with $x_{l} \notin\left\{u_{a}, u_{b}\right\}$. Let $A:=\left\{u u_{a}, u u_{b}\right\}$. Note that $x_{l} x_{l}^{\prime}$ is A-compatible. Then $\mathcal{A}:=\left\{\left\{u u_{a}\right\}\right.$, $\left.\left\{u u_{b}, x_{l} x_{l}^{\prime}\right\}\right\}$ is an $\left(A, \emptyset,\left\{x_{l} x_{l}^{\prime}\right\}\right)$-net of size 2. Let B be a set of $k-2 \operatorname{arcs}$ in $A_{F}(v)$. Then $B^{f}:=\{\varphi(v, y): v y \in B\}$ is a B-feasible set of $k-2 \operatorname{arcs}$ in Π. By Lemma 5(6) with $p=\left|A^{f}\right|=k-2$ and $\left|A^{c}\right|=0$, there is a $\left(B, B^{f}, \emptyset\right)$-net \mathcal{B} of size $k-2$. Each branch set in \mathcal{A} contains an outgoing arc at u other than $u v$, and each branch set in \mathcal{B} contains an outgoing arc at v other than $v u$. Thus each branch set in \mathcal{A} is adjacent in $X(D)$ to each branch set in \mathcal{B}. Since $x_{l} x_{l}^{\prime} \notin \Pi$ and $B^{f} \subseteq \Pi$, we have $\left(A \cup\left\{x_{l} x_{l}^{\prime}\right\}\right) \cap\left(B \cup B^{f}\right)=\emptyset$. Thus, no branch set in \mathcal{A} intersects a branch set in \mathcal{B}. Hence $\mathcal{A} \cup \mathcal{B}$ is a K_{k}-minor in $X(D)$.

By symmetry and since $u v$ is not used in this case, if $\Pi-\Sigma \neq \emptyset$, then we obtain a K_{k}-minor in $X(D)$.

Now assume that $\Sigma=\Pi$. Then $|\Sigma|=|\Pi|=t=k-2$. Set $w_{0}:=v$ and $w_{0}^{\prime}:=w_{1}$. For $0 \leqslant l \leqslant t$, let $B_{l}:=\left\{u w_{l}, w_{l+1} w_{l+1}^{\prime}\right\}$, where subscripts are taken modulo $t+1$; and let $B_{t+1}:=\left\{v w_{2}\right\}$. For $0 \leqslant l<l^{\prime} \leqslant t$, either $u w_{l}$ is adjacent to $w_{l^{\prime}+1} w_{l^{\prime}+1}^{\prime}$ or $u w_{l^{\prime}}$ is adjacent to $w_{l+1} w_{l+1}^{\prime}$. Thus B_{l} is adjacent to $B_{l^{\prime}}$. Note that $v w_{2} \in B_{t+1}$ is adjacent to $w_{1} w_{1}^{\prime} \in B_{0}$ and $u w_{l} \in B_{l}$ with $1 \leqslant l \leqslant t$. Thus B_{t+1} is adjacent to every B_{l} with $0 \leqslant l \leqslant t$. Therefore, $B_{0}, B_{1}, \ldots, B_{t+1}$ form the $t+2=k$ branch sets of a K_{k}-minor in $X(D)$.

Case 1.2.2. $\left\lceil\frac{k}{2}\right\rceil \leqslant t \leqslant k-3:$ For $k-t \leqslant l \leqslant t$, set $\alpha_{l}:=w_{l} w_{l}^{\prime}$. Choose $k-2-t$ $\operatorname{arcs} \alpha_{t+1}, \alpha_{t+2}, \ldots, \alpha_{k-2}$ from $\Sigma-\Pi$ (which exist since $|\Sigma-\Pi|=r-t \geqslant k-2-t$). Denote $A:=\left\{u w_{1}, u w_{2}, \ldots, u w_{t}\right\}$. Then, α_{l} is A-feasible when $k-t \leqslant l \leqslant t$, and α_{l} is A-compatible when $t+1 \leqslant l \leqslant k-2$. Let $A^{f}:=\left\{\alpha_{k-t}, \alpha_{k-t+1}, \ldots, \alpha_{t}\right\}$ and $A^{c}:=\left\{\alpha_{t+1}, \alpha_{t+2}, \ldots, \alpha_{k-2}\right\}$. Note that A^{f} is A-feasible and A^{c} is A-compatible. By Lemma $5(6)$, there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size t in $X(D)$.

Next, for $1 \leqslant l \leqslant k-t-1$, set $\beta_{l}:=w_{l} w_{l}^{\prime}$. Choose $k-2-t \operatorname{arcs} \beta_{k-t}, \beta_{k-t+1}$, $\ldots, \beta_{2 k-2 t-3}$ from $\Pi-\Sigma$ (which exist since $|\Pi-\Sigma|=s-t \geqslant k-2-t$). Note that $|\Sigma \cap \Pi|=t \geqslant k-t$ and $2 k-2 t-3 \geqslant k-t$. Let $B:=\left\{v w_{1}, v w_{2}, \ldots, v w_{k-t}\right\}$. Then β_{l} is B-feasible when $1 \leqslant l \leqslant k-t-1$, and β_{l} is B-compatible when $k-t \leqslant l \leqslant 2 k-2 t-3$. Let $B^{f}:=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k-t-1}\right\}$, and $B^{c}:=\left\{\beta_{k-t}, \beta_{k-t+1}, \ldots, \beta_{2 k-2 t-3}\right\}$. Note that B^{f} is B-feasible and B^{c} is B-compatible. If $t=k-3$, then by Lemma 5(4), there exists a
$\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size $k-t$ in $X(D)$. Otherwise $t \leqslant k-4$ and by Lemma $5(6)$ with $p=k-t \geqslant 4$ and $\left|A^{f}\right|=k-t-1$ and $\left|A^{c}\right|=k-t-2$, there exists a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size $k-t$ in $X(D)$.

Case 1.2.3. $t \leqslant\left\lceil\frac{k}{2}\right\rceil-1$: Let $j^{\prime}:=k-i$. Since $i+j=S_{F}(u v) \geqslant k$, we have $j^{\prime} \leqslant j$. If $t=0$, then $\Sigma \cap \Pi=\emptyset$. Let $A:=\left\{u u_{1}, u u_{2}, \ldots, u u_{i}\right\}$. Note that each arc in Σ is either A-feasible or A-compatible, and no two arcs in Σ share a tail. Let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ. Then A^{f} is A-feasible and A^{c} is A-compatible. Note that $\left|A^{f}\right|+\left|A^{c}\right|=|\Sigma| \geqslant i$, and $A^{c} \neq \emptyset$ if $i \leqslant 2(\Sigma$ contains an A-compatible arc since $|\Sigma|=r \geqslant k-2 \geqslant 3$). If $i \geqslant 3$, then by Lemma $5(3)$ or Lemma 5(6) with $p=\left|A^{f}\right|=i$, there is an $\left(A, A^{f}, \emptyset\right)$-net \mathcal{A} of size i. If $i \leqslant 2$, then $A^{c} \neq \emptyset$ (since $|\Sigma|=r \geqslant k-2 \geqslant 3>i$). By Lemma 5(1) or (2) with $p=\left|A^{f}\right|=i$ and $\left|A^{c}\right| \geqslant 1$, there is an $\left(A, \emptyset, A^{c}\right)$-net \mathcal{A} of size i. Similarly, let $B \subseteq A_{F}(v)$ with $|B|=j^{\prime}$. Let $B^{f}\left(B^{c}\right.$, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Note that $\left|B^{f}\right|+\left|B^{c}\right|=|\Pi|=s \geqslant k-2 \geqslant j \geqslant j^{\prime}$. As in the construction of \mathcal{A}, by Lemma 5 , there exists a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j^{\prime}. $\mathcal{A} \cup \mathcal{B}$ forms a k branch sets of a K_{k}-minor in $X(D)$.

Suppose that $t \geqslant 1$ and $j=k-2$. If $t=1$, then let A be a subset of $A_{F}(u)-\{u v\}$ with $u w_{1} \in A$ and $|A|=2$. Note that $|\Sigma-\Pi|=r-t \geqslant k-3 \geqslant 3$. Then at least one arc in $\Sigma-\Pi$ is A-compatible. If $t \geqslant 2$, then let $A:=\left\{u w_{1}, u w_{2}\right\}$. Then $|\Sigma-\Pi|=$ $r-t \geqslant k-2-\left\lceil\frac{k}{2}\right\rceil+1=\left\lfloor\frac{k}{2}\right\rfloor-1 \geqslant 2$ because $k \geqslant 6$. Again, at least one arc in $\Sigma-\Pi$ is A-compatible. In both cases, by Lemma $5(2)$, there exists an $\left(A, \emptyset, A^{c}\right)$-net \mathcal{A} of size 2, where A^{c} is the set of A-compatible arcs in $\Sigma-\Pi$. Let $B:=A_{F}(v)$. Note that each arc in Π is either B-feasible or B-compatible, and no two arcs in Π share a tail. Let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Since $|\Pi|=s \geqslant k-2=j \geqslant 4$, by Lemma $5(6)$, there is a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j. Then $\mathcal{A} \cup \mathcal{B}$ forms the k branch sets of a K_{k}-minor in $X(D)$.

Suppose now that $t \geqslant 1$ and $j \leqslant k-3$. Note that $i \geqslant t$. Consider two possibilities: (i) $i=t$, and (ii) $i \geqslant t+1$. If $i=t$, then $t=i \geqslant k-j \geqslant 3$. Let $A:=\left\{u u_{1}, u u_{2}, \ldots, u u_{t}\right\}=$ $\left\{u w_{1}, u w_{2}, \ldots, u w_{t}\right\}$. Note that $|\Sigma-\Pi|=r-t \geqslant k-2-t \geqslant(2 t+1)-2-t=t-1 \geqslant 2$. Since $\Sigma-\Pi \neq \emptyset$, at least one arc in $\Sigma-\Pi$ is A-compatible. Let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible, respectively) arcs in $\Sigma-\Pi$. By Lemma $5(2)$, (4) or (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Let $B:=\left\{v v_{1}, v v_{2}, \ldots, v v_{j^{\prime}}\right\}$. Let $B^{f}\left(B^{c}\right.$, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. Note that $j^{\prime}=k-t \geqslant k-\left\lceil\frac{k}{2}\right\rceil+1=\left\lfloor\frac{k}{2}\right\rfloor+1 \geqslant 3$ and $|\Pi|=s \geqslant k-2 \geqslant j \geqslant j^{\prime}$. By Lemma 5, there is a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j^{\prime}.

If $i \geqslant t+1$, then $j^{\prime}=k-i \leqslant k-t-1$. Let $B:=\left\{v v_{1}, v v_{2}, \ldots, v v_{j^{\prime}}\right\}$ be a subset of $A_{F}(v)$ with $v w_{1} \in B$. By the assumption that $j \leqslant k-3$, there is at least one incoming arc other than $u v$ at v. Thus, at least one arc in $\Pi-\Sigma$ is B-compatible. Let $B^{f}\left(B^{c}\right.$, respectively) be the set of B-feasible (B-compatible, respectively) arcs in $\Pi-\Sigma$. Note that $|\Pi-\Sigma|=s-t \geqslant k-t-2 \geqslant j^{\prime}-1$. By Lemma 5(2), (4) or (6), there is a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j^{\prime}. Let $A:=\left\{u u_{1}, u u_{2}, \ldots, u u_{i}\right\}$. Let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ. Since $|\Sigma|=r \geqslant k-2 \geqslant i$, by Lemma $5(2),(3)$ or (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i.

In each case above, $\mathcal{A} \cup \mathcal{B}$ forms a K_{k}-minor in $X(D)$.

Case 2. $S(u v)=k-1$: Then $i+j=k-1$.
In this case, we construct an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} and a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} as in Case 1, except that $|\mathcal{A}|+|\mathcal{B}|=k-1$. We then define one further branch set B_{0} that, with \mathcal{A} and \mathcal{B}, forms the desired K_{k}-minor in $X(D)$.

Case 2.1. $j=1$: Then $i=k-2$. Let $A:=A_{F}(u)-\{u v\}$. Let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-\Pi$. Since $t \leqslant \min \{i, j\}=1$ and $r \geqslant k-2$, we have $|\Sigma-\Pi| \geqslant r-t \geqslant k-3$. Since $\left|A^{f}\right|+\left|A^{c}\right|=|\Sigma-\Pi| \geqslant k-3$ and $i=k-2 \geqslant 5$, by Lemma $5(6)$, there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. By Property A, there exists a potential arc $v z \neq v v_{1}$ outgoing from v in D, such that $d_{F}^{+}(z)=2$ if $z v \in A(F)$. Clearly, $z \neq u$ since $d_{F}^{+}(u)=i+1>3$. Let $B:=\left\{v v_{1}, v z\right\}$, and τ be an arc in $\Pi-\Sigma$ such that $\tau \neq \varphi\left(v, v_{1}\right)$ and $\tau \neq \varphi(v, z) . \tau$ exists because $|\Pi-\Sigma|=s-t \geqslant k-2-t \geqslant k-3 \geqslant 3$. Then $\mathcal{B}:=\left\{\left\{v v_{1}\right\},\{v z, \tau\}\right\}$ is a $(B, \emptyset,\{\tau\})$-net of size 2 . Thus, $\mathcal{A} \cup \mathcal{B}$ forms a K_{k}-minor in $X(D)$.

Case 2.2. $2 \leqslant j \leqslant k-3$: Then $2 \leqslant i \leqslant k-3$. Let $U:=N_{1} \cap N_{2}$ be the common neighbourhood of u and v in F. Say $U=\left\{a_{1}, a_{2}, \ldots, a_{|U|}\right\}$. Then $T \subseteq U$ and $t \leqslant|T| \leqslant|U|$. Recall that $t=|\Sigma \cap \Pi|$.

Case 2.2.1. $t \geqslant 2$: Let $A:=A_{F}(u)-\{u v\}$. Since $2 \leqslant t \leqslant \min \{i, j\}$, we have $i=k-1-j \leqslant k-1-t$. Since there is at least one incoming arc at u (because $i \leqslant k-3$), at least one arc in $\Sigma-\Pi$ is A-compatible. Let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-\Pi$. Note that $\left|A^{f}\right|+\left|A^{c}\right|=|\Sigma-\Pi|=r-t \geqslant k-2-t \geqslant i-1$. By Lemma 5(2), (4), (5) or (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Let $B:=A_{F}(v)$. Let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi-\Sigma$. Similarly, a (B, B^{f}, B^{c})-net \mathcal{B} of size j exists (since $2 \leqslant i, j \leqslant k-3$ and $u v$ is not in \mathcal{A}).

Let $B_{0}:=\left\{w_{1} w_{1}^{\prime}, w_{2} w_{2}^{\prime}, u v\right\}$. Then B_{0} induces a connected subgraph in $X(D)$ by noting that $u v$ is adjacent to both $w_{1} w_{1}^{\prime}$ and $w_{2} w_{2}^{\prime}$. Each branch set of \mathcal{A} and \mathcal{B} contains an arc outgoing from u or v, which is adjacent to $w_{1} w_{1}^{\prime}$ or $w_{2} w_{2}^{\prime}$. Thus B_{0} is adjacent to each branch set of $\mathcal{A} \cup \mathcal{B}$. Hence $\mathcal{A} \cup \mathcal{B} \cup\left\{B_{0}\right\}$ forms a K_{k}-minor in $X(D)$.

(a)

(b)

Figure 3: An illustration for the construction of B_{0} in Case 2.2.2.

Case 2.2.2. $t \leqslant 1$ and $U \cap N_{F}^{-}(v) \neq \emptyset$: That is, there is an arc $a v$ in F for some
vertex $a \in U$. If there exists an arc $a \bar{a}$ in D with $\bar{a} \notin\{u, v\}$, then let $B_{0}:=\{u v, a \bar{a}\}$ (see Fig. 3(a)).

Suppose that there is no such an arc $a \bar{a}$. That is, $A_{D}(a) \subseteq\{a u, a v\}$. Clearly, $a v \in$ $A_{D}(a)$. Since $A_{F}\{v, a\}$ is not redundant in F, we have $A_{D}(a)-A_{F}\{v, a\} \neq \emptyset$. Thus $a u \in A_{D}(a)$ and $A_{D}(a)=\{a u, a v\}$. Let \bar{a} be an in-neighbour other than u, v of a in F. Then $A_{F}\{a, \bar{a}\}=\bar{a} a$. Let $\overline{\bar{a}} \neq a$ be an out-neighbour of \bar{a} in F. Note that $\overline{\bar{a}}$ exists since $\bar{a} a$ is not redundant. Then, by the minimality of $|\Sigma \cap \Pi|$, we have $\bar{a} \overline{\bar{a}} \notin \Sigma \cap \Pi$. Let $B_{0}:=\{u v, a u, a v, \bar{a} \overline{\bar{a}}\}$ (see Fig. 3(b)). Then $\max \left\{\left|B_{0} \cap \Sigma\right|,\left|B_{0} \cap \Pi\right|\right\} \leqslant 2$ and $\left|B_{0} \cap \Sigma\right|+\left|B_{0} \cap \Pi\right| \leqslant 3$.

Let $A:=A_{F}(u)-\{u v\}$ and $B:=A_{F}(v)$. We show that there is a net \mathcal{A} at u of size i, and a net \mathcal{B} at v of size j, such that $\mathcal{A} \cup \mathcal{B} \cup\left\{B_{0}\right\}$ forms a K_{k}-minor in $X(D)$.

First suppose that $3 \leqslant i, j \leqslant k-4$. If $\left|B_{0} \cap \Sigma\right| \leqslant 1$, let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-\Pi-B_{0}$. If $\left|B_{0} \cap \Sigma\right|=2$, then $\left|B_{0}\right|=4$ and $\bar{a} \overline{\bar{a}} \in \Sigma \cap B_{0}$. Thus, \bar{a} is a neighbour of u in F. Note that $\bar{a} a \notin \Sigma$ and $\bar{a} a$ is A-feasible or A-compatible. Let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\left(\Sigma-\Pi-B_{0}\right) \cup\{\bar{a} a\}$. In both cases, $\left|A^{f}\right|+\left|A^{c}\right| \geqslant r-t-1 \geqslant k-2-2 \geqslant i$. By Lemma 5(3), (4), (5) or (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Let $B^{f}\left(B^{c}\right.$, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi-\left(B_{0} \cup\{\bar{a} a\}\right)$. Note that all arcs of $B_{0} \cup\{\bar{a} a\}$ except $u v$ are outgoing from at most two vertices (that is, a and \bar{a}). We have $\left|B^{f}\right|+\left|B^{c}\right|=\left|\Pi-\left(B_{0} \cup\{\bar{a} a\}\right)\right| \geqslant s-2 \geqslant k-4 \geqslant j$. Similarly, by Lemma 5, a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j exists.

Next suppose that $i=k-3$ and $j=2$. If $\left|B_{0} \cap \Sigma\right| \leqslant 1$, let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-B_{0}$. If $\left|B_{0} \cap \Sigma\right|=2$, let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible) arcs in $\left(\Sigma-B_{0}\right) \cup\{\bar{a} a\}$, where a, \bar{a} are as above. In both cases, we have $\left|A^{f}\right|+\left|A^{c}\right| \geqslant r-1 \geqslant k-3=i$. By Lemma 5 (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi-\Sigma-\left(B_{0} \cup\{\bar{a} a\}\right)$. Since v has in F at least $k-3 \geqslant 4$ in-neighbours, one of which is not in $\{u, a, \bar{a}\}$. Thus $B^{c} \neq \emptyset$. By Lemma 5(2), a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size 2 exists.

Suppose that $i=2$ and $j=k-3$. Let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi-B_{0}$. Then $\left|B^{f}\right|+\left|B^{c}\right|=\left|\Pi-B_{0}\right| \geqslant s-2 \geqslant k-4=j-1$. By Lemma $5(6)$, there exists a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j. If $\left|B_{0} \cap \Sigma\right| \leqslant 1$, let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-\Pi-B_{0}$. If $\left|B_{0} \cap \Sigma\right|=2$, let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible) arcs in $\left(\Sigma-\Pi-B_{0}\right) \cup\{\bar{a} a\}$, where a, \bar{a} are as above. In both cases, $\left|A^{f}\right|+\left|A^{c}\right| \geqslant r-t-1 \geqslant k-2-2 \geqslant 3$. Recall that $A=\left\{u u_{1}, u u_{2}\right\}$. Note that $\left|\left(A^{f} \cup A^{c}\right)-\left\{\varphi\left(u, u_{1}\right)\right\}\right| \geqslant 2$. Let τ_{1}, τ_{2} be two arcs in $\left(A^{f} \cup A^{c}\right)-\left\{\varphi\left(u, u_{1}\right)\right\}$. Then, at least one arc, τ_{2} say, of τ_{1}, τ_{2} is not equal to $\varphi\left(u, u_{2}\right)$. Note that τ_{2} is adjacent to both $u u_{1}$ and $u u_{2}$, and τ_{1} is adjacent to $u u_{1}$ in $X(D)$. Let $\mathcal{A}:=\left\{\left\{u u_{1}, \tau_{1}\right\},\left\{u u_{2}, \tau_{2}\right\}\right\}$. Then, \mathcal{A} is a $\left(A, A^{f}, A^{c}\right)$-net of size 2.

In each case, B_{0} induces a connected subgraph in $X(D)$. And $u v \in B_{0}$ is adjacent to each branch set of \mathcal{A}, and an arc outgoing from a other than $a v$ is adjacent to each branch set of \mathcal{B}. Hence $\mathcal{A} \cup \mathcal{B} \cup\left\{B_{0}\right\}$ forms a K_{k}-minor in $X(D)$.

Case 2.2.3. $t \leqslant 1$ and $U \cap N_{F}^{-}(v)=\emptyset$ and $|U| \geqslant 2$. That is, each arc in F between a
vertex of U and v is outgoing at v. Let $A:=A_{F}(u)-\{u v\}$ and $B:=A_{F}(v)$. We consider two situations.

First suppose that U is not independent in F. That is, there is an $\operatorname{arc} \tau$ in F joining two vertices in U. Say, $\tau=a_{1} a_{2}$. Since $A_{F}\left\{u, a_{2}\right\}$ is not redundant, in D there is an arc $\gamma \neq a_{2} u$ outgoing from a_{2}. (It may happen that $\gamma \in\left\{a_{2} a_{1}, a_{2} v\right\}$.) Let $B_{0}:=\{u v, \tau, \gamma\}$. Since $u v$ is adjacent to both τ and γ, B_{0} induces a connected subgraph in $X(D)$. Note that $\max \left\{\left|B_{0} \cap \Sigma\right|,\left|B_{0} \cap \Pi\right|\right\} \leqslant 2$.

If $i>j$, then $j<\frac{k-1}{2} \leqslant k-4$ and $i \geqslant 4$. Let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-B_{0}$; and, let B^{f} (B^{c}, respectively) be the set of B feasible (B-compatible) arcs in $\Pi-\Sigma-B_{0}$. Then $\left|A^{f}\right|+\left|A^{c}\right| \geqslant r-2 \geqslant k-2-2 \geqslant i-1$. By Lemma 5(6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Also, $\left|B^{f}\right|+\left|B^{c}\right|=\left|\Pi-\Sigma-B_{0}\right| \geqslant$ $s-t-2 \geqslant k-5 \geqslant j-1$. Note that there is at least one (in fact many) incoming arc $v_{l} v$ at v with $\varphi\left(v_{l}, v\right) \notin \Sigma \cup B_{0}$. Thus $\varphi\left(v_{l}, v\right) \in B^{c}$ and $\left|B^{c}\right| \geqslant 1$. By Lemma 5(2), (4) or (6), a (B, B^{f}, B^{c})-net \mathcal{B} of size j exists. If $i \leqslant j$, then $i \leqslant \frac{k-1}{2} \leqslant k-4$. Now let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma-\Pi-B_{0}$; and let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi-B_{0}$. Similarly, we obtain an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i and a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j.

Since each arc outgoing from u or v is adjacent to τ or γ, each branch set of $\mathcal{A} \cup \mathcal{B}$ is adjacent to B_{0}. Thus, $\mathcal{A} \cup \mathcal{B} \cup\left\{B_{0}\right\}$ forms a K_{k}-minor in $X(D)$.

Next suppose that U is independent in F. For each $a_{l} \in U$, if in D there is an arc $a_{l} a_{l}^{\prime}$ other than $a_{l} u$ or $a_{l} v$, let $Q_{l}:=\left\{a_{l} a_{l}^{\prime}\right\}$. Otherwise suppose that a_{l} has no out-neighbours other than u, v in D. Since $A_{F}\left\{\bar{a}_{l}, u\right\}$ is not redundant, $a_{l} v \in A(D)$; similarly, $A_{F}\left\{\bar{a}_{l}, v\right\}$ is not redundant, $a_{l} u \in A(D)$. Therefore, we have $A_{D}\left(a_{l}\right)=\left\{a_{l} u, a_{l} v\right\}$. Let $\overline{a_{l}}$ be an in-neighbour other than u, v of a_{l} in F. Then $A_{F}\left\{\bar{a}_{l}, a_{l}\right\}=\bar{a}_{l} a_{l}$. Let $\overline{\bar{a}}_{l} \neq a_{l}$ be an outneighbour of $\overline{a_{l}}$ in F (such $\overline{\bar{a}_{l}}$ exists as $\overline{a_{l}} a_{l}$ is not redundant). Let $Q_{l}:=\left\{a_{l} u, a_{l} v, \overline{a_{l}} \overline{\bar{a}_{l}}\right\}$. Let a_{l}, a_{m} be distinct vertices in U such that $w_{1} \in\left\{a_{l}, a_{m}\right\}$ when $t=1$ and $\left|Q_{l} \cup Q_{m}\right|$ is minimised. Let $B_{0}:=\{u v\} \cup Q_{l} \cup Q_{m}$. Note that in $X(D)$ each of the subgraphs induced on Q_{l} and Q_{m} is connected and adjacent to $u v, B_{0}$ induces a connected subgraph.

Note that for each $p \in\{l, m\},\left|Q_{p} \cap \Sigma\right| \leqslant 2$ and $\left|Q_{p} \cap \Pi\right| \leqslant 2$. If $\left|Q_{p} \cap \Sigma\right|=2$, then $Q_{p}:=\left\{a_{p} u, a_{p} v, \overline{a_{p}} \overline{\overline{a_{p}}}\right\}$ and $\overline{a_{p}} \overline{\overline{a_{p}}} \in \Sigma$ and $\overline{a_{p}}$ is adjacent to u (but not v because U is independent) in F. Thus $\overline{a_{p}} a_{p}$ is A-feasible (A-compatible) if $\overline{a_{p}} \overline{\overline{a_{p}}}$ is A-feasible $(A$ compatible). Let Σ^{\prime} be obtained from Σ by replacing $\overline{a_{p}} \overline{\bar{a}_{p}}$ with $\overline{a_{p}} a_{p}$. Then $\left|Q_{p} \cap \Sigma^{\prime}\right| \leqslant 1$ and $\left|B_{0} \cap \Sigma^{\prime}\right| \leqslant 2$. In addition, each element in Σ^{\prime} is A-feasible or A-compatible, and no two share a tail. Similarly, we can obtain Π^{\prime} such that each of its elements is A-feasible or A-compatible, no two elements share a tail and $\left|B_{0} \cap \Pi^{\prime}\right| \leqslant 2$.

Let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible) arcs in $\Sigma^{\prime}-B_{0}$; and let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible) arcs in $\Pi^{\prime}-B_{0}$. Then, $\left|A^{f}\right|+\left|A^{c}\right| \geqslant r-2 \geqslant k-2-2 \geqslant i-1$. Also, $\left|B^{f}\right|+\left|B^{c}\right|=\left|\Pi^{\prime}-B_{0}\right| \geqslant s-2 \geqslant k-4 \geqslant j-1$. When $i=2$, since $\left|A^{f}\right|+\left|A^{c}\right| \geqslant k-4 \geqslant 3$, we have $A^{c} \neq \emptyset$. Analogously, we have that $B^{c} \neq \emptyset$ when $j=2$. By Lemma 5(2)-(6), there exist an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i and a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j.

Since each arc outgoing from u or v is adjacent to an arc in Q_{l} or Q_{m}, each branch set of $\mathcal{A} \cup \mathcal{B}$ is adjacent to B_{0}. Thus, $\mathcal{A} \cup \mathcal{B} \cup\left\{B_{0}\right\}$ forms a K_{k}-minor in $X(D)$.

Figure 4: An illustration for Case 2.2.4.

Case 2.2.4. $U \cap N_{F}^{-}(v)=\emptyset$ and $|U| \leqslant 1$ (hence $t \leqslant 1$): That is, u and v share at most one neighbour a_{1} in F. If a_{1} exists, the arc between a_{1} and v in F is $v a_{1}$. Let $A:=A_{F}(u)-\{u v\}$ and $B:=A_{F}(v)$.

Since $\delta(F) \geqslant k-1$ and $j \leqslant k-3, v$ has at least $k-1-j \geqslant 2$ in-neighbours in F. Say, $N_{F}^{-}(v)=\left\{u, y_{j+1}, y_{j+2}, \ldots, y_{k-2}\right\}$. Note that $N_{F}^{-}(v)-\{u\} \neq \emptyset$. Recall that $N_{F}^{+}(v)=\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$.

Let \bar{H} be obtained from H by deleting vertices in $U \cup\{u, v\}$. By Lemma 6(b), \bar{H} is connected. Let $P_{0}:=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ be a shortest path in \bar{H} between $N_{F}(u)-(\{v\} \cup U)$ and $N_{F}^{-}(v)-(\{u\} \cup U)$, where $m \geqslant 2$ (because u and v share no common neighbour in $\bar{H}), z_{1} \in N_{F}(u)-(\{v\} \cup U)$ and $z_{m} \in N_{F}^{-}(v)-(\{u\} \cup U)$. See Fig. 4. Then each internal vertex of P_{0} is not adjacent to u in F.

If $\left|V\left(P_{0}\right) \cap N_{F}(v)\right|=1$, then z_{m} is the only neighbour of v in F which is on P_{0}. Let $P:=P_{0}$ and set $z_{l}:=z_{m}$. If $\left|V\left(P_{0}\right) \cap N_{F}(v)\right| \geqslant 2$, let $P=\left(z_{1}, z_{2}, \ldots, z_{l}\right)$ be the subpath of P_{0} such that $z_{l} \in N_{F}(v)$ and $\left|V(P) \cap N_{F}(v)\right|=2$.

We shall construct a branch set P^{\prime} consisting of arcs alongside P. Let $z_{0}=u$ and $z_{l+1}=v$.

For $1 \leqslant g \leqslant l$, we associate to z_{g} the set Q_{g} of arcs as follows. If $A_{D}\left(z_{g}\right)-$ $\left(A_{D}\left\{z_{g-1}, z_{g}\right\} \cup A_{D}\left\{z_{g}, z_{g+1}\right\}\right) \neq \emptyset$, then let Q_{g} be a singleton set that contains exactly one arc, say, $z_{g} z_{g}^{\prime} \in A_{D}\left(z_{g}\right)-\left(A_{D}\left\{z_{g-1}, z_{g}\right\} \cup A_{D}\left\{z_{g}, z_{g+1}\right\}\right)$. Otherwise, $A_{D}\left(z_{g}\right)-$ $\left(A_{D}\left\{z_{g-1}, z_{g}\right\} \cup A_{D}\left\{z_{g}, z_{g+1}\right\}\right)=\emptyset$. Since the arc $A_{F}\left\{z_{g}, z_{g+1}\right\} \in A(F)$ is not redundant, $z_{g} z_{g-1} \in A_{D}\left(z_{g}\right)$. Similarly, $z_{g} z_{g+1} \in A_{D}\left(z_{g}\right)$ since $A_{F}\left\{z_{g-1}, z_{g}\right\} \in A(F)$ is not redundant. Let \bar{z}_{g} be an in-neighbour of z_{g} in F. Then $\bar{z}_{g} z_{g} \in A(F)$. Let $\bar{z}_{g} \overline{\bar{z}}_{g}$ with $\overline{\bar{z}}_{g} \neq z_{g}$ be an arc outgoing from \bar{z}_{g} in D (which exists because $\bar{z}_{g} z_{g}$ is not redundant). Set $Q_{g}:=\left\{z_{g} z_{g-1}, z_{g} z_{g+1}, \bar{z}_{g} \overline{\bar{z}}_{g}\right\}$ (see Fig. 4). Note that Q_{g} induces a connected subgraph
in $X(D)$ since $\bar{z}_{g} \overline{\bar{z}}_{g}$ is adjacent to both $z_{g} z_{g-1}$ and $z_{g} z_{g+1}$.
In the case where $V(P) \cap N_{F}(v)=\left\{z_{p}, z_{l}\right\} \quad(p<l)$ and $Q_{p}=\left\{z_{p} v\right\}$, we slightly modify Q_{p} as $\left\{z_{p} v, \gamma\right\}$, where $\gamma \in A_{D}\left(z_{p}\right)-\left\{z_{p} v\right\}$ (which exists because $A_{F}\left(z_{p}, v\right)$ is not redundant).

Let $P^{\prime}:=\cup_{g=1}^{l} Q_{g}$. Then, for $1 \leqslant g \leqslant l-1$, since Q_{g} contains an arc outgoing from z_{g} other than $z_{g} z_{g+1}$ and Q_{g+1} contains an arc outgoing from z_{g+1} other than $z_{g+1} z_{g}$, each Q_{g} is adjacent to Q_{g+1} in $X(D)$. Thus, P^{\prime} induces a connected subgraph in $X(D)$. We call P^{\prime} a parallel set of P.

Let Σ and Π be as above. We have the following claim:
Claim 2. (a) There is a set Σ^{\prime} such that $\left|\Sigma^{\prime}\right| \geqslant|\Sigma|-1$ and $P^{\prime} \cap \Sigma^{\prime}=\emptyset$, and each element of which is A-feasible or A-compatible and no two elements share a tail;
(b) There is a set Π^{\prime} such that $\left|\Pi^{\prime}\right| \geqslant|\Pi|-2$ and $P^{\prime} \cap \Pi^{\prime}=\emptyset$, and each element of which is B-feasible or B-compatible and no two elements share a tail.

Proof. (a) Initially, set $\Sigma^{\prime}:=\Sigma-P^{\prime}$. Clearly, all properties except $\left|\Sigma^{\prime}\right| \geqslant|\Sigma|-1$ in (a) are satisfied. If $\left|P^{\prime} \cap \Sigma\right| \leqslant 1$, then we are done. Suppose that $\left|P^{\prime} \cap \Sigma\right| \geqslant 2$. Since P_{0} is a shortest path in \bar{H} between $N_{F}(u)-(\{v\} \cup U)$ and $N_{F}^{-}(v)-(\{u\} \cup U)$, each vertex z_{g} on P with $g \geqslant 3$ is not adjacent to a vertex of $N_{F}(u)-(\{v\} \cup U)$. Thus, $Q_{g} \cap \Sigma=\emptyset$ for each $g \geqslant 3$. We now consider $g=2$. Since z_{2} is not adjacent to u in \bar{H}, we have $\left|Q_{2} \cap \Sigma\right| \leqslant 1$ and if $\left|Q_{2} \cap \Sigma\right|=1$ then $\left|Q_{2}\right|=3$ and $Q_{2}:=\left\{z_{2} z_{1}, z_{2} z_{3}, \bar{z}_{2} \overline{\bar{z}}_{2}\right\}$, where \bar{z}_{2} is an in-neighbour of z_{2} in F. Since z_{2} is not adjacent to $u, Q_{2} \cap \Sigma=\left\{\bar{z}_{2} \overline{\bar{z}}_{2}\right\}$, which means that \bar{z}_{2} is adjacent to u in F and $\varphi\left(u, \bar{z}_{2}\right)=\bar{z}_{2} \overline{\bar{z}}_{2}$. In this case, update $\Sigma^{\prime}:=\Sigma^{\prime} \cup\left\{\bar{z}_{2} z_{2}\right\}$. Note that $\bar{z}_{2} z_{2}$ is A-feasible or A-compatible.

If $\left|Q_{1} \cap \Sigma\right| \leqslant 1$, then Σ^{\prime} is the desired set. Suppose that $\left|Q_{1} \cap \Sigma\right|=2$. Let $Q_{1}:=\left\{z_{1} u\right.$, $\left.z_{1} z_{2}, \bar{z}_{1} \bar{z}_{1}\right\}$, where \bar{z}_{1} is an in-neighbour of z_{1} in F. Then, $Q_{1} \cap \Sigma=\left\{z_{1} z_{2}, \bar{z}_{1} \bar{z}_{1}\right\}$, which means $\varphi\left(u, z_{1}\right)=z_{1} z_{2}$ and $\varphi\left(u, \bar{z}_{1}\right)=\bar{z}_{1} \overline{\bar{z}}_{1}$. Note that $\bar{z}_{1} z_{1}$ is A-feasible or A-compatible. By adding $\bar{z}_{1} z_{1}$ into Σ^{\prime}, we get that $\left|Q_{1} \cap \Sigma^{\prime}\right| \leqslant 1$. Then $\left|\Sigma^{\prime}\right| \geqslant|\Sigma|-1$, as desired.
(b) Initially, set $\Pi^{\prime}:=\Pi-P^{\prime}$. Recall that P contains at most two neighbours, $z_{g_{1}}$ and $z_{g_{2}}$ say, of v. Let γ be an arc in $\Pi \cap P^{\prime}$ such that there is a Q_{g} containing γ (there may be more than one Q_{g} containing γ) and $g \notin\left\{g_{1}, g_{2}\right\}$. Since z_{g} is not adjacent to v in \bar{H}, we have $\left|Q_{g}\right|=3$ and $Q_{g}=\left\{z_{g} z_{g-1}, z_{g} z_{g+1}, \bar{z}_{g} \overline{\bar{z}}_{g}\right\}$, where \bar{z}_{g} is an in-neighbour of z_{g} in F and $\bar{z}_{g} \overline{\bar{z}}_{g} \neq \bar{z}_{g} z_{g}$ is an arc outgoing from \bar{z}_{g} in D. Further, \bar{z}_{g} is a neighbour of v in F and $\varphi\left(v, \bar{z}_{g}\right)=\bar{z}_{g} \overline{\bar{z}}_{g}$. Note that $\bar{z}_{g} z_{g} \notin \Pi$ is B-feasible or B-compatible. Now update Π^{\prime} by adding $\bar{z}_{g} z_{g}$. That is, $\Pi^{\prime}:=\Pi^{\prime} \cup\left\{\bar{z}_{g} z_{g}\right\}$. By repeating this procedure for all such γ, we obtain a Π^{\prime} with the same size as $\Pi-\left(Q_{g_{1}} \cup Q_{g_{2}}\right)$.

For each $g \in\left\{g_{1}, g_{2}\right\}$, if $\left|\Pi \cap Q_{g}\right|=2$, we will add a B-feasible or B-compatible arc into Π^{\prime}. Then $\left|\Pi^{\prime}\right| \geqslant|\Pi|-2$, as desired. Suppose that $\left|\Pi^{\prime} \cap Q_{g}\right|=2$ for some $g \in\left\{g_{1}, g_{2}\right\}$. Then $Q_{g}=\left\{z_{g} z_{g-1}, z_{g} z_{g+1}, \bar{z}_{g} \overline{\bar{z}}_{g}\right\}$, where \bar{z}_{g} is an in-neighbour of z_{g} in F and $\bar{z}_{g} \overline{\bar{z}}_{g} \neq \bar{z}_{g} z_{g}$ is an arc outgoing from \bar{z}_{g} in D. And, \bar{z}_{g} is a neighbour of v in F with $\varphi\left(v, \bar{z}_{g}\right)=\bar{z}_{g} \overline{\bar{z}}_{g}$. Note that $\bar{z}_{g} z_{g} \notin \Pi$ is B-feasible or B-compatible. Set $\Pi^{\prime}:=\Pi^{\prime} \cup\left\{\bar{z}_{g} z_{g}\right\}$. Then $\left|\Pi^{\prime}\right| \geqslant|\Pi|-2$. Consequently, we get the desired Π^{\prime}.

Let $B_{0}:=\{u v\} \cup P^{\prime}$. Then B_{0} induces a connected subgraph in $X(D)$ since $u v$ is adjacent to Q_{1}.

Next we show that there exists a net of size i at u and a net of size j at v such that none of their branch sets intersects B_{0}.

If $j=2$ (hence $i=k-3$), then at least one arc, say γ, in $\Pi^{\prime}-\Sigma^{\prime}$ is B-compatible (since there are more incoming arcs at v). Let $B^{c}:=\{\gamma\}$. Since $\left|\Pi^{\prime}-\Sigma^{\prime}\right| \geqslant s-2-1 \geqslant$ $k-5 \geqslant j=2$, by Lemma $5(2)$, there exists a $\left(B, \emptyset, \mathrm{~B}^{c}\right)$-net \mathcal{B} of size $j=2$. Similarly, let A^{f} (A^{c}, respectively) be the set of A-feasible (A-compatible, respectively) arcs in Σ^{\prime}. Note that $\left|\Sigma^{\prime}\right| \geqslant r-1 \geqslant k-3=i \geqslant 4$. By Lemma 5(6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i.

Suppose that $3 \leqslant j \leqslant k-3$ (hence $2 \leqslant i \leqslant k-4$). Let B^{f} (respectively, B^{c}) be the set of B-feasible (B-compatible) arcs in Π^{\prime}. Since $\left|\Pi^{\prime}\right| \geqslant s-2 \geqslant k-4 \geqslant j-1$ and $B^{c} \neq \emptyset$ when $j=3$, by Lemma $5(4)$ or (6), there exists a $\left(B, B^{f}, \mathrm{~B}^{c}\right)$-net \mathcal{B} of size j. Let $A^{f}\left(A^{c}\right.$, respectively) be the set of A-feasible (A-compatible, respectively) arcs in $\Sigma^{\prime}-\Pi^{\prime}$. We now show that there exists a net of size i at u. If $i \geqslant 3$, then $\left|\Sigma^{\prime}-\Pi^{\prime}\right| \geqslant r-1-1 \geqslant k-4 \geqslant i \geqslant 3$. By Lemma $5(3)$ or (6), there exists an $\left(A, A^{f}, A^{c}\right)$-net \mathcal{A} of size i. Suppose that $i=2$. Note that $\left|\Sigma^{\prime}-\Pi^{\prime}\right| \geqslant k-4 \geqslant 3$ (because $k \geqslant 7$) and there are at least three incoming arcs at u in F. $\Sigma^{\prime}-\Pi^{\prime}$ contains at least two A-compatible arcs, say, γ_{1} and γ_{2}. Let $\mathcal{A}:=\left\{\left\{u u_{1}, \gamma_{1}\right\},\left\{u u_{2}, \gamma_{2}\right\}\right\}$. Then \mathcal{A} is a net of size 2 at u.

Since each element of \mathcal{A} constructed above contains an arc $x x^{\prime}$, which is outgoing from a neighbour $x \neq v$ of u and $x^{\prime} \neq u$, each element of \mathcal{A} is adjacent to B_{0} because $u v \in B_{0}$ is adjacent to each $x x^{\prime}$. Note that $\left|V(P) \cap N_{F}(v)\right| \in\{1,2\}$. In the case when $\left|V(P) \cap N_{F}(v)\right|=1, P^{\prime}$ contains an arc $y y^{\prime}$, which is outgoing from an in-neighbour $y \neq u$ of v and $y^{\prime} \neq v$. Since such a $y y^{\prime}$ is adjacent to every arc of $A_{F}(v)$, it is adjacent to every element of \mathcal{B} constructed above. In the case when $\left|V(P) \cap N_{F}(v)\right|=2, P^{\prime}$ contains two arcs α and β, each of them is outgoing from a neighbour of v other than u and heading to a vertex other than v. Then each arc of $A_{F}(v)$ is adjacent to either α or β. So every element of \mathcal{B} is adjacent to $P^{\prime} \subseteq B_{0}$. Therefore, $\left\{B_{0}\right\} \cup \mathcal{A} \cup \mathcal{B}$ forms a K_{k}-minor in $X(D)$.

Case 2.3. $j=k-2$: Then $i=1$. Suppose first that $d_{F}^{-}(v)=1$; that is, $u v$ is the only incoming arc at v and $d_{F}(v)=k-1$. Since v is not special, one out-neighbour v^{\prime} of v in F is not a sink. Now consider the arc $v v^{\prime}$. If $d_{F}^{+}\left(v^{\prime}\right) \geqslant 2$, then $S_{F}\left(v v^{\prime}\right)=d_{F}^{+}(v)+d_{F}^{+}\left(v^{\prime}\right)-1 \geqslant$ $k-2+2-1=k-1$. This is a special case of Case 2.2 and thus can be treated similarly. If $d_{F}^{+}\left(v^{\prime}\right)=1$, then by Property A, one potential arc $v^{\prime} v^{\prime \prime}\left(\neq v^{\prime} v\right.$ as $\left.d_{F}^{+}(v)>2\right)$ is outgoing from v^{\prime} in D but not present in F (since $d_{F}^{+}(v)=1$). Let F^{\prime} be obtained from F by adding $v^{\prime} v^{\prime \prime}$. Again we have $S_{F^{\prime}}\left(v v^{\prime}\right)=d_{F^{\prime}}^{+}(v)+d_{F^{\prime}}^{+}\left(v^{\prime}\right)-1 \geqslant k-2+2-1=k-1$, and this can also be treated similarly. Suppose next that $d_{F}^{-}(v) \geqslant 2$. Then $t \leqslant 1$. This case can be dealt with by a similar way as in Cases 2.2.3 or 2.2.4.

Case 2.4. $j=k-1$: Then $i=0$, which implies $d_{F}^{+}(u)=1$. By Property A, there exists a potential arc $u z \neq u v$ in D. Then $\mathcal{A}:=\{\{u z\}\}$ is a $(\{u z\}, \emptyset, \emptyset)$-net. Let $B:=A_{F}(v)$. Let B^{f} (B^{c}, respectively) be the set of B-feasible (B-compatible, respectively) arcs in Π. By Lemma $5(6)$, a $\left(B, B^{f}, B^{c}\right)$-net \mathcal{B} of size j exists. It is not hard to see that $\mathcal{A} \cup \mathcal{B}$ forms a K_{k}-minor in $X(D)$.

This completes the proof of Theorem 1.

Acknowledgements

The authors would like to thank the referees for their valuable remarks and suggestions.

References

[1] C. Balbuena, P. García-Vázquez and L. P. Montejano, On the connectivity and restricted edge-connectivity of 3-arc graphs, Discrete Appl. Math., 162 (2014), 90-99.
[2] N. Belkale and L. S. Chandran, Hadwiger's conjecture for proper circular arc graphs, European J. Combin. 30 (2009), 946-956.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[4] H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989), 427-444.
[5] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
[6] M. Chudnovsky and A. O. Fradkin, Hadwiger's conjecture for quasi-line graphs, J. Graph Theory 59 (2008), 17-33.
[7] G. A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953), 42-55.
[8] G. A. Dirac A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85-92.
[9] A. Gardiner, C. E. Praeger and S. Zhou, Cross-ratio graphs, J. London Math. Soc. (2) 64 (2001), 257-272.
[10] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zürich 88 (1943), 133-142.
[11] M. A. Iranmanesh, C. E. Praeger and S. Zhou, Finite symmetric graphs with two-arc transitive quotients, J. Combin. Theory (Ser. B) 94 (2005), 79-99.
[12] M. Knor, G. Xu and S. Zhou, A study of 3-arc graphs, Discrete Appl. Math. 159 (2011), 344-353.
[13] M. Knor and S. Zhou, Diameter and connectivity of 3-arc graphs, Discrete Math. 310 (2010), $37-42$.
[14] D. Li and M. Liu, Hadwiger's conjecture for powers of cycles and their complements, European J. Combin. 28 (2007), 1152-1155.
[15] C. H. Li, C. E. Praeger and S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotients, Math. Proc. Cambridge Phil. Soc. 129 (2000), 19-34.
[16] H. E. Li and Y. X. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993), 463-466.
[17] Z. Lu and S. Zhou, Finite symmetric graphs with 2-arc transitive quotients (II), J. Graph Theory, 56 (2007), 167-193.
[18] B. Reed and P. Seymour, Hadwiger's conjecture for line graphs, European J. Combin. 25 (2004), 873-876.
[19] N. Robertson, P. Seymour and R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica 13 (1993), 279-361.
[20] P. Seymour, Hadwiger's conjecture. In J. F. Nash, Jr., M. T. Rassias, editors, Open Problems in Mathematics, pages 417-438. 1st ed., Springer, 2016.
[21] B. Toft, A survey of Hadwiger's conjecture, Congr. Numer. 115 (1996), 249-283.
[22] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, New York, 2001.
[23] G. Xu and S. Zhou, Hamiltonicity of 3-arc graphs, Graphs Combin. 30 (2014), 12831299.
[24] G. Xu and S. Zhou, Hadwiger's conjecture for the complements of Kneser graphs, J. Graph Theory, 2015, doi:10.1002/jgt. 22007.
[25] S. Zhou, Constructing a class of symmetric graphs, European J. Combin. 23 (2002), 741-760.
[26] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math. 244 (2002), 521-537.
[27] S. Zhou, Almost covers of 2-arc transitive graphs, Combinatorica 24 (2004), 731-745. [Erratum: 27 (2007), 745-746.]

[^0]: *Research supported by ARC Discovery Project DP120101081.
 ${ }^{\dagger}$ Currently with School of Mathematics, Zunyi Normal College, Zunyi 563002, China. Supported in part by NSF of China (No.11661084) and Program for Sci-Tec Innovative Talents of Guizhou Province of China (No.[2015]502)

