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Abstract

Motivated by work of Buch on set-valued tableaux in relation to the K-theory
of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras
that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric
functions, quasisymmetric functions, noncommutative symmetric functions, and of
the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bial-
gebra structure in all cases that were not yet known but left open the question of
finding explicit formulas for the antipode maps. We give combinatorial formulas
for the antipode map for the K-theoretic analogues of the symmetric functions,
quasisymmetric functions, and noncommutative symmetric functions.

1 Introduction

A Hopf algebra is a structure that is both an associative algebra with unit and a coas-
sociative coalgebra with counit. The algebra and coalgebra structures are compatible,
which makes it a bialgebra. To be a Hopf algebra, a bialgebra must have a special anti-
endomorphism called the antipode, which must satisfy certain properties.

Hopf algebras arise naturally in combinatorics. Notably, the symmetric functions
(Sym), quasisymmetric functions (QSym), noncommutative symmetric functions (NSym),
and the Malvenuto-Reutenauer algebra of permutations (MR) are Hopf algebras, which
can be arranged as shown in Figure 1.

Through the work of Lascoux and Schützengerger [6], Fomin and Kirillov [2], and
Buch [1], symmetric functions known as stable Grothendieck polynomials were discovered
and given a combinatorial interpretation in terms of set-valued tableaux. They originated
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Sym Sym

NSym QSym

MR MR

Figure 1: Diagram of combinatorial Hopf algebras

from Grothendieck polynomials, which serve as representatives of K-theory classes of
structure sheaves of Schubert varieties. The stable Grothendieck polynomials play the role
of Schur functions in the K-theory of Grassmannians. They also determine a K-theoretic
analogue of the symmetric functions, which we call the multi-symmetric functions and
denote mSym.

In [5], Lam and Pylyavksyy extend the definition of P -partitions to create P -set-valued
partitions, which they use to define a new K-theoretic analogue of the Hopf algebra of
quasisymmetric functions called the Hopf algebra of multi-quasisymmetric functions. The
entire diagram may be extended to give the diagram in Figure 2.

MSym mSym

MNSym mQSym

MMR mMR

Figure 2: Diagram of K-theoretic combinatorial Hopf algebras of Lam and Pylyavskyy

Using Takeuchi’s formula [11], they give a formula for the antipode for MMR but
leave open the question of an antipode for the remaining Hopf algebras. In this paper, we
give the first combinatorial formulas for the antipode maps of MNSym, mQSym, mSym,
and MSym.

Remark 1. As there is no sufficiently nice combinatorial formula for the antipode map in
the Malvenuto-Reutenauer Hopf algebra of permutations, we do not attempt a formula
for its K-theoretic analogues: MMR and mMR.

After a brief introduction to Hopf algebras, we introduce the Hopf algebra mQSym
in Section 3. Next, we introduce MNSym in Section 4. We present results concerning
the antipode map in MNSym and mQSym, namely Theorems 33 and 35. In Section 5,
we present an additional basis for mQSym, give analogues of results in [5] for this new
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basis, and give an antipode formula in mQSym involving the new basis in Theorem 41.
Lastly, we introduce the Hopf algebras of multi-symmetric functions, mSym, and of Multi-
symmetric functions, MSym in Sections 6 and 7. We end with Theorems 53, 54, and 59,
which describe antipode maps in these spaces.

2 Hopf algebra basics

2.1 Algebras and coalgebras

First we build a series of definitions leading to the definition of a Hopf algebra. For further
reading, we recommend [4, 8, 3, 10].

In this section, k will usually denote a field, although it may also be a commutative
ring. In all later sections we take k = Z. All tensor products are taken over k.

Definition 2. An associative k-algebra A is a k-vector space with associative operation
m : A ⊗ A → A (the product) and unit map η : k → A with η(1k) = 1A such that the
following diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

1⊗m

m⊗ 1 m

m
A⊗ A

k ⊗ A A A⊗ k

η ⊗ 1 m 1⊗ η

∼=∼=∼=∼=

where we take the isomorphisms sending a⊗ k to ak and k ⊗ a to ka.

The first diagram tells us that m is an associative product, the second that η(1k) = 1A.

Definition 3. A co-associative coalgebra C is a k-vector space with k-linear map ∆ :
C → C ⊗ C (the coproduct) and a counit ε : C → k such that the following diagrams
commute.

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

1⊗∆

∆⊗ 1

C ⊗ C

k ⊗ C C C ⊗ k

ε⊗ 1 ∆ 1⊗ ε

∼=∼=∼=∼=

The diagram on the left indicates that ∆ is co-associative. Note that these are the
same diagrams as in the Definition 2 with all of the arrows reversed.
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It is often useful to think of the product as a way to combine two elements of an
algebra and to think of the coproduct as a sum over ways to split a coalgebra element
into two pieces. When discussing formulas involving ∆, we will use Sweedler notation as
shown below:

∆(c) =
∑
(c)

c1 ⊗ c2 =
∑

c1 ⊗ c2.

This is a common convention that will greatly simplify our notation.

Example 4. To illustrate the concepts just defined, we give the example of the shuffle
algebra, which is both an algebra and coalgebra. Let I be an alphabet and Ī be the set
of words on I. We declare that the elements of Ī form a k-basis for the shuffle algebra.

Given two words a = a1a2 · · · at and b = b1b2 · · · bn in Ī, define their product, m(a⊗ b),
to be the shuffle product of a and b. That is, m(a ⊗ b) is the sum of all

(
t+n
n

)
ways to

interlace the two words while maintaining the relative order of the letters in each word.
For example,

m(a1a2 ⊗ b1) = a1a2b1 + a1b1a2 + b1a1a2.

We may then extend by linearity. It is not hard to see that this multiplication is associa-
tive.

The unit map for the shuffle algebra is defined by η(1k) = ∅, where ∅ is the empty
word. Note that m(a⊗∅) = m(∅⊗ a) = a for any word a.

For a word a = a1a2 · · · at in Ī, we define

∆(a) =
t∑
i=0

a1a2 · · · ai ⊗ ai+1ai+2 · · · at

and call this the cut coproduct of a. For example, given a word a = a1a2,

∆(a) = ∅⊗ a1a2 + a1 ⊗ a2 + a1a2 ⊗∅.

The counit map is defined by letting ε take the coefficient of the empty word. Hence
for any nonempty a ∈ Ī, ε(a) = 0.

2.2 Morphisms and bialgebras

The next step in defining a Hopf algebra is to define a bialgebra. For this, we need a
notion of compatibility of maps of an algebra (m, η) and maps of a coalgebra (∆, ε). With
this as our motivation, we introduce the following definitions.

Definition 5. If A and B are k-algebras with multiplication mA and mB and unit maps
ηA and ηB, respectively, then a k-linear map f : A → B is an algebra morphism if
f ◦mA = mB ◦ (f ⊗ f) and f ◦ ηA = ηB.

Definition 6. Given k-coalgebras C and D with comultiplication and counit ∆C , εC , ∆D,
and εd, k-linear map g : C → D is a coalgebra morphism if ∆D ◦ g = (g ⊗ g) ◦ ∆C and
εD ◦ g = εC .
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Given two k-algebras A and B, their tensor product A ⊗ B is also a k-algebra with
mA⊗B defined to be the composite of

A⊗B ⊗ A⊗B A⊗ A⊗B ⊗B A⊗B,1⊗ T ⊗ 1 mA ⊗mB

where T (b⊗ a) = a⊗ b. For example, we have

mA⊗B((a⊗ b)⊗ (a′ ⊗ b′)) = mA(a⊗ a′)⊗mB(b⊗ b′).

The unit map in A⊗B, ηA⊗B, is given by the composite

k k ⊗ k A⊗B.
ηA ⊗ ηB

Similarly, given two coalgebras C and D, their tensor product C ⊗ D is a coalgebra
with ∆C⊗D the composite of

C ⊗D C ⊗ C ⊗D ⊗D C ⊗D ⊗ C ⊗D,
∆C ⊗∆D 1⊗ T ⊗ 1

and the counit εA⊗B is the composite

C ⊗D k ⊗ k k.
εC ⊗ εD

Definition 7. Given A that is both a k-algebra and a k-coalgebra, we call A a k-bialgebra
if (∆, ε) are morphisms for the algebra structure (m, η) or equivalently, if (m, η) are
morphisms for the coalgebra structure (∆, ε).

Example 8. The shuffle algebra is a bialgebra. We can see, for example, that

∆ ◦mA(a1 ⊗ b1) = ∆(a1b1 + b1a1)

= ∅⊗ a1b1 + a1 ⊗ b1 + a1b1 ⊗∅ + ∅⊗ b1a1 + b1 ⊗ a1 + b1a1 ⊗∅
= ∅⊗ (a1b1 + b1a1) + b1 ⊗ a1 + a1 ⊗ b1 + (a1b1 + b1a1)⊗∅
= mA(∅⊗∅)⊗mA(a1 ⊗ b1) +mA(∅⊗ b1)⊗mA(a1 ⊗∅)

+mA(a1 ⊗∅)⊗mA(∅⊗ b1) +mA(a1 ⊗ b1)⊗mA(∅⊗∅)

= mA⊗A((∅⊗ a1 + a1 ⊗∅)⊗ (∅⊗ b1 + b1 ⊗∅))

= mA⊗A ◦ (∆(a1)⊗∆(b1)).

This is evidence that the coproduct, ∆, is an algebra morphism.
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2.3 The antipode map

A Hopf algebra is a bialgebra equipped with an additional map called the antipode map.
On our way to defining the antipode map, we must first introduce an algebra structure
on k-linear algebra maps that take coalgebras to algebras.

Definition 9. Given coalgebra C and algebra A, we form an associative algebra structure
on the set of k-linear maps from C to A, Homk(C,A), called the convolution algebra as
follows: for f and g in Homk(C,A), define the product, f ∗ g, by

(f ∗ g)(c) = m ◦ (f ⊗ g) ◦∆(c) =
∑

f(c1)g(c2),

where ∆(c) =
∑
c1 ⊗ c2.

Note that η◦ε is the two-sided identity element for ∗ using this product. We can easily
see this in the shuffle algebra from Examples 4 and 8 if we remember that (η ◦ ε)(a) =
η(0) = 0 for all words a 6= ∅. Let c be a word in the shuffle algebra, then

(f ∗ (η ◦ ε))(c) =
∑

f(c1)(η ◦ ε)(c2) = f(c) =
∑

(η ◦ ε)(c1)f(c2) = ((η ◦ ε) ∗ f)(c)

because c1 = c when c2 = ∅ and c2 = c when c1 = ∅. If we have a bialgebra A, then we
can consider this convolution structure to be on Endk(A) := Homk(A,A).

Definition 10. Let (A,m, η,∆, ε) be a bialgebra. Then S ∈ Endk(A) is called an an-
tipode for bialgebra A if

idA ∗ S = S ∗ idA = η ◦ ε,
where idA : A→ A is the identity map.

In other words, the endomorphism S is the two-sided inverse for the identity map idA
under the convolution product. Equivalently, if ∆(a) =

∑
a1 ⊗ a2,

(S ∗ idA)(a) =
∑

S(a1)a2 = η(ε(a)) =
∑

a1S(a2) = (idA ∗ S).

Because we have an associative algebra, this means that if an antipode exists, then it is
unique.

Example 11. We define the antipode of a word in the shuffle algebra by

S(a1a2 · · · at) = (−1)tatat−1 · · · a2a1

and extend by linearity. We can see an example of the defining property by computing

(id ∗ S)(a1a2) = m(id(∅)⊗ S(a1a2)) +m(id(a1)⊗ S(a2)) +m(id(a1a2)⊗ S(∅))

= a2a1 −m(a1 ⊗ a2) + a1a2

= a2a1 − (a1a2 + a2a1) + a1a2

= 0

= η(ε(a1a2)).
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We end this section with two useful properties that we use in later sections. The first
is a well-known property of the antipode map for any Hopf algebra.

Proposition 12. Let S be the antipode map for Hopf algebra A. Then S is an algebra
anti-endomorphism: S(1) = 1, and S(ab) = S(b)S(a) for all a, b in A.

The second property allows us to translate antipode formulas between certain Hopf
algebras.

Lemma 13. Suppose we have two bialgebra bases, {Aλ} and {Bµ}, that are dual un-
der a pairing and such that the structure constants for the product of the first basis
are the structure constants for the coproduct of the second basis and vice versa. In

other words, 〈Aλ, Bµ〉 = δλ,µ; AλAµ =
∑
ν

f νλ,µAν and ∆(Bλ) =
∑
µ,ν

fλµ,νBµ ⊗ Bν; and

∆(Aλ) =
∑
µ,ν

hλµ,νAµ ⊗ Aν and BλBµ =
∑
ν

hνλ,µBν. If

S(Aλ) =
∑
µ

eλ,µAµ

for S satisfying 0 =
∑

hλµ,νS(Aµ)Aν, then

S(Bµ) =
∑
λ

eλ,µBλ

satisfies
∑

fλµ,νS(Bµ)Bν = 0.

Proof. Indeed, 〈∑
µ,ν

fλµ,νS(Bµ)Bν , Aτ

〉
=

〈∑
µ,ν,γ

fλµ,ν,γkγ,µBγBν , Aτ

〉

=

〈 ∑
µ,ν,γ,ρ

fλµ,ν,γkγ,µh
ρ
γ,νBρ, Aτ

〉
=

∑
µ,ν,γ

fλµ,ν,γkγ,µh
τ
γ,ν

=

〈
Bλ,

∑
ρ,µ,ν,γ

hτγ,νkγ,µf
ρ
µ,νAρ

〉

=

〈
Bλ,

∑
µ,ν,γ

hτγ,νkγ,µAµAν

〉

=

〈
Bλ,

∑
ν,γ

hτγ,νS(Aγ)Aν

〉
= 0

by assumption.
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3 The Hopf algebra of multi-quasisymmetric functions

In what follows, we say that a set {Aλ} continuously spans space A if everything in A
can be written as a (possibly infinite) linear combination of Aλ’s. Here, we assume that
{Aλ} comes with a natural filtration and that each filtered component is finite. Then we
may talk about continuous span with respect to the topology induced by the filtration. A
continuous basis for A allows elements to be written as arbitrary linear combinations of
the basis elements. We say that a linear function f : A → A is continuous if it respects
arbitrary linear combinations of elements in A.

We next introduce the multi-quasisymmetric functions, mQSym. It may be useful for
the reader to be familiar with the Hopf algebra of quasisymmetric functions, specifically
the basis of fundamental quasisymmetric functions. We recommend [9] for background
reading.

3.1 (P, θ)-set-valued partitions

Following [5], we define mQSym, the Hopf algebra of multi-quasisymmetric functions,
by defining the continuous basis of multi-fundamental quasisymmetric functions, L̃α. Let
[n] = {1, 2, . . . , n}. We start with a finite poset P with n elements and a bijective labeling
θ : P → [n]. Let P̃ denote the set of nonempty, finite subsets of the positive integers. If
a ∈ P̃ and b ∈ P̃ are two such subsets, we say that a < b if max(a) < min(b). Similarly,
a 6 b if max(a) 6 min(b).

We next define the (P, θ)-set-valued partitions. The definition is almost identical to
that of the more well-known (P, θ)-partitions except that we will assign a nonempty, finite
subset of positive integers to each element of the poset instead of assigning a single positive
integer. We recommend [9] for further reading on (P, θ)-partitions.

Definition 14. Let (P, θ) be a poset with a bijective labeling. A (P, θ)-set-valued parti-
tion is a map σ : P → P̃ such that for each covering relation sl t in P ,

1. σ(s) 6 σ(t) if θ(s) < θ(t),

2. σ(s) < σ(t) if θ(s) > θ(t).

Example 15. The diagram on the left shows an example of a poset P with a bijective
labeling θ. We identify elements of P with their labeling. The diagram on the right shows
a valid (P, θ)-set-valued partition σ. Note that since 3 < 2 in the poset, we must have
the strict inequality max(σ(3)) = 6 < min(σ(2)) = 30.
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2

4 3

1

σ(2) = {30, 31, 32}

σ(4) = {7, 100} σ(3) = {6}

σ(1) = {1, 3, 6}

We denote the set of all (P, θ)-set-valued partitions for given poset P by Ã(P, θ). For
each element i in P , let σ−1(i) = {x ∈ P | i ∈ σ(x)}. Now define K̃P,θ ∈ Z[[x1, x2, . . .]] by

K̃P,θ =
∑

σ∈Ã(P,θ)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · ·.

For example, the (P, θ)-set-valued partition in the previous example contributes

x1x3x
2
6x7x30x31x32x100

to K̃P,θ. Note that K̃P,θ will be of unbounded degree for any nonempty poset P .
We may also consider a Young diagram λ as a poset in the natural way as follows.

Let P be the poset of squares in the Young diagram of a partition λ = (λ1, λ2, . . . , λt)
and θs be the bijective labeling of P obtained from labeling P in row reading order, i.e.
from left to right the bottom row of λ is labeled 1, 2, . . . , λt, the next row up is labeled
λt + 1, . . . , λt + λt−1 and so on. We may thus refer to the function K̃λ,θs . We will see this
idea next in Example 40.

3.2 The multi-fundamental quasisymmetric functions

A composition of n is an ordered arrangement of positive integers that sum to n. For
example, (3), (1, 2), (2, 1), and (1, 1, 1) are all of the compositions of 3.

If S = {s1, s2, . . . , sk} is a subset of [n− 1], we associate a composition, C(S), to S by
C(S) = {s1, s2− s1, s3− s2, . . . , n− sk}. To composition α of n, we associate Sα ⊂ [n− 1]
by letting Sα = {α1, α1 +α2, . . . , α1 +α2 + . . .+αk−1}. We may extend this correspondence
to permutations by letting C(w) = C(Des(w)), where w ∈ Sn and Des(w) is the descent
set of w. For example, if S = {1, 4, 5} ⊂ [6−1], C(S) = (1, 4−1, 5−4, 6−5) = (1, 3, 1, 1).
Conversely, given composition α = (1, 3, 1, 1), Sα = {1, 1 + 3, 1 + 3 + 1} = {1, 4, 5}. For
w = 132 ∈ S3, Des(w) = {2} and C(w) = (2, 1). Given a composition α of n, we write
wα to denote any permutation in Sn with C(wα) = α.

We may now define the multi-fundamental quasisymmetric function L̃α indexed by
composition α.

Definition 16. Let P be a finite chain p1 < p2 < . . . < pk, w ∈ Sk a permutation, and
C(w) = α the composition of n associated to the descent set of w. We label P using w
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with θ(pi) = wi. Then

L̃α = K̃(P,w) =
∑

σ∈Ã(P,w)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · ·.

It is easy to see that K̃(P,w) depends only on α. Note that this is an infinite sum of

unbounded degree. The sum of the lowest degree terms in L̃α gives Lα, the fundamental
quasisymmetric function in QSym.

Example 17. Let α = (2, 1) and wα = 231. We consider all (P,wα)-set-valued partitions
on the chain shown below on the far left. The seven images to its right show examples of
images of the map σ.

2

3

1

{1}

{1}

{2}

{1}

{1}

{3}

{1}

{2}

{3}

{1, 2}

{2}

{3, 4}

{1, 2}

{2, 3}

{4}

{5, 6, 7}

{7, 100}

{101}

{5, 6, 7}

{7}

{100, 101}

Using the examples above, we see that

L̃(2,1) = x2
1x2 + x2

1x3 + x1x2x3 + 2x1x
2
2x3x4 + 2x5x6x

2
7x100x101 + . . . ,

an infinite sum of unbounded degree.

For the following definition, we order P̃ as in Section 3.1. Namely, for subsets a and
b, we say a 6 b if max(a) 6 min(b) and a < b if max(a) < min(b), though we shall only
need the latter notion.

Definition 18. Given a poset P with n elements, a linear multi-extension of P by [N ] is
a map e : P → 2[N ] for some N > n such that

1. e(x) < e(y) if x < y in P ,

2. each i ∈ [N ] is in e(x) for exactly one x ∈ P , and

3. no set e(x) contains both i and i+ 1 for any i.

For e any linear multi-extension of P by [N ] and any i ∈ [N ], let e−1(i) denote the
unique element p of P such that i ∈ e(p). Note that e−1({i}) may be empty while e−1(i)
always contains exactly one element of P . We then define the multi-Jordan-Holder set
J̃ (P, θ) = ∪N J̃N(P, θ) to be the union of the sets

J̃N(P, θ) = {θ(e−1(1))θ(e−1(2)) · · · θ(e−1(N)) | e is a linear multi-extension of P by [N ]}.
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Note that elements in J̃N(P, θ) are m-permutations—pronounced “multi-permutations”—
[5] of [n] with N letters, where we define an m-permutation of [n] to be a word in the
alphabet 1, 2, . . . , n such that no two consecutive letters are equal.

Example 19. Consider again the labeled poset below.

2

4 3

1

We can define a linear multi-extension of P by [7] by e(1) = {1}, e(3) = {3, 5}
e(4) = {2, 4, 6}, and e(2) = {7}. Then, for example, e−1(5) is the element of P labeled
by 3. This linear multi-extension contributes the m-permutation 1434342 to J̃7(P, θ).

The following result is proven in [5] by giving an explicit weight-preserving bijection
between Ã(P, θ) and the set of pairs (w, σ′) where w ∈ J̃N(P, θ) and σ′ ∈ Ã(C,w), where
C = (c1 < c2 < . . . < cr) is a chain with r elements. One can easily recover this bijection
from the bijection given in the proof of Theorem 39 by restricting to Ã(P, θ).

Theorem 20. [5, Theorem 5.6] We can write

K̃(P,θ) =
∑
N>n

∑
w∈J̃N (P,θ)

L̃C(w).

We now describe how to express L̃α as an infinite linear combination of fundamental
quasisymmetric functions, {Lα}. Let L

(i)
α denote the homogeneous component of L̃α of

degree |α|+ i.
Given D ⊂ [n−1] and E ⊂ [n+ i−1], an injective, order-preserving map t : [n−1]→

[n+ i− 1] is an i-extension of D to E if t(D) ⊂ E and (E\t(D)) = ([n+ i− 1])\t([n− 1]).
In other words, E is the union of the image of D and the elements not in the image of
t. Thus |E| = |D| + i. Let T (D,E) denote the set of i-extensions from D to E. For
example, if D = {1, 2} ⊂ [2] and E = {1, 2, 3} ⊂ [3], then |T (D,E)| = 3. On the other
hand, if we have D′ = {1, 2} ⊂ [3] and E ′ = {1, 3, 4} ⊂ [4], then |T (D′, E ′)| = 0. The
proof of the following theorem is similar to that of Theorem 36.

Theorem 21. [5, Theorem 5.12] Let α be a composition of n and D = Des(α) be the
corresponding descent set. Then for each i > 0, we have

L(i)
α =

∑
E⊂[n+i−1]

|T (D,E)|LC(E).
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3.3 Hopf structure

Next we describe the bialgebra structure of mQSym using the continuous basis of multi-
fundamental quasisymmetric functions. The first step is to define the multishuffle of two
words in a fixed alphabet. To that end, we give the following definition.

Definition 22. Let a = a1a2 · · · ak be a word. We call w = w1w2 · · ·wr a multiword of a
if there exists a non-decreasing, surjective map t : [r]→ [k] such that wj = at(j).

As an example, consider the permutation 1342 as a word in N. Then 11333422 and
1342 are both multiwords of 1342, while 34442 and 1133244 are not multiwords of 1342.

Definition 23. Let a = a1a2 · · · ak and b = b1b2 · · · bn be words with distinct letters.
We say that w = w1w2 · · ·wm is a multishuffle of a and b if the following conditions are
satisfied:

1. wi 6= wi+1 for all i

2. when restricted to {ai}, w is a multiword of a

3. when restricted to {bj}, w is a multiword of b.

Eventually we would like to multishuffle two permutations, which will not have distinct
letters. We adjust our definition as follows. Given a permutation w = w1w2 · · ·wk, define
w[n] = (w1 + n)(w2 + n) · · · (wk + n) to be the word obtained by adding n to each digit
entry of w. For example, for w = 21, w[4] = 65. We then define the multishuffle of two
permutations u ∈ Sn and w by declaring it to be the multishuffle of u and w[n].

Starting with permutations u = 1342 and w = 21, we see that v = 16161346252 is
a multishuffle of u = 1342 and w[4] = 65. We shift w by 4 since 4 is the largest letter
in u. If we restrict to the letters in u, v|u = 1113422 is a multiword of u, and similarly
v|w[4] = 6665 is a multiword of w[4].

Proposition 24. [5, Proposition 5.9] Let α be a composition of n and β be a composition
of m. Then

L̃αL̃β =
∑

u∈Shm(wα,wβ [n])

L̃C(u),

where the sum is over all multishuffles of wα and wβ[n].

Note that this is an infinite sum whose lowest degree terms are exactly those of LαLβ,
the product of the two corresponding fundamental quasisymmetric functions.

To define the coproduct, we need the following definition.

Definition 25. Let w = w1w2 · · ·wk be a permutation. Then Cuut(w) is the set of
terms of the form w1w2 · · ·wi ⊗ wi+1wi+2 · · ·wk for i ∈ [0, k] or of the form w1w2 · · ·wi ⊗
wiwi+1 · · ·wk for i ∈ [1, k].
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For example, Cuut(132) = {∅⊗ 132, 1⊗ 132, 1⊗ 32, 13⊗ 32, 13⊗ 2, 132⊗ 2, 132⊗∅}.
Notice how this compares to the cut coproduct of the shuffle algebra described in Section 2
to understand the strange spelling.

Proposition 26. [5, Proposition 5.10] We have that

∆(L̃α) = L̃α(x, y) =
∑

u⊗u′∈Cuut(wα)

L̃C(u)(x)⊗ L̃C(u′)(y).

Example 27. Let α = (1) and β = (2, 1) with wα = 1 and wβ = 231. Then

L̃αL̃β = L̃(3,1) + L̃(1,2,1) + L̃(2,2) + L̃(2,1,1) + L̃(3,1,1) + L̃(2,2,1,1) + L̃(2,2,1,2) + . . . ,

where the terms listed correspond to the multishuffles 1342, 3142, 3412, 3421, 13421,
131421, and 3414212 of wα and wβ[1]. We also compute

∆(L̃β) = ∅⊗ L̃(2,1) + L̃(1) ⊗ L̃(2,1) + L̃(1) ⊗ L̃(1,1) + L̃(2) ⊗ L̃(1,1)

+L̃(2) ⊗ L̃(1) + L̃(2,1) ⊗ L̃(1) + L̃(2,1) ⊗∅.

We give a combinatorial formula for the antipode map in mQSym in Theorem 35. In
Section 5, we give an antipode map in terms of a new basis introduced within the section.

4 The Hopf algebra of Multi-noncommutative symmetric func-
tions

The Hopf algebra of noncommutative symmetric functions (NSym) is dual to that of
quasisymmetric functions. We next describe a K-theoretic analogue called the Multi-
noncommutative symmetric functions or MNSym. As with QSym, we recommend first
being familiar with NSym as recommend [9] as a reference. We recall the bialgebra
structure of MNSym as given in [5] and develop a combinatorial formula for its antipode
map.

4.1 Multi-noncommutative ribbon functions and bialgebra structure

MNSym has a basis {R̃α} of Multi-noncommutative ribbon functions indexed by compo-
sitions, which is an analogue to the basis of noncommutative ribbon functions {Rα} for
NSym.

A ribbon diagram is a connected skew shape λ/µ that contains no 2× 2 square. There
is an easy bijection between compositions and ribbon diagrams, where a ribbon diagram
corresponds to the composition obtained by reading the sizes of its rows from bottom
to top. See Example 29. It will be useful to think of {R̃α} as being indexed by ribbon
diagrams using this correspondence.

We first introduce a product structure on {R̃α} as given in [5].
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Proposition 28. [5, Proposition 8.1] Let α = (α1, . . . , αk) and β = (β1, . . . , βm) be
compositions. Then

R̃α • R̃β = R̃αCβ + R̃α·β + R̃αBβ,

where αCβ = (α1, . . . , αk, β1, . . . , βm), α ·β = (α1, . . . , αk−1, αk +β1− 1, β2, . . . , βm), and
αB β = (α1, . . . , αk + β1, β2, . . . , βm).

Example 29. It is helpful to think of the product using ribbon diagrams. From the
statement above, we have

R̃(2,2) • R̃(1,2) = R̃(2,2,1,2) + R̃(2,2,2) + R̃(2,3,2).

In pictures, this is shown in Figure 3.

• = + + .

Figure 3: Multiplying R̃(2,2) and R̃(1,2)

In contrast to the product in mQSym, the product in MNSym is a finite sum whose
highest degree terms are those of the corresponding product RαRβ in NSym.

Proposition 30. The coproduct of a basis element is

∆(R̃α) =
∑

wα∈Shm(wβ ,wδ[i])

R̃β ⊗ R̃δ,

where i ∈ N and wβ ∈ Si.

Note that since multishuffles of wβ and wδ[i] may not have adjacent letters that are
equal, we may define the descent set of a multishuffle of wβ and wδ[i] in the usual way.

Example 31. In general, computing the coproduct in MNSym is not an easy task.
However, for compositions with only one part, we have

∆(R̃(n)) = R̃(n) ⊗ 1 + R̃(n−1) ⊗ R̃(1) + R̃(n−2) ⊗ R̃(2) + . . . R̃(1) ⊗ R̃(n−1) + 1⊗ R̃(n)

because the only way that a multishuffle of two permutations results in an increasing
sequence is for it to be the concatenation of two increasing permutations. We use this
fact in the proof of the antipode in MNSym.
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4.2 Antipode map for MNSym

Suppose we have a ribbon shape corresponding to α, a composition of n. We say that
ribbon shape β is a merging of ribbon shape α if we can obtain shape β from shape α
by merging pairs of boxes that share an edge. The order in which the pairs are merged
does not matter, only set of boxes that were merged. Let Mα,β be the number of ways to
obtain shape β from shape α by merging. We will label each box in the ribbon shape to
keep track of our actions.

Example 32. Let α = (2, 2, 1) and β = (2, 1). Then Mα,β = 3. The labeled ribbon shape
α and the three mergings resulting in shape β are shown in Figure 32.

1

2 3

4 5

1

245 3

123

4 5

1

4 235

Figure 4: Ribbon shape (2, 2, 1) and its three mergings of ribbon shape (2, 1)

In the following sections, ω will denote the fundamental involution of the symmetric
functions defined by ω(en) = hn for elementary symmetric function en, complete homo-
geneous symmetric function hn, and for all n.

If α = (α1, . . . , αk) is a composition of n, define rev(α) = (αk, . . . , α1). Now let ω(α)
be the unique composition of n whose partial sums Sω(α) form the complementary set
within [n−1] to the partial sums Srev(α). Alternatively, we may think of the ribbon shape
α as λ/µ for Young diagrams λ and µ. Then ω(α) is the ribbon shape λt/µt, where λt

and µt are the transposes of λ and µ, respectively. The number of blocks in each row of
ω(α) reading from bottom to top corresponds to the number of blocks in each column of
α reading from right to left. For example, if α = (2, 1, 1, 3), ω(α) = (1, 1, 4, 1).

Theorem 33. Let α be a composition of n. Then

S(R̃α) = (−1)n
∑
β

Mω(α),βR̃β,

where we sum of over all compositions β.

Note that only finitely many terms will be nonzero because Mω(α),β = 0 if |β| > |α|.

Proof. We prove this by induction on the number of parts of the composition α.
We compute directly that

0 = S(R̃(1)) = S(R̃(1)) · 1 + S(1) · R̃(1) = S(R̃(1)) + R̃(1)

by Proposition 12, so S(R̃(1)) = −R̃(1).
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Now assume that S(R̃(k)) = (−1)k
k−1∑
i=0

(
k − 1

i

)
R̃1i+1 for all k < n. Then, using

Example 31 and Definition 10, we see that

0 = R̃(n) + S(R̃(n)) +
n−1∑
i=1

S(R̃(i)) • R̃(n−i)

= R̃(n) + S(R̃(n)) +
n−1∑
i=1

(
(−1)i

i−1∑
j=0

(
i− 1

j

)
R̃(1j+1)

)
• R̃(n−i)

= R̃(n) + S(R̃(n)) +
n−1∑
i=1

(−1)i
i−1∑
j=0

(
i− 1

j

)
(R̃(1j+1,n−i) + R̃(1j ,n−i+1) + R̃(1j ,n−i)).

There are five types of terms that appear in this sum.

1. R̃(1n−m,m). The coefficient of this term is

(−1)n−m
(
n−m− 1

n−m− 1

)
+ (−1)n−m+1

(
n−m
n−m

)
= 0.

2. R̃(m), where 1 < m < n. The coefficient of this term is

(−1)n−m+1

(
n−m

0

)
+ (−1)n−m

(
n−m− 1

0

)
= 0.

3. R̃(1s,m), where s < n−m, and m > 1. The coefficient of this term

(−1)n−m
(
n−m− 1

s− 1

)
+ (−1)n−m+1

(
n−m
s

)
+ (−1)n−m

(
n−m− 1

s

)
= 0.

4. R̃(1k), where k 6 n. The coefficient of this term is

(−1)n−1

(
n− 2

k − 2

)
+ (−1)n−1

(
n− 2

k − 1

)
= (−1)n−1

(
n− 1

k − 1

)
.

5. R̃(n). The coefficient of this term is

(−1)1

(
0

0

)
= −1.

Thus

0 = S(R̃(n)) + (−1)n−1

n∑
s=1

(
n− 1

s− 1

)
R̃1s ,
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and so

S(R̃(n)) = (−1)n
n−1∑
s=0

(
n− 1

s

)
R̃(1s+1).

It is clear that there are
(
n−1
s

)
mergings of ω(α) = (1n) that result in shape (1s+1)

since we are choosing s of the n− 1 border edges to remain intact.

Now suppose S(R̃α) = (−1)n
∑
β

Mω(α),βR̃β holds for all compositions α with up to

k − 1 parts, and let β = (β1, β2, . . . , βk) be a composition with k parts. We know that

R̃β = R̃(β1,β2,...,βk−2,βk−1) • R̃(βk) − R̃(β1,β2,...,βk−2,βk−1+βk) −R(β1,β2,...,βk−2,βk−1+βk−1),

and so

S(R̃β) = S(R̃(βk)) • S(R̃(β1,β2,...,βk−2,βk−1))− S(R̃(β1,β2,...,βk−2,βk−1+βk))

−S(R̃(β1,β2,...,βk−2,βk−1+βk−1)).

In Figure 5, let the thin rectangle represent all mergings of ω(βk) and the square
represent all mergings of ω(β1, . . . , βk−1).

(1) (2) (3)

Figure 5: NSym antipode merging schematic

Then the image labeled (1) represents all mergings obtained by adding the last part
of a merging of ω(βk) to the first part of a merging of ω(β1, . . . , βk−1). The image labeled
(2) represents all mergings obtained by merging the topmost box in a merging of ω(βk)
with the bottom leftmost box of a merging of ω(β1, . . . , βk). These two mergings with
multiplicities are exactly the shapes we want in S(R̃β).

The image labeled (3) represents all mergings obtained by concatenating a merging
of ω(βk) with a merging of ω(β1, . . . , βk−1). We do not want these mergings to appear in
S(R̃β) because it is impossible for boxes that are side-by-side in ω(β) to be stacked one
on top of the other in a merging of ω(β).
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We use the fact that S(R̃βk) • S(R̃(β1,...,β(k−1))) results in all mergings of type (1), (2),

and (3), S(R̃(β1,...,βk−1+βk)) gives all mergings of type (2) and (3), and S(R̃(β1,...,βk−1+βk−1))
contains exactly those mergings of type (2). The parity of the sizes of the compositions
provides the necessary cancellation and leaves us with all mergings of type (1) and (2),
as desired.

Example 34. Consider S(R̃(1,2)) = S(R̃(1))•S(R̃(1,1))−S(R̃(1,1,1))−S(R̃(1,1)). The image

below shows all of the mergings in S(R̃(1))•S(R̃(1,1)) in the first line with the proper sign,

subtracts mergings of S(R̃(1,1,1)) in the second line, and subtracts mergings of S(R̃(1,1))
in the third line. The black boxes represent mergings of ω(1) = (1), the white boxes
represent mergings of ω(1, 1) = (2), and the gray boxes represent boxes where the two
shapes have merged.

− − − − − −

+ + + +

− −

= − − − −

4.3 Antipode map for mQSym

We know from [5, Theorem 8.4] that the bases {L̃α} and {R̃α} satisfy the criteria in
Lemma 13. Extending the definition below by continuity gives the following antipode
formula in mQSym.

Theorem 35. Let α be a composition of n. Then

S(L̃α) =
∑
β

(−1)|β|Mβ,ω(α)L̃β,

where the sum is over all compositions β.

Note that while S(R̃α) is a finite sum of Multi-noncommutative ribbon functions for
any α, S(L̃α) is an infinite sum of multi-fundamental quasisymmetric functions for any α.
Since any arbitrary linear combination of multi-fundamental quasisymmetric functions is
in mQSym, this is an admissible antipode formula.

5 A new basis for mQSym

5.1 (P, θ)-multiset-valued partitions

To create a new basis for mQSym, which will be useful in finding antipode formulas, we
extend the definition of a (P, θ)-set-valued partition to what we call a (P, θ)-multiset-
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valued partition in the natural way. In a (P, θ)-multiset-valued partition σ, we allow σ(p)
for p ∈ P to be a finite multiset of positive integers, keeping all other definitions the same.
An example of a (P, θ)-multiset-valued partition is shown in Figure 6.

2

4 3

1

σ(2) = {25, 25, 25, 31}

σ(4) = {7} σ(3) = {1, 2, 3}

σ(1) = {1, 1}

Figure 6: A (P, θ)-multiset-valued partition

Now define Â(P, θ) to be the set of all (P, θ)-multiset-valued partitions. For each
positive integer i, let σ−1(i) be the multiset {x ∈ P | i = σ(x)}. In other words,
σ−1(i) lists p ∈ P once for each occurence of i in σ(p). In the example in Figure 6,
σ−1(1) = {1, 1, 3}. Now define K̂P,θ ∈ Z[[x1, x2, . . .]] by

K̂P,θ =
∑

σ∈Â(P,θ)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · ·.

Using this multiset analogue of our definitions, we define

L̂α = K̂(P,w) =
∑

σ∈Â(P,w)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · ·,

where P = p1 < . . . < pk is a finite linear order and w ∈ Sk with C(w) = α.

5.2 Properties

Recall the definition of T (D,E) from Section 3. For the proof of the following theorem, it
may be useful to review the (P,w)-partition definition of the fundamental quasisymmetric
function Lα:

Lα =
∑

σ∈A(P,w)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · ·,

where C(w) = α and A(P,w) is the set of all (P,w)-partitions. We refer the reader to [5]
for further reading as we use the same notation. The following proof is almost identical
to the proof of the analogous result for L̃α given for Theorem 5.12 in [5].
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Theorem 36. Let α be a composition of n and D(ω(α)) = Des(ω(α)). We have that

L̂(i)
α =

∑
E⊂[n+i−1]

|T (D(ω(α)), E)|Lω(C(E)).

Proof. Let w = wα and consider the subset Âi(C,w) ⊂ Â(C,w) consisting of multiset-
valued (C,w)-partitions σ of size |σ| = n + i, where C = (c1 < c2 < · · · < cn) is a chain.
We must show that the generating function of Âi(C,w) is equal to∑

E⊂[n+i−1]

|T (D(ω(α)), E)|Lω(C(E)).

Indeed, for each pair t ∈ T (D(ω(α)), E) for some E, the function Lω(C(E)) is the generating

function of all σ ∈ Âi(C,w) satisfying |σ(cj)| = t(n− (j − 1))− t(n− j)), where t(0) = 0
and t(n) = n + i. Letting C ′ = c′1 < c′2, . . . , c

′
n+i be a chain with n + i elements, we

obtain a (C ′, ω(C(E)))-partition σ′ ∈ A(C ′, ω(C(E))) by assigning the elements of σ(ci) in
increasing order to c′t(i−1)+1, . . . , c

′
t(i).

Example 37. Letting α = (1, 2, 1, 2), we see that

L̂(1)
α = L(2,2,1,2) + 2L(1,3,1,2) + L(1,2,2,2) + 2L(1,2,1,3).

In this example, the coefficient of L(1,3,1,2) is 2 because

|T (D(ω(1, 2, 1, 2)), {1, 4, 5} ⊂ [n+ 1− 1 = 6])| = |T (D(1, 3, 2), {1, 4, 5})|
= |T ({2, 4}, {1, 4, 5})|
= 2.

Given the basis of multi-quasisymmetric functions, {L̃α}, the set {L̂α} is natural to
consider because of the next proposition. We remind the reader that ω(Lα) = Lω(α) in
QSym.

Proposition 38. We have ω(L̃α) = L̂ω(α), and the set of {L̂α} forms a continuous basis
for mQSym.

Proof. Using Proposition 36,

ω(L̃α) = ω

 ∑
E⊂[n+i−1]

|T (D(α), E)|LC(E)

 =
∑

E⊂[n+i−1]

|T (D(α), E)|Lω(C(E)) = L̂ω(α).

We have an analogue of Stanley’s Fundamental Theorem of P-partitions for our new
basis of L̂α’s. The proof of this result follows closely that of Theorem 20 in this paper
given in [5].
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Theorem 39. Suppose poset P has n elements. We have

K̂P,θ =
∑
N>n

∑
w∈J̃N(P,θ)

L̂C(w).

Proof. We prove this result by giving an explicit weight-preserving bijection between
Â(P, θ) and the set of pairs (w, σ′) where w ∈ J̃N(P, θ) and σ′ ∈ Â(C,w) where C =
(c1 < c2 < · · · < cl) is a chain with l = `(w) elements. Let σ ∈ Â(P, θ). For each i, let

σ−1(i) denote the submultiset of [n] via θ, and let w
(i)
σ denote the word of length |σ−1(i)|

obtained by writing the elements of σ−1(i) in increasing order. Note that it is possible for

w
(i)
j = w

(i)
j+1. This will occur when the letter i appears more than once in some σ(s) for

s ∈ P .
Let w denote the unique m-permutation such that wσ := w

(1)
σ w

(2)
σ · · · is a multiword

of w and t : `(wσ) → `(w) be the associated function as in Definition 22. We know that
wσ is a finite word because σ(−1)(r) = ∅ for sufficiently large r. Note that wσ uses all
letters [n]. Now define σ′ ∈ Â(C,w) by

σ′(ci) = {rk | r is a positive integer and w(r)
σ contributes k letters to wσ|t−1(i)}

where wσ|t−1(i) is the set of letters in wσ at the positions in the interval t−1(i). We will
show that this defines a map α : σ 7→ (w, σ′) with the required properties.

First, w is the m-permutation associated to the linear multi-extension ew of P by
[`(w)] defined by the condition that ew(x) contains j if and only if wj = θ(x). It follows
from the definition that this ew : P → 2[1,`(w)] is a linear multi-extension. To check that σ′

is a multiset-valued (C,w)-partition, we note that σ′(ci) 6 σ′(ci+1) because the function

t is non-decreasing. Moreover, if wi > wi+1, then σ′(ci) < σ′(ci+1) because each w
(r)
σ is

weakly increasing.
We define the inverse map β : (w, σ′) 7→ σ by the formula

σ(x) =
⋃

j∈ew(x)

σ′(cj).

The (P, θ)-multiset-valued partition σ respects θ because ew is a linear multi-extension.
Thus if x < y in P and θ(x) > θ(y), then σ(x) < σ(y) since ew(x) < ew(y) and there is a
descent in w between the corresponding entries of θ(x) and θ(y).

Then β ◦ α = id follows immediately. For α ◦ β = id, consider a submultiset σ′(cj) ⊂
σ(x). One checks that this submultiset gives rise to |σ′(cj)| consecutive letters all equal
to θ(x) in wσ and that this is a maximal set of consecutive repeated letters. This shows
that one can recover σ′. To see that w is recovered correctly, one notes that if σ′(cj) and
σ′(cj+1) contain the same letter r then wj < wj+1 so by definition wj is placed correctly

before wj+1 in w
(r)
σ .

Example 40. Let θ be the labeling

3 4 5

1 2
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of the shape λ = (3, 2). (Note that this is the labeling θs described in Section 3.1.) Take
the (λ, θ)-multiset-valued partition

112 23 345

45 667

in Â(λ, θ). Then we have

wσ = (3, 3; 3, 4; 4, 5; 1, 5; 1, 5; 2, 2; 2),

where for example, w
(1)
σ = (3, 3) since the cell labeled 3 contains two copies of the number

1 in σ. Therefore
w = (3, 4, 5, 1, 5, 1, 5, 2)

and the corresponding composition C(w) is (3, 2, 2, 1). Then σ′ written as sequence is

{1, 1, 2}, {2, 3}, {3}, {4}, {4}, {5}, {5}, {6, 6, 7}.

For example σ′(c1) = {1, 1, 2} since w
(1)
σ contributes two 3’s and w

(2)
σ contributes one 3

to the beginning of wσ. To obtain the inverse map, β, read w and σ′ in parallel and
place σ′(ci) into cell θ−1

s (wi). For example, we put {1, 1, 2} into the cell labeled 3, and we
put {2, 3} into the cell labeled 4. The linear multi-extension, ew in this example can be
represented by the filling below.

1 2 357

46 8

5.3 Antipode

Recall that in QSym,

S(Lα) = (−1)|α|Lω(α) = (−1)|α|ω(Lα) = ω(Lα(−x1,−x2, . . .)).

Using the set {L̂α}, we have a similar result in mQSym.

Theorem 41. In mQSym,

S(L̃α) = L̂ω(α)(−x1,−x2, . . .).

Proof. Using Theorem 20 and the antipode in QSym, we see that

S(L̃α) = S

 ∑
E⊂[n+i−1]

|T (D,E)|LC(E)


=

∑
E⊂[n+i−1]

|T (D,E)|S(LC(E))

=
∑

E⊂[n+i−1]

|T (D,E)|(−1)|C(E)|Lω(C(E))

= L̂ω(α)(−x1,−x2, . . .).
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6 The Hopf algebra of multi-symmetric functions

We next describe the space of multi-symmetric functions, mSym. We refer the reader to
[5] for details.

6.1 Set-valued tableaux

Recall the definition of K̃λ,θs from Section 3.1.We define

mSym =
∏
λ

ZK̃λ,θs

to be the subspace of mQSym continuously spanned by the K̃λ,θs , where λ varies over all
partitions. From this point forward, we will write K̃λ in place of K̃λ,θs and call a (λ/µ, θs)-
set-valued partition a set-valued tableau of shape λ/µ. We will think of these tableaux as
fillings of a Young diagram with finite, nonempty subsets of positive integers such that
the subsets are weakly increasing across rows and strictly increasing down columns, where
subsets are ordered as in Section 3.2. For any set-valued tableau T , |T | denotes the sum
of the sizes of the subsets labeling the boxes of T .

Example 42. For λ = (2, 1), we have K̃λ = x2
1x2+2x1x2x3+x2

1x
2
2+3x2

1x2x3+8x1x2x3x4+
. . ., corresponding to the following labeled poset.

2

3 1

The set-valued tableaux corresponding to the first four terms are shown below. Note that
we omit commas in the subsets—the box in position row one and column two of the fourth
tableau is filled with {1, 2}.

1 1

2

1 2

3

1 3

2

1 12

2

1 12

3

1 13

2

1 1

23

6.2 Basis of stable Grothendieck polynomials

We now introduce another (continuous) basis for mSym, the stable Grothendieck polyno-
mials. Stable Grothendieck polynomials originated from the Grothendieck polynomials
of Lascoux and Schützenberger [6], which served as representatives of K-theory classes of
structure sheaves of Schubert varieties. Through the work of Fomin and Kirillov [2] and
Buch [1], the stable Grothendieck polynomials, a limit of the Grothendieck polynomials,
were discovered and given the combinatorial interpretation in the theorem below. These
symmetric functions play the role of Schur functions in the K-theory of Grassmannians.
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Theorem 43. [1, Theorem 3.1] The stable Grothendieck polynomial Gλ/µ is given by the
formula

Gλ/µ =
∑
T

(−1)|T |−|λ/µ|xT ,

where the sum is taken over all set-valued tableaux of shape λ/µ.

The stable Grothendieck polynomials are related to the K̃λ by

K̃λ(x1, x1, . . .) = (−1)|λ|Gλ(−x1,−x2, . . .).

Remark 44. In [1], Buch studied a bialgebra Γ = ⊕λZGλ spanned by the set of stable
Grothendieck polynomials. Note that the bialgebra Γ is not the same as mSym. In
particular, the antipode formula given in Theorem 53 is valid in mSym but not in Γ as
only finite linear combinations of stable Grothendieck polynomials are allowed in Γ.

6.3 Weak set-valued tableaux

The following definition is needed to introduce one final basis for mSym, {Jλ}.

Definition 45. A weak set-valued tableau T of shape λ/ν is a filling of the boxes of the
skew shape λ/ν with finite, non-empty multisets of positive integers so that

(1) the largest number in each box is stricty smaller than the smallest number in the
box directly to the right of it, and

(2) the largest number in each box is less than or equal to the smallest number in the
box directly below it.

In other words, we fill the boxes with multisets so that rows are strictly increasing
and columns are weakly increasing. For example, the filling of shape (3, 2, 1) shown below
gives a weak set-valued tableau, T , of weight xT = x1x

3
2x

3
3x

2
4x5x6x7.

12 33 46

223 4

57

Let Jλ/ν =
∑
T

xT be the weight generating function of weak set-valued tableaux T of

shape λ/ν.

Theorem 46. [5, Proposition 9.22] For any skew shape λ/ν, we have

ω(K̃λ/ν) = Jλ/ν .
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7 The Hopf algebra of Multi-symmetric functions

7.1 Reverse plane partitions

We next introduce the big Hopf algebra of Multi-symmetric function, MSym, with basis
{gλ}. MSym is isomorphic to Sym as a Hopf algebra, but the basis {gλ} is distinct from
the basis of Schur functions, {sλ} for Sym.

Definition 47. A reverse plane partition T of shape λ is a filling of the Young diagram
of shape λ with positive integers such that the numbers are weakly increasing in rows and
columns.

Given a reverse plane partition T , let T (i) denote the number of columns of T that con-

tain the number i. Then xT :=
∏
i∈P

x
T (i)
i . Now we may define the dual stable Grothendieck

polynomial

gλ =
∑

sh(T )=λ

xT ,

where we sum over all reverse plane partitions of shape λ. For a skew shape λ/µ, we may
define gλ/µ analogously, summing over reverse plane partitions of shape λ/µ.

Example 48. We use the definition of gλ to compute

g(2,1) = 2x1x2x3 + 2x1x3x4 + . . .+ x2
1x2 + x2

1x3 + . . .+ x2
1 + x2

2 + . . .+ x1x2 + x1x3 + . . .

corresponding to fillings of the types shown below.

1 2

3

1 3

2

1 1

2

1 1

1

1 2

1

7.2 Valued-set tableaux

We introduce one more basis for MSym, {jλ}, which we show in the next section is dual
under the usual Hall inner product to {J̃λ} = {(−1)|λ|Jλ(−x1,−x2, . . .)}.

Definition 49. A valued-set tableau T of shape λ/µ is a filling of the boxes of λ/µ with
positive integers so that

(1) the transpose of the filling of T is a semistandard tableau, and

(2) we are provided with the additional information of a decomposition of the shape
into a disjoint union of groups of boxes, λ/µ =

⊔
Aj, so that each Ai is connected,

contained in a single column, and each box in Ai contains the same number.

Given such a valued-set tableau, T , let ai be the number of groups Aj that contain

the number i. Then xT := Πi>1x
ai
i . Finally, let jλ/µ :=

∑
T

xT , where the sum is over all

valued-set tableaux of shape λ/µ.
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Example 50. The image below shows an example of a valued-set tableau. This tableau
contributes the monomial x1x2x3x5x

2
6 to j(4,3,1,1). Note that the given assignment of labels

will contribute eight monomials—one for each possible decomposition.

Proposition 51. [5, Proposition 9.25] We have

ω(gλ/µ) = jλ/µ.

8 Antipode results for mSym and MSym

As with mQSym and MNSym, there is a pairing 〈gλ, Gµ〉 = δλ,µ with the usual Hall
inner product for Sym defined by 〈sλ, sµ〉 = δλ,µ and the structure constants satisfy the
conditions of Lemma 13. See Theorem 9.15 in [5] for details. It follows that

〈ω(gλ), ω(Gµ)〉 = 〈jλ, J̃µ〉 = δλ,µ

and
〈j̃λ, K̃µ〉 = 〈(−1)|λ|gλ(−x1,−x2, . . .), (−1)|µ|Gµ(−x1,−x2, . . .)〉 = δλ,µ.

We will use these facts to translate antipode results between mSym and MSym.
Using results from Section 5, the following lemma will allow us to easily prove results

regarding the antipode map in mSym.

Lemma 52. Let λ be a partition of n. We can expand

Jλ =
∑
N>n

∑
w∈J̃N (P,θ)

L̂ω(C(w)).

Proof. We know from Theorem 20 that

K̃(P,θ) =
∑
N>n

∑
w∈J̃N (P,θ)

L̃C(w),

so
Jλ = ω(K̃λ) =

∑
N>n

∑
w∈J̃N (P,θ)

ω(L̃C(w)) =
∑
N>n

∑
w∈J̃N (P,θ)

L̂ω(C(w)).

Recall that in Sym, S(sλ) = (−1)|λ|ω(sλ), so one may expect similar behavior from
K̃λ and Gλ. Indeed, we obtain the theorem below.

Theorem 53. In mSym, the antipode map acts as follows.
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(a) S(K̃λ) = Jλ(−x1,−x2, . . .) = (−1)|λ|ω(Gλ), and

(b) S(Gλ) = (−1)|λ|Jλ = (−1)|λ|ω(K̃λ).

Proof. For the first assertion, we have that

S(K̃λ) = S(
∑
N>n

∑
w∈J̃N (P,θ)

L̃C(w))

=
∑
N>n

∑
w∈J̃N (P,θ)

S(L̃C(w))

=
∑
N>n

∑
w∈J̃N (P,θ)

L̂ω(C(w))(−x1,−x2, . . .)

= Jλ(−x1,−x2, . . .).

And for the second assertion,

S(Gλ) = S((−1)|λ|K̃λ(−x1,−x2, . . .))

= (−1)|λ|S(K̃λ(−x1,−x2, . . .)

= (−1)|λ|Jλ.

By Lemma 13, we immediately have the following results in MSym.

Theorem 54. We have

(a) S(j̃λ) = (−1)|λ|gλ, where j̃λ = (−1)|λ|jλ(−x1,−x2, . . .), and

(b) S(jλ) = gλ(−x1,−x2, . . .).

Next, we work toward expanding S(Gλ) and S(j̃λ) in terms of {Gµ} and {j̃µ}, respec-
tively. We introduce two theorems of Lenart as well as the notion of a restricted plane
partition.

Given partitions λ and µ with µ ⊆ λ, define an elegant filling of the skew shape λ/µ
to be a semistandard filling such that the numbers in row i lie in [1, i− 1]. In particular,
there can be no elegant filling of a shape that has a box in the first row. Now let fµλ
denote the number of elegant fillings of λ/µ for µ ⊆ λ and set fµλ = 0 otherwise.

Theorem 55. [7, Theorem 2.7] For a partition λ, we have

sλ =
∑
µ⊇λ

fλµGµ,

where fλµ is the number of elegant fillings of µ/λ.

For the second theorem, let rλµ be the number of elegant fillings of λ/µ such that both
rows and columns are strictly increasing. We will refer to such fillings as strictly elegant.
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Theorem 56. [7, Theorem 2.2] We can expand the stable Grothendieck polynomial Gλ

in terms of Schur functions as follows

Gλ =
∑
µ⊇λ

(−1)|µ/λ|rµλsµ.

We next define the combinatorial object that we need to expand S(Gλ) in terms of
{Gµ}.

Definition 57. Let λ ⊇ µ be nonempty partitions. A restricted plane partition is a filling
of the boxes of λ/µ with positive integers such that the entries are weakly decreasing along
rows and columns with the following restriction. If box b ∈ λ/µ is an outer corner of λ
(i.e. λ ∪ b is a partition), define h(b) to be the number of boxes in µ lying above b in the
same column as b or to the left of b in the same row as b. The label of such a box b must
lie in the interval [1, h(b)].

We now define the number P µ
λ . First, P µ

λ = 0 if µ * λ, and P µ
λ = 1 if λ = µ. If µ ⊂ λ,

then P µ
λ is equal to the number of restricted plane partitions of the skew shape λ/µ.

Example 58. The diagram on the left shows h(b) for each box b in the shape (5, 5, 5)/(4, 2)
that is an outer corner of (4, 2). The diagram on the right shows a restricted plane partition
on (5, 5, 5)/(4, 2).

4

3

2

3

3 3 3

2 2 2 1 1

Theorem 59. Let λ and µ be partitions. Then

(a) S(Gµ) = (−1)|µ|
∑
λ

P µt

λ Gλ, and

(b) S(j̃λ) = (−1)|λ|
∑
µ

P µ
λt j̃µ.

Proof. We will focus on part (a), and part (b) will follow from Lemma 13.
From Theorem 53, we know that

S(Gλ) = (−1)|λ|Jλ,

so it remains to expand Jλ in terms of stable Grothendieck polynomials.
From Theorem 56, it easily follows that we can write

K̃λ =
∑
µ⊇λ

rµλsµ.
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Applying ω to both sides, we have

J̃λ =
∑
µ⊇λ

rµλsµt .

Now we can use Theorem 55 to write

J̃λ =
∑
µ⊇λ
ν⊇µt

rµλf
µt

ν Gν .

Thus the coefficient of Gν in J̃λ is
∑

µ such that
µ⊇λ and
µt⊆ν

rµλf
µt

ν .

We describe a bijection between

1. partitions of shape νt/λ that contain some µ ⊇ λ such that the filling of µ/λ is
strictly elegant and boxes in νt/µ are filled such that the transpose is an elegant
filling of ν/µt and

2. restricted plane partitions of νt/λ.

Note that the transpose of restricted plane partition of shape νt/λ is a restricted plane
partition of shape ν/λt.

We first define a map φ that takes objects in group (1) to objects in group (2).
Suppose we have such a filling of shape νt/λ with some µ with λ ⊂ µ ⊂ νt. For any
box b in νt/λ, let c(b) denote the column containing b, r(b) denote the row containing b,
d(b) = r(b) + c(b) − 1 denote the southwest to northeast diagonal containing b, and eb
denote the integer in box b.

To obtain a restricted plane partition follow these steps.

(1) if box b is in µ/λ, fill the corresponding box in the restricted plane partition with
φ(b) = d(b)− eb, and

(2) if box b is in νt/µ, fill the corresponding box in the restricted plane partition with
φ(b) = c(b)− eb.

It is easy to see that the parts of the restricted plane partition corresponding to shape
µ/λ and to νt/µ are weakly decreasing in rows and columns. We now check that entries
are weakly decreasing along the seams and are positive integers. If box b is in µ/λ, then
eb 6 r(b)− 1 because the filling is strictly elegant. Therefore

φ(b) = d(b)− eb > r(b) + c(b)− 1− (r(b)− 1) = c(b).

If box a is in νt/µ, then 1 6 ea 6 c(a)− 1 because the transpose of the filling is elegant,
so

1 6 φ(a) = c(a)− ea 6 c(a)− 1.
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· · · ·
· · b

· ·

Figure 7: In this figure, boxes in λ are marked with a dot. For box b ∈ νt/µ, we have
c(b) = 4, r(b) = 2, and d(b) = 5.

If b and a are adjacent, then c(b) 6 c(a), so φ(b) > φ(a).
Next, we check that φ(b) ∈ [1, h(b)] for all b ∈ νt/λ that are outer corners of λ (i.e.

λ ∪ b is a partition shape). This guarantees that the resulting filling is a restricted plane
partition because we have already shown the resulting filling is weakly decreasing.

Suppose such a box b is in µ/λ. Since b is an outer corner of λ, d(b) = h(b) + 1. It
follows that

φ(b) = d(b)− eb = h(b) + 1− eb 6 h(b),

as desired.
Next suppose box b described above is in νt/µ. Then

φ(b) = c(b)− eb 6 c(b)− 1 6 h(b).

Because the transpose of the filling of νt/µ is an elegant filling, eb > j − k. Then we
have that

φ(b) = c(b)− eb 6 k 6 k + l = h(b).

Note that since rows and columns of the image of φ are weakly decreasing, we have shown
that φ(b) ∈ [1, h(b)] for all boxes b.

Beginning with a restricted plane partition of νt/λ, we define a map, ψ, to recover
µ and the fillings of µ/λ and νt/µ as follows. Let b be a box in the restricted plane
partition. If eb > c(b), then b is in µ and ψ(b) = d(b)− eb. Note that eb > c(b) guarantees
ψ(b) 6 r(b)− 1, as is required to be strictly elegant.

If eb 6 c(b), then b is in νt/µ, and ψ(b) = c(b) − eb. Here, eb 6 c(b) implies that
ψ(b) 6 j − 1, which is necessary to have a transposed elegant filling.

It is easy to see that resulting rows and columns of µ will be strictly increasing, the
resulting rows of νt/µ will be strictly increasing, and the resulting columns of νt/µ will be
weakly increasing. Thus the image of ψ is a strictly elegant filling of µ/λ and a transposed
elegant filling of νt/µ. Clearly the composition of φ and ψ is the identity, so they are
indeed inverses.

If the integer in the box in row i and column j is greater than or equal to j, then that
box is in µ and ψ(b) = d(b)− eb. Note that since eb > j, ψ(b) = (i+ j − 1)− eb 6 i− 1,
as is required to be strictly elegant. If the entry is less than j, that box is in νt/µ, and
ψ(b) = c(b) − eb. Note here that eb 6 j implies that ψ(b) = c(b) − eb 6 j − 1, which
is necessary to have an elegant filling. It is easy to see that rows and columns in µ will
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be strictly increasing in the image of ψ and that in νt/µ, rows will be stricly increasing
and columns will be weakly increasing. Thus the image of ψ is a strictly elegant filling of
µ ⊃ λ and an elegant filling of ν/µt. Clearly the composition of φ and ψ is the identity,
so they are indeed inverses.

Note that the antipode applied to Gλ gives an infinite sum of stable Grothendieck
polynomials (see Remark 44) while applying S to j̃λ can be written as a finite sum of j̃’s.
This implies that while the space spanned by stable Grothendieck polynomials, Γ, is not
a Hopf algebra, the space spanned by j̃’s is a Hopf algebra.

Example 60. To illustrate the bijection described above, consider λ = (3, 2, 1), µ =
(3, 3, 2, 2), and νt = (5, 4, 4, 3). The figure on the left is a filling such that µ/λ is strictly
elegant and the transpose of νt/µ is elegant. The entries in µ/λ are in bold. The figure
on the right is the corresponding restricted plane partition of νt/λ.

2 4

1 3

1 1 3

2 3 2

2 1

3 1

3 2 1

2 2 1

If b is the box in the bottom left corner of the partition on the left, we see that
φ(b) = d(b)− eb = 4− 2 = 2. If a is the box in the upper right corner of the partition on
the left, we have φ(a) = c(a) − ea = 5 − 4 = 1. In the restricted plane partition on the
right, we can see that the boxes in positions (4, 1), (3, 2), (4, 2), and (2, 3) are in µ/λ in
the image of ψ since in these boxes eb > c(b).
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