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Abstract

We prove that the necessary divisibility conditions are sufficient for the exis-
tence of resolvable group divisible designs with a fixed number of sufficiently large
groups. Our method combines an application of the Rees product construction
with a streamlined recursion based on incomplete transversal designs. With similar
techniques, we also obtain new results on decompositions of complete multipartite
graphs into a prescribed graph.

1 Introduction

A group divisible design, or GDD, is a triple (V,Π,B) which satisfies the following prop-
erties.

• Π is a partition of the set V into subsets called groups : Π = {V1, . . . , Vu}.

• B is a collection of subsets of V called blocks such that a group and a block contain
at most one point in common.

∗Supported by NSERC grant 312595–2010.
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• Every pair of points from distinct groups occurs in precisely λ blocks; λ is called
the index.

The type of a GDD is a list of its group sizes, say T = (g1, g2, . . . , gu), where |Vi| = gi
for i = 1, 2, . . . , u. We usually use exponential notation to shorten the type. In particular,
if all groups have the same size, say |Vi| = g for each i, then the GDD is called uniform
and its type is written gu.

Consider a GDD of type T and index λ and suppose the set of its block sizes belongs
to K ⊆ Z>2. (Blocks of size one can be discarded without loss.) We write this as a
GDDλ(T,K) for consistency with PBD notation(see below); it is often also denoted as a
(K,λ)-GDD of type T . We adopt two standard conventions: if K = {k}, we write ‘k’
instead of ‘{k}’ and if λ = 1, it can be omitted from the notation.

Group divisible designs are common generalizations of pairwise balanced designs, bal-
anced incomplete block designs, and transversal designs. A pairwise balanced design, or
PBD(v,K), is a GDD(1v, K). A balanced incomplete block design, (v, k, λ)-BIBD, is a
GDDλ(1

v, k). A transversal design, or TD(k, n), is a GDD(nk, k). In this case, blocks of
the GDD are transversals of the group partition Π.

A parallel class or resolution class in a GDD (V,Π,B) is a subcollection of B which
partitions V . A GDD is resolvable if B can be completely partitioned into parallel classes.
A resolvable GDD is abbreviated RGDD and, similarly, a resolvable TD is denoted RTD.

As is natural in the case of resolvable designs and transversal designs, we restrict our
attention in this paper to the case where all blocks have a constant size, say k. Then, [17,
Lemma 1.1] tells us that in such an RGDD all groups have the same size; that is, they
are uniform.

For the existence of an RGDDλ(g
u, k), it is clearly necessary that

gu ≡ 0 (mod k). (1)

Also, by considering degrees at each point, another necessary condition is

λg(u− 1) ≡ 0 (mod k − 1). (2)

These conditions are not sufficient in general. For example, there does not exist a
GDD(26, 3) with index λ = 1. On the other hand, in [4], it was shown that, given
fixed k and g, these conditions are sufficient for u� 0.

Theorem 1 ([4]). Given g, λ > 1 and k > 2, there exists RGDDλ(g
u, k) for all sufficiently

large u satisfying gu ≡ 0 (mod k) and λg(u− 1) ≡ 0 (mod k − 1).

Here, we take the opposite point of view, fixing u and considering large admissible
g. This is similar to the existence theory for (resolvable) transversal designs, [2], and
GDDs of large order, [12]. It is well known that a TD(k, n) is equivalent to a set of
k− 2 mutually orthogonal latin squares of order n. Therefore, from the result of Chowla,
Erdős and Strauss in [2], a TD(k, n) exists for sufficiently large integers n. See also [3]
for references and further results. Since an RTD(k, n) is equivalent to a TD(k+ 1, n), we
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also have the existence of RTD(k, n) for all sufficiently large n. Our work in this paper is
an extension of this result to RGDDs.

The asymptotic existence of uniform GDDs with large groups and index one is a recent
result of Mohácsy, [12]. Note that the necessary divisibility conditions are a bit weaker
than in the resolvable case.

Theorem 2 ([12]). Let k and u be positive integers, 2 6 k 6 u. There exists a GDD(gu, k)
for all sufficiently large g satisfying g(u − 1) ≡ 0 (mod k − 1) and g2u(u − 1) ≡ 0
(mod k(k − 1)).

This paper obtains a similar theorem for resolvable GDDs. Given integers u > k, let

gmin =
k(k − 1)

gcd(u, k) gcd(u− 1, k − 1)
. (3)

Then (1) and (2) can be summarized simply as gmin | g. We now state our main result.

Theorem 3. Given integers u > k > 2, there exist RGDD(gu, k) for all sufficiently large
g ≡ 0 (mod gmin).

The rest of the paper is structured as follows. In the next section, we cover the nec-
essary background for our constructions, including some slightly more general objects.
Then, in Section 3, we construct the first general examples of RGDDs with a fixed ar-
bitrary number of groups. Section 4 contains the recursive argument used to complete
the proof. In Section 5, we extend our results to graph decompositions which we call
‘transverse’ graph GDDs and RGDDs.

We conclude with a discussion of some related results and questions, including a few
remarks on the existence problem for graph RGDDs with g fixed and u large.

2 Background

We introduce some variant designs and prior results which are useful for our constructions
to follow.

2.1 Holey GDDs

A (uniform) holey group divisible design is a quadruple (V,Π,Ξ,B), where

• V is a set of v points;

• Π = {V1, . . . , Vu} is a partition of V into groups of size mt for each i;

• Ξ = {W1, . . . ,Wt} is a partition of V into holes, where |Vi ∩Wj| = m for each i, j.

• B ⊆
(
V
k

)
is a set of of blocks which meet each group and each hole in at most one

point; and
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• any two points from distinct groups and distinct holes appear together in exactly
one block.

With these parameters, the above design is abbreviated as an HGDD of type u×mt. To
indicate the block size, we write HGDD(u × mt, k). It should be remarked that letting
m = 1 in the definition leads to ‘modified group divisible designs’, also known as ‘grid
designs’. An HGDD is also a special type of ‘double group divisible design’, or DGDD;
see [11] for a definition. Resolvability of HGDDs is defined similarly as for GDDs; see [18]
for a definition and an existence theorem for k = 3.

Example 4. The pattern of groups and holes for an HGDD of type 5 × 24 is shown in
Figure 1. The underlying graph is 24-regular; admissible block sizes are 2, 3 and 4.

V1 V2 V3 V4 V5

W1

W2

W3

W4

Figure 1: Groups and holes for an HGDD of type 5× 24

The holes (or groups) of an HGDD can be filled to create a GDD. The proof of the
following is straightforward and omitted.

Construction 5. If there exists an HGDD(u×mt, k) and a GDD(mt, k), then there exists
a GDD((mu)t, k).

2.2 Index reduction

We point out two constructions which are used to reduce the index of a design; they take
as inputs designs of index λ and produce designs of index one.

Construction 6. Suppose there exists an RGDDλ(g
u, k), and let q ≡ 1 (mod λ) be a

large prime power. Then there exists a resolvable HGDD(q × gu, k).

Proof sketch. This is a routine extension of Lemma 3.2 in [6], which is for the case g = 1.
Suppose our ingredient design is (X,Π,A). The construction has point set X × Fq and
partitions induced by Π and Fq. We first set up a uniform choice function from blocks
in A on each pair of points to the (multiplicative) cosets of index l in Fq. This defines
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a lifting of each block in A onto X × Fq. From the structure of the choice function, the
lifted blocks can be developed such that they cover two points (x, a), (y, b) (once) if and
only if x and y are in different groups of Π and a 6= b. It follows that we have an HGDD
of type q × gu. Resolvability of this HGDD arises from additively developing the parallel
classes induced from A.

Remark 7. Implicit here and in what follows is Dirichlet’s theorem asserting the existence
of infinitely many primes in arithmetic progressions of gcd 1.

Construction 8. Suppose there exists a GDDq(g
u, k) of index q, a prime power. Then

there exists a GDD((gq∗)u, k), where q∗ is a sufficiently large power of q.

Proof. This extends the main lemma in [21] from the case g = 1. Suppose the in-
gredient design is (X,Π,A). Each block {x, y, . . . } ∈ A is lifted onto a base block
{(x, a), (y, b), . . . } of X × Fq∗ in the same way as in [21]. After developing additively
in Fq∗ , two points (x, a), (y, b) appear together in exactly one block if x and y are in
distinct groups of Π, and in zero blocks otherwise. It follows that we have a GDD with
group type (gq∗)u and index one.

2.3 Wilson’s fundamental construction

The following construction for group divisible designs illustrates the flexibility and utility
of these objects. R.M. Wilson made crucial use of this in his existence theory for pairwise
balanced designs, and we will use several variations of this construction.

Construction 9 ([22]). Let (V,Π = {V1, . . . , Vu},B) be a GDD, and consider a function
ω : V → N ∪ {0}. Suppose, for each block B ∈ B, that there exists a K-GDD of type
(ω(x) : x ∈ B). Then there exists a K-GDD of type (

∑
x∈Vi ω(x) : i = 1, . . . , u).

Remark 10. It is typical to call the starting GDD (V,Π,B) the ‘master’ design, ω a
‘weighting’, and the K-GDDs of type (ω(x) : x ∈ B) the ‘ingredients’. The construction
itself is abbreviated ‘WFC’.

In this paper, our use of Construction 9 has constant weighting (so that the ingredients
are uniform GDDs).

2.4 Thick classes and the Rees construction

Consider any design defined on a set V of points and with blocks B. A σ-parallel class in
B is a subset R ⊆ B such that every element of V appears exactly σ times. Let Σ be some
list of positive integers σ1, . . . , σt. A Σ-resolution of B is a partition r = {R1, . . . ,Rt} of B
into classes, where Ri is an σi-parallel class for i = 1, . . . , t. Finally, a design which admits
a Σ-resolution is called Σ-resolvable. This coincides with the usual notion of resolvability
when Σ = (1, 1, . . . , 1).

We now develop a condition on transversal designs for the purpose of ‘spreading out’ σ-
parallel classes in a direct product. A σ-group partition of a TD(k, n) is a triple (G,H, c),
where G is an algebraic group of order n used to label each group of the TD, H ⊆ G
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with |H| = σ, and c is a partition of the blocks into aggregates so that, for every class
C ∈ c, the set {h ∗ C : h ∈ H, C ∈ C} is a parallel class. Here, h ∗ C denotes the natural
(componentwise) action of h on (the group labels in) C. Note that H need not consist of
automorphisms of the TD.

Any TD(k, n) admits a trivial n-group partition with H = G(= Zn, say) and singleton
aggregates. An RTD(k, n) admits a 1-group partition by taking H to be the identity and
each parallel class as an aggregate. Intermediate examples arise naturally from taking
direct products; we will see an example of this later in Lemma 17.

The following construction modifies a construction of Rolf Rees, [15], to allow the use
of TDs with smaller block sizes.

Construction 11. Let (V,R) be a σ-parallel class of blocks of order k. Suppose there
exists a TD((k−1)σ+1, n) which admits a σ-group partition based on the group G. Then
there exist σn disjoint parallel classes on G× V that cover all pairs between G× {i} and
G× {j} the same number of times as R covers {i, j} ∈

(
V
2

)
.

This is essentially recasting Construction 2 of [15] to fit the language of σ-group
partitions. However, some comments are needed. First, observe that the graph of pairwise
coverages by blocks in R on the points of V has maximum degree at most (k − 1)σ. It
follows that we may (greedily) color V , using at most (k − 1)σ + 1 colors, so that the
blocks of R are transverse to the color classes. (This is sometimes called a “strong” vertex
coloring relative to R.) Using this coloring, we can now view R as a partial GDD with
at most (k − 1)σ + 1 groups. This is what allows us to use a smaller block size for the
TDs (instead of the block size ∼ v used in the original construction in [15]).

Next, like the Rees constructions, this construction is also a direct product. In this
case, the σ-group partition is used to construct the parallel classes: R is spread out into a
parallel class on V ×H and then H acts on aggregates of the TD. The remark on pairwise
coverage by the product then follows.

Finally, at the extremes for σ, Construction 11 reduces to known constructions. If σ
is as large as the replication number, then we are back in the case of the original Rees
construction, [15]. If σ = 1, then the TD is resolvable and we are back in the case of the
standard ‘direct product’. Since this case is important later, we state it here separately.

Construction 12 (Direct Product). If there exists an RGDD(gu, k) and an RTD(k, n),
then there exists an RGDD((gn)u, k) which contains as a subdesign an RGDD(gu, k).

A crucial observation for this type of construction is that if we have a Σ-resolvable
GDD, Construction 11 or Construction 12 can be applied one class at a time. Then, the
resulting parallel classes can be assembled into a resolvable GDD in which the group sizes
have been inflated by a factor of n.

3 First Examples

To construct our first examples of RGDDs of large order, we begin with existence for
some large index. Recall gmin, defined as in (3), is a function of the desired block size k
and number of groups u.
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Lemma 13. Given integers u > k > 2, there exists RGDDΛ(gumin, k) for some positive
integer Λ.

Proof. Let Γ denote the complete multipartite graph with u parts of size gmin. Note
that k divides the number of vertices of Γ. Now, take our block collection B to be the
(multiset) union of all possible parallel classes with block size k embedded on Γ. Given
any two edges e, e′ of Γ, there is a natural bijection (simply a relabelling) mapping the
parallel classes covering e to those covering e′. It follows that every edge of Γ gets covered
the same number of times by blocks in B. Moreover, B is automatically resolvable by
construction.

Remark 14. There are in general many repeated blocks in the above construction, and
the Λ obtained in this way is surely far larger than needed. Also, observe that we can
obtain the same result for the smaller group size k/ gcd(u, k), which divides gmin. More
importantly, with this same Λ, we obtain RGDDΛ(gu, k) for all sufficiently large g ≡ 0
(mod gmin) from a direct product using an RTD with u groups.

Next, we inflate to obtain a resolvable HGDD, and then fill holes to get a GDD with
many parallel classes and a few thick classes.

Lemma 15. Given integers u > k > 2 and g ≡ 0 (mod gmin), there exists, for some large
prime power q, a resolvable HGDD(q× gu, k). Consequently, for large such g, there exists
a Σ-resolvable GDD((gq)u, k), where the list Σ of class thicknesses contains g(q − 1)(u−
1)/(k − 1) occurrences of 1 and one occurrence of g(u− 1)/(k − 1).

Proof. For the resolvable HGDD, we simply apply Construction 6 to the output of Lemma
13, choosing q ≡ 1 (mod Λ). It is easy to count that this HGDD has g(q−1)(u−1)/(k−1)
parallel classes. Now, use Construction 5 and the main result of [12], which gives the
existence of GDD(gu, k) for large g ≡ 0 (mod gmin). The q copies of this latter GDD
themselves form a σ-parallel class for σ = g(u−1)/(k−1), this simply being its replication
number.

Remark 16. By amalgamating single parallel classes with the thick one, the remaining
thickness can be assumed to equal some prime, say p, between σ and 2σ. The existence
of such a prime follows from Bertrand’s postulate.

Now, we apply Construction 11 to get three examples with ‘additively independent’
group sizes. Together with our recursive constructions, these examples are enough to prove
Theorem 3. In order to apply Construction 11, we need the existence of the ingredient
TDs with σ-group partitions. We use the natural partitioning from a standard direct
product to help construct the necessary σ-group partitions.

Lemma 17. Let n and k be positive integers. Suppse that p is a prime with p > k and
suppose that n is sufficiently large with p2 | n. Then there exists an RTD(p(k− 1) + 1, n)
admitting a p-group partition.

the electronic journal of combinatorics 23(4) (2016), #P4.24 7



Proof. Since p > k, it easily follows that p2 > p(k − 1) + 1. Therefore, there exists an
RTD(p(k − 1) + 1, p2) arising from the standard finite field construction. So we may
assume the points of each group are identified with Zp × Zp, and that the blocks of
this RTD are developed and resolve under this group action. Each parallel class can
therefore be partitioned into p sub-classes, each of p blocks, according to (say) the first
Zp-coordinate in the first group. Now take a direct product of each sub-class with an
RTD(p(k−1)+1, n/p2). The resulting RTD(p(k−1)+1, n) can have its groups identified
with G = Zp × Zn/p. To verify the p-group partition, aggregates arise from the direct
product with individual sub-classes (i.e. are constant within each group on the first Zp-
coordinate of G). The subgroup H = Zp×{0} develops each such aggregate into a parallel
class.

Proposition 18. Given u > k > 2, there exist RGDD(gui , k) for i = 1, 2, 3 for arbitrarily
large integers g1, g2, g3 satisfying gcd(g1, g2) = gcd(g1g2, g3) = gmin.

Proof. This amounts to a selection of several large and distinct primes for the preceding
constructions. First, choose distinct primes a1, a2, a3 large enough for the existence of
GDD((aigmin)u, k), appealing to [12]. Working from these groupsizes, we next choose,
using Dirichlet’s Theorem, three new large primes q1, q2, q3 ≡ 1 (mod Λ) for the appli-
cation of Lemma 15. Finally, by amalgamating classes, the nontrivial class thicknesses
can be assumed to be three new primes p1, p2, p3 to facilitate an easy application of Con-
struction 11 with Lemma 17. We obtain RGDD(gui , k) having groupsizes gi = aiqip

2
i gmin

for i = 1, 2, 3. The numerical requirements are easy to fulfill if we simply avoid in our
selection any prime factors of gmin.

4 Recursion and Proof

We set up some recursive constructions with the goal of combining our examples from
Proposition 18.

4.1 Incomplete designs and recursive constructions

An incomplete group divisible design, or IGDD, is a quadruple (V,Π,Π′,B) such that V
is a set of v points, Π = {V1, . . . , Vu) is a partition of V into ‘groups’, Π′ = {W1, . . . ,Wu}
with Wi ⊆ Vi for each i, and B ⊆

(
V
>2

)
is a set of blocks such that

• two points get covered by a block (exactly one block) if and only if they come
from different groups, say Vi and Vj, i 6= j, and they do not both belong to the
corresponding holes Wi and Wj.

As with GDDs, the type of an IGDD can be written by listing, using exponential
notation when appropriate, the pairs (|Vi|; |Wi|) of group size and corresponding hole
size. So, for example, a (uniform) incomplete group divisible design of type (g;h)u with
block size k is denoted IGDD((g;h)u, k).
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In the special case when u = k, g = n and h = m, an incomplete GDD is an
incomplete transversal design and we write ITD(k, n;m). These objects are equivalent to
k − 2 incomplete mutually orthogonal latin squares of order n with aligned m×m holes.

The following existence result for ITDs with small holes is sufficient for our applica-
tions.

Lemma 19 ([5]). Let k and i be integers with k > 2 and 0 6 i 6 k. For all sufficiently
large n, an ITD(k, n+ i; i) exists.

In a uniform IGDD((g;h)u, k), there are two replication numbers: r1 := (g − h)(u −
1)/(k − 1) for points in a hole Wi, and r2 := g(u− 1)/(k − 1) for points in some Vi \Wi.
Let us call such an IGDD resolvable if it partitions into r1 full parallel classes and r2− r1

partial classes missing the union ∪ui=1Wi of all holes. As is standard, we use IRGDD as
an abbreviation.

It is useful to recall that an ITD(k+1, n+i; i) is equivalent to an IRGDD((n+i; i)k, k).
The next construction is an application of Construction 9 where the master design is an
RGDD and copies of an ITD (IRGDD) are used as ingredients. More details can be found
in the book [8].

Lemma 20 ([8]). If there exists an RGDD(gu, k) and an ITD(k + 1, n+ j; j), then there
is an IRGDD((gn+ gj; gj)u, k).

Our main recursive construction is a generalization of Wilson’s construction for TDs,
[19]. The IRGDDs used in our application come from Lemma 20.

Lemma 21 ([8, 9]). Suppose that there exists an RTD(u + 1, t) and an IRGDD((m +
ei; ei)

u, k) for each i, 1 6 i 6 t. Then there is an IRGDD((mt + e; e)u, k) with e =∑
16i6t ei. Furthermore if there exists an RGDD(eu, k), then there exists an RGDD((mt+

e)u, k).

We will also use a special case of this construction which sets ei = 0 and w and uses
the existence of the subdesign and the RTD to get the existence of the last subdesign.
This corollary without the resolvability conditions was used in [12].

Corollary 22. If there exists an RGDD(nu, k), an RGDD((n + w)u, k) containing an
RGDD(wu, k), an RTD(u + 1, s), and an RTD(k, p) with p 6 s, then there exists an
RGDD((sn+ pw)u, k) which contains an RGDD((pw)u, k) as a subdesign.

4.2 Proof of Theorem 3.

The broad idea is to get the two ingredient RGDDs of Corollary 22, where gcd(n,w) =
gmin, using a sequence of earlier constructions. We thus obtain constructions for groupsizes
which are various integral linear combinations of n and w. Such combinations are shown
to be sufficient with a representation lemma for large integers due to Mohácsy.

Lemma 23 ([12]). Let n and w be positive integers such that gcd(n,w) = c. Then all
sufficiently large multiples of c can be represented in the form sn+ pw, where s and p are
integers with n < p 6 s.
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We begin the proof of Theorem 3. Using Proposition 18, choose large integers gi such
that there exist RGDD(gui , k) for i = 1, 2, 3 satisfying gcd(g1, g2) = gcd(g1g2, g3) = gmin.

In particular, we take g1 and g2 sufficiently large so that there exist RTD(k, gi) and
ITD(k + 1, gi + 1; 1) for i = 1, 2. In fact, in view of the theorem of Chowla, Erdős and
Strauss, we may assume similar designs exist with larger groupsizes. We also choose g3

large enough to apply Lemma 23 with n = g1 and w = g2, writing g3 = sg1 + pg2 where s
and p are non-negative integers such that g1 < p 6 s.

Now use Lemma 20 twice: once with n = g2 and g = g1 to construct an IRGDD((g1g2+
g1; g1)u, k) and then again with n = g1 and g = g2 to construct an IRGDD((g1g2 +
g2; g2)u, k). Observe also that Construction 12 gives an RGDD((g1g2)u, k).

Next, choose t to be a positive integer relatively prime to g3 and also sufficiently large
so that t > s+ p, and also there exists an RTD(u+ 1, x) for any x > t.

With the preceding ingredient designs, apply Lemma 21 with m = g1g2, and ei ∈
{0, g1, g2}. This gives an IRGDD((g1g2t + e; e)u, k) where e = sg1 + pg2. Recall that
g3 = sg1+pg2 and there exists an RGDD(gu3 , k). So we have constructed an RGDD((g1g2t+
g3)u, k) with a sub-RGDD(gu3 , k).

Since t and g3 were chosen relatively prime, we have gcd(g1g2t, g3) = gcd(g1g2, g3) =
gmin.

Let g be large and divisible by gmin. Use Lemma 23 again, this time with n = g1g2t and
w = g3 to write g = s′n+ p′w, where s′ and p′ are non-negative integers and n < p′ 6 s′.
These integers are large enough for the existence of RTD(u + 1, s′) and RTD(k, p′). We
also have an RGDD(nu, k), from Construction 12. It follows from Corollary 22 that there
exists an RGDD(gu, k). This completes the proof.

5 Graph RGDDs

In this section, we extend Theorem 3 to the more general case of graph decompositions.

5.1 Graph decompositions

Consider the complete multipartite graph KT , where T denotes the partition type. A
group divisible design GDD(T, k) is equivalent to an edge-decomposition ofKT into cliques
Kk. A clique in this decomposition corresponds with a block of size k. If, more generally,
we wish to edge-decompose the same graph KT into copies of some fixed graph G, we
adopt similar notation: GDD(T,G) instead of GDD(T, k), and so on. Sometimes, even a
set of allowed graphs is desired. We refer the reader to [4, 6, 10] for more details on the
notation and terminology for graph decompositions which we use below.

In what follows, let G be a simple undirected graph with k vertices, e edges, and
degree sequence d1, . . . , dk, and let d = gcd(d1, . . . , dk). For an ordinary (not necessarily
resolvable) GDD(gu, G), the divisibility conditions generalizing those in Theorem 2 are
g(u− 1) ≡ 0 (mod d) and g2u(u− 1) ≡ 0 (mod 2e). These are known to be sufficient for
fixed g and large u; see for instance [1]. In this section, we are interested in fixed u and
large g.
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For an RGDD(gu, G), we must also have

gu ≡ 0 (mod k); (4)

this simply reiterates (1) since a parallel class of G-blocks again partitions the gu points.
The necessary divisibility condition extending (2) is discussed in [4]. We have

g(u− 1) ≡ 0 (mod α∗(G)), (5)

where where α∗(G) is the least positive integer A so that the system

x1 + · · ·+ xk = A
k

2e
,

d1x1 + · · ·+ dkxk = A

has an integer solution (x1, . . . , xk). For example, in the case when G is d-regular, we
have α∗(G) = d, seen by taking x1 = 1 and xi = 0 for each i = 2, 3, . . . , k. In general,
gcd(d1, . . . , dk) | α∗(G).

Recall that for a GDD(gu, k), there is a necessary inequality u > k on the number of
groups. In the case of graph decompositions GDD(gu, G), this is relaxed to u > χ(G),
since now vertices of some block can coexist in the same group provided they form an
independent set in G.

Example 24. Let G = Ka,b, the complete bipartite graph. We have χ(G) = 2 as the
minimum possible number of groups. It is shown in [16] that Kn,n edge-decomposes into
Ka,b if and only if ab | n2, a, b 6 n and there exist at least two distinct expressions
n = ax + by for nonnegative integers x, y. It follows that the necessary conditions on g
for GDD(g2, Ka,b) are sufficient if g is (mildly) large relative to a, b. We can join copies of
such a GDD to obtain GDD(gu, Ka,b) for any u > 2 (although the necessary conditions on
g may weaken). As a side note, the question of edge-decomposing Kn,n into Ka,b is closely
related with the famous problem of decomposing an n × n square into a × b rectangles,
except that we do not demand that such rectangles be ‘contiguous’.

We remark that, in general, allowing u < k increases the complexity of the degree
condition on g(u− 1). In this case, degrees g(u− 1) in some group of the GDD must be
formed as an integral linear combination of the degree ‘vectors’ of entire colour classes
placed on that group. For this reason, we are mainly interested in the case where u > k
and where graph blocks are only placed across the groups.

For a graph G and positive integers g, u, define a transverse graph GDD, denoted by
GDD!

λ(T,G), as an edge-decomposition of the λ-fold multigraph K
(λ)
T into copies of G

such that each G-block and each group (partite set) share at most one vertex in common.
Clearly, a GDDλ(T,Kk) is equivalent to a GDD!

λ(T,Kk) but the latter is stronger for
general graphs. We point out that standard construction methods for large u, such as
edge-colored graph decompositions (see [1, 10]) yield transverse graph GDDs. In other
words, in many cases there is no loss in discarding those G-blocks with two points together
in a group.
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A resolvable transverse graph GDD is denoted RGDD!(T,G). We use similar notation
for IRGDDs.

Recall that our proof of Theorem 3 used the existence of three ‘numerically indepen-
dent’ examples, Proposition 18, and then applied the recursive constructions from Section
4. In each of the cases for graph designs, we construct an analogue of Proposition 18 by
extending our techniques from Section 3 or from [12] to construct a set of examples for
graph GDDs. Once we show that the recursive constructions in Section 4 can also be ex-
tended with little difficulty to the more general setting of graphs, we use the same proof
to establish the existence results. Instead of repeating all proofs, we point out the key
differences in working with graph GDDs.

5.2 Theorem 2 for graphs

We first consider the existence question for GDD!(gu, G); that is, without resolvability
imposed. In this case, necessary conditions are g(u− 1) ≡ 0 (mod d) and g2u(u− 1) ≡ 0
(mod 2e). We begin with a few results that roughly correspond with the treatment for
blocks (G = Kk) in [12].

The starting point is a ‘large index’ result. For this, it is technically convenient to
assume that our graph G satisfies the four point condition: for every edge {x, y} ∈ E(G),
there exist two other vertices w, z of G such that none of {w, y}, {w, z}, {x, z} are edges
of G. If necessary, we can include two additional isolated vertices to G so that it satisfies
this condition. One impact is that, for transverse GDDs, it is then necessary that the
number of groups satisfies u > |V (G)| + 2. Of course, when considering the existence of
a decomposition into G, isolated vertices are immaterial.

x y

w z

Figure 2: The four point condition

Lemma 25. Let G be a simple graph with k vertices, e edges, and degree sequence
d1, . . . , dk. Suppose that G satisfies the four point condition and let u > k > 2 and g > 1.
Then there exists GDD!

Λ(gu, G) for all sufficiently large Λ satisfying gcd(d1, . . . , dk) |
Λg(u− 1) and e | Λg2

(
u
2

)
.

Proof sketch. Let λmin denote the positive generator of the ideal of integers Λ satisfying
the two divisibility conditions. Following [10, 12, 23], we proceed in two steps. First, we
prove the existence of a ‘signed GDD’ with index λmin, and then we add sufficiently many
multiples of a ‘complete GDD’ so that all G-blocks occur with nonnegative multiplicity.
Since the latter step is quite standard and occurs in nearly identical form in the references,
we focus on the signed decomposition.
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Consider the family G of all edge-g2-colored bi-directed graphs isomorphic to G, where
edge colors are induced by vertex labellings V (G) → [g]. That is, if {x, y} is an edge of
G with x labelled i and y labelled j, then (x, y) is colored (i, j) and (y, x) is colored (j, i)
in this graph in G. Our ‘signed GDD’ is a solution to the equations

∑
H∈G:ε∈H XH = λ,

where there is one variable XH for each H ∈ G and one equation for each (colored) edge
ε ∈ Kg2

u . To obtain the desired integral solution {XH}, we apply [10, Lemma 5.4] to this
system. (Note that the four point condition essentially appears in the argument on [10,
p. 167].)

Admissibility of G follows by symmetry considerations. The calculation of α(G) and
β(G) proceeds as a straightforward combination of [6, Lemma 2.1] and [10, Theorem
8.1].

Remark 26. If G is edgeless, that is if e = 0, then only Λ = 0 is admissible.

Next, we adapt Construction 8 to G-blocks. There is no sustantial difference in the
proof, since the key idea is just the scheme for lifting blocks in the inflation.

Construction 27. Suppose there exists a GDDq(g
u, G) of index q, a prime power. Then

there exists a GDD((gq∗)u, G), where q∗ is a sufficiently large power of q.

As in [12, Lemma 6.2], for fixed G and u, the necessary numerical conditions on g
for existence of a GDD!(gu, G) generate an ideal for admissible g, summarized as g ≡ 0
(mod gmin). In this case, gmin has a complicated form; however, for our purposes, it is
sufficient to know that gmin exists.

At this point, we can apply Lemma 25 with g = gmin to obtain three large and distinct
prime values of Λ, say pi for i = 1, 2, 3. After inflating via Construction 27, we have
mirrored Proposition 18 for transverse GDDs and have constructed the three examples
needed for the recursive constructions. There is no need in this case to use HGDDs and
the Rees product, since resolvability is not (yet) being considered.

The graph-adapted recursive constructions, whose details we reference forward to the
next subsection, together with these three examples yield the following existence theorem
for graph GDDs.

Theorem 28. Let G be a simple graph on k vertices, e edges, and gcd of degrees d.
Suppose either u > k + 2, or that G satisfies the four point condition and u > k. Then
there exists a GDD!(gu, G) for all sufficiently large g satisfying g(u− 1) ≡ 0 (mod d) and
g2u(u− 1) ≡ 0 (mod 2e).

For our application in the resolvable case, we will need a slightly stronger condi-
tion. A decomposition into simple graphs G is called equireplicate if every point belongs
to the same number of G-blocks. A large-order existence theory for general equirepli-
cate G-decompositions was established in [7] and used in constructions of resolvable G-
decompositions in [6]. We note that Lemma 25 is easily adapted to equireplicate GDDs,
with the only change being that gcd(d1, . . . , dk) becomes α∗(G). Also, Construction 25
respects the equireplicate property due to the transitive action of the finite field on G-
blocks.
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The numerically allowed group sizes for a (uniform) equireplicate graph GDD with
given parameters again form an ideal. In the equireplicate case, d = gcd(d1, . . . , dk) is
replaced by α∗(G). The equireplicate version of Theorem 28 is stated below, with further
details omitted.

Theorem 29. Let G be a simple graph on k vertices. Suppose either u > k + 2, or
that G satisfies the four point condition and u > k. Then there exists an equireplicate
GDD!(gu, G) for all sufficiently large g satisfying g(u− 1) ≡ 0 (mod α∗(G)) and g2u(u−
1) ≡ 0 (mod 2e).

5.3 Resolvability and recursive constructions

We turn now to constructions for graph RGDDs. We omit details of the essentially similar
steps and focus on the key differences. In this case, we adapt the techniques we used in
Section 3 to graphs to construct our basic three examples. Again, we note that for fixed
G and u, the necessary numerical conditions for the existence of an RGDD!(gu, G), (4)
and (5), generate an ideal for admissable g, summarized as g ≡ 0 (mod gmin).

First, it is routine to extend Lemma 13 and Constructions 5 and 6 to graphs; in fact,
[6, Lemma 3.2] used in 6 was originally proved for graphs. Using our own graph GDD
result Theorem 29 in place of k-GDDs to fill in the holes of the HGDD, we obtain an
extension of Lemma 15 to the graph case. Instead of g(q − 1)(u − 1)/(k − 1) parallel
classes, we have g(q− 1)(u− 1)k/2e parallel classes, and instead of one class of thickness
g(u − 1)/(k − 1), we have one of thickness g(u − 1)k/2e. It is important to note that
the latter class has constant thickness because equireplicate GDD!(gu, G) were used. So
with the hypothesis of Theorem 29 for G and fixed u, we have constructed a Σ-resolvable
GDD((gq)u, k), where the list Σ contains one thick class which is a p-paralllel class for
some prime p. Our next step is to apply the Rees construction.

The Rees product, Construction 11, extends with no difficulty to the case of G-blocks.
We remark that a G-block is acted on by the transversal design group as a labeled graph;
that is, adjacencies between vertices get preserved.

Construction 30. Let H be a simple undirected graph with k vertices. Let (V,R) be a
σ-parallel class of H-blocks. Suppose there exists a TD((k − 1)σ + 1, n) which admits a
σ-group partition based on the group G. Then there exist σn disjoint parallel classes on
G× V that cover all pairs between G× {i} and G× {j} the same number of times as R
covers {i, j} ∈

(
V
2

)
.

It is helpful to recall the special case of resolvable GDDs, in which σ = 1 for all classes.
This direct product simply results from replacing each G-block with a copy of the graph
Cartesian product G×Kn, and using labels of an RTD(k, n) to (resolvably) G-decompose
this product.

Construction 31. Let G be a simple undirected graph with k vertices. If there exists an
RGDD!(gu, G) and an RTD(k, n), then there exists a RGDD!((gn)u, G).
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It is important to distinguish Construction 31 from a standard direct product, which
replaces each block of an RTD(u, n) with a copy of some RGDD(gu, G). This latter
product is actually an instance of WFC, where it is straightforward to see that if each of
the ingredients is a graph GDD with G-blocks, then the so is the resulting design. It is
important here that the master be an ‘ordinary’ GDD with blocks (rather than G-blocks).
We state this adaptation without proof.

Construction 32. Let (V,Π = {V1, . . . , Vu},B) be an ordinary GDD and ω : V → N∪{0}
a weighting. Suppose, for each block B ∈ B, that there exists a GDD!(TB, G), where TB =
(ω(x) : x ∈ B). Then there exists a GDD!(T,G), where T = (

∑
x∈Vi ω(x) : i = 1, . . . , u).

We have now shown that the techniques of Section 3 can be adapted to construct our
three basic examples for RGDD!(gu, G). Next, we turn to the recursive constructions used
in Section 4.

First we recall that the key Lemma 20 comes from WFC. As a minor variation, we
can reverse the role of master and ingredient designs to produce the same IRGDD using
an ITD(u+ 1, n+ j; j) and an RGDD(gu, k). This is similar to [8, Theorem 3.4.4]. Now,
using Construction 32, this is easily adapted to G-blocks.

Lemma 33. Let G be a simple undirected graph with k vertices. If there exists an ITD(u+
1, n+ j; j) and an RGDD!(gu, G), then there is an IRGDD!((gn+ gj; gj)u, G).

Since Wilson’s construction for transversal designs uses the same idea as WFC (where
the RTD acts as is the ‘master’ design), Lemma 21 can also be adapted for graph designs.

Lemma 34. Let G be a simple undirected graph with k vertices. Suppose that there exists
an RTD(u + 1, t). If there exists an IRGDD!((m + ei; ei)

u, G) for any i, 1 6 i 6 t, then
there is an IRGDD!((mt + e; e)u, G) with e =

∑
16i6t ei. Furthermore if there exists an

RGDD!(eu, G), then there exists an RGDD!((mt+ e)u, G).

Corollary 22 constructs an RGDD((sn + pw)u, k) with a subdesign RGDD((pw)u, k).
A direct product is used to construct the missing subdesign. In order to generalize Corol-
lary 22 to accommodate G-blocks, we use the direct product in Construction 31 (rather
than the standard one that arises from applying WFC).

Corollary 35. Let G be a simple graph with k vertices. If there exists an RGDD!(nu, G),
an RGDD!((n+w)u, G) containing an RGDD!(wu, G), an RTD(u+1, s), and an RTD(k, p)
with p 6 s, then there exists an RGDD!((sn+ pw)u, G) which contains as a subdesign an
RGDD!((pw)u, G).

Finally we note that Lemma 33, Lemma 34, and Corollary 35 all hold without the
resolvability conditions. In particular, they can be used to construct GDD(gu, G). It
is also important to note that if all of the graph GDDs used in the hypotheses have
transverse G-blocks, then the resulting designs will as well. Thus, we have verified that
all of the constructions used in Section 4 can be adapted to accommodate G-blocks. This
gives us all of the machinery needed to complete the proof of Theorem 28.
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Returning to the resolvable case, we have adapted the constructions in Section 3 to
construct our necessary basic examples, and we have now shown that all of the construc-
tions used in Section 4.2 (the proof of Theorem 3) carry over to transverse G-blocks. This
gives us the following for the graph case.

Theorem 36. Let G be a simple graph on k vertices. Suppose that either u > k+ 2 or G
satisfies the four point condition and u > k. Then there exists an RGDD!(gu, G) for all
sufficiently large g satisfying (4) and (5).

6 Future directions

We would like to be able to drop the four point condition in Theorem 36 and especially
for the case of what might be called ‘graph transversal designs’ GDD!(n|V (G)|, G). These
directions may require new ideas for constructing the underlying signed decompositions
used in the proof of Lemma 25.

There remains considerable work in the cases when G-blocks get packed more tightly
than in transverse GDDs. Even the normally obvious divisibility conditions appear to be
nontrivial when the number of groups is as small as, say, the chromatic number of G.

It should be remarked that our existence theory for RGDD(gu, G) having u fixed and
g large can lead to a new construction for the reverse problem, in which g is fixed and u
is large. This latter graph decomposition problem was first considered in [4] following a
complete solution for blocks. However, the case of general graphs G was only solved in the
case when gcd(|V (G)|, α∗(G)) = 1. The main idea converting RGDDs with large group
size into many groups of fixed size is to use block coloring and ‘weaving’ parallel classes;
see [4, Lemma 2.1]. Our transverse graph RGDDs from Section 5 can take the place of
transversal designs. However, this approach is not yet sufficiently general to settle the
full conjecture which extends Theorem 1 to graphs.

Conjecture 37. Given a positive integer g and simple graph G on k vertices and at least
one edge, there exists RGDD(gu, G) for all sufficiently large u satisfying gu ≡ 0 (mod k)
and g(u− 1) ≡ 0 (mod α∗(G)).

Returning to the case of blocks Kk, it is very natural to consider arbitrary index λ.
The necessary condition (2) weakens to

λg(u− 1) ≡ 0 (mod k − 1). (6)

Although many steps in our method easily accommodate general index λ, the existence
problem for GDDλ(g

u, k) and GDDλ(g
u, G) with fixed u, resolvable or not, remains open.

Recent progress has been made extending the ‘block spreading construction’ to general λ
in [13], and we feel safe with the guess that (1), (6) and g � 0 are sufficient conditions.

Conjecture 38. Given integers u > k > 2 and λ > 1, there exist RGDDλ(g
u, k) for all

sufficiently large g satisfying gu ≡ 0 (mod k) and λg(u− 1) ≡ 0 (mod k − 1).
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