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Abstract

The goal of this work is to describe a uniform generation tree for permutations
which preserves the number of k-cycles between any permutation (except for a small
unavoidable subset of optimal size) of the tree and its direct children. Moreover,
the tree we describe has the property that if the number of k-cycles does not change
during any k consecutive levels, then any further random descent will always yield
permutations with that same number of k-cycles. This specific additional prop-
erty yields interesting applications for exact sampling. We describe a new random
generation algorithm for permutations with a fixed number of k-cycles in n +O(1)
expected calls to a random integer sampler. Another application is a combinatorial
algorithm for exact sampling from the Poisson distribution with parameter 1/k.

Keywords: random permutations; k-cycles in permutations; generation tree; ran-
dom generation

1 Introduction

1.1 Overview of results

Throughout the paper, k > 1 is a predefined constant representing some fixed length of
cycles in permutations.

It is a well-known1 fact, that given an infinite vector (σn)n>1 such that σn is a per-
mutation of n elements chosen uniformly at random, ck(σn), the number of cycles of

∗This work was done while the second author was affiliated with LaBRI, Université de Bordeaux.
1see for example, [5] and the references therein, or [2] for total variation distance bounds.
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length k in σn, converges in distribution to a random Poisson distributed variable Xk

with expectation 1/k, i.e.,

P(ck(σn) = `)→ e−1/k

k`l!
, as n→∞.

It is a standard result of probability theory that convergence in distribution can always
be realized as almost sure convergence. In our setting, this means one can construct
a probability distribution µ on sequences of permutations (whose n-th element σn is
always uniform among permutations of size n) such that, for µ-almost all sequences,
ck(σn) converges to a Poisson random variable with parameter 1/k. Since we are dealing
with integer valued sequences, convergence is equivalent to the sequence being ultimately
constant. The main contribution of this paper is the explicit combinatorial description of
one such probability distribution.

Since permutations have the very particular property that the number of permutations
of each size is a multiple of the number of permutations of the preceding size, a particular
type of probability distributions on size-indexed sequences of permutations is given by
so-called generation trees : infinite trees with the unique permutation of size 1 as the root,
where each permutation of size n has exactly n + 1 children, each a permutation of size
n+ 1, and such that each permutation of size n appears exactly once among the nodes of
level n. The corresponding probability distribution on sequences corresponds to a random
descent in the tree, where, at each step, one of the children is picked uniformly at random,
independently of the previous choices. Because each permutation appears only once in
the tree, the obtained sequences of permutations are very particular; any permutation
in the sequence uniquely determines all previous permutations. Still, such sequences are
sufficient for our purpose, so that we solely concentrate on the description of one such
generation tree.

Our tree construction also exhibits a property that can be described in standard
probabilistic terminology. Not only do µ-almost all permutation sequences ultimately
stabilize their number of k-cycles; we explicitly describe a subclass of permutations (called
non-special permutations) such that µ-almost all sequences contain such a permutation,
and that all permutations that follow a non-special permutation (that is, its descendents
in the tree) are also non-special, and have the same number of k-cycles. In probabilistic
terms, the stabilization time T for the number of k-cycles is not a stopping time, but is
upper bounded by a stopping time T ′, which is none other than the index of the first
non-special permutation, and for which we prove that T 6 T ′ 6 T + k holds a.s.

One direct consequence is that ck(σT ′) is exactly Poisson distributed with parameter
1/k; this provides a “purely discrete” algorithm for sampling from this Poisson distribution
by only using integers and no floating point computations. It also allows for the sampling
from the distribution of the number of k-cycles in a uniform permutation of size n, in
constant expected time (independently of n).

This paper is an extensive generalization of a previous work by the authors [6] where
a similar construction is given for the case k = 1.

the electronic journal of combinatorics 23(4) (2016), #P4.22 2



1.2 Outline of the paper

The paper is organized as follows. In the next section, we give some notations and
briefly discuss generation trees for permutations in general. In Section 3 we describe our
generation tree, define a number of operations and prove their properties. The proof of
the main theorem is in Section 4. In Section 5, we use the tree to describe new algorithms
for random generation and simulation of random variates. We finish the paper with a
conclusion outlining further possible applications and directions for future research along
the same vein.

2 Uniform generation trees for permutations

2.1 Notations and definitions

We use the notation [a, b] for the set of integers i such that a 6 i 6 b and [n] = [1, n] =
{1, . . . , n} for the set of the first n positive integers. We shall write SV for the set of all
permutations over the set V (bijections from V to itself). If σ ∈ SV , we set |σ| = |V |
and call it the size of σ. The set S = ∪nS[n] is thus the set of all permutations on initial
segments of positive integers. When V is not specified, the phrase “permutation of size
n” refers to an element of S[n].

A cycle in a permutation σ ∈ SV is a minimum nonempty subset V that is closed
under the action of σ; we slightly abuse this definition by considering the empty set to be
a cycle (of length 0).

A cycle C of length k, abbreviated as a k-cycle, is a cycle such that |C| = k. We shall
denote by Lσ(j) the length of the cycle containing j in the permutation σ; we further
assume Lσ(j) = 0 if j is not an element of the permutation σ.

A uniform generation tree for permutations can be seen as the description, for each
nonnegative integer n, of a bijection φn from S[n] × [n + 1] to S[n+1]. The countable set
S can thus be seen as the nodes of an infinite rooted tree, with the unique permutation
of size 1 as the root, and where each permutation σ ∈ S[n] has exactly n + 1 children,
obtained by applying φn to the pairs (σ, i) for i ∈ [n+ 1]. The n! nodes at distance n− 1
from the root are then all permutations of S[n]. Such a generation tree can also be seen as
the description of a procedure for the random generation of uniform permutations: from
a random permutation of size n and an independent uniform integer in the range [n+ 1],
φn gives us a uniform random permutation of size n + 1. Thus, starting from the root
and repeating n− 1 times the simple procedure of moving to a uniformly chosen child of
the current node yields a uniform permutation of size n. We refer to this procedure as a
random descent (possibly infinite) in the tree.

Consistently with the tree terminology, φn(σ, i) will be called the i-th child of σ, and
σ will be called the parent of each of its children. All permutations in the subtree rooted
at σ are collectively called the descendants of σ.
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2.2 Some classical generation trees

Many simple combinatorial descriptions of uniform generation trees can be given. We
briefly describe two of them.

• Last value insertion: from a permutation σ ∈ S[n−1] and an integer i ∈ [n], we
obtain a new permutation σ′ ∈ S[n] as follows: set σ′(n) = i, and for 1 6 j 6 n− 1,
σ′(j) = σ(j) if σ(j) < i, and σ′(j) = 1 +σ(j) if σ(j) > i. In other words, i gives the
value of σ′(n), and all previous values at least i are shifted up by 1.

• Cycle insertion: this generation scheme is best described by its action on the cycles
of the permutation. From a permutation σ ∈ S[n−1] and an integer i ∈ [n], we
obtain a new permutation σ′′ ∈ S[n] as follows: if i = n, simply set σ′′(n) = n
and, for 1 6 j 6 n − 1, σ′′(j) = σ(j); otherwise, set σ′′(i) = n, σ′′(n) = σ(i), and
σ′′(j) = σ(j) for all other values of j. In other words, n is inserted “right after i”
in its pre-existing cycle – or is added as a new fixed point, if i = n.

Because last value insertion often shifts many values by 1, it can dramatically change
the number of k-cycles – that is, ck(σ) and ck(φn(σ, i)) can be very different. For instance,
the first child of the permutation (12 . . . k)(k+1 . . . 2k) . . . (n−k+1 . . . n) formed entirely
of n/k cycles of length k has no k-cycles (it is cyclic for odd k, and, for even k, it has n/k
(k/2)-cycles and one (n/2 + 1)-cycle).

On the other hand, the number of k-cycles can only change by±1 under cycle insertion:
it increases by 1 if the selected element is in a (k−1)-cycle (or if n is added as a new fixed
point for k = 1), and decreases by 1 if j was previously in a k-cycle. As one descends
in the tree according to the random choices of children, the probability of changing the
number of k-cycles becomes arbitrarily small: it is exactly 2/n on the n-th step, as on
average there is 1 element belonging to each cycle length. One can easily prove, though,
that in an infinite random descent into the tree, this change in the number of k-cycles
will almost surely happen infinitely often. The property holds for k = 1: the last child of
any permutation always has one more fixed point; since the series

∑
n 1/n is divergent,

the second Borel-Cantelli lemma implies that almost all infinite descents pass through
infinitely many last children. The property for general k follows by induction on k: since
the expected number of k-cycles in permutations of size n > 1 is exactly 1/k (thus finite),
the fact that the number of k-cycles almost surely increases infinitely often in a random
descent implies that it also decreases infinitely often; and, under cycle insertion, the
number of k-cycles decreases exactly when the number of (k + 1)-cycles increases.

The specific generation tree we describe in this paper has the following properties:

1. For each n > 2 not multiple of k, all permutations at level n have the same number
of k-cycles as their parent in the tree.

2. For each n > 2 such that n = mk, all but exactly (mk)!
kmm!

2m−1 = o(n!) permutations
in S[n] have the same number of k-cycles as their parent.
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3. Whenever a permutation has the same number of k-cycles as its k-th ancestor in
the tree, then all its children (and, by immediate induction, all its descendants) also
have this property.

4. If a permutation σ does not have the same number of k-cycles as its parent, then
the difference is ±1.

As a consequence, the evolution of the number of k-cycles in an infinite random de-
scent through the tree is quite different from the “cycle insertion” generation tree: with
probability 1, the descent will, at some (random) level in the tree, reach a permutation
whose number of k-cycles is the same as its k-th antecedent; and, once this happens, this
number of k-cycles will remain constant for the rest of the descent.

The first property above is only possible because of a specific property on the distribu-
tion of k-cycles in random permutations, which we have not been able to find in previous
literature: if bn/kc = bn′/kc, then for any integer `, the proportion of permutations hav-
ing exactly ` k-cycles is the same in S[n] and in S[n′]. We give an elementary proof, using
generating functions, of this fact in the next section, and a bijective proof is a byproduct
of our tree construction.

The number of permutations having a different number of k-cycles from their parent,
as described in the second property above, is also minimum possible, as we shall prove in
the next section. Overall, this means that our generation tree is optimal in this sense.

3 The generation tree

The main objective of our generation tree is to preserve, as much as possible, the number
of k-cycles between any permutation σ and its direct children in the tree. Our construction
often corresponds to the cycle insertion procedure as described in the previous section.

Cycle insertion will change the number of k-cycles exactly when the picked integer i
belongs to a (k−1)- or k-cycle, so a natural idea when trying to design the generation tree
is to use cycle insertion in all other cases (thus obtaining only permutations in which the
maximum element is neither in a k- nor a (k+1)-cycle), and somehow “fix” the remaining
cases.

In these two cases, we will deviate from the cycle insertion construction. When Lσ(i) =
k − 1, we will most often produce a permutation σ′ with Lσ′(n) = k + 1 which cannot
be obtained otherwise. When Lσ(i) = k, we will most often replace i with n in its cycle,
then somehow insert i somewhere else, taking care not to create or suppress any k-cycles.

The situation is made a bit more complicated by the requirement for the hereditary
property (condition 3 in the previous section).

3.1 Description of the tree

We now give the global description of the tree, that is, describe, for any σ ∈ S[n] and
i ∈ [n], how to construct the i-th child σ′ of σ. The description uses several operations
and notations which will only be described later.
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Generation-Tree

The root of our tree is the unique permutation of size 1.
Let n > 2, σ ∈ S[n−1], i ∈ [n], τ = insert(σ, i, n) and (`, ζ) ∈ [0..n− 1]× S[n] such that:

(`, ζ) =


(Lσ(i), τ) if Lσ(i) 6= k,
(Lσ(γ(σ)), insert(τ, σ−1(γ(σ)), i)) if Lσ(i) = k and i < γ(σ),
(0, insert(τ, i, i)) if Lσ(i) = k and i > γ(σ).

In our generation tree, the i-th child σ′ of σ is defined in the following fashion:

I. If all other rules do not apply: σ′ = ζ.

II. If ` = k − 1 and σ is not special: σ′ = pop(ζ, i).

III. If ` = 2k − 1, ζ is special and k - n: σ′ = shift−1(ζ).

IV. If ` = 2k − 1, ζ is special and k | n: σ′ = cut(ζ).

V. If ` = 2k, σ is special, i > δ(σ) and k - n:

(a) If Lσ(i) = 2k: σ′ = shift(ζ).

(b) If Lσ(i) = k: σ′ = insert(ζ, δ(ζ, i), i).

VI. If ` = k − 1 and σ is special:

(a) If Lσ(i) = k − 1: σ′ = ζ.

(b) If Lσ(i) = k: σ′ = merge(ζ, i).

In the description of our generation tree, we use the following notations:

• Some permutations will be called special ; their full definition is postponed to § 3.3.2.
Special permutations have only cycles of lengths k and 2k, with the possible addition
of a single special cycle, denoted sc(σ), whose length is at most k − 1. Non-special
permutations have the important property of having only non-special permutations
as their children, all of which have the same number of k-cycles as their parent.

• Lσ(j) is the length of the cycle of j in σ, with the convention Lσ(n) = 0;

• γ(σ) is the largest element of σ which is not in a k-cycle, with the convention
γ(σ) = 0 if there is no such element;

• when σ is special, δ(σ) is the smallest element of the special cycle of σ: δ(σ) =
min(sc(σ)), with the convention δ(σ) = 0 if |sc(σ)| = 0. Moreover, we set

δ(σ, i) =

{
δ(σ) if |sc(σ)| 6= 0,
i if |sc(σ)| = 0.
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(1)

(12)

(1)(23)

(14)(23)
(1)(2)(34)
(1)(24)(3)
(1)(23)(4)

(13)(2)

(1234)
(13)(24)
(14)(2)(3)
(13)(2)(4)

(12)(3)

(1324)
(1423)

(12)(34)
(12)(3)(4)

(1)(2)

(132)

(1432)
(1)(243)
(1342)

(132)(4)

(123)

(143)(2)
(1243)

(1)(234)
(123)(4)

(1)(2)(3)

(142)(3)
(124)(3)
(134)(2)

(1)(2)(3)(4)

Figure 1: Our generation tree for k = 2 up to level 4 with special permutations drawn in
bold.

The notation τ = insert(σ, a, b) corresponds to a variant of cycle insertion: if b is not
an element of σ, then it is exactly the result of inserting b after a in σ; if b is an element
of σ, then one must first “remove” it from its cycle, i.e., set τ(a) = b, τ(b) = σ(a),
τ(σ−1(b)) = σ(b) unless b = σ(b), and τ(j) = σ(j) for all other j.

The tree description uses some additional operations pop, shift, cut and merge, which
will be defined later.

Theorem 1. The description Generation-Tree defines a uniform generation tree for
permutations, satisfying the conditions 1, 2, 3 and 4 above.

The next subsection is devoted to some enumerative considerations. The rest of the
section contains the definitions of the missing operators, and the proof of some of their
properties.

3.2 Optimum number of changing permutations

In any possible uniform generation tree for permutations, we will call a permutation
changing if it has a different number of k-cycles from that of its parent. Because the
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distribution of parameter ck over S[n−1] is different from the distribution of ck over S[n]
when n is a multiple of k, any generation tree will have at least some number of changing
permutations at those levels. We now make this quantitatively precise.

We start by proving the fact, mentioned in § 2.2, that the distribution of the ck statistic
over S[n] only changes when n is a multiple of k.

Let fk(n, `) denote the number of permutations of size n with exactly ` k-cycles, and
qk(n, `) = fk(n, `)/n! their proportion among permutations of size n. We will call such
permutations (n, `)-permutations.

Proposition 2. For any n > 2 and `, we have

fk(n, `) =

{
nfk(n− 1, `) if k - n,
nfk(n− 1, `) + (−1)m−` (mk)!

km`!(m−`)! if n = mk.

Proof. The statement is equivalent to a reformulation in terms of the qk’s: qk(n, `) =
qk(n− 1, `) if n is not a multiple of k, and

qk(n, `)− qk(n− 1, `) = (−1)m−`
(
m
`

)
kmm!

,

if n = km.
We start from the generating function for permutations according to size (exponential,

counted by variable x) and number of k-cycles (ordinary, counted by variable y). From
([14], Thm. 4.7.2), this generating function is

Gk(x, y) =
∑
n,`

qk(n, `)x
ny` =

exp(x
k(y−1)
k

)

1− x
.

Multiplying by 1− x, we get a new generating function:

(1− x)Gk(x, y) =
∑
n,`

(qk(n, `)− qk(n− 1, `))xny` = exp

(
xk(y − 1)

k

)
.

This new function is analytic in y and xk, so the coefficient of xn is zero unless n is a
multiple of k, proving the first case. The second case follows immediately from the Taylor
expansion of the exponential function.

The first case of Proposition 2 shows that it is at least conceivable to look for a
generation tree where every permutation of size not multiple of k has the same number of
k-cycles as its parent. For n multiple of k, it gives us a lower bound on the total number
of changing permutations at level n of any uniform generation tree.

Corollary 3. In any uniform generation tree, for any m > 1, at least (mk)!
kmm!

2m−1 permu-
tations of level mk are changing permutations.
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Proof. If n = km and m − ` is even, then by Proposition 2 there are more (n, `)-
permutations than children of (n−1, `)-permutations. Hence at least fk(n, `)−nfk(n−1, `)
among the (n, `)-permutations must have a parent with a different number of k-cycles.
Summing over the possible ` gives the lower bound we are looking for: the number of
changing permutations at level n = mk must be at least

(mk)!

kmm!

m∑
`=0

m−` even

(
m

`

)
=

(mk)!2m−1

kmm!
.

3.3 Some special families of permutations

Our construction is strongly dependent on a family of permutations that we identify as
special. These permutations play a key role in our generation tree and are exactly the
permutations that have descendants with a different number of k-cycles than themselves.

Special permutations are defined through a smaller family of permutations which we
call critical.

A last family of permutations, quasi-special permutations, plays a minor role in the
construction and are described at the end of this section.

3.3.1 Critical permutations

In Proposition 3, we gave an a priori lower bound on the number of changing permuta-
tions, valid for any possible uniform generation tree. We now define a subset of permuta-
tions with the appropriate cardinality, which will play this role in our tree.

If σ is a permutation over V and i ∈ V , σ[`](i) stands for the set {σ(i), · · · , σ`(i)} of the
` first iterated images of i under σ. More generally, we let σ[a,b](i) = {σj(i) | a 6 j 6 b}
and in particular σ[a,b](i) = ∅ if b < a, and σ[0,0](i) = {σ0(i)} = {i}.

Definition 4. For any permutation σ over some set V of integers, let C1, . . . , Cm be the
cycles of length other than k in σ, ordered by their smallest element. Also, let si = minCi
be the minima of these cycles, with the convention that sm+1 = |σ|+ 1.

All cycles of length k in σ are considered critical.
Among the other cycles, Ci is also said to be critical if Ci−1 is critical (for i > 1),

|Ci| = 2k, and
σk(si) = min σ[k,2k−1](si) ∪ {si+1}.

Definition 5. A permutation σ is critical if all its cycles are critical.

Note that critical permutations have only k- and (2k)-cycles, with extra conditions on
the (2k)-cycles.

Permutations of size mk made of m k-cycles are easily enumerated: there are exactly
(mk)!/(m!km) of them. Note that this is exactly the product of all integers not a multiple
of k up to 2mk.

It is easy to see that critical permutations of size mk with ` k-cycles are in bijection
with permutations of the same size with exactly m k-cycles, among which an even number
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m − ` are selected. Indeed, merging the selected cycles pairwise into 2k-cycles (in order
of their smallest elements), we obtain a critical permutation (see § 3.6.1 for the precise
definition of this bijection). Note that we can easily reverse the procedure and identify
which cycles have been chosen in the process.

Thus the number C(mk, `) of critical permutations of size mk with ` k-cycles (which
implies that m− ` has to be even) is given by

C(mk, `) =
(mk)!

kmm!

(
m

`

)
.

Summing over values of ` with the appropriate parity, we get the total number C(mk)
of critical permutations of size mk as C(mk) = 2m−1C(mk, 0). By definition, C(n) = 0 if
n is not a multiple of k.

These permutations will be exactly the changing permutations in our generation tree.
Note that their number matches the lower bound on the number of such permutations
given by Proposition 3.

3.3.2 Special permutations

We now define the set of special permutations, which, in our tree, will be exactly those
permutations with at least one descendent having a different number of k-cycles. In other
words, special permutations will be all ancestors of critical permutations.

Definition 6. A permutation σ is said to be special if it has at most one cycle of length
strictly less than k (called its special cycle, and denoted sc(σ)), and the elements not in
this cycle form a critical permutation.

Note that for k = 1, critical and special permutations are the same.
Contrary to critical permutations, there are special permutations of all sizes n. The

length of the special cycle must be |sc(σ)| = n mod k. However, for any n, all special
permutations of size n have numbers of k-cycles of the same parity: for a critical permu-
tation over the elements not in sc(σ) to exist, bn/kc − ` must be even. As for critical
permutations, it is not very hard to count the number of special permutations of a given
size n.

In order to construct a special (n, `)-permutation σ with bn/kc − ` even, we can first
build the cycle sc(σ) of size h = n mod k: there are

(
n
h

)
(h− 1)! possibilities for this cycle

if h > 0, and obviously 1 possibility if h = 0. The rest of the permutation is any critical
permutation with ` k-cycles over the remaining elements.

Hence the number S(n, `) of special permutations of size n = mk + h (0 6 h < k)
with ` k-cycles, is given by

S(n, `) =


(mk)!(m

` )
kmm!

if h = 0,(
mk+h
h

)
(h− 1)!

(mk)!(m
` )

kmm!
otherwise .

Summing over values of ` yields the total number S(n) of special permutations, which
we write as a proposition for further reference:
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Proposition 7. For n = mk + h with 0 6 h 6 k − 1, the total number S(n) of special
permutations of size n is given by

S(n) =


(h− 1)! if m = 0,
1
2

(
2
k

)m (mk)!
m!

if h = 0 and m > 1,
1
2h

(
2
k

)m (mk+h)!
m!

otherwise .

Let us close this section by introducing an additional notation we shall use on special
permutations in the following sections.

Definition 8. For any special permutation σ of size n, we let p1(σ), p3(σ), . . . , p2m−1(σ)
be the m minima of the m (2k)-cycles of σ, and we let p2j(σ) = σk(p2j−1(σ)) for j ∈ [m].
The elements pj(σ) for j ∈ [2m] are called the critical elements of σ.

3.3.3 Quasi-special permutations

We now define a third family of permutations which we need in order to describe our
uniform generation tree when k > 2.

Definition 9. For k > 2, a permutation σ over V is said to be quasi-special if:

1. it has one (k − 1)-cycle D1 and one (k + 1)-cycle D2;

2. the permutation τ formed by the elements of σ belonging neither to D1 nor to D2

is critical ;

3. γ(σ) is in D2 and min(D1) < σ(γ(σ));

4. if τ has (2k)-cycles, its last critical element is smaller than min(D1).

For k = 1, a permutation is quasi-special if and only if it is special.

Note that no constraints are imposed on the elements of the cycle D2 other than γ(σ)
and its image; in fact, these elements can be anything between 1 and γ(σ)− 1.

We now compute the number of quasi-special permutations of a given size n = mk,
when k > 2. Starting from an (mk,m)-permutation σ, select an even nonzero number
m− ` of its cycles, write γ for the maximum element of the selected cycles, and identify,
among the selected cycles not containing γ, the one with the largest minimum element;
call this element p. We obtain a quasi-special permutation by removing σ(p) from its cycle,
and inserting it after γ, then merging the remaining selected cycles pairwise in increasing
order of their minima. This is bijective; starting from the quasi-special permutation, one
can easily recover γ (the maximum of the (k + 1)-cycle), remove its image and insert it
after the minimum of the (k − 1)-cycle, and split all (2k)-cycles into k-cycles.

Hence, the number Q(mk) of quasi-special permutations of size mk is given by

Q(mk) =
(mk)!

kmm!

m∑
`=2
` even

(
m

`

)
=

(mk)!

kmm!

(
2m−1 − 1

)
.
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a b

split

connect

a b

Figure 2: Illustration of split and connect procedures. Dashed and dotted lines represent
(potentially empty) portions of a cycle, i.e., iterated images under σ starting from the
source of the edge until the target is met.

By the same reasoning, we obtain a formula for the number of quasi-special permuta-
tions of size n = mk with exactly ` k-cycles (m− ` < m even),

Q(mk, `) =
(mk)!

kmm!

(
m

`

)
.

3.4 Some simple cycle manipulations

As a preliminary to defining the operators on permutations that we need in order to
fully describe our generation tree, we now define some simple transformations in terms of
cycles.

We have already described the insert operation that we use to add an element to a
cycle.

We will have on occasion to remove an element from a permutation. This is a par-
tial inverse to the insert operation. When we mention the permutation σ′ obtained by
removing an element b from its cycle in a permutation σ ∈ SV , we mean that σ′ ∈ SV \{b}
is such that σ = insert(σ′, σ−1(b), b). Equivalently, σ′ = remove(σ, b) is defined as follows:

• if σ(b) 6= b, σ′(σ−1(b)) = σ(b),

• for all j ∈ V \ {σ−1(b), b}, σ′(j) = σ(j).

We still need two more operations on permutations that are defined in terms of their
cycles: splitting a cycle into two cycles, and the opposite operation of connecting two
different cycles. Both operations correspond to the same composition with the transpo-
sition τa,b = (a b), and the effect (splitting a cycle or connecting cycles) depends only on
whether a and b lie inside the same cycle in the original permutation.

If σ ∈ SV and a, b are two elements of V , then the permutation σ′ = τa,b ◦ σ is defined
as:

• σ′(σ−1(b)) = a, and σ′(σ−1(a)) = b,

• for all i ∈ V \ {σ−1(a), σ−1(b)}, σ′(i) = σ(i).

If a and b are in the same cycle in σ, then the above operation will result in splitting the
cycle into two cycles, one containing a (and its iterated images under σ up to σ−1(b)) and

the electronic journal of combinatorics 23(4) (2016), #P4.22 12



one containing b (and its iterated images up to σ−1(a)); to make it clear, we shall use
split(σ, a, b) to denote the obtained permutation, with the convention that split(σ, a, b) =
σ if a and b are already in different cycles. On the other hand, if a and b are in different
cycles in σ, this composition results in merging the cycles of a and b into a single one;
to make it clear, we will use connect(σ, a, b) in this case, and we set connect(σ, a, b) = σ
when a and b are in the same cycle in σ.

3.5 Insertion into (k − 1)-cycles

We now define an operator pop which is the key ingredient of our generation tree. In our
construction, it is used to define the i-th child of a permutation σ in most cases where i
is in a k- or (k − 1)-cycle of σ. By itself, it would be a sufficient ingredient to define a
generation tree with the “preservation of ck” property (conditions 1 and 2 of our tree);
most of the added complexity is there because we want to ensure the “heredity” property
(condition 3).

This operator can also be seen as providing a bijective proof of Proposition 2, as we
shall see.

3.5.1 The pop operator

Let σ ∈ SV be some permutation, and i ∈ V , such that

• σ is not critical;

• Lσ(i) = k;

• σ(i) is the largest element of its cycle in σ, and σ(i) > γ(σ).

Under these conditions, we define σ′ = pop(σ, i) ∈ SV below. The important properties
of pop are given by the following proposition.

Proposition 10. pop defines a bijection between, on the one hand, non-critical permu-
tations σ with a marked element i such that σ(i) > γ(σ), σ(i) is the maximum of its
cycle, and Lσ(i) = k; and, on the other hand, permutations σ′ on the same set such that
Lσ′(γ(σ′)) = k + 1 and σ′ is not quasi-special. Moreover, whenever σ′ = pop(σ, i), then
ck(σ

′) = ck(σ)− 1.

Note that the conditions on σ′ imply that it is not special: if k > 1, the existence of a
(k + 1)-cycle is sufficient; if k = 1, quasi-special and special permutations are the same.

To define pop, we first need to define p(σ) for non critical permutation σ, and in some
cases, we further define p′(σ) and p′′(σ).

Definition 11. For any non-critical permutation σ, p(σ) is the smallest element in a
non-critical cycle. Furthermore, if Lσ(p(σ)) > k, we define p′(σ) as the smallest element
in a non-critical cycle that is not in σ[0..k−2](p(σ)) (excluding p(σ) in the case k = 1), and
p′′(σ) as the second smallest such element.
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pop-operator

Let (σ, i) ∈ SV × V be such that σ is not critical, Lσ(i) = k, σ(i) is the largest element
of its cycle and σ(i) > γ(σ). We set γ = σ(i), p = p(σ), x = σk−1(p), y = σk(p),
σ1 = insert(σ, γ, x) and σ2 = insert(σ, γ, y).
The permutation σ′ = pop(σ, i) is defined as follows:

1. If Lσ(p) 6= k + 1, and condition 2 does not apply:

(a) If σ(p) = p: σ′ = insert(σ, γ, p).

(b) If σ(p) 6= p: σ′ = insert(σ, γ, σ−1(p)).

2. (a) If Lσ(p) = 2k + 1, x = p′ and y = p′′: σ′ = split(σ1, p, p
′′).

(b) If Lσ(p) = 2k + 1 and y = p′: σ′ = split(σ1, p, p
′).

3. If Lσ(p) = k + 1:

(a) If x = p′:

i. If y = p′′: σ′ = insert(σ1, p
′′, p′′).

ii. If y 6= p′′ and Lσ(p′′) 6= k − 1: σ′ = insert(σ1, p
′′, y).

iii. If Lσ(p′′) = k − 1: σ′ = connect(σ2, p, p
′′).

(b) If y = p′: σ′ = insert(σ1, p
′, p′).

(c) If p′ 6∈ {x, y} and Lσ(p′) 6= k − 1: σ′ = insert(σ1, p
′, y).

(d) If Lσ(p′) = k − 1: σ′ = connect(σ2, p, p
′).

Note that under the condition Lσ(p(σ)) > k, p′(σ) and p′′(σ) are both well defined,
since it is assumed that the non critical cycle containing p(σ) has at least k + 1 elements
and we only exclude k − 1 of them. In the case where k = 1, p(σ) is still excluded, but
the cycle not being critical forbids it from being reduced to the 2-cycle (p(σ) p′(σ)).

The definition of the operator is given in the description pop-operator.
All rules are presented in Figure 3. Note that some rules actually define σ′ in the same

way, and are kept separated for later convenience: 1a is identical to rule 1b in that they
define σ′ = insert(σ, γ, σ−1(p)); rules 2a and 2b both define σ′ = split(σ1, p, y); 3(a)i and
3b both define σ′ = insert(σ1, y, y). Similarly, 3(a)ii and 3c correspond to the same action
applied to p′′ for the former, and p′ for the latter; this is also true of 3(a)iii and 3d.

Remark 12. Let us consider how this operator works when k = 1. In this case, the target
set of the operator are non-special permutations σ′ where γ(σ′) is in a 2-cycle.

Moreover, we have x = p, y = σ(p) and i = γ(σ). Hence some rules are never applied:
rule 1a because p cannot be a fixed point, rules 2a and 3a because x cannot be p′, rule 3b
because p cannot form a 2-cycle with p′, and rule 3d because there are no 0-cycles. The
three remaining rules (1b, 2b and 3c) are recalled in a simpler form with the description
of the tree for k = 1 (in Section 4.2) and depicted in Figure 4.
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1a

i γk p i

γ

pk + 1

1b

i γk p a6= k + 1 i

γ

ak + 1 p
6= k − 1

2a

i γk p

p′

p′′2k + 1 i

γ

p′k + 1 p
k − 1

p′′
k + 1

2b

i γk p

x

p′2k + 1 i

γ

xk + 1 p
k − 1

p′
k + 1

3(a)i

i γk p

p′

p′′k + 1 i

γ

p′k + 1 p
k − 1

p′′

3(a)ii

i γk p

p′

yk + 1 p′′

6= k − 1

i

γ

p′k + 1 p
k − 1

p′′ y
6= k + 1

3(a)iii

i γk p

p′

yk + 1 p′′
k − 1

i

γ

yk + 1 p

p′

p′′2k − 1

3b

i γk p

x

p′k + 1 i

γ

xk + 1 p
k − 1

p′

3c

i γk p

x

yk + 1 p′

6= k − 1

i

γ

xk + 1 p
k − 1

p′ y
6= k + 1

3d

i γk p

x

yk + 1 p′
k − 1

i

γ

yk + 1 p

x

p′2k − 1

Figure 3: Illustration of the different rules of the pop operator for k > 2. Plain lines
indicate direct images under σ or σ′, dashed and dotted lines indicate portions of cycles.
Lengths of cycles are shown as integers inside or over cycles. All cycles are implicitly non
critical and hence of length not k. Conditions are not shown (see text).

the electronic journal of combinatorics 23(4) (2016), #P4.22 15



1b

γ p a> 3 γ a2 p
> 2

2b

γ p

p′

z3 γ p2 p′ z2

3c

γ p y2 p′

> 2

γ p2 p′ z> 3

Figure 4: Illustration of pop’s rules for k = 1.

The proof of Proposition 10 is split in the four following lemmas.

Lemma 13. For k = 1, pop is onto.

Proof. We construct a preimage (σ, i) for any non-quasi-special permutation σ′ with
Lσ′(γ(σ′)) = 2. Let p = p(σ′), p′ = p′(σ′) and i = γ = γ(σ′).

We distinguish three cases, building in each case a permutation σ where i is a fixed
point. In each case, the other fixed points of σ are exactly those of σ′.

1b) If p 6= σ′(γ): σ = insert(σ′, σ′−1(p), σ′(γ)). In this situation, p is in a cycle of length
at least 2 in σ′, hence in a cycle of length at least 3 in σ (hence p = p(σ)) and
σ(p) 6= p′(σ). Hence rule 1b applies to (σ, i) (rule 2b does not apply) and one easily
checks that σ′ = pop(σ, i).

2b) If p = σ′(γ) and Lσ′(p′) = 2: σ = insert(σ′, σ′(p′), p). In this case, p is inserted
before p′ into a 2-cycle, hence is in a 3-cycle in σ. Consequently, p(σ) = p, and
p′(σ) = σ(p); thus rule 2b applies to (σ, i) and gives σ′.

3c) If p = σ′(γ) and Lσ′(p′) > 3: we let σ1 = insert(σ′, p, p) and we get the permutation
σ as σ = insert(σ1, p, σ

′(p′)); that is, we extract p and σ′(p′) from their cycles and
construct a new 2-cycle with them. We have p in a 2-cycle in σ, but p′ is in another
cycle, thus we still have p = p(σ) and p′ = p′(σ); rule 3c applies on (σ, i) and
produces σ′.

Lemma 14. For k > 2, pop is onto.

Proof. We construct a preimage (σ, i) for any non-quasi-special permutation σ′ with
Lσ′(γ(σ′)) = k + 1. More precisely, for each possible σ′, we identify one of the ten
rules of pop and describe a preimage (σ, i) to which said rule applies, and yields σ′. In
each case, σ has exactly one more k-cycle than σ′.
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Let γ = γ(σ′), i = σ′−1(γ), a = σ′(γ), C the cycle of γ (also containing i and a).
Let furthermore σ′′ be the permutation obtained after removing the cycle C from σ′ and
adding the element a as a fixed point, i.e., σ′′ = insert(σ|V \C , a, a). We note p̃ = p(σ′′).

In all the following cases (numbered by the corresponding rule of pop which yields
σ′), it should be clear that the cycle containing i (and γ) in σ shall be of size k (hence
critical), since the defined permutation σ will always remove a from its cycle (and leave
other k-cycles untouched, resulting in σ having exactly one more k-cycle than σ′).

Furthermore, all other cycles with a minimum less than p̃ shall not be modified in
the construction of σ, hence these cycles shall remain critical in σ. Under these two
conditions, we deduce directly that p̃ = p(σ) if the cycle of p̃ is not critical in σ. In the
following, we will not recall these two “easy” properties of σ.

Let us first deal with two specific cases.

1.a) If a = p̃, we let σ = insert(σ′, p̃, p̃).

1.b) If Lσ′(p̃) < k − 1, we let σ = insert(σ′, σ′−1(p̃), a).

In these first two situations, p̃ is in a cycle of length strictly less than k in σ: in the
first case, it is a fixed point in σ (and we assumed k > 2), and in the second case, it is
in a cycle of length Lσ′(p̃) + 1 < k. Thus p̃ is in a non critical cycle in σ, and therefore
p̃ = p(σ).

In the first case, rule number 1a applies on (σ, i) and yields σ′. In the second case,
rule 1b is the only applicable rule, and its application to (σ, i) results in the permutation
σ′.

We now move to the remaining cases. From now on, we assume a 6= p̃ and Lσ′(p̃) >
k − 1.

Let us further define two distinguished elements in σ′: p̃′ and p̃′′.
We define p̃′ (resp. p̃′′) as the smallest element (resp. second smallest element) in a

non-critical cycle in σ′′ that does not belong to σ′[0,k−2](p̃). Since σ′′ contains a fixed point
larger than p̃ (namely, a), p̃′ is always well defined. Moreover, note that if p̃′ = a and no
element p̃′′ can be found in σ′′ (that is, p̃′ is in the largest non critical cycle in σ′′), then
the permutation σ′ is quasi-special (and hence out of the scope of the lemma): indeed,
in this situation, γ = γ(σ′) is in a (k + 1)-cycle, p̃ is the minimum of a (k − 1)-cycle,
p̃′ = σ′(γ) is larger than p̃, and all other cycles are critical in σ′′. If p̃′ 6= a, at the very
least, two elements larger than p̃ are in non critical cycles in σ′′. Overall, p̃′ and p̃′′ are
always well-defined under our current assumptions.

In all remaining cases, we shall have σ′[0,k−2](p̃) = σ[0,k−2](p̃), thus we get p̃′ = p′(σ)
and p̃′′ = p′′(σ) whenever p′(σ) and p′′(σ) are in non critical cycles of σ.

We shall see in each rule that p(σ) = p̃, thus, for elements larger than p̃ (which includes
p̃′ and p̃′′), not being in critical cycles of σ reduces to not being in k-cycles; this is easily
checked for the different rules.

Let us now consider all cases where Lσ′(p̃) > k.

3.a.iii) If Lσ′(p̃) = 2k − 1, σ′k−1(p̃) = p̃′, and σ′k(p̃) = p̃′′: we set σ1 = split(σ′, p̃, p̃′′) and
σ = insert(σ1, p̃, a). In this situation, p̃ is in a (k + 1)-cycle in σ, p̃′ = σk−1(p(σ))
and Lσ(p̃′′) = k − 1, thus rule 3(a)iii applies to (σ, i) and produces σ′.
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3.d) If Lσ′(p̃) = 2k − 1 and σ′k(p̃) = p̃′: σ1 = split(σ, p̃, p̃′) and σ = insert(σ1, σ
−1
1 (p̃), a).

In this case, p̃ is in a (k+1)-cycle and p̃′ in a (k−1)-cycle in σ. We have σ′ = pop(σ, i)
by rule 3d.

1.b) In all remaining cases where Lσ′(p̃) > k: we let σ = insert(σ′, σ′−1(p̃), a) and we get
σ′ = pop(σ, i) through rule 1b, by the following discussion.

In this case, we increase the length of the cycle of p̃ by one, and since by hypothesis
it was different from k − 1, this cannot create a k-cycle. Moreover, we shall have
p(σ) = p̃, as the only possibilities to create a critical cycle of length 2k are captured
by the previous two cases. Indeed, since we insert a in the second part of the 2k-
cycle, the first part should already satisfy the critical condition in order for the
condition to hold for the full cycle. However, this implies either p̃′ = σ′k(p̃) or
p̃′ = σ′k−1(p̃) and p̃′′ = σ′k(p̃); and both of these situations are already covered by
the two previous cases.

Now let us check that rule 1b is the rule that applies to (σ, i), i.e., that rule 2
does not preempt it. By definition of p̃, it is not in a critical 2k-cycle. Hence, if
σ′k(p̃) = p̃′ or (p̃′, p̃′′) = (σ′k−1(p̃), σ′k(p̃)), the cycle of p̃ must be of size other than
2k. Increasing such a cycle cannot produce a (2k + 1)-cycle and thus rule 2 will
never be used on σ.

We are now left with the only remaining case: Lσ′(p̃) = k − 1. In this part, we will
often have to insert two elements, one after the other, after the same element in σ′; we use
here the notation τ ′ = insert(τ, i, a, b) as a short form for τ ′ = insert(insert(τ, i, b), i, a).

The three next cases cover the case a = p̃′.

3.a.i) If a = p̃′ and Lσ′(p̃′′) = 1: we set σ = insert(σ′, σ′−1(p̃), p̃′, p̃′′). In this case, rule 3(a)i
applies to (σ, i) and yields σ′, since p̃ is in a (k + 1)-cycle of σ (hence p̃ = p(σ))
whose last two elements starting from p̃ are p′(σ) and p′′(σ).

3.a.ii) If a = p̃′ and Lσ′(p̃′′) 6∈ {1, k+ 1}: we set σ = insert(σ′, σ′−1(p), p̃′, σ′(p̃′′)). We have
then p̃ in a (k + 1)-cycle in σ (thus p̃ = p(σ)) with σk−1(p(σ)) = p̃′ = p′(σ). The
cycle of p̃′′ is one shorter in σ than in σ′; however, such a cycle cannot be of length
k (thus p′′(σ) = p̃′′) nor k − 1. Hence, we have σ′ = pop(σ, i) using rule 3(a)ii.

2.a) If a = p̃′ and Lσ′(p̃′′) = k+1: we set σ1 = insert(σ′, σ′−1(p̃), p̃′) and the permutation
σ = connect(σ1, p̃, p̃

′′). In this situation, p̃ is in (2k + 1)-cycle of σ whose elements
in positions k − 1 and k (starting from p̃) are p′(σ) and p′′(σ). Here rule 2a applies
to (σ, i) and gives σ′.

Finally, the last three cases cover the remaining situations.

3.b) If Lσ′(p̃′) = 1: we set σ = insert(σ′, σ′−1(p̃), a, p̃′). We have p̃ in a (k + 1)-cycle of σ
with p̃′ = σ−1(p̃), hence p̃ = p(σ) and p̃′ = p′(σ). In this situation, rule 3b applies
to (σ, i) and produces σ′.
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3.c) If Lσ′(p̃′) 6∈ {1, k + 1}: we set σ = insert(σ′, σ′−1(p̃), a, σ′(p̃′)). In this case, Lσ(p̃) =
k+ 1 and Lσ(p̃′) = Lσ′(p̃′)− 1 6∈ {k− 1, k}. Hence we have p(σ) = p̃ and p′(σ) = p̃′,
and rule 3c applies to (σ, i) and yields σ′.

2.b) If a 6= p̃′ and Lσ′(p′) = k+ 1: we set σ1 = insert(σ′, σ′−1(p̃), a), and the permutation
σ = connect(σ1, p̃, p̃

′). The cycle of p̃ in σ is then of length 2k+ 1, and σk(p̃) = p̃′ =
p′(σ). Rule 2b applies to (σ, i) and yields σ′.

To prove that pop is one-to-one, we will need the following lemma, which essentially
states that p(σ) can be recovered from σ′.

Lemma 15. Assume k > 2. Let (σ, i) be such that σ′ = pop(σ, i) is well defined, and let
σ′′ be obtained by removing the cycle containing i from σ′ and adding a = σ′(γ(σ′)) as a
fixed point. Then p(σ′′) = p(σ).

Proof. Let p = p(σ) and, if they exist, p′ = p′(σ) and p′′ = p′′(σ); let also p̃ = p(σ′′).
Analysing the ten rules depicted by Figure 3, we observe that cycles of σ other than

those containing i, p, and possibly p′ and p′′ all appear identically in σ′′; furthermore, the
elements of the cycle containing i are absent from σ′′. Consequently, since p = p(σ) is the
smallest element not in a critical cycle, p(σ′′) is either equal to p (if its cycle in σ′′ is not
critical) or larger than p (if its cycle in σ′′ is critical). To prove that we have p = p̃, we
need to prove that the latter case is not possible.

Note that the cycle of p in σ′′ cannot be of length k, and can be of length 2k only
when rule 1b is applied: rules 3(a)iii and 3d place p in a (2k − 1)-cycle (and we have
assumed k > 2); rule 1a places it in a (k + 1)-cycle, and all other rules except 1b place
it in a (k − 1)-cycle; and, since rule 1b reduces by 1 the length of the cycle containing p
and only applies if this length is not k + 1, the length in σ′′ cannot be k. Overall, only
rule 1b could result in p being in a critical cycle (of length 2k) of σ′′.

Now, in rule 1b, the cycle containing p in σ′ (hence in σ′′ as well) is obtained by just
removing σ−1(p). For this cycle to become critical in σ′′, it would have to be of length
2k+1 in σ, with the extra condition that σk(p) be smaller than all elements in non-critical
cycles of σ except σ[0,k−1](p); this condition reduces exactly to y = p′ or x = p′, y = p′′,
which are excluded from rule 1b. Thus, even when rule 1b is applied, the cycle containing
p is not critical, and we have p = p̃.

Lemma 16. pop is injective.

Proof. Let (σ, i) be a pair on which pop is defined, and σ′ = pop(σ, i). Set p = p(σ),
p′ = p′(σ), p′′ = p′′(σ) and γ = γ(σ′). It is clear that γ = σ(i) for k > 2, and γ = i for
k = 1.

The first part of our proof shows that no permutation σ′ can be obtained by applying
two different rules, i.e., the images of the ten rules are pairwise disjoint. For each rule,
we give a condition that can only be satisfied when applying this one rule, and leave it
to the reader to check that it is indeed the case. Rule 1b is the most complex, since we
have to include the condition that rule 2 does not apply.
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1. (a) p = σ′(γ);

(b) p 6= σ′(γ) and Lσ′(p) 6= k − 1, and we are not in the situation (only posible if
k > 2) where Lσ′(p) = 2k − 1 and (σ′k(p) = p′ or (σ′k−1(p), σ′k(p)) 6= (p′, p′′));
these exceptions are not produced by this rule as the cycle from which rule 1b
removes an element cannot be a critical one;

2. (a) Lσ′(p) = k − 1, σ′(γ) = p′ and Lσ′(p′′) = k + 1;

(b) Lσ′(p) = k − 1, Lσ′(p′) = k + 1 and σ′(γ) 6= p′, and for k = 1, this condition
should instead be: p = σ′(γ) and Lσ′(p′) = 2;

3. (a) i. Lσ′(p) = k − 1, σ′(γ) = p′ and Lσ′(p′′) = 1;

ii. Lσ′(p) = k − 1, σ′(γ) = p′, and Lσ′(p′′) 6∈ {1, k + 1};
iii. Lσ′(p) = 2k − 1, σ′k−1(p) = p′ and σ′k(p) = p′′;

(b) Lσ′(p) = k − 1 and Lσ′(p′) = 1;

(c) Lσ′(p) = k − 1 and Lσ′(p′) 6∈ {1, k + 1}, and for k = 1, this condition should
instead be: p = σ′(γ) and Lσ′(p′) > 3;

(d) Lσ′(p) = 2k − 1 and σ′k(p) = p′.

All that remains to do to prove the lemma is to prove that each rule of pop is one-
to-one. Suppose now, two distinct pairs (σ1, i1) and (σ2, i2) have the same image σ′ by
the same rule of pop. Necessarily, we must have i1 = i2 = σ′−1(γ), and by Lemma 15,
p(σ1) = p(σ2).

Analysing each rule, one may note that all cycles of length 2k in σ1 and σ2 with a
minimum less than p(σ1) are critical and are present in σ′; these cycles must thus be
identical in σ1 and in σ2. Similarly, the k-cycles of σ (other than the one containing i)
are also present in pop(σ, i), so that σ1 and σ2 have the same k-cycles.

Finally, if the permutations σ1 and σ2 differ on the cycle of p (or p′, or p′′, depending
on the rule), applying the same rule to both σ1 and σ2 results in different permutations;
whereas if σ1 and σ2 differ in another place, the permutations obtained using the operator
are again different as other cycles are not modified.

Hence σ1 = σ2 and pop is indeed an injective function.

Lemma 13, 14, and 16 together prove Proposition 10.

3.5.2 A bijection for permutations with no k-cycles

Let Dkn be the set of permutations of [n] with no k-cycles, and Qkn the set of quasi-special
permutations of [n] with no k-cycles. Recall that we denote fk(n, 0) = |Dkn|.

Using only the operator just defined, we can easily describe a bijection χn from Dkn−1×
[n] \ SPkn−1 to Dkn \Qkn, where the excluded set SPkn−1 is the set of pairs (σ, i) in which σ
is special and Lσ(i) = k − 1. Note that for SPkn−1 to be nonempty, n must be a multiple
of k (the existence of a (k − 1)-cycle in a special permutation implies that the size is
−1 mod k).
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This bijection χn gives a combinatorial proof of the recurrence relation for fk(n, 0)
given in Proposition 2 (which we already proved analytically, in the proof of Proposition 3,
for all numbers of k-cycles).

This bijection can be seen as a generalization of a previous bijection τn for derange-
ments (permutations with no fixed points, that is, the case k = 1) due to Rakotondra-
jao [13]. The bijection τn is defined from D1

n−1 × [n] \ {(∆1
n−1, n)} to D1

n for odd n, and
from D1

n−1 × [n] to D1
n \ ∆n for even n, where ∆n is the unique critical derangement of

size n, for n even: it is the derangement (12)(34) . . . (n− 1n).
The bijection of [13] gives a nice combinatorial proof of a well-known recurrence over

the number of derangements, dn = |Dn|: dn = ndn−1 + (−1)n. Proposition 2 gives a
generalization of this recurrence for any k > 1; note that by taking k = 1, we recover the
original recurrence over derangements f1(n, 0) = nf1(n− 1, 0) + (−1)n.

Let σ be a permutation of size n− 1 with no k-cycles, and i ∈ [n], such that σ is not
special or Lσ(i) 6= k − 1. We define σ′ = χn(σ, i) as:

• if Lσ(i) 6= k − 1: σ′ = insert(σ, i, n);

• if Lσ(i) = k − 1: σ′ = pop(insert(σ, i, n), i).

Theorem 17. χn is a bijection from Dkn−1 × [n] \ SPkn−1 to Dkn \ Qkn.

Proof. The first case describes a bijection between the pairs (σ, i) where i is not in a
(k − 1)-cycle and permutations with no k-cycles where n is not in a (k + 1)-cycle; the
second case is a bijection between the remaining pairs and permutations with no k-cycles
where n is in a (k + 1)-cycle.

The link with the case ` = 0 of Proposition 2 is as follows. When n is not a multiple of
k, both SPkn−1 and Qkn are empty, and χn constitutes a bijective proof of the recurrence

nfk(n− 1, 0) = fk(n, 0).

When n = mk, one of the two sets is empty, depending on the parity of m:

• For even m, SPkn−1 = ∅: special permutations of size n − 1 with no k-cycles must
consist of one (k−1)-cycle and a number of (2k)-cycles. In this case, χn constitutes
a bijective proof of the recurrence

nfk(n− 1, 0) = fk(n, 0)−Q(n, 0).

• For odd m, Qkn = ∅: quasi-special permutations of size n with no k-cycles consist of
one (k − 1)-cycle, one (k + 1)-cycle and a number of (2k)-cycles. In this case, since
each special permutation of size n − 1 has exactly one (k − 1)-cycle, it appears in
exactly k − 1 pairs in SPkn−1, and χn constitutes a bijective proof of the recurrence

nfk(n− 1, 0)− (k − 1)S(n− 1, 0) = fk(n, 0).
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3.6 Some other operators for (special) permutations

We define here the three remaining operators that our tree construction relies on. These
are necessary to preserve the special subtree, that is, the property that all special permu-
tations are children of other special permutations in our generation tree. They all use the
largest element of a permutation σ which is not in a k-cycle, denoted γ(σ).

3.6.1 Decreasing the number of k-cycles: the merge operator

In our tree, this merge operator serves to define special children with one fewer k-cycles
than their parent. Its direct effect on the cycle type is that two k-cycles are replaced
by a (2k)-cycle; some care needs to be exercised to ensure that the result is a critical
permutation.

Precisely the operator merge is defined over some acceptable pairs (σ, i) such that σ is
a critical permutation over S[n], n and i are in two different k-cycles, σ(i) is the maximum
of its cycle and σ(i) > γ(σ).

This operator splits each (2k)-cycle of σ into two k-cycles, one for each critical element
of the cycle, then reconstructs σ′ by including the cycles containing n and i in the new
(2k)-cycles set, based on the simple bijection shortly outlined § 3.3.1.

Let us define properly this bijection first. For a permutation τ of size mk constituted
only of k-cycles, of which ` are marked (with m − ` even), we call join(τ) the critical
permutation of size mk obtained as follows:

• we order the unmarked cycles C1, C2, . . . , Cm−` of τ in increasing order of their
minimal elements;

• we join these cycles pairwise by connecting Ci to Ci−1 for even i, i.e.,

– τ0 = τ ,

– for j ∈ [m−`
2

], τj = connect(τj−1,min(C2j),min(C2j−1)),

– join(τ) = τ(m−`)/2.

Note that this operation defines a bijection from its input set to critical permutations,
as we can easily recover the permutation τ formed by m cycles of length k from any
critical permutation τ ′ of size mk by splitting the (2k)-cycles of τ ′; the marked cycles of
τ are exactly the k-cycles of τ ′.

For (σ, i) an acceptable pair for merge, we define the permutation σ′ = merge(σ, i) as
follows:

1. split the (2k)-cycles of σ into k-cycles, i.e., σ1 = join−1(σ); unmark the cycles of n
and i to get σ′1;

2. merge again the unmarked k-cycles of σ′1 into (2k)-cycles, i.e., σ′ = join(σ′1).

Proposition 18. merge defines a bijection between its acceptable pairs and critical per-
mutations where n is in a (2k)-cycle. The image has exactly two fewer k-cycles than the
permutation in the pair.
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Figure 5: Illustration of the shift operator when i is a critical element: i = pj. Dotted
arrows represent new positions of elements after the application of the operator.

Proof. The first step in merge is a bijection between acceptable pairs and permutations
with only k-cycles with an even number of unmarked cycles, with n belonging to an
unmarked cycle; here, i can be recovered from the marked permuation by first recovering
σ(i) as the maximum element among the unmarked cycles not containing n.

The second step is reduced to join, and is also bijective from marked permutations
with the cycle of n unmarked, and critical permutations with n in a 2k-cycle.

3.6.2 Special children: the shift operator

We now define an operator shift that bijectively maps some valid non-special permutation
τ to some special permutation σ′ on the same set, which contains at least one (2k)-cycle.
The conditions on τ are as follows:

• Lτ (γ(τ)) = 2k + 1;

• σ = remove(τ, γ(τ)) is a special permutation whose special cycle (if it exists) has
length other than k − 1;

• i = τ−1(γ(τ)) > δ(σ), where δ(σ) is the minimum element of the special cycle of σ
(0 if |σ| = 0 mod k).

The purpose of the shift operator in the construction of our generation tree is to
ensure the heredity condition: that special permutations only appear as children of special
permutations. When trying to define the i-th child of a special permutation σ, if i happens
to be in a cycle of length k or 2k in σ, using cycle insertion would result in a permutation
that has a (k+1)- or (2k+1)-cycle, thus a non special permutation; and in other situations,
cycle insertion may result in special permutations being children of non special ones, which
we want to avoid completely. The shift operator is used to “switch children” in the tree
in order to maintain the hereditary property.

Informally, the way shift−1 acts is by “shifting up” the sequence of critical elements
of a special permutation (obtaining a non special permutation as the result) in such a
way that the operation can be reversed. It is slightly more natural to define the reverse
operation (from non special to special permutation) as shift, illustrated by Figure 5.

Let τ be some valid permutation in the sense described above. In the following, let
γ = γ(τ), σ = remove(τ, γ), i = τ−1(γ), pj = pj(σ) for j ∈ [2m] (where m is the number
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of (2k)-cycles in the special permutation σ; i.e., the pj’s are the critical elements of σ),
and δ = δ(σ) if σ has a special cycle, δ = i otherwise (that is, if |σ| is a multiple of k).

The permutation σ′ = shift(τ, i) is defined as follows:

• If i is not a critical element of σ, then σ′ = insert(τ, δ, i).

• If i = pj for some j ∈ [2m], then let ` be the smallest integer larger than j, such
that p` > min(σ[k−1](p`−1)) (if such an ` does not exist, we set ` = 2m + 1). Let
a = min(σ[k−1](p`−1)), and let σ′ be the permutation obtained after these `− j + 2
insertions :

1. τ`−j = insert(τ, a, γ) and τ`−j−1 = insert(τ`−j, p`−1, a);

2. for h ∈ {0, . . . , `− j − 2}, τh = insert(τh+1, pj+h, pj+h+1);

3. σ′ = insert(τ0, δ, i).

In other words, each of the ph (for j 6 h 6 `− 2) in τ is replaced by ph+1 in the cycle
structure of τ , p`−1 is replaced by a, a is replaced by γ, and i = pj is inserted after δ (or
as a new fixed point if δ = i, that is, if τ is of size 1 mod k). Thus, most cycle lengths
are the same in σ′ and τ ; the only ones that change are the (2k+ 1)-cycle that becomes a
(2k)-cycle, and the one cycle of length less than k (the special cycle in σ) that increases
its size by one. The conditions on the choice of ` and a ensure that, even though the
critical elements of σ are replaced by larger values, σ′ is indeed a special permutation.

Proposition 19. The shift operator defines a bijection between its valid inputs τ and
special permutations σ′ on the same set with the same number of k-cycles, where γ(σ′) is
in a (2k)-cycle.

Proof. We have already argued that σ′ is special. It has the same number of k-cycles as
τ ; in fact, it has exactly the same k-cycles. In the definition, γ is placed in a (2k)-cycle;
and, since the elements in k-cycles are the same in τ and in σ′, we have γ(σ′) = γ. Thus,
shift(τ) is of the claimed type. Also, note that the validity conditions on τ (in particular,
i > δ(τ)) ensures that δ(σ′) = δ.

To prove that shift is indeed bijective, we prove that for any permutation σ′ of the
claimed type, there is only one possible preimage τ , and leave it to the reader to check
that applying shift to this τ does yield σ′.

Starting from σ′, we already know that γ can be identified as γ(σ′); i can also be
identified as σ′(δ(σ′)). The shifted critical elements can then be identified (in σ′) as
the critical elements larger than i, up to and including the critical element pj such that
γ ∈ σ′[k−1](pj) (possibly none, if this pj is smaller than i). Then, τ can be recovered from
σ′ by replacing each of these critical elements by the next (the smallest one is replaced
by i, and the last replaces γ), then inserting γ after i.
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3.6.3 Generating quasi-special permutations: the cut operator

Our last operator σ′ = cut(τ) defines a bijection between critical permutations τ with at
least one (2k)-cycle, and quasi-special permutations σ′ on the same set. Its direct effect
on the cycle type is that a (2k)-cycle is replaced by a (k − 1)-cycle and a (k + 1)-cycle.

Recall the conditions on a quasi-special permutation σ′: it has one (k + 1)-cycle, one
(k− 1)-cycle, and any number of k-cycles and (2k)-cycles; when ignoring the two (k± 1)-
cycles, it is special; the minimum element p in the (k−1)-cycle is larger than all “critical”
elements; the maximum element γ in the (k + 1)-cycle is larger than all elements not in
k-cycles; and finally, its image p′ = σ′(γ) is larger than p.

Now let us start from a critical permutation τ with at least one (2k)-cycle.
Let us define how the permutation σ′ is obtained through this operator. Let m > 1

be the number of (2k)-cycles in τ , γ = γ(τ) and let p be the largest critical element of τ
such that γ 6∈ τ [k−1](p), i.e.,

p =

{
p2m−1(τ) if γ ∈ τ [k−1](p2m(τ)),
p2m(τ) if γ 6∈ τ [k−1](p2m(τ)).

The permutation σ′ is obtained through the following process:

1. τ1, a permutation of k-cycles only with some cycles marked, is obtained by splitting
all (2k)-cycles of τ at their critical elements, that is, τ1 = join−1(τ);

2. mark two more cycles in τ1 to get τ2: those containing γ and p (these two cycles are
distinct from the definition of p);

3. let τ3 = join(τ2) and p′ = τ(p) = τ3(p), and set σ′ = insert(τ3, γ, p
′).

Proposition 20. cut defines a bijection between critical permutations with at least one
(2k)-cycle, and quasi-special permutations on the same set. Furthermore, the numbers of
k-cycles of τ and cut(τ) are the same.

Proof. We start by checking that σ′ defined above is indeed a quasi-special permutation.
Its cycle structure is appropriate: τ3 has only k- and (2k)-cycles, and the last insertion
operation removes an element from one of the k-cycles to insert it into another one. The
fact that, when these two (k ± 1)-cycles are ignored, the rest is a critical permutation is
guaranteed by the join operation. The minimum element p in the (k − 1)-cycle is larger
than the largest critical element of τ3. Obviously, the elements not in k-cycles are the
same in τ and σ′, so that γ(σ′) is indeed γ, and is in the (k+ 1)-cycle of σ′ (and σ′ and τ
have the same number of k-cycles). Finally, p is the minimum of its cycle, so that p′ > p
is also guaranteed. These are exactly the conditions of a quasi-special permutation.

We now check that any quasi-special permutation σ′ can have only one preimage τ ,
and describe the inverse map; again, we leave it to the reader to check that this is indeed
a preimage.

Starting from some arbitrary quasi-special permutation σ′, we already know that γ(τ)
must be γ(σ′), and can also recover p as the minimum of the (k − 1)-cycle, and p′ as
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σ′(γ). Thus, we can also recover τ3 by inserting p′ after γ (τ3 = insert(σ′, γ, p′)), then
τ2 = join−1(τ3), then unmark the cycles containing γ and p to recover τ1. Finally, τ is
recovered as join(τ1).

4 Proof of the main theorem

In this section, we prove the main result of the paper, namely, that our definition, given in
page 6, does define a uniform generation tree with the desired properties. We first prove
the general case k > 2; the case k = 1, together with the somewhat simplified description
of the tree, will be treated later.

4.1 Proof for k > 2

Before going to the proof of the theorem, we make some comments on the definition, and
derive some easy properties.

First note that the conditions on the use of rules II to VI are mutually exclusive,
so that, by the fact that rule I covers exactly the cases not covered by the others, our
description uses exactly one rule for each possible pair (σ, i) (we will check later that the
rules are well defined, i.e., that the operations are always used with proper arguments).

The condition of rule I was not made explicit in the description, but it can be expressed
easily. The rule is applied when one of the following statements holds:

• ` = 2k − 1 and ζ is not special,

• ` = 2k, and (σ is not special or i 6 δ(σ) or k - n),

• ` 6∈ {k − 1, 2k − 1, 2k}.

Now note that in the definition, ` is always either 0 or the length of a cycle in σ. This
makes it clear that rule I is the only one which is applied both to special and non-special
permutations: rules II, III, and IV are used only for non-special permutations (the latter
two imply that σ contains a 2k − 1 cycle), and rules V and VI for special permutations.
Another useful property that always holds is ` + 1 = Lζ(i), and ζ(i) > γ(ζ) (just check
the three cases of the definition of (`, ζ)).

For the remainder of the proof, we note γ = γ(σ) and L(j) for Lσ(j).
We now examine each individual rule and, for each one, we do three things. We

check that the permutation σ′ is well defined (that is, the corresponding operator can be
applied); we determine whether σ′ is special; and we determine the number j′ of k-cycles
of σ′, assuming its parent permutation σ has j cycles of length k.

I. In this rule, either a fixed point is added, or the length of exactly one cycle containing
i or γ increases by one:

• if L(i) 6= k, ζ corresponds to cycle insertion after i; since the cycle of i cannot
be of length k − 1 (captured by rules II and VI), σ′ has the same number of
k-cycles as σ.
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• if L(i) = k and i < γ, ζ corresponds to the permutation where i is replaced by
n, then i is inserted just before γ, thus increasing the length of γ’s cycle by one
in σ′. Since L(γ) 6= k − 1 (captured again by rules II and VI), we get j′ = j
again.

• if L(i) = k and i > γ, ζ is the permutation obtained by replacing i with n, then
inserting i as a fixed point, hence j′ = j in this case as well.

Moreover if σ is non special, σ′ is non special as well, because there are only three
ways for this cycle insertion to create a special permutation, and each one is pre-
vented in this situation:

• inserting into a cycle of length strictly less than k− 1, but in this case σ would
have been special;

• inserting into a cycle of length k − 1, but rule I does not apply in this case;

• inserting into a cycle of length 2k− 1, but rules III and IV exactly capture this
case when ζ is special.

If σ is special, there is only one possibility for σ′ to be special as well, that is, if
we insert into the special cycle, and it happens to be of length strictly less than
k − 1. This corresponds to the case ` < k − 1 (note the case ` = k − 1 is captured
by rule VI). In the only other possible situation where rule I applies to a special
permutation (that is, ` = 2k but the condition of rule V fails), the permutation σ′

obtained after rule I is not special since it contains a cycle of length 2k + 1.

II. Since σ is not special in this rule, ζ, which is obtained from σ by inserting some value
into a (k− 1)-cycle, is not critical. Second, the newly created k-cycle in ζ contains i
(just check the two first cases of the definition of ζ). Third, ζ(i) is either n or γ(σ);
in both cases, ζ(i) is maximal in its cycle and larger than the maximum element of
ζ not in a k-cycle. These three conditions show that pop(ζ, i) is well defined. By
the properties of pop, σ′ is not special and j′ = j.

III. Here ζ is special, γ(ζ) is either n or γ, and γ(ζ) is in a (2k)-cycle of ζ. Hence ζ lies
in the image of shift, so that σ′ is well defined and non special, and j′ = j.

IV. In this rule, ζ is critical and has a (2k)-cycle, hence the operator cut is defined on
ζ; σ′ is quasi-special (hence not special), and its number of k-cycles is the same as
that of ζ (and of σ).

V. (a) Since σ is special, i > δ(σ) and n is not a multiple of k, so that the special cycle
in σ, whose length is n − 1 mod k, has length strictly less than k − 1. In this
case, ζ(i) = γ(ζ) is in a (2k+1)-cycle of ζ, and removing this value from ζ yields
a special permutation (which may be σ, or another special permutation). Thus
ζ matches the criteria to apply the shift operator, and we get a special σ′ with
j′ = j.
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(b) In this situation, σ′ is obtained by replacing i by n (keeping the same number
of k-cycles) and placing it after δ(σ) thus making σ′ special as well by only
increasing the length of the special cycle; again, we have j′ = j.

VI. (a) This rule (identical to rule I but kept separate because it plays a specific role
in our proof) inserts n after i, thus creating a new k-cycle in σ′. Since other
elements are left undisturbed, σ′ is a special permutation with no special cycle
(n is a multiple of k), and j′ = j + 1.

(b) In this case, n and i are in different k-cycles in ζ, ζ is critical (the (k − 1)-cycle
of γ has been replaced by a k-cycle), and ζ(i) is larger than any element of ζ
outside k-cycles; hence merge can be applied to ζ. The operator produces a
critical permutation σ′ with two k-cycles fewer than ζ, thus one fewer than σ
(j′ = j − 1).

This case by case analysis shows that, provided our construction does define a gener-
ation tree (which we shall prove next), the tree does have all the claimed properties. We
summarize them in the following lemma:

Lemma 21. The parent of each special permutation is special. The number of k-cycles
of a permutation is different from that of its parent if and only if both are special, and the
former is critical; the difference in the number of k-cycles is ±1, depending on whether
rule VIa or VIb is used to obtain the child from the parent.

We now turn to proving that our construction is indeed a generation tree, that is,
we have defined, for each n, a bijection between S[n−1] × [n] and S[n]. Since both sets
obviously have the same cardinality, all we need to do is prove that the transformation is
one-to-one by exhibiting necessary conditions on a preimage for each permutation.

Let σ′ be any permutation of size n, γ = γ(σ′) and τ = remove(σ′, γ) the permutation
of size n− 1 where γ has been removed from its cycle.

If σ′ is special but not critical with Lσ′(γ) = 2k and Lσ′(n) = k: σ′ is the i-th child by
rule Vb of σ = remove(insert(σ′, σ′−1(n), i), n), with i = σ′(δ(σ′)). In σ the cycle of i is
of length k (n has been removed, i added); σ is special with |sc(σ)| < k− 1 and i > δ(σ),
thus rule Vb produces σ′.

We can now note that all other rules describe σ′ as the image of ζ or (ζ, i) by a bijective
transform (shift, shift−1, pop, cut, merge, and the identity restricted to the application
cases of rules I and VIa). Thus, if we check that the images of these transforms are
pairwise disjoint, then we know that some ζ or pair (ζ, i) can be recovered from σ′. In
those cases where only ζ is recovered this way, we also show how i can be independently
recovered. Then, the proof is completed by checking that knowing ζ and i is enough to
recover σ (that is, the mapping (σ, i) 7→ (ζ, i) is injective).

The various images correspond to the following (pairwise incompatible) descriptions:

I. • γ 6= 0 and Lσ′(γ) 6∈ {k + 1, 2k, 2k + 1}, or

• σ′ is non-special, Lσ′(γ) = 2k, or

the electronic journal of combinatorics 23(4) (2016), #P4.22 28



• Lσ′(γ) = 2k+ 1 with either k | n, τ is non-special, or τ is special and σ′−1(γ) 6
δ(τ).

II. σ′ is non-special with Lσ′(γ) = k + 1, but σ′ is not quasi-special.

III. σ′ is a valid input of shift operator, i.e., Lσ′(γ) = 2k + 1, k - n, τ is special and
σ′−1(γ) > δ(τ).

IV. σ′ is quasi-special.

V. (a) σ′ is special, Lσ′(n) = 2k, |sc(σ′)| > 1.

(b) σ′ is special, Lσ′(n) = k, |sc(σ′)| > 1, and γ /∈ sc(σ′).

VI. (a) σ′ is special, Lσ′(n) = k, |sc(σ′)| = 0.

(b) σ′ is special, Lσ′(n) = 2k, |sc(σ′)| = 0.

Let us give a few words of explanation as to why these rules cover all possible cases.
The case γ = 0 is included in condition Vb (it corresponds to σ′ having only k-cycles).
When γ 6= 0, we have a disjunction based on the value of Lσ′(γ): value k + 1 is covered
exactly by rules II and IV; value 2k+ 1, by rule III and the last case of rule I; value 2k is
covered by the second case of rule I and rules V and VI; and all other values by the first
case of rule I.

Since these conditions cover all possibilities, each permutation σ′ must fall in one
condition, and we can deduce then a rule, the permutation ζ and the value of i = σ′−1(γ)
for all cases (except the case of rule Vb which was treated above).

Once i and ζ are known, it is straightforward to reconstruct the permutation σ as
σ = remove(insert(ζ, n, i), n).

4.2 Generation tree for k = 1

When k is 1 (that is, we are interested in the number of fixed points in permutations), the
values 2k and k+ 1 coincide, and though the general description of the generation tree is
still valid, some of our arguments for the previous proof are not; and at the same time,
some of the rules in the general description never apply. We now provide a more compact
description of the same generation tree in this case; the reader should check that what
follows is indeed equivalent, when k = 1, to what we gave earlier.

The authors gave in [6] a description of a generation tree with similar properties to
the one described here for k = 1, but it should be stressed that the tree is not the same.
The tree described here is almost identical to the one appearing in the second author’s
Ph.D. thesis [8], with slight changes introduced by taking images in place of preimages in
rules (3.a) and (4.c), and reversing the 3-cycle of p in rule (4.b).

For the rest of this section, we assume k = 1. Recall that in this case, “special”,
“quasi-special” and “critical” permutations are the same. Special permutations of size n
are made of an arbitrary set of ` fixed points such that n− ` is even, and the rest of the
permutation forms the unique critical permutation over the remaining elements, that is,
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Fixed-Point-Generation-Tree

The root of the tree is (1). Let n > 2, σ ∈ S[n−1], i ∈ [n], γ = γ(σ), p = p(σ), p′ = p′(σ)
and τ = insert(σ, n, n). The i-th child σ′ of σ is defined as follows:

1. If σ is special and i = n: σ′ = τ .

2. If σ is special and γ < i < n : σ′ = insert(σ, i, n).

3. If i 6 γ:

(a) If i = σ(i): σ′ = insert(τ, σ−1(γ), i).

(b) If i 6= σ(i): σ′ = insert(σ, i, n).

4. If σ is non-special and i > γ :

(a) If Lσ(p) = 2: τ ′ = insert(τ, p′, σ(p)), and σ′ = insert(τ ′, i, p).

(b) If Lσ(p) = 3 and σ(p) = p′: σ′ = insert(τ ′, i, p).

(c) Otherwise: σ′ = insert(τ ′, i, σ−1(p)).

the non-fixed points are paired into 2-cycles in increasing order. This makes it easier to
see that there are 2n−1 special permutations of size n; they are in bijection with subsets
of [n] of even size.

Let us reconsider the pair (`, ζ) constructed as the beginning of the general description.
We get the following pair by setting k = 1:

(`, ζ) =


(Lσ(i), τ) if i = n or σ(i) 6= i,
(Lσ(γ(σ)), insert(τ, σ−1(γ(σ)), i)) if σ(i) = i and i < γ(σ),
(0, insert(τ, i, i)) if γ(σ) < i < n,

since Lσ(i) = 1 corresponds to i being a fixed point; note here ` = 0 happens when
i > γ(σ) (including the case i = n), otherwise we have ` > 2.

Now reconsidering the rules of the general description: rules III, IV and V never apply
since 1 | n and ` 6= 1.

Rule II applies when σ is non-special and ` = 0, i.e., when i > γ(σ). In the new
description, this is covered by rule 4 which is just the description of pop for k = 1.

Rule VIa applies when σ is special and Lσ(i) = 0, i.e., i = n. In this case, it
corresponds to the insertion of n as a fixed point in σ. This is covered by rule 1 in the
new description.

Rule VIb applies when σ is special, γ(σ) < i < n (hence i is a fixed point). In this
case, merge adds a new 2-cycle containing i and n, as described in the new rule 2.

The remaining original rule, rule number I, corresponds to the remaining cases, that
is, i 6 γ(σ). In this case, there are two possibilities, either i is not a fixed point in σ (and
n is inserted after i), or i is a fixed point (and it is inserted just before γ(σ)). This is
covered by the new rule 3.
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Figure 6: Illustration of our generation tree for k = 1 and σ ∈ S[n−1]; dashed edges
represent relations in σ, whereas thick edges represent relations in σ′, the i-th child of σ
in the tree. Only differences between σ and σ′ are shown.

The remaining constructions are illustrated in Figure 6. It should be clear that this
construction defines a uniform generation tree, since from any permutation σ′ we can
identify which rule has been applied and easily reverse the operation:

• rules 1 and 2 build special permutations with n either as a fixed point or in a 2-cycle,
and i = σ′−1(n).

• rule 3 builds only permutations where γ(σ′) is in a 3-cycle, and we have i =
σ′−1(γ(σ′)).

• rule 4 builds non-special permutations where γ(σ′) is in a 2-cycle, and we have
i = γ(σ′).

5 Probabilistic consequences

In this section, we describe a few applications of our tree construction in a probabilistic
setting.

5.1 Stabilization time for the number of k-cycles

Special permutations make up a vanishing proportion of all permutations of a given size
as size goes to infinity; thus, the probability that a random descent reaches a chang-
ing permutation at a given level goes to zero. Thanks to the heredity property of our
generation tree, almost surely, the number of k-cycles in the permutations of a random
descent is ultimately constant. More precisely, almost all descents will reach a non-special
permutation, and all permutations reached from then on will have the same number of
k-cycles.

Let T ′ denote the size of the first non-special permutation in a random descent; T ′ is
obviously a stopping time2. If we define time T as the stabilization time for the number

2with respect to the natural filtration defined by the sequence of permutations.
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of k-cycles, that is, the first index n such that for all m > n we have ck(σm) = ck(σn), T
is not a stopping time; for instance, in the generation tree for k = 2 as shown in Figure 1,
all sequences containing the permutation (1)(2) have T = 1 (and T ′ = 2), but just looking
at the first permutation (1) (which is a special permutation) does not let one know the
value of T . But, because each permutation of size a multiple of k either is non-special or
has a different number of k-cycles from its parent, T ′ cannot be larger than T + k.

For the applications we wish to describe in the rest of this section, it is useful to
compute the expected value of T ′.

Proposition 22. Let T ′ denote the size of the first non-special permutation in a random
descent into our tree. Then T ′ has finite expectation

E(T ′) = (1 +Hk−1)
e2/k + 1

2
,

where Hn =
∑n

i=1 1/i denotes the n-th harmonic number.

Proof. The expected time can be expressed as E(T ′) =
∑

n P(T ′ > n), and the probability
that T ′ is at least n is exactly the probability that the permutation reached at level n− 1
of the tree is special, i.e., S(n− 1)/(n− 1)!.

Thus, we have

E(T ′) =
∑
n>0

S(n)

n!

= 1 +
k−1∑
h=1

S(h)

h!
+
∞∑
m=1

(
S(mk)

(mk)!
+

k−1∑
h=1

S(mk + h)

(mk + h)!

)
.

Using the counting formulae of Proposition 7, we get

E(T ′) = 1 +
k−1∑
h=1

(h− 1)!

h!
+
∞∑
m=1

(
1

2

(2/k)m

m!
+

k−1∑
h=1

1

2h

(2/k)m

m!

)

= 1 +Hk−1 +
1 +Hk−1

2

∞∑
m=1

(2/k)m

m!

= (1 +Hk−1)
e2/k + 1

2
.

5.2 Uniform random generation of permutations with a fixed number of k-
cycles

In this section, we show how our generation tree can be used for random generation.
The fact that non-special permutations have the same number of k-cycles as each of

their children, and by induction as any of their descendants, allows us to design algorithms
that make use of this property for sampling a uniform permutation conditioned on having
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a prescribed number of k-cycles. The algorithm we get is efficient both in time/space
complexity and in randomness complexity. The randomness cost can be estimated by
two different parameters, and we analyze our sampling algorithm for both: the number
of random bits used by the algorithm (which we call the random bit complexity), and the
number of calls to a unit-cost Random(m) primitive that returns a uniform number in [m]
(which we call the random integer complexity; all calls to such a Random primitive would
be with parameters bounded by n).

In the discussion that follows, we consider both k and ` to be constants (the asymp-
totics is only for large n), though they may be large constants.

A very basic rejection algorithm to sample uniformly a (n, `)-permutation, that is a
permutation of size n with exactely ` k-cycles, is to generate uniform permutations of
size n, until one is obtained that has exactly ` cycles of length k. Since the probability
of success fk(n, `)/n! converges (quickly, see [2]) to e−1/k/(k``!) in the large n limit, this
simple rejection method needs to generate, in expectation, e1/kk``!+O(1/n!) permutations
of size n. Thus its expected random integer complexity is e1/kk``!n+O(1/(n− 1)!) when
using standard methods for generating permutations, such as the Fisher-Yates shuffle,
also known as Knuth shuffle (see [9, 7, 10]).

If ` is large, this cost is impractical. There is an easy trick to avoid this large multi-
plicative constant in front of n: we can generate separately the k-cycles and the rest of
the permutation. To do so, we can sample `k elements from [n] by `k successive calls to a
uniform sampler, the i-th call using Random(n− i+1) in order to get one of the remaining
elements – this can be done easily in O(1) per generation by just swapping some elements
in a table, in a Fisher-Yates fashion. At the same time as selecting these elements, we can
build k-cycles in the same order as their selection: each (`k, `)-permutation of the selected
elements is equally likely this way. Then the second part asks for a uniform (n − `k, 0)-
permutation of the remaining elements. In order to generate such a permutation of size
n− `k, a naive rejection algorithm in the same spirit as in the previous paragraph needs
in average e1/k(n−`k)+O(1/(n−`k−1)!) calls to a random sampler. Hence this method
yields an algorithm with random integer complexity e1/kn+ `k(1− e1/k) + o(1).

For any value of n, ` and k the above method is satisfactory in a practical sense.
However, we can improve the multiplicative constant and obtain, thanks to our generation
tree, a new random generation algorithm with random integer cost n + O(1) calls to
Random(). This algorithm is a rejection algorithm heavily based on our generation tree.

Since e1/k is rather close to 1 for values of k larger than a few units, the most interesting
case in such a generation process remains the uniform generation of derangements (k = 1,
` = 0).

In the literature, [12] proposes an equivalent of the Fisher-Yates shuffle for derange-
ments, resulting in a bounded time algorithm with an expected random integer complexity
of 2n + o(n). In [1], experimental studies are performed comparing this method and the
anticipated rejection method, resulting in comparable results; an extension to permuta-
tions having only cycles of length at least m > 3 is also given. In [6, 8], a generator using
n+O(1) calls is given, matching the cost of an algorithm sketched at the end of [3], which
is based on Lehmer encoding and a specific bijection of permutations, and not directly on
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derangements.
We propose the following natural algorithm UniformPerm0(n,k) in order to sample

uniformly a permutation of size n with no k-cycles:

1. Perform a random descent in our generation tree until reaching a non-special per-
mutation σ or level n, whichever comes first.

2. If the reached permutation has no k-cycles, continue the descent until reaching level
n and return the permutation obtained at the end; otherwise, repeat Step 1.

Proposition 23. UniformPerm0(n,k) returns a uniform permutation of size n that
does not have any k-cycles; it has expected random integer complexity n+O(1).

Proof. The algorithm works as an anticipated rejection method: it is equivalent to per-
forming a uniform sampling of a permutation of size n, and as soon as the generated
permutation is known to have cycles of length k, the algorithm aborts and retries; oth-
erwise it returns the sampled permutation. Thus the returned permutations are uniform
(n, 0)-permutations. The properties of the generation tree are used to make anticipated
rejection efficient.

Let A = An be the random variable describing the number of calls to Random() used
by the algorithm on input n; recall that k is assumed to be a constant. We separate the
cost into two contributions corresponding to the two phases of the algorithm, such that
A = C1 + C2, where C1 counts the calls to Random() made (including rejections) until
a (n, 0)-permutation is obtained that either is non-special, or has size n; and C2 counts
only calls made by step 2 of the algorithm.

We have E(C1) = E(C)/α, where C is the number of calls during one trial of the first
phase, and α = qk(n, 0) the probability of success for each trial.

From the exponential generating function Gk(x, 0) = exp(−xk/k)/(1 − x) counting
the number of (n, 0)-permutations (see proof of Proposition 2), we get qk(n, 0) as the
coefficient of xn in Gk(x, 0):

qk(n, 0) = [xn]

(∑
j>0

xj

)(∑
j>0

(−1)jxjk

kjj!

)
=

bn/kc∑
j=0

(−1)j

kjj!
,

thus

α =

bn/kc∑
j=0

(−1)j

kjj!
= e−1/k −

∞∑
j=bn/kc+1

(−1)j

kjj!
.

The last term is an alternating series, so that the limit differs from e−1/k by at most
the first term; independently of the parity of bn/kc, we get the valid bounds

e−1/k − 1

k1+bn/kc(bn/kc+ 1)!
6 α 6 e−1/k +

1

k1+bn/kc(bn/kc+ 1)!
,

so we have 1/α = e1/k +O(1/(bn/kc+ 1)!).

the electronic journal of combinatorics 23(4) (2016), #P4.22 34



We now compute an upper bound on E(C). The number of calls to our random
integer generator is exactly one less than the level at which the descent ends; that is,
E(C) = E(min(n, T ′))− 1 6 E(T ′)− 1.

Finally, C2 is at most n− 2, since the smallest non-special permutations are of size 2.
This carries over to E(C2) 6 n − 2. By linearity of expectation, we obtain a bound on
the expected total number E(A) = E(C1) + E(C2) of calls,

E(A) 6 n− 2 + e1/k
(
Hk−1 +

1 +Hk−1

2

(
e2/k − 1

))
+O((n/k)!−1).

To estimate the random bit complexity, we assume that the primitive Random(j) is
optimal in the sense described in [11]. This implies that, for any j > 2, the expected
random bit cost of the call Random(j) is at most 2 + log2(j). This is bounded above by
2 + log2(n), since j is never larger than n. Multiplying by the previous bound for the
expected random integer complexity, we get an upper bound of n log2(n) + O(n). This
is asymptotically tight because the expected number of random bits cannot be less than
log2(fk(n, 0)), which is also n log2(n) +O(n).

Proposition 24. The expected random bit complexity of algorithm UniformPerm0(n,k)
is n log2(n) +O(n).

Finally, from the discussion of the beginning of this section, we deduce directly the
following corollary:

Corollary 25. It is possible to generate a uniform random permutation of size n with
exactly ` k-cycles with expected random integer complexity n+O(1).

5.3 Sampling Poisson random variates

A second consequence of our generation tree is a combinatorial algorithm to sample from
the Poisson distribution with parameter 1/k, that is, obtaining a random variate that
takes each integer value ` > 0 with probability 1/(e1/kk``!).

Many sampling methods already exist for the Poisson distribution (see [4] for most
of them). These algorithms are efficient but use rational and irrational numbers. By
contrast, our algorithm is purely combinatorial in nature and only uses small integer
numbers.

Our algorithm Poisson-1/k is pretty simple once the generation tree is known: per-
form a random descent in the generation tree (by which we mean, start from the root,
and at each level pick a uniform random child of the current node), until a non-special
permutation is reached; then output its number of fixed points.

We have already computed the expected random integer complexity of this algorithm
in the proof of Proposition 22, as

E(T ′ − 1) = Hk−1
e2/k + 1

2
+
e2/k − 1

2
.
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Algorithm 1 Poisson1

n← 1, g ← 0, k ← 1
loop

i← Random(n+ 1)
if i = n+ 1 then

k ← k + 1
else if i > g then

k ← k − 1, g ← n+ 1
else

return k
n← n+ 1

As stated in the introduction, since we know that the limit distribution of the number
of k-cycles of uniform permutations of size n is the Poisson distribution with expectation
1/k, we deduce the correctness of the algorithm from the fact that it returns precisely
the limit of such a vector (σn)n>1 – recall that after reaching a non special permutation,
further descents in the tree yield permutations with the same number of k-cycles.

For the case k = 1, special permutations have a particularly simple form, and the
algorithm Poisson1 is even simpler. It only needs to keep track of 3 integers representing
the size of the permutation, the largest non-fixed point and the current number of fixed
points.

From a Poisson distributed variable X1 of expectation 1, it is easy to deduce another
random variable X1/k, which follows this time the Poisson distribution with mean 1/k:
X1/k is the number of heads in X1 biased coin flips with parameter 1/k. For any k, the
number of times the Random() primitive has to be used in such an algorithm is given by
1 + (e2 − 1)/2 = (e2 + 1)/2 ≈ 4.20; comparing this with the expected random integer
complexity of Poisson-1/k shows that the latter is more efficient for k 6 32.

We now turn to a short analysis of the random bit complexity of our Poisson1
algorithm.

Proposition 26. The Poisson1 algorithm uses, in expectation, between 6.89 and 6.9
random bits, assuming the Random primitive is optimal in terms of random bits used.

Proof. Let B be the number of random bits used by the algorithm and Bn the number of
random bits (if any) consumed at level n of the tree, so that C =

∑∞
n=2Cn.

We have E(Bn) = 2n−2

(n−1)!E(Un), where Un is the number of bits used by an optimal

uniform sampler Random(n) in the sense of [11]; the 2n−2/(n − 1)! factor is simply the
probability of reaching level n of the tree. The inequality log2(n) 6 E(Un) 6 log2(n) + 2
is valid for all n, but using it blindly to bound the complexity of our algorithm gives an
upper bound of 9.59, significantly more bits than we want.

Instead, we compute exactly Dm =
∑m

n=2
2n−2

(n−1)!E(Un) for some constant m. The

lower and upper bounds for E(C) then become Dm +
∑

n>m
2n−1 log2(n+1)

n!
and Dm +
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∑
n>m

2n−1(2+log2(n+1))
n!

, respectively. For fixed n, E(Un) can be simply obtained from the
binary expansion of 1/n, as described in [11].

To obtain the estimates given in the proposition, we computed the above bounds for
m = 10. Values of E(Un) for n from 2 to 10 are 1, 8/3, 2, 18/5, 11/3, 24/7, 3, 14/3, 23/5,
yielding D10 = 97771

14175
' 6.897. This is a lower bound for the expected random bit com-

plexity.
For the upper bound, we need an upper bound for

M =
∑
n>10

2n−1(2 + log2(n+ 1))

n!
.

We only use the inequality 2 + log2(n + 1) 6 n (which is certainly valid for n > 10);
we get

M 6
∑
n>9

2n

n!
= e2 −

8∑
n=0

2n

n!
= e2 − 2327

315
' 0.00175.

Indeed, both the lower and upper bound are between 6.89 and 6.9.

Remark 27. In algorithm Poisson1, we can replace the call to the random sampler in
the algorithm by an optimal ternary generator choosing the first option with probability
1/(n+1), the second one with probability (n−g)/(n+1) and the third one with probability
g/(n + 1). In such a situation, analogous bound computations as in the previous proof
gives an expected bit complexity of 5.12.

Our Poisson algorithm is not an optimal algorithm regarding its bit consumption;
again applying the results in [11], an optimal algorithm would use, in expectation, fewer
than 2 + E bits, where E = 1 + e−1

∑
j>0 log2(j)/j! ' 1.89 is the binary entropy of

the Poisson distribution; note, however, that such an algorithm would need the binary
expansions of all individual probabilities of the Poisson distribution, pj = 1/(j!e).

Once again, computing
∑B

i=0 i/2
i
∑A

j=0[pj]i for [pj]i the i-th bit of the binary expansion
of probability pj, and some constants A and B, gives a lower bound on the random bit
complexity of an optimal algorithm for the Poisson distribution. For A = 10 and B = 32,
we get a lower bound of 3.66, indicating our combinatorial algorithm is within a factor 2
of the optimal cost.

6 Concluding remarks

We have described a new uniform generation tree for permutations, with the property
of preserving as much as possible the number of k-cycles between a permutation and its
parent. This generation tree gives us a new and efficient algorithm for the uniform random
generation of permutations with exactly ` k-cycles, as well as a new method for sampling
from the Poisson distribution with parameter 1/k, both for any k > 1. Both algorithms
use only small integer numbers.

We believe other applications to random generation can be devised for the generation
tree, such as sampling permutations having some predefined condition on their number of
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k-cycles: for example, an even number. We expect our tree to make many rejection-based
algorithms for this kind of task particularly efficient.

More generally, we are eager to see if such a construction can be adapted to other
families of combinatorial objects, keeping in mind the potential gain for new efficient
generation algorithms for such objects. Indeed, the generation process described in Sec-
tion 5.2 replaces a multiplicative constant by an additive constant, in the expected cost of
the algorithm. For combinatorial objects representing an exponentially (in k) small part
of an easy to sample set, using an adaptation of our method may lead to still generate
those objects in time proportional to n + O(1) instead of the exponential multiplicative
cost induced by a classic rejection algorithm.
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