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Abstract

New bounds on the number of similar or directly similar copies of a pattern
within a finite subset of the line or the plane are proved. The number of equilateral
triangles whose vertices all lie within an n-point subset of the plane is shown to be
no more than b(4n− 1)(n− 1)/18c. The number of k-term arithmetic progressions
that lie within an n-point subset of the line is shown to be at most (n− r)(n + r−
k + 1)/(2k − 2), where r is the remainder when n is divided by k − 1. This upper
bound is achieved when the n points themselves form an arithmetic progression,
but for some values of k and n, it can also be achieved for other configurations of
the n points, and a full classification of such optimal configurations is given. These
results are achieved using a new general method based on ordering relations.

Keywords: pattern, similar copy, similar triangle, equilateral triangle, arithmetic
progression

1 Introduction

Erdős and Purdy [18, 19, 20] raised the question of finding the maximum number of
equilateral triangles that can be determined by n points in the plane, where we say that
a triangle is determined by a set V when the three vertices of the triangle lie in V . This
problem is also mentioned in the compendia of unsolved problems in geometry by Croft,

∗This material is based upon work supported by the National Science Foundation under Grant DMS-
1400653.

the electronic journal of combinatorics 23(4) (2016), #P4.39 1



Falconer, and Guy [13] and by Brass, Moser, and Pach [9], and is discussed by Pach and
Sharir in [27]. There are many other variations of this problem involving other patterns,
constraints on the n-set in which instances of the pattern are sought, higher-dimensional
ambient spaces, different definitions for what counts as an instance of a pattern, and
different optimization objectives, e.g., [1, 3, 4, 5, 6, 7, 11, 12, 25, 26, 28, 29]. These
problems trace their inspiration to Erdős’ question [17] about the maximum number of
pairs of points at unit distance that can be determined by an n-subset of the plane, and
other related questions, which have led to a rich literature (see [9, 24] for an overview).
Apart from being a well-known and important question in discrete geometry, the problem
of determining the number of instances of a pattern in an n-subset of the plane is relevant
to the problem of pattern recognition in data from scanners, cameras, and telescopes
[8, 9, 10].

In all these problems, we have a universe, which is a set U , an equivalence relation
∼ on the power set of U , and a pattern P, which is an equivalence class of ∼. If P ∈ P,
we say that P is an instance of pattern P. We call P a k-pattern if all its instances are
k-sets. For the rest of this paper, instances of the pattern P are always assumed to be
finite sets. For V ⊆ U , we let

SP(V ) = |{P ⊆ V : P ∈ P}| .

We are concerned with finite subsets V of our universe U . For an integer n, we define

SP(n) = max
V⊆U
|V |=n

SP(V ),

that is, the largest number of instances of P that can be found in an n-subset of U .
The results of this paper concern the case when U is the line R or the plane R2

(identified with C), where ∼ is the geometric relation of similarity or direct similarity,1

and where the patterns P are classes of finite subsets, such as arithmetic progressions in
the line, or equilateral triangles in the plane.

If our relation ∼ is similarity or direct similarity, and the instances of our pattern P

have more than one point, and we are counting the number of instances of P in subsets
of the plane, then it is not hard to show that SP(n) is O(n2). Elekes and Erdős [16]
proved a subquadratic lower bound for general patterns P and a quadratic lower bound
if there is an instance of P whose points all have algebraic numbers for their coordinates.
Laczkovich and Ruzsa [23] later showed that SP(n) = Θ(n2) if and only if the cross ratio
of every quadruplet of distinct points in an instance of P is algebraic. However, before
this work there were no patterns P (with at least three points) for which the quadratic
coefficient was known.

Let E be the pattern of the vertices of an equilateral triangle, that is, E contains all
3-point subsets of the plane such that all three pairs of points within the set have the

1Two figures are said to be directly similar if one can be obtained from the other by a rotation and a
translation. Reflections are not allowed.
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same distance. Then the results of Laczkovich and Ruzsa show that SE(n) = Θ(n2). Prior
to this paper, the best known bounds [2] for SE(n) were(
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4π

)
n2 +O(n3/2) 6 SE(n) 6

⌊
(n− 1)2

4

⌋
, (1)
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0.1955 <
1
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SE(n)

n2
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n→∞

SE(n)

n2
6

1

4
.

The lower bound is obtained from the points in the equilateral triangle lattice contained
in a disk of a suitable radius. It is conjectured [2, Conjecture 1] that this construction

is asymptotically optimal and that limn→∞ SE(n)/n2 exists and equals 1
3
−
√
3

4π
, the lower

endpoint of the interval in which the limits inferior and superior for SE(n)/n2 are known
to lie.

The main result of this paper is an improved upper bound on SE(n).

Theorem 1. If E is the pattern of the vertices of equilateral triangles in R2, then SE(n) 6
b(4n− 1)(n− 1)/18c.

Therefore lim supn→∞ SE(n)/n2 6 2/9. The proof is given in Section 8, and is based on
an order-theoretic methodology, developed in Sections 2–4, for attacking pattern-counting
problems.

Our new methodology was first developed while exploring the simpler problem of
counting instances of finite patterns (such as arithmetic progressions) in a finite subset
of the line R, and was used to discover results that are presented in Sections 5–7. After
settling preliminaries in Section 5, we calculate the precise maximum number of k-term
arithmetic progressions that can occur in an n-point subset of the line in Section 6. The
following is the main result of Section 6.

Theorem 2. Let k > 1, and let Ak be the pattern of k-term arithmetic progressions
on R. If n ∈ N and r is the remainder when n is divided by k − 1, then SAk

(n) =
(n− r)(n+ r − k + 1)/(2k − 2).

For each k > 2, we completely classify all n-point subsets of the line that contain
as many k-term arithmetic progressions as possible. These optimal sets include n-term
arithmetic progressions, but there are some other optimal sets: when k > 3 and k − 1
divides n, sets obtained by deleting the second or penultimate point from an arithmetic
progression are also optimal (see Proposition 15). When k = 3, the variety of the optimal
sets is considerably richer (see Proposition 13). This work complements the asymptotic
approach of Elekes [15], who studied the structure of n-subsets of the line that contain
an asymptotically large number of k-term arithmetic progressions, whereas we determine
the precise maximum and those sets that achieve it.

In Section 7, we show that our method can be used to obtain both upper and lower
bounds on SP(n) when P is a commensurable pattern in the line, that is, where the ratios
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of the distances between points in P are all rational. We count the number of directly
similar copies of P = {0, 1, 3} in finite subsets of the line, and thereby show that if P is
the pattern for P , then

1

6
6 lim inf

n→∞

SP(n)

n2
6 lim sup

n→∞

SP(n)

n2
6

1

4
. (2)

We then construct a family of n-point subsets Vn of the line that has limn→∞ SP(Vn)/n2 =
3/16, which is the highest known value and, interestingly, lies strictly between the bounds
of (2).

As noted, our order-theoretic method is a new tool for counting patterns in finite sets.
It combines nicely with other techniques of discrete geometry, for example, the proof of
Theorem 1 combines our tools with the topological technique of finding three concurrent
halving lines of a set (cf. [22, Lemma 2], [21, Lemma 3], and [14, Lemma 2]). Further
applications will be explored in future works.

2 Order and Decompositions

A key theme in this work is that one can place an order relation on the universe U , and
use it to create bounds on SP(n). So henceforth, we assume that our universe U has a
total ordering relation �. If V ⊆ U , then we say that a point v ∈ V is the ith point of
V with respect to � to mean that there are precisely i − 1 points w ∈ V with w ≺ v. If
V,W ⊆ U , then we write V ≺ W to mean that v ≺ w for every v ∈ V and w ∈ W .

If V is a set and ` a positive integer, then an `-decomposition of V is a set {V1, . . . , V`}
of disjoint subsets of V such that

⋃`
j=1 Vj = V . (So a decomposition differs from a

partition only inasmuch as the former may include empty subsets.) An `-decomposition
of a finite set V with n points is said to be balanced if each set in the decomposition
has either bn/`c or dn/`e points in it. An `-decomposition V of V is called �-orderly if,
whenever V, V ′ are distinct elements of V, then either V ≺ V ′ or V ′ ≺ V . If V is an
orderly `-decomposition of V , then we say that V ∈ V is the ith set in V to mean that
there are precisely i− 1 sets W ∈ V with W ≺ V .

If k > 2 and there is a �-orderly (k − 1)-decomposition V of V , and a k-subset P of
V , then we say that P is of echelon j in V if the jth and (j + 1)th points of P lie in the
jth set of V. That is, if V = {V1 ≺ · · · ≺ Vk−1} and P = {p1 ≺ · · · ≺ pk}, then P is of
echelon j in V if pj, pj+1 ∈ Vj. It is a key fact that P must be of echelon j in V for at
least one j.

Lemma 3. Let k > 2 and let V be a set with a �-orderly (k − 1)-decomposition V. If P
is a k-subset of V , then P is of echelon j in V for some j ∈ {1, . . . , k − 1}.

Proof. By induction on k, with the k = 2 case trivial. For k > 2, suppose that P =
{p1 ≺ · · · ≺ pk} is not of echelon (k − 1) in V = {V1 ≺ · · · ≺ Vk−1}. Then pk−1 6∈ Vk−1,
and thus P r {pk} is a (k − 1)-subset of V r Vk−1 with �-orderly (k − 2)-decomposition
{V1, . . . , Vk−2}, and hence there is some j ∈ {1, . . . , k − 2} such that pj, pj+1 ∈ Vj by
induction.
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Remark 4. It should be noted that Lemma 3 is somewhat more detailed in its conclusions
than the usual Pigeonhole Principle. For example, suppose that our universe U is R and
� is the usual ordering 6 of real numbers. Let V = P = {p1 < . . . < p6}, and let
V = {V1, . . . , V5} be the orderly 5-decomposition of V shown in Figure 1.

p1 p2 p3 p4 p5 p6

V1 V2 V3 V4 V5

Figure 1: Illustration of Lemma 3

Since we have six points in five sets, the usual Pigeonhole Principle shows that there is
at least one set in V containing at least two points of P ; this is seen in V3, which contains
p2 and p3. But P = {p1 < . . . < p6} (which is the same as V ) is not of echelon i = 3
in V , because although V3 contains two points of P , it does not contain the particular
points pi = p3 and pi+1 = p4. On the other hand, Lemma 3 asserts that there is some
j ∈ {1, . . . , 5} such that P is of echelon j in V , and we see P is indeed of echelon j = 4
since points pj = p4 and pj+1 = p5 lie in V4.

Of course, if k > 4, and V is a set with �-orderly (k − 1)-decomposition V, then a
k-subset P of V may be of echelon j in V for more than one j.

3 Reconstructibility

Let P be a k-pattern in our universe U with order relation �. Suppose we are given
some j ∈ {1, . . . , k − 1} and two points u, v ∈ U with u ≺ v. Any P ∈ P that has u
and v respectively as its jth and (j + 1)th points is called a reconstruction of P with the
prescribed points as its jth and (j + 1)th points.

If, for every j ∈ {1, . . . , k − 1} and u ≺ v ∈ U , there is at least one reconstruction
of P with u and v as jth and (j + 1)th points, then we say that P admits at least one
reconstruction from �-consecutive points. If there is at most one reconstruction for every
j ∈ {1, . . . , k−1} and u ≺ v ∈ U , we say that P admits at most one reconstruction from �-
consecutive points. If both of these hold, then we say that P admits a unique reconstruction
from �-consecutive points, or is uniquely reconstructible from �-consecutive points.

Example 5. Suppose that our pattern P is the set of all triples that are vertices of
isosceles right triangles, and suppose that our order relation � is lexicographic ordering
of R2. (That is, (a, b) ≺ (c, d) if and only if either (i) a < b or (ii) a = b and c < d.) We
see that a pair of points A and B may be the first and second points (under the relation
�) of more than one instance of P. For instance, if A and B are the points in Figure
2 below, there are three isosceles right triangles of which A and B are the leftmost two
vertices, namely, 4ABC1, 4ABC2, and 4ABC3. (There are also three other isosceles
right triangles, 4ABC4, 4ABC5, and 4ABC6, with A and B as vertices, but A and B
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are not the leftmost two vertices in these.) If one looks at other pairs A and B, one can
find out that P always admits at least one reconstruction from �-consecutive points, but
often admits more than one reconstruction.

A

B

C1

C2

C3

C4

C5

C6

Figure 2: Points A and B are vertices in six isosceles right triangles, three of which are
reconstructions that make A and B the leftmost two vertices.

Example 6. Suppose that our pattern P is the set of all triples that are vertices of
equilateral triangles, and suppose our order relation � is lexicographic ordering of R2.
We see that a pair of points A and B might not be the second and third points (under
the relation �) of any instance of P. For instance, if A and B are the points in Figure 3
below, there is no equilateral triangle of which A and B are the rightmost two vertices.
(There are two equilateral triangles, 4ABC1 and 4ABC2, with A and B as vertices, but
A and B are not the rightmost two vertices in these.) If one looks at other pairs A and B,
one can find out that P never admits more than one reconstruction from �-consecutive
points: it sometimes admits no reconstruction, and sometimes admits one reconstruction.
In Lemma 22, we determine precisely when these two cases occur.

A
B

C1

C2

Figure 3: Points A and B are vertices in two equilateral triangles, but neither of these is
a reconstruction that makes A and B the rightmost two vertices.
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Example 7. Suppose that our pattern P consists of all sets of points in R that are directly
similar to {0, 1, 3, 6}, and suppose that our order relation � is the usual ordering of R. A
pair of points A and B with A < B will always be the second and third points of precisely
one instance of P, namely, {(3A−B)/2, A,B, (5B−3A)/2}. For example, if A and B are
−1 and 5, respectively, then the unique instance of P of which A and B are the second
and third points is {−4,−1, 5, 14}.

4 A General Upper Bound on SP(n)

Theorem 8. Let k > 1 and let P be a k-pattern in U that admits at most one recon-
struction from �-consecutive points. If n ∈ N and r is the remainder when n is divided
by k − 1, then SP(n) 6 (n− r)(n+ r − k + 1)/(2k − 2).

Proof. Let V be an n-subset of U , and let V = {V1 ≺ · · · ≺ Vk−1} be a �-orderly, balanced
(k−1)-decomposition of V . By Lemma 3, each P ⊆ V with P ∈ P is of echelon j in V for
some j ∈ {1, . . . , k− 1}. Each subset of echelon j has its jth and (j+ 1)st elements in Vj,
and since no two instances of P may have the same jth and (j + 1)th points, this means
that there are at most

(|Vj |
2

)
instances of P that are of echelon j. Thus there are at most∑k−1

j=0

(|Vj |
2

)
instances of P in V . If we write n = q(k − 1) + r, then our decomposition,

being balanced, has |Vj| = q+ 1 for r values of j and |Vj| = q for k− 1− r values of j, so
that SP(V ) 6 r

(
q+1
2

)
+ (k − 1− r)

(
q
2

)
= (n− r)(n+ r − k + 1)/(2k − 2).

The method of counting used in this proof provides a criterion for when this upper
bound is achieved.

Lemma 9. Let k > 1 and let P be a k-pattern in U that admits at most one reconstruction
from �-consecutive points. Let n ∈ N and let r be the remainder when n is divided
by k − 1. Let V be an n-subset of U with �-orderly, balanced (k − 1)-decomposition
V = {V1, . . . , Vk−1}. Then SP(V ) = (n− r)(n+ r− k+ 1)/(2k− 2) if and only if for each
j ∈ {1, . . . , k− 1} and every pair of distinct points v, w ∈ Vj, there exists a reconstruction
P of P with v and w as jth and (j + 1)th points, and P is a subset of V that is not of
echelon i in V for any i 6= j.

Proof. Examining the proof of the preceding theorem, we see that if any of the recon-
structions mentioned in the statement of this proposition did not exist, or did not lie in
V , then

(|Vj |
2

)
would be an overestimate of the number of instances of P that are of echelon

j. And if any instance were of two distinct echelons in V, then we would be counting it
twice in

∑k−1
j=0

(|Vj |
2

)
, thus making our bound an overestimate.

5 General Patterns in the Line

In this section, our universe U is the line R, our equivalence relation ∼ is direct similarity,
and our pattern P can be the equivalence class for any finite subset of R. Our order relation
is the usual order relation 6 for R. We note that any pattern P is uniquely reconstructible
from 6-consecutive points, so Theorem 8 applies, amounting to the following.
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Theorem 10. Let k > 1 and let P be any k-pattern in R. If n ∈ N and r is the remainder
when n is divided by k − 1, then SP(n) 6 (n− r)(n+ r − k + 1)/(2k − 2).

This upper bound is tight in the sense that for each k > 1, when P is the pattern of
k-term arithmetic progressions, then SP(n) equals the bound, as we shall now show.

6 Arithmetic Progressions in the Line

Here the universe U is the line R and our pattern is Ak, the class of k-term arithmetic
progressions. Because Ak is invariant under reflection, the results are the same whether
we make ∼ direct similarity or similarity. This enables an exact computation of SAk

(n):
we recall and prove Theorem 2.

Theorem 11. Let k > 1, and let Ak be the pattern of k-term arithmetic progressions
on R. If n ∈ N and r is the remainder when n is divided by k − 1, then SAk

(n) =
(n− r)(n+ r − k + 1)/(2k − 2).

Proof. This is an immediate consequence of Theorem 10 above and Lemma 12 below.

Lemma 12. If k > 1 and n ∈ N with r the remainder when n is divided by k−1, then the
number of k-term arithmetic progressions in {0, 1, . . . , n−1} is (n−r)(n+r−k+1)/(2k−2).

Proof. For each positive integer s 6 n/(k− 1), our set {0, 1, . . . , n− 1} contains precisely
n− s(k− 1) arithmetic progressions having k points with distance s between consecutive
points. The result follows by adding these quantities for 1 6 s 6 n/(k − 1).

Now that we know the precise value of SAk
(n), we would like to completely classify

the n-subsets V of R achieving SAk
(V ) = SAk

(n). We call such n-sets optimal for k-term
arithmetic progressions. Lemma 12 above shows that n-term arithmetic progressions are
always optimal for k-term arithmetic progressions, but in many cases there are other
optimal sets, and we now classify them (up to similarity).

All sets are trivially optimal for 1- or 2-term arithmetic progressions, and any n-set
with n < k is trivially optimal for k-term arithmetic progressions. The barycenter of an
arithmetic progression is the arithmetic mean of its points. Two progressions in Z are said
to be concentric if they have the same barycenter, or nearly concentric if their barycenters
differ by 1.

Proposition 13. For n > 3, an n-subset of R is optimal for 3-term arithmetic progres-
sions if and only if, up to similarity, it is the union E ∪ O of two nonempty arithmetic
progressions, where E consists of consecutive even integers and O consists of consecutive
odd integers and E and O are concentric if n is odd, or nearly concentric if n is even.

Remark 14. Before we embark upon the proof, we pause to note that the set E ∪ O
described here is an arithmetic progression when |E| and |O| are either equal, or one
differs from the other by 1.
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Proof of Proposition 13: In view of the value of SA3(n) from Theorem 11, we may
use Lemma 9 as the criterion for optimality. Suppose that V is an n-subset of R and
V = {V1 < V2} is a 6-orderly, balanced 2-decomposition of V . Because arithmetic
progressions are uniquely reconstructible from consecutive points, and since no 3-term
progression may be both of echelon 1 and of echelon 2 (since that would require it to
have more than three points), Lemma 9 shows that V is optimal for 3-term arithmetic
progressions if and only if for every j ∈ {1, 2} and every pair of distinct v, w ∈ Vj, the
reconstruction of A3 with v and w as jth and (j + 1)th points is contained in V .

First, suppose V has the form E∪O as described in the statement of this proposition.
If |E| and |O| are equal or differ by 1, then V is itself an arithmetic progression, and hence
optimal by Lemma 12, so we may assume that |E| 6= |O|. We may then view V as X ∪Y ,
where X is the larger of E and O, while Y contains the smaller of E and O, along with
any points from the larger of E and O that lie between the points of the smaller of E and
O. Thus X is an arithmetic progression with distance 2 between its consecutive points,
while Y is an arithmetic progression with distance 1 between its consecutive points. We
let V = {V1 < V2} be an 6-orderly, balanced 2-decomposition of V . Then V induces
6-orderly, balanced 2-decompositions of X and Y , which are X = {X ∩ V1, X ∩ V2} and
Y = {Y ∩ V1, Y ∩ V2}, respectively. Now suppose that v1 < v2 are points in V1, and let
v3 be the point that makes {v1 < v2 < v3} a 3-term arithmetic progression. If v1 and
v2 are both in X1 (resp., Y1), then since X (resp., Y ) is an arithmetic progression, and
hence optimal for 3-term arithmetic progressions, we may apply Lemma 9 to conclude
that v3 ∈ X (resp., Y ), and hence v3 ∈ V . In the remaining case, where v1 ∈ X1 and
v2 ∈ Y1, we note that v3 cannot be larger than the largest point in V and has the same
parity as v1, hence v3 ∈ X ⊆ V . By the same argument, if v2 < v3 are two points in V2,
then the point v1 that makes {v1 < v2 < v3} a 3-point arithmetic progression is always in
V . Thus our set V satisfies the sufficient criteria of Lemma 9 for optimality.

Now suppose that V is an n-subset of R that is optimal for 3-term arithmetic progres-
sions. We want to show that V has the form described in the statement of this proposition.
First we deal with the case where n is odd, and without loss of generality, we may apply a
similarity transformation so that the middle point of V is 0, and the next point in V is 1.
We let V = {V1 < V2} be an 6-orderly, balanced 2-decomposition of V with the negative
points in V1, and the nonnegative points in V2. By Lemma 9, for every positive v2 ∈ V2,
the 3-term arithmetic progression −v2 < 0 < v2 must lie in V , so the point −v2 must lie
in V1. Thus V has reflection symmetry about 0.

If u < v < w are consecutive points in V2, then by Lemma 9, the 3-term progression
2v−w < v < w must lie in V , and so 2v−w 6 u, that is, w− v > v−u. So the spacings
between consecutive points of V2 are nondecreasing as we proceed to the right.

If 1 6 u < v are consecutive points in V2, then by Lemma 9, the 3-term progression
2− v < 1 < v lies in V , so that v − 2 lies in V by reflection symmetry, and so u > v − 2.
So the spacing between any two consecutive points of V2 is no greater than 2.

We also claim that all the points of V2 are integers: we proceed by induction. The
first two elements of V2 are 0 and 1, so suppose that v ∈ V2 with v > 1, and we know
that all elements of V2 less than v are integers. By Lemma 9, the arithmetic progression
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2− v < 1 < v lies in V , so that |v − 2| lies in V by reflection symmetry, so |v − 2| must
be an element of V2 less than v, hence an integer. So v is an integer.

Thus spacings between any consecutive points of V2 is always 1 or 2, and these spacings
are nondecreasing as we proceed to the right. Since V has reflection symmetry about 0,
we know that V has the form described in this proposition. This completes the proof
when n is odd.

Now suppose that n is even and V is an n-subset of R optimal for 3-term arithmetic
progressions. Then the technical Lemma 16, whose proof is delayed to the end of this
section, shows that an (n − 1)-set V ′ obtained from V by removing either the leftmost
or rightmost point is optimal for 3-term arithmetic progressions. By applying similarity
transformations, we may assume that the rightmost point r is removed and that V ′ has
the form described in the statement of this proposition, with 0 being the middle point
of V ′. Then V ′ contains the point 1 since the set of odd points in V ′ is nonempty and
centered at 0. Let r′ be the rightmost point of V ′. A 6-orderly, balanced 2-decomposition
V = {V1 < V2} of V places all the nonpositive points into V1 and all the positive points
into V2.

In view of Lemma 9, the 3-term progression 2 − r < 1 < r lies in V , so 2 − r ∈ V ′.
Thus r must be an integer, and by reflection symmetry in V ′, we must have r − 2 6 r′,
that is r ∈ {r′ + 1, r′ + 2}. It is immediate that V ′ ∪ {r′ + 2} is of the form described in
the proposition, so we are done if r = r′ + 2. If r = r′ + 1, then by Lemma 9, the 3-term
progression r′ − 1 < r′ < r is contained in V , so then V ′ must consist of all consecutive
integers from −r′ to r′, and then it is clear that V = V ′ ∪ {r} is of the form described in
the proposition.

Proposition 15. For n > k > 4, an n-subset V of R is optimal for k-term arithmetic
progressions if and only if, up to similarity, V is an arithmetic progression or k−1 divides
n and V is an arithmetic progression with the second point deleted.

Proof. We first analyze all optimal sets V for 4-term arithmetic progressions. Suppose
that V is such an n-subset of R and n > 4. Let V = {V1 < V2 < V3} with |V2| > 2
be an 6-orderly, balanced 3-decomposition of V . The technical Lemma 17 below shows
that if we remove V3 from V , then we are left with an optimal set for 3-term arithmetic
progressions. Since V1 ∪ V2 is optimal for 3-term arithmetic progressions, Proposition 13
tells us that without loss of generality, we may take V1 ∪ V2 to be the union of a set E
of consecutive even integers and a set O of consecutive odd integers, which either have a
common center c (if |E ∪O| is odd) or E and O have distinct centers d and d+ 1 in some
order.

We now prove that the distance between the leftmost two points of V2 is 1. Since
V1 ∪ V2 = E ∪ O and E and O are nonempty, V1 ∪ V2 contains a set of three consecutive
integers. The integers are c − 1, c, c + 1 if |E ∪O| is odd or one of d − 1, d, d + 1 or
d, d + 1, d + 2 if |E ∪O| is even. Then the three consecutive points are either the two
rightmost of V1 and the one leftmost of V2 or the one rightmost of V1 and the two leftmost
of V2. The first case implies the second one, since if the rightmost two points of V1 have a
spacing 1, then the leftmost two points of V2 will complete a 4-term arithmetic progression
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with the former two points. So we know that distance between the leftmost two points of
V2 is 1.

By Lemma 17, the union of V2 and V3 is optimal for 3-term arithmetic progressions.
Now since the leftmost two points of V2∪V3 are at distance 1, it follows from Proposition
13 that V2 ∪ V3 is either an arithmetic progression, or an arithmetic progression with the
second-to-last point removed. Similarly, V1 ∪ V2 is either an arithmetic progression or an
arithmetic progression with the second point removed. By technical Lemma 18 below, V
is either an arithmetic progression or else an arithmetic progression with either the second
point or the second-to-last point (but not both) removed, and these latter two cases can
only occur if 3 | n. Conversely, Lemma 18 shows that sets V with these forms really are
optimal for 4-term arithmetic progressions.

Now we analyze all optimal sets for k-term arithmetic progressions where k > 5. For
n > k, let V = {V1 < V2 < . . . < Vk−1} be an 6-orderly, balanced (k − 1)-decomposition
of a n-subset V of R, where we insist |V2| > 2. Then V ′ = V1 ∪ . . . ∪ Vk−2 and V ′′ =
V2 ∪ . . .∪Vk−1 are optimal for (k− 1)-term arithmetic progressions by Lemma 17. Hence,
without loss of generality V ′ is either an arithmetic progression of consecutive integers,
or what one obtains by removing either the second or second-to-last point (but not both)
from such an arithmetic progression. If the rightmost two points of Vk−2 had spacing
2, then V ′′ would begin with two points at spacing 1, then later would have a spacing
of 2 between consecutive points, neither of which would be endpoints, and this would
contradict the optimality of V ′′ for (k − 1)-term arithmetic progressions. So any spacing
of 2 between consecutive points in V ′ must be between the leftmost two points. And
by a similar argument with V ′′, we see that all consecutive points of V ′′ have spacing
1, except possibly the two rightmost, which can have spacing 2. Thus all consecutive
points of V must have spacing 1, except for possible spacings of 2 between the leftmost
pair and the rightmost pair. By Lemma 18, V is either an arithmetic progression or else
an arithmetic progression with either the second point or the second-to-last point (but
not both) removed, and these latter two cases can only occur if k − 1 | n). Conversely,
Lemma 18 shows that sets V with these forms really are optimal for k-term arithmetic
progressions.

We close with the technical lemmata used to prove the two propositions above.

Lemma 16. Let V be a n-subset of R that is optimal for 3-term arithmetic progressions.
Then either the (n − 1)-set obtained by removing the leftmost point of V or the (n −
1)-set obtained by removing the rightmost point of V is optimal for 3-term arithmetic
progressions.

Proof. Let V = {V1 < V2} be a 6-orderly, balanced 2-decomposition of V , with |V1| > |V2|.
By Lemma 9, we see that any pair of points in V1 (resp., V2) are the leftmost (resp.,
rightmost) two points of a 3-term progression in V .

Suppose that the leftmost point ` of V is such that there is no 3-term progression
` < u < v with u, v ∈ V2. Then let V ′ = V r{`} with 6-orderly, balanced 2-decomposition
V′ = {V1 r {`}, V2}, and we see that any pair of points in V1 r {`} (resp., V2) are the
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leftmost (resp., rightmost) two points of a 3-term progression in V ′, so V ′ is optimal by
Lemma 9.

Now suppose that the leftmost point ` of V is such that ` < m < r is a 3-term
progression with m, r ∈ V2. Then m and r must respectively be the leftmost and rightmost
points of V2, for otherwise Lemma 9 would dictate that the leftmost and rightmost points
of V2 would be a part of a 3-term progression in V , and that progression would need to
involve a point to the left of `, which is absurd.

We set V ′ = V r {r}, and claim that it is optimal for 3-term arithmetic progressions.
For any u < v ∈ V1, we claim that the point w that makes u < v < w a 3-term arithmetic
progression is in V ′. For by Lemma 9, w ∈ V , and w = 2v− u, with v < m and u > `, so
that w < 2m− ` = r (since ` < m < r is an arithmetic progression).

If n is even, then set V′ = {V1, V2r{r}}. This is a 6-orderly, balanced 2-decomposition
of V ′, and we see that any pair of points in V1 (resp., V2 r {r}) are the leftmost (resp.,
rightmost) two points of a 3-term progression in V ′, so V ′ is optimal by Lemma 9.

If n is odd, let y be the rightmost point of V1, and set W = {W1 < W2} with
W1 = V1 r {y} and W2 = V2 ∪ {y}, which is a 6-orderly, balanced 2-decomposition of
V with |W2| > |W1|. Then set W′ = {W1,W2 r {r}}, which is a 6-orderly, balanced
2-decomposition of V ′ = V r {r}. By Lemma 9, any pair v < w of points in W2 form the
rightmost two points of a 3-term arithmetic progression in V , so any pair v < w of points
in W2r{r} for the rightmost two points of a 3-term arithmetic progression in V ′. By the
paragraph before the previous one, we know that every pair of points in W1 = V1 r {y}
form the leftmost two points of a 3-term arithmetic progression in V ′. Thus Lemma 9
shows that V ′ is optimal for 3-term arithmetic progressions.

Lemma 17. If V is a finite subset of R that is optimal for k-term arithmetic progressions,
and V = {V1 < · · · < Vk−1} is a 6-orderly, balanced (k−1)-decomposition of V , then both
∪k−2j=1Vj and ∪k−1j=2Vj are optimal for (k − 1)-term arithmetic progressions.

Proof. Let V ′ = ∪k−2j=1 with 6-orderly, balanced (k − 2)-decomposition V′ = {V1 < · · · <
Vk−2}. By Lemma 9, for a pair of points p and q in the subset Vj of V ′, there is a k-term
arithmetic progression P in V that contains these points and is only of echelon i in V for
i = j. Note that P ′ = P r (P ∩ Vk−1) is an arithmetic progression of some length that is
of echelon j in V′. If P ′ has fewer than k− 1 points, then it must be true that more than
one point of P is in Vk−1, which implies that P is both of echelon k − 1 and echelon j in
V, contradicting Lemma 9. Hence P ′ is an arithmetic progression of at least k − 1 terms
contained in V ′. By Lemma 9, V ′ is optimal for k − 1-term arithmetic progressions. By
the same reasoning, ∪k−1j=2Vj is also optimal for (k − 1)-term arithmetic progressions.

Lemma 18. Let n > k > 4. Let V be an n-subset of R that is either an arithmetic
progression, or else an arithmetic progression with the second point p or the second-to-last
point q (or both) removed. Then V is optimal for k-term arithmetic progressions if and
only if (i) V is an arithmetic progression or (ii) k − 1 divides n and V is an arithmetic
progression with only one of p or q removed.
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Proof. We can assume, without loss of generality, that V ⊆ Z, that the first element of
V is 0, and the smallest spacing between any two consecutive elements of V is 1. Write
n = (k − 1)q + r with 0 6 r < k − 1.

We already know from Theorem 11 and Lemma 12 that if V is an arithmetic progres-
sion, then it is optimal for k-term arithmetic progressions.

Now we assume that V is obtained from an arithmetic progression by removing only
the second point, so that V = {0, 2, 3, . . . , n}. Assume V is optimal for k-term arithmetic
progressions.

If 0 < r < k − 1, let V = {V1 < · · · < Vk−1} be a 6-orderly, balanced (k − 1)-
decomposition of V , such that V1 = {0, 2, 3, . . . , q + 1}. If we consider the k-term arith-
metic progression beginning with 0 and q + 1, its rightmost point is (k − 1)(q + 1) =
(k− 1)q + (k− 1) > (k− 1)q + r = n, which must be contained in V by Lemma 9, which
is absurd.

On the other hand, if r = 0, then it is not difficult to use Lemma 9 to show that V =
{0, 2, 3, . . . , (k− 1)q} is in fact optimal for k-term arithmetic progressions. By symmetry,
we have also covered the cases where V is obtained from an arithmetic progression by
only removing the second-to-last point.

Now we assume that v is obtained from an arithmetic progression by removing both
the second point and the second-to-last point, so that V = {0, 2, 3, . . . , n−2, n−1, n+1}.
Assume V is optimal for k-term arithmetic progressions. Recall that we are writing
n = (k − 1)q + r with 0 6 r < k − 1.

If r = 0, let V = {V1 < · · · < Vk−1} be a 6-orderly, balanced (k − 1)-decomposition
of V , in which V1 = {0, 2, 3, . . . , q}. If we consider the k-term arithmetic progression
beginning with 0 and q, then its rightmost point is (k − 1)q = n, so Lemma 9 says that
n must lie in V , which is absurd.

If 0 < r < k − 1, let V = {V1 < · · · < Vk−1} be a 6-orderly, balanced (k − 1)-
decomposition of V , such that V1 = {0, 2, 3, . . . , q} and V2 = {q + 1, q + 2, . . . , 2q + 1}.
If we consider the k-term arithmetic progression whose second and third points are q + 1
and 2q + 1, then the first point must be 1, so Lemma 9 says that 1 must lie in V , which
is absurd.

7 Commensurable Patterns in the Line

Here the universe U is the line R, and our equivalence relation ∼ is direct similarity.
A commensurable pattern P in R is one such that for P ∈ P, all the distances between
pairs in P are commensurable, that is, are related by rational ratios. Equivalently, P

is commensurable if it contains some P ⊆ Z. Or yet again, P is commensurable if its
instances are subsets of arithmetic progressions. Indeed if P ∈ P, there is a unique
arithmetic progression A of minimum cardinality such that P ⊆ A. We call this A the
enveloping arithmetic progression for P , and of course the set of all enveloping arithmetic
progressions of elements of P is itself a pattern, called the enveloping pattern for P. For
a positive `, we let A` be the pattern consisting of `-term arithmetic progressions.
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Theorem 19. Let P be a commensurable k-pattern on R, and suppose that A` is the
enveloping pattern for P. If n ∈ N and r and s are respectively the remainders when n is
divided by k − 1 and `− 1, then

(n− s)(n+ s− `+ 1)

2`− 2
6 SP(n) 6

(n− r)(n+ r − k + 1)

2k − 2
.

Proof. The right side of the inequality follows directly from Lemma 9, which gives an
upper bound on the maximum number of instances of a k-pattern P in an n-subset of R.

Now let A = {p 6 · · · 6 q} and A′ = {p′ 6 · · · 6 q′} be distinct `-term arithmetic
progressions in R. Then they are enveloping arithmetic progressions for distinct instances
of the commensurable pattern P: P = {p 6 · · · 6 q} and P ′ = {p′ 6 · · · 6 q′}. We see
that in a given set, there are at least as many instances of P as there are `-term arithmetic
progressions, so that SA`

(n) = (n− s)(n+ s− `+ 1)/(2`− 2) 6 SP(n).

We now explore the commensurable pattern P containing {0, 1, 3}. The enveloping
pattern is A4. We know from Theorem 19 that SA4(n) 6 SP(n) 6 SA3(n). Note from
Theorem 11 that limn→∞ SA4(n)/n2 = 1/6 and limn→∞ SA3(n)/n2 = 1/4.

We now construct a family of sets Vn where each Vn is a set with n points containing
SP(Vn) = (3n2 − 8n)/16 directly similar copies of {0, 1, 3}. This construction makes
limn→∞ SP(Vn)/n2 = 3/16, which is strictly between the two limits we computed in the
previous paragraph using the lower and upper bounds on SP(Vn) furnished by Theorem
19. We now describe our construction Vn, and then prove our claim that SP(Vn) =
(3n2 − 8n)/16.

Construction 20. If n = 96k for any positive integer k, we let Vn be the union of the
following four sets:

M0 = 6Z ∩ [0, 108k],

M1 = (1 + 6Z) ∩ [72k + 1, 144k − 5],

M3 = (3 + 6Z) ∩ [3, 324k − 9], and

M5 = (5 + 6Z) ∩ [72k − 1, 144k − 7],

or equivalently

M0 = {6a : 0 6 a 6 18k},
M1 = {6a+ 1 : 12k 6 a 6 24k − 1},
M3 = {6a+ 3 : 0 6 a 6 54k − 2}, and

M5 = {6a− 1 : 12k 6 a 6 24k − 1}.

We show the smallest example of this construction in Figure 4, with points drawn as
vertical strokes to make them easier to discern.
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Figure 4: Construction 20 with k = 1 (points drawn as vertical strokes)

Proposition 21. If P is the pattern containing {0, 1, 3}, and Vn is the n-point set Vn
described in Construction 20, then SP(Vn) = (3n2 − 8n)/16.

Proof. To compute SP(Vn) we first note that by choosing the congruence classes modulo 6
of the first two points of any P ∈ P, the class of the third point of P is fixed. For example,
if we choose the first two points congruent to 5 (mod 6), then the third point must also be
of the same class. Hence the 4× 4 cases for the respective congruence classes of the three
points are (0, 0, 0), (0, 1, 3), (0, 3, 3), (0, 5, 3), (1, 0, 4), (1, 1, 1), (1, 3, 1), (1, 5, 1), (3, 0, 0),
(3, 1, 3), (3, 3, 3), (3, 5, 3), (5, 0, 2), (5, 1, 5), (5, 3, 5), and (5, 5, 5). Henceforth we omit
(1, 0, 4) and (5, 0, 2), as none of the points in Vn are congruent to 4 or to 2 (mod 6).

To compute the number of instances {p1 < p2 < p3} of P in Vn with (p1, p2, p3) ≡
(a, b, c) (mod 6) for a given triple (a, b, c), one counts lattice points in regions of Z2 defined
by a system of inequalities. For example, if n = 96k and (a, b, c) = (0, 5, 3), we could
represent each instance {p1 < p2 < p3} of P with

p1 = 6x

p2 = 6y − 1

p3 = 3p2 − 2p1 = 6(3x− 2y − 1) + 3,

subject to the inequalities

x < y,

0 6 x 6 18k,

12k 6 y 6 24k − 1, and

0 6 3y − 2x− 1 6 54k − 2.

The first inequality makes sure that p1 < p2, and the remaining three inequalities
make sure that p1, p2, and p3 are in the ranges prescribed for their respective congruence
classes, as described in Construction 20.

In this way we calculate the following number of instances {p1 < p2 < p3} of P in
Vn. The results for every instance with the corresponding triple (p1, p2, p3) (mod 6) are
described in Table 1. If we add up all the counts, we get 1728k2 − 48k, or equivalently
(3n2 − 8n)/16 for the the total number of instances of P in Vn.

8 Equilateral Triangles in the Plane

In this section we explore SE(n), where U is the Euclidean plane (identified with C), V
is a finite subset, and E is the pattern of vertices of an equilateral triangle. Our order
relation on C is lexicographic ordering: y ≺ z means that either (i) Re(y) < Re(z) or (ii)
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number of instances (p1, p2, p3) (mod 6)
54k2 − 3k (0, 0, 0)
171k2 + 6k (0, 1, 3)
270k2 + 9k (0, 3, 3)

171k2 + 3k − 1 (0, 5, 3)
24k2 − 6k (1, 1, 1)
24k2 + 2k (1, 3, 1)
24k2 − 2k (1, 5, 1)
54k2 + 3k (3, 0, 0)
189k2 − 6k (3, 1, 3)

486k2 − 45k + 1 (3, 3, 3)
189k2 − 3k (3, 5, 3)
24k2 + 2k (5, 1, 5)
24k2 − 2k (5, 3, 5)
24k2 − 6k (5, 5, 5)

Table 1: Number of instances for each triple

Re(y) = Re(z) and Im(y) < Im(z). This order relation respects addition, so if y ≺ y′ and
z � z′, then y + z ≺ y′ + z′.

If u and v are distinct points in C, they are vertices of only two equilateral triangles,
and if we let w and w′ be the respective third vertices of these two triangles, then u, w,
v, and w′ are vertices of a parallelogram with center (u+ v)/2 = (w+w′)/2, as shown in
Figure 5 below.

u

v

w

w′

(u + v)/2 =

(w + w′)/2

Figure 5: Points u and v are vertices of two equilateral triangles, 4uvw and 4uvw′,
which together form a parallelogram with center at (u+ v)/2 = (w + w′)/2.

Then the compatibility of our order relation with addition shows that E admits at most one
reconstruction from any pair of consecutive points, for neither u, v ≺ w,w′ nor u, v � w,w′

is consistent with (u+ v)/2 = (w + w′)/2.
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Since E admits at most one reconstruction from any pair of consecutive points, Theo-
rem 8 immediately tells us that SE(n) 6 n(n − 2)/4 if n is even and SE(n) 6 (n − 1)2/4
if n is odd, that is, SE(n) 6 b(n− 1)2/4c in any case. This observation recovers upper
bound on SE(n) of [2, Theorem 1] (given here in (1)), which was previously obtained using
a much more sophisticated geometric proof.

We shall get an improved upper bound on SE(n) by noting that sometimes E admits no
reconstruction from a pair of consecutive points. To see this, we define the usual principal
value of the argument function Arg : C∗ → (−π, π].

Lemma 22. Let u, v be distinct points in C. Then these are the first two vertices (under
�) of precisely one equilateral triangle and last two vertices of precisely one equilateral
triangle if Arg(v−u) ∈ (−5π/6,−π/6]∪ (π/6, 5π/6]. Otherwise, they are neither the first
two nor the last two vertices of any equilateral triangle.

One can visualize the result of Lemma 22: there are always two equilateral triangles
with vertices at u and v, but as we vary Arg(v − u) in Figure 6 below, we can see which
arguments make u and v the first and second points (under our lexicographic ordering)
of one of these equilateral triangles. Equilateral triangles for which u and v are the first
and second points are drawn in black, while the rest are drawn in grey.

u

v

Arg(v − u) = 2π
5

u

v

Arg(v − u) = π
6

u v

Arg(v − u) = π
12

u v

Arg(v − u) = − π
12

u

v

Arg(v − u) = −π
6

u

v

Arg(v − u) = −2π
5

Figure 6: Equilateral triangles with vertices at u and v: in solid black are those that make
u and v the least two vertices under lexicographical ordering �.

Proof of Lemma 22: Let ζ6 = eπi/3. Then u and v are vertices of only two equilateral
triangles, with the third point being either (i) w = ζ6u+ ζ6v or (ii) w′ = ζ6u+ ζ6v.

Note that u, v ≺ w requires Re(w) > Re(u) (with Im(w) > Re(u) in case of equality)
and Re(w) > Re(v) (with Im(w) > Im(v) in case of equality). Since ζ6 + ζ6 = 1, this
is equivalent to Re(ζ6(v − u)) > 0 and Re(−ζ6(v − u)) > 0, with the corresponding
imaginary parts strictly positive in cases of equality. These conditions are fulfilled if and
only if Arg(v − u) ∈ (π/6, 5π/6]. One can similarly show that u, v � w′ under the same
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conditions, and that u, v ≺ w′ if and only if Arg(v − u) ∈ (−5π/6,−π/6], with u, v � w
under the same conditions.

Let A = (−5π/6,−π/6] ∪ (π/6, 5π/6], the set of values of Arg(v − u) that admit a
reconstruction of E with u and v as consecutive points. To get a good upper bound for
SE(V ) in an n-set V , we rotate V in such a way that the first dn/2e points of V (with
respect to ordering �) have many pairs (u, v) of points with Arg(v−u) 6∈ A, and the last
bn/2c points of V have many pairs (u, v) of points with Arg(u− v) 6∈ A. Thus when we
decompose our set V into a balanced �-orderly 2-decomposition V = {V1, V2}, many of
the pairs in V1 admit no reconstruction of which they are the first two points, and likewise
may of the pairs in V2 admit no reconstruction of which they are the last two points, so
that we may deduct the counts of these “unproductive” pairs from the standard upper
bound of b(n− 1)2/4c implied by Theorem 8. This requires some care, for as we rotate,
points change from being among the first dn/2e points of V to being among the last bn/2c
points of V and vice-versa, that is, our decomposition V = {V1, V2} must change (points
migrate between V1 and V2) as we rotate V . We now indicate roughly how we overcome
this difficulty, with technical details given later. We eventually shall show that, up to
translation and rotation, we may assume that (i) approximately half of the points in V lie
on each side of the y-axis, and (ii) approximately half of the points in V lie on each side of
the line y = x/

√
3, and (iii) approximately half of the points in V lie on each side of the

line y = −x/
√

3. These three lines cut the plane into six compartments, and we call pairs
of points lying within the same compartment intracompartmental pairs. We then rotate
this picture about the origin by angles of 0, 2π/3, and 4π/3. Each intracompartmental
pair (u, v) will have Arg(v − u) ∈ A for two of these rotations, and Arg(v − u) 6∈ A for
one of these rotations. Thus we may choose a rotation such that at least one-third of
the intracompartmental pairs u, v have Arg(v − u) 6∈ A. Sometimes points lie on the
boundaries: such technical issues can be handled naturally using the formalisms that
follow.

We define a direction ζ to be complex number of unit modulus, so the set of directions
is the complex unit circle. A directed line with direction ζ is line with parameterization
t 7→ ζt + η for some η ∈ C, where the parameter t ranges over R. Every directed line
with direction ζ may be uniquely written as L(t) = ζt + s(−iζ), where s is a real scalar
uniquely determined by the line L; we call this the canonical form of the directed line L.
Figure 7 shows the relation between the directions ζ and −iζ, and the parameterization
of the directed line L(t). Note that |s| is the distance from L to the origin, and the sign
of s tells us which side of L the origin lies on. We may thus identify the set of directed
lines with the Cartesian product of the unit circle (for ζ) and the real line (for s), and
give the directed lines the topology of this product space.

For each direction ζ, we define a total ordering relation �ζ on C with y �ζ z if and
only if iζy � iζz, where � is our usual lexicographic ordering on C. Note that �i is the
same as �, and for any direction ζ, we have y �−ζ z if and only if y �ζ z. If L(t) is a
directed line with direction ζ, then we say z ∈ C lies to the left (resp., to the right) of
L(t) if z ≺ζ L(t) for all t ∈ R (resp., z �ζ L(t) for all t ∈ R). If y, z ∈ C are on the line
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Re

Im

0

ζ

−iζ

L(0) = s(−iζ)

|s|

L

L(t) = ζt+ s(−iζ)

|t|

Figure 7: The directed line L(t) = ζt + s(−iζ) (with constants s ∈ R and ζ ∈ C with
|ζ| = 1) has direction ζ and is distance |s| from the origin. In this particular instance,
s < 0, which means that the origin is to the right of a viewer standing on the line and
facing in its direction.

L(t), say y = L(ty) and z = L(tz), then we say that y is below (resp., above) z on L if
ty < tz (resp., ty > tz). Note that these concepts of left and right, below and above, all
correspond to the usual notions when L(t) = it is the positively directed y-axis, or indeed
if L is any translate thereof.

If ζ is a direction and V = {v1 ≺ζ · · · ≺ζ vn} is a finite set, then the ζ-median of V
is v(n+1)/2 if n is odd, and is (vn/2 + vn/2+1)/2 if n is even. If ζ is a direction and V is a
finite set of points, then the ζ-halving line of V is the directed line LV,ζ with direction ζ
that passes through the ζ-median of V . The line is called a halving line because bn/2c
of the points of V are (with respect to �ζ) less than the median, and so lie to the left of
the line or below the ζ-median of V on the directed line, while bn/2c of the points of V
are greater than the median, and so lie to the right of the line or above the median on
the directed line. Our definition of halving line makes a unique halving line for V in each
direction, and is identical to the definition used by Erickson, Hurtado, and Morin [21]. If
c is the ζ-median of V , we call any point z with z �ζ c formally to the left of LV,ζ and
any point z with z �ζ c formally to the right of LV,ζ . Thus dn/2e of the points of V lie
formally to the left of LV,ζ and bn/2c of the points of V lie formally to the right of LV,ζ .

With the topology for the space of directed lines introduced above, we claim that
LV,ζ is continuous in ζ. Indeed, LV,ζ evolves by rotating about a particular median for
a segment of values of ζ, changing from median v to w precisely for the value of ζ that
makes v and w both lie on the line LV,ζ . Note that the ζ-median and the (−ζ)-median of
V are the same, so that LV,ζ and LV,−ζ are the same line, but with opposite directions.
These considerations lead to the following useful observation, first proved in this precise
form in [21, Lemma 3] (see also [22, Lemma 2] and [14, Lemma 2]).
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Lemma 23. Let V be a finite subset of C. Then there is some direction ζ such that the
halving lines of V in directions ζ, e2πi/3ζ, and e4πi/3ζ are concurrent.

Proof. Let ω = e2πi/3. If the point LV,ω ∩ LV,ω2 is on or to the left (resp., right) of the
directed line LV,1, then the same point LV,−ω ∩ LV,−ω2 must be on or to the right (resp.,
left) of the same but oppositely directed line LV,−1. As ζ traverses the unit circle, the lines
LV,ζ , LV,ωζ , and LV,ω2ζ evolve continuously, and so the intersection point LV,ωζ ∩ LV,ω2ζ

also evolves continuously. Thus there must be some ζ such that LV,ωζ ∩ LV,ω2ζ crosses
LV,ζ .

Now we are ready to recall and prove our improved bound (Theorem 1) on SE(n).

Theorem 24. If E is the pattern of the vertices of equilateral triangles in R2, then SE(n) 6
b(4n− 1)(n− 1)/18c.

Proof. Let V be an n-subset of R2 (identified with C). Obtain three concurrent halving
lines of V , say L, M , and N , as described in Lemma 23, where the directions of M and N
are obtained from that of L by rotating by 2π/3 and 4π/3, respectively. This means that
a point can only be formally left (or formally right) of all three lines if it lies on all three.
So we may decompose V into six or seven disjoint classes of points (called compartments),
where a point is classified according to its position (formally left or right) relative to the
three lines.

Position Relative to Line
Compartment L M N

V1 formally left formally right formally left
V2 formally left formally right formally right
V3 formally left formally left formally right
V4 formally right formally left formally right
V5 formally right formally left formally left
V6 formally right formally right formally left

V7
on on on
(if this point is not in V1 ∪ · · · ∪ V6)

Note that V7 is nonempty if and only if a point of V happens to lie on the intersection of
the three lines and if said point happens to be formally left of all three lines or formally
right of all three lines. We depict our compartments in Figure 8.

Let A = (−5π/6,−π/6]∪ (π/6, 5π/6], the set of values of Arg(v− u) that (by Lemma
22) admit a reconstruction of E with u and v as consecutive points. We call pairs of
points in

⋃6
j=1 Vj × Vj intracompartmental pairs. We can rotate V and the directed

lines L, M , and N so that one of them is t 7→ it, the positively directed y-axis. Each
intracompartmental pair (u, v) will have Arg(v − u) ∈ A for two of these rotations, and
Arg(v − u) 6∈ A for one of these rotations. Thus we may choose a rotation such that at
least one-third of the intracompartmental pairs u, v have Arg(v − u) 6∈ A. Without loss
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M N

V1

V2

V3 V4

V5

V6

V7

Figure 8: The seven possible compartments, where V7 can only contain the intersection
point of the three lines

of generality, let us say that our chosen rotation makes the line L the positively directed
y-axis.

Every instance {v1 ≺ v2 ≺ v3} of E in V either has v1 and v2 formally to the left of
L or has v2 and v3 formally to the right of L. Furthermore, Lemma 22 shows that in the
former case Arg(v2 − v1) ∈ A and v3 is uniquely determined by v1 and v2, while in the
latter case Arg(v3 − v2) ∈ A and v1 is uniquely determined by v2 and v3. Since L is a
halving line, there are dn/2e points formally to the left of L and bn/2c points formally to
the right of L. So we count the number of pairs (u, v) in V with u and v formally to the
same side of L, and deduct the number of intracompartmental pairs that we deliberately
rotated to prevent them from admitting a reconstruction of E to obtain

SE(V ) 6

(
dn/2e

2

)
+

(
bn/2c

2

)
− 1

3

6∑
j=1

(
|Vj|
2

)
. (3)

Now
∑6

j=1 |Vj| is either n or n − 1 (depending on whether V7 is empty or not), and by
convexity, the sum of binomial coefficients in (3) is minimized when the various values
|Vj| are as close to equal as possible. So if n − 1 = 6q + 2r + s with q ∈ Z, r ∈ {0, 1, 2}
and s ∈ {0, 1}, then

6∑
j=1

(
|Vj|
2

)
> (2r + s)

(
q + 1

2

)
+ (6− 2r − s)

(
q

2

)
(4)

= q(3q + 2r + s− 3).

In this case, we see that the first two terms of (3) become(
dn/2e

2

)
+

(
bn/2c

2

)
= (s+ 1)

(
3q + r + 1

2

)
+ (1− s)

(
3q + r

2

)
(5)

= (3q + r)(3q + r + s),
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and substituting (4) and (5) into (3), we obtain

SE(V ) 6
8q(q + 2r + s) + 3q + 3r(r + s)

3
,

which works out to

SE(V ) 6


2
9
n2 − 5

18
n− 1

3
if n ≡ 0 or 2 (mod 6),

2
9
n2 − 5

18
n+ 1

18
if n ≡ 1 (mod 6),

2
9
n2 − 5

18
n− 1

6
if n ≡ 3 or 5 (mod 6),

2
9
n2 − 5

18
n− 4

9
if n ≡ 4 (mod 6),

so that SE(V ) 6 b(4n− 1)(n− 1)/18c for arbitrary n. Since V was (up to our rotation)
an arbitrary n-subset of C, this upper bound holds for SE(n).
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