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Abstract

A vertex coloring of a graph is nonrepetitive if there is no path in the graph whose
first half receives the same sequence of colors as the second half. While every tree
can be nonrepetitively colored with a bounded number of colors (4 colors is enough),
Fiorenzi, Ochem, Ossona de Mendez, and Zhu recently showed that this does not
extend to the list version of the problem, that is, for every ` > 1 there is a tree
that is not nonrepetitively `-choosable. In this paper we prove the following positive
result, which complements the result of Fiorenzi et al.: There exists a function f
such that every tree of pathwidth k is nonrepetitively f(k)-choosable. We also show
that such a property is specific to trees by constructing a family of pathwidth-2
graphs that are not nonrepetitively `-choosable for any fixed `.

1 Introduction

A repetition of length r (r > 1) in a sequence of symbols is a subsequence of consecutive
terms of the form x1 . . . xrx1 . . . xr. A sequence is nonrepetitive (or square-free) if it does
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not contain a repetition of any length. In 1906 Thue proved that there exist arbitrarily long
nonrepetitive sequences over an alphabet of size 3 (see [2, 16]). The method discovered
by Thue is constructive and uses substitutions over a given set of symbols.

A different approach to creating long nonrepetitive sequences was recently introduced
by Grytczuk, Kozik, and Micek [10]: Generate a sequence by iteratively appending a
random symbol at the end, and each time a repetition appears erase the repeated block.
(For instance, if the sequence generated so far is abcb and we add c, then we erase the last
two symbols, bringing us back to abc.) By a simple counting argument one can prove that
with positive probability the length of the constructed sequence eventually exceeds any
finite bound, provided the alphabet has size at least 4. This is one more than in Thue’s
result but the proof is more flexible and can be adapted to other settings. For instance, it
led to a very short proof that for every n > 1 and every sequence of sets L1, . . . , Ln, each
of size at least 4, there exists a nonrepetitive sequence s1s2 . . . sn where si ∈ Li for all i
(see [10]), a theorem first proved by Grytczuk, Przyby lo, and Zhu [11] via an intricate
application of the Lefthanded Local Lemma. Whether the analogous statement for lists
of size 3 is true remains an exciting open problem.

In this paper we make use of the above-mentioned approach to color trees nonrepeti-
tively. Given an (undirected, simple) graph G, we denote by V (G) and E(G) its vertex set
and edge set, respectively. A coloring φ : V (G)→ N of the vertices of G is nonrepetitive
if there is no repetition in the color sequence of any path in G; that is, φ is nonrepetitive
if for every path P with an even number of vertices the sequence of colors on the first half
of P is distinct from the sequence of colors on the second half of P . (We remark that all
paths in this paper are simple, that is, contain no repeated vertex.) The minimum number
of colors used in a nonrepetitive coloring of G is called the Thue chromatic number of G
and is denoted by π(G). Now, given a graph G, suppose that each vertex v ∈ V (G) has
a preassigned list of available colors Lv ⊂ N. A coloring of G with these lists is a coloring
φ of G such that φ(v) ∈ Lv for each vertex v ∈ V (G). The Thue choice number of G,
denoted by πl(G), is the minimum ` such that, for every list assignment {Lv}v∈V (G) with
|Lv| > ` for each v ∈ V (G), there is a nonrepetitive coloring of G with these lists.

Similarly as for many graph coloring parameters, the Thue chromatic (choice) number
can be bounded from above by a function of the maximum degree: Alon, Grytczuk,
Ha luszczak, and Riordan [1] proved that for every graph G with maximum degree ∆ we
have π(G) 6 πl(G) 6 c · ∆2 for some absolute constant c. A number of subsequent
works [6, 8, 9, 12] focused on reducing the value of the constant c, the current best bound
being πl(G) 6 (1 + o(1))∆2 (see [6]). Alon et al. [1] also showed that there are graphs

with maximum degree ∆ with π(G) = Ω
(

∆2

log ∆

)
. (Whether this can be improved by a

log ∆ factor remains an open problem.)
It is not difficult to show that every tree has Thue chromatic number at most 4 (see

[3]), which is best possible. This result was generalized to graphs of bounded treewidth by
Kündgen and Pelsmajer [14]. They proved that π(G) 6 4k for every graph G of treewidth
k. It is not known whether this upper bound can be improved to a polynomial in k.
However, if one considers graphs of pathwidth k instead, a polynomial bound is known:
It was shown by Dujmović et al. [6] that π(G) 6 2k2 + 6k + 1 for every graph G of
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pathwidth k. (We note that quadratic might not be the right order of magnitude here.)
Probably the most intriguing open problem regarding the Thue chromatic number is

whether it is bounded for all planar graphs, a question originally asked by Grytczuk [9].
A O(log n) upper bound is known [5], and from below Ochem constructed a planar graph
requiring 11 colors (see [5]).

The main focus of this paper is the list version of the parameter, the Thue choice
number. As mentioned at the beginning of the introduction, we have πl(P ) 6 4 for every
path P , and it is open whether this bound can be improved to 3. Fiorenzi, Ochem, Os-
sona de Mendez, and Zhu [7] gave the first example of a class of graphs where the Thue
chromatic and Thue choice numbers behave very differently: While trees have Thue chro-
matic number at most 4, they showed that the Thue choice number of trees is unbounded.
Clearly, trees with large Thue choice number must have large maximum degree, and in
fact one can deduce from the proof in [7] that there are trees with maximum degree ∆
and Thue choice number Ω( log ∆

log log ∆
). Kozik and Micek [13] subsequently showed that a

better-than-quadratic upper bound in terms of the maximum degree exists for trees: For
every ε > 0 there exists c > 0 such that πl(T ) 6 c∆1+ε for every tree T of maximum
degree ∆. (Bridging the significant gap between the upper and lower bounds remains an
open problem.)

Note that graphs of bounded treewidth have unbounded Thue choice number since
this is already the case for trees. On the other hand, Dujmović et al. [6] observed that
πl(G) is bounded when G is a graph of pathwidth 1. This prompted the authors of [6] to
ask whether πl(G) is bounded more generally when G has bounded pathwidth (which is
the case for the Thue chromatic number). Also, since connected graphs G of pathwidth 1
are caterpillars, and thus trees in particular, they also asked the same question but with
G moreover required to be a tree. A second motivation for the latter question was that
the trees with arbitrarily large Thue choice number constructed by Fiorenzi et al. [7] also
have unbounded pathwidth.

In this paper we answer both questions. First, we give a simple construction showing
that the Thue choice number is unbounded for graphs of bounded pathwidth; in fact, this
is true even for graphs of pathwidth 2 (which is best possible as noted above):

Theorem 1. For every ` > 1, there is a graph G of pathwidth 2 with πl(G) > `.

Next, we address the case of trees and prove that their Thue choice number is bounded
from above by a function of their pathwidth:

Theorem 2. There is a function b : N → N such that πl(T ) 6 b(k) for every tree T of
pathwidth k.

The proof of Theorem 2 combines an induction on the pathwidth with the algorith-
mic method of Grytczuk et al. [10] to produce arbitrarily long nonrepetitive sequences
described at the beginning of the introduction. This method, which finds its roots in the
celebrated algorithmic proof of the Local Lemma by Moser and Tardos [15], was extended
to produce nonrepetitive colorings of graphs (in [6]) and trees (in [13]). Part of our proof
consists in adapting the ideas from [6, 13] to the situation under consideration.
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We note that the bounding function b(k) in Theorem 2 stemming from our proof is
quite large, it is doubly exponential in k.

The paper is organized as follows: In Section 2 we introduce definitions and terminol-
ogy. Then we prove Theorem 1 in Section 3, and Theorem 2 in Section 4.

2 Definitions

For an integer n > 1, we let [n] := {1, . . . , n}. Also, given two integers a, b with a 6 b we
let [a, b] := {a, a+ 1, . . . , b}, which we call an interval.

Graphs in this paper are finite, simple, and undirected. The vertex set and edge set of
a graph G are denoted V (G) and E(G), respectively. Note that, since only simple graphs
are considered, resulting loops and parallel edges are removed when contracting edges in
a graph. A graph H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

A tree decomposition of a graph G is a pair (T, C) where T is a tree and C is a collection
{Tv : v ∈ V (G)} of non-empty subtrees of T such that V (Tu) ∩ V (Tv) 6= ∅ for every edge
uv ∈ E(G). The width of the tree decomposition (T, C) is the maximum, over every
x ∈ V (T ), of the number of subtrees in C containing x, minus 1. The treewidth of G is
the minimum width of a tree decomposition of G. Path decompositions and pathwidth
are defined analogously with the tree T required instead to be a path. Treewidth and
pathwidth are minor-closed parameters, in the sense that every minor of a graph G has
treewidth (pathwidth) at most that of G. We refer the reader to Diestel’s textbook [4]
for an introduction to the theory of treewidth and graph minors.

The length of a path is the number of its edges. The height of a rooted tree T is the
maximum length of a path from the root to a leaf of T . (Thus T has height 0 if it consists
of a unique vertex.) The height of a vertex v of T is the length of the path from the root
to v in T .

3 Graphs of pathwidth 2

Let Gn,` be the graph constructed from the path on 2n vertices where every second vertex
is blown up to

(
`n
`

)
vertices forming an independent set. Formally,

V (Gn,`) = {v2i−1 | i ∈ [n]} ∪
{
vj2i | i ∈ [n], j ∈

[(
`n

`

)]}
,

and two vertices are adjacent in Gn,` if and only if their lower indices differ by exactly 1.
Also, let Vi := {vi} for each odd index i ∈ [2n] and Vi :=

{
vji | j ∈

[(
`n
`

)]}
for each even

index i ∈ [2n].
It is not difficult to check that Gn,` has pathwidth at most 2 (with equality for n > 2

and ` > 1). Thus Theorem 1 follows from the following theorem.

Theorem 3. Let ` and n be integers such that ` > 1 and n > e`+2. Then πl(Gn,`) > `.
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Proof. Consider the following list assignment for the vertices of Gn,`. For each odd index
i = 2t+ 1 ∈ [2n], vertex vi is assigned the list

Li := {t`+ 1, t`+ 2, . . . , t`+ `}.

Thus these n lists have size `, are pairwise disjoint, and their union is [`n]. Next, enumerate
the `-subsets of [`n] in an arbitrary way. Then, for each even index i ∈ [2n] and index
j ∈

[(
`n
`

)]
, vertex vji is assigned the list which is the j-th set in that enumeration.

We claim that, because n was chosen to be strictly larger than e`+2, there cannot be
a nonrepetitive coloring of Gn,` with these lists. Arguing by contradiction, let us suppose
that φ is such a coloring.

With a slight abuse of notation, for i ∈ [2n] we use the shorthand φ(Vi) for the set
∪u∈Vi

{φ(u)}. Consider an interval I ⊆ [2n] of the form I = [a, a + 4k + 1] with k > 0.
Suppose that the following two conditions are satisfied:

φ(vi) ∈ φ(Vi+2k+1) for each i ∈ [a, a+ 2k], i odd

φ(vi+2k+1) ∈ φ(Vi) for each i ∈ [a, a+ 2k], i even.

Then it is easy to check that there exists a path wa, . . . , wa+4k+1 in Gn,` with wj = vj
for j odd and wj ∈ Vj for j even, for all j ∈ I, such that the color sequence
φ(wa), . . . , φ(wa+4k+1) is a repetition (of size 2k+ 1). Since this cannot happen, it follows
that there exists an index i ∈ [a, a+ 2k] for which one of the above two conditions is not
satisfied. For every such index i, we say that the pair (p, q) is a witness (for interval I),
where {p, q} = {i, i+ 2k + 1} with p odd and q even.

Next, consider an even index q ∈ [2n]. Observe that |[`n]− φ(Vq)| 6 `−1, since φ(Vq)
contains at least one color from each `-subset of [`n]. Combining this with the fact that
vertices vp with odd index p ∈ [2n] have pairwise disjoint lists, we deduce that there are
at most `− 1 odd indices p ∈ [2n] such that the pair (p, q) is a witness. Summing up over
every even index q ∈ [2n], it follows that there are at most

n(`− 1)

distinct witnesses in total.
Now consider a witness (p, q) and let |p − q| = 2k + 1. The pair (p, q) is a witness

for at most 2k + 1 intervals I ⊆ [2n] of the form I = [a, a + 4k + 1]. Since there are
exactly 2n−4k−1 intervals I of the latter form and each interval of that form must have
a witness, it follows that the number of witnesses (p, q) with |p − q| = 2k + 1 is at least
2n−4k−1

2k+1
. Summing up over every possible value of k (that is, k = 0, 1, . . . , b(n − 1)/2c),

we obtain that the total number of witnesses is at least

b(n−1)/2c∑
k=0

2n− 4k − 1

2k + 1
>
b(n−1)/2c∑

k=0

(
n

k + 1
− 2

)

> n

b(n+1)/2c∑
k=1

1

k

− 2

⌊
n+ 1

2

⌋
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> n ln

(⌊
n+ 1

2

⌋)
− (n+ 1)

> n ln
(n

2

)
− (n+ 1)

> n lnn− 3n.

It follows that
n(`− 1) > n lnn− 3n,

which contradicts the assumption that n > e`+2.

4 Trees of bounded pathwidth

A path-partition of a tree T is a pair (T ,P) where T is a rooted tree and P is a collection
{Px : x ∈ V (T )} of vertex-disjoint paths of T which collectively partition the vertex set of
T and such that xy ∈ E(T ) if and only if there is an edge between a vertex from Px and
a vertex from Py in T . Observe that a consequence of this definition is that T is a minor
of T . The root-path of (T ,P) is the path Px where x is the root of T . Now, consider a
path Px with x distinct from the root. The path Px has a center, defined as the endpoint
in Px of the edge in T linking Px to Py where y is the parent of x in T . The height of the
path-partition (T ,P) is the height of T .

When considering a path-partition (T ,P) of a tree T , it will be useful to embed T itself
in the plane in a way that is ‘faithful’ to the path-partition. This leads to the following
definition: An embedding of T in the plane is faithful to the path-partition (T ,P) if each
path in P is drawn horizontally, and contracting each such path into one of its vertices
we obtain some plane embedding of T , with its root drawn at the bottom and its edges
going up. See Figure 1 for an illustration. As the paths in P are drawn horizontally, they
have a natural orientation from left to right. Every edge e of T is either horizontal or
vertical, depending on whether e belongs to some path in P or not.

Figure 1: Left: A tree T faithfully embedded according to some path-partition (T ,P)
(the paths in P are drawn in bold). Right: The rooted tree T .
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Our motivation for considering path-partitions is the following lemma.

Lemma 4. Every tree of pathwidth k has a path-partition of height at most 2k.

Proof. We prove the following stronger statement: For every tree T of pathwidth k and
every vertex u ∈ V (T ), there is a path-partition of T of height at most 2k with u in the
root-path.

The proof is by induction on k. For k = 0, the tree T consists of the single vertex
u. Clearly, it has a path-partition of height 0 with u in the root-path. Now suppose
k > 0 for the inductive case. Let (P, C) be a path decomposition of T of width k, where
Tv ∈ C denotes the path associated to vertex v ∈ V (T ). Enumerate the vertices of the
path P indexing the path decomposition as p1, . . . , pn, in order. We may assume without
loss of generality that there are (non-necessarily distinct) vertices x, y ∈ V (T ) such that
p1 ∈ V (Tx) and pn ∈ V (Ty) (otherwise P could be shortened). Let Q1 = v1v2 . . . vm
denote the unique path in T between x = v1 and u = vm in T . Let z be the vertex of
Q1 that is closest to y in T . Let Q2 = w1w2 . . . wm′ denote the unique path in T between
y = w1 and z = wm′ in T . Notice that V (Tvi) ∩ V (Tvi+1

) 6= ∅ for each i ∈ {1, . . . ,m− 1}
and that each V (Tvi) induces a subpath of P . Similarly, V (Twi

) ∩ V (Twi+1
) 6= ∅ for

each i ∈ {1, . . . ,m′ − 1} and each V (Twi
) induces a subpath of P . Thus we deduce that⋃m

i=1 V (Tvi) ∪
⋃m′

i=1 V (Twi
) = {p1, . . . , pn}.

Consider the forest T − (V (Q1) ∪ V (Q2)) and let D1, . . . , Dc denote its components.
Observe that each tree Dj (j ∈ {1, . . . , c}) has pathwidth at most k − 1. Indeed,
(P, {Tv | v ∈ V (Dj)}) is a path decomposition of Dj, and for each i ∈ {1, . . . , n} we
have |{v ∈ V (Dj) | pi ∈ V (Tv)}| 6 |{v ∈ V (T ) | pi ∈ V (Tv)}| − 1 6 k − 1.

For each j ∈ {1, . . . , c}, let dj denote the unique vertex of Dj having a neighbor in
Q1 ∪Q2 in T . By induction, each tree Dj (j ∈ {1, . . . , c}) has a path-partition (Tj,Pj) of
height at most 2(k − 1) such that dj in the root-path. Let rj denote the root of Tj.

We construct a path-partition (T ,P) of T as follows: T consists of the disjoint union
of T1, . . . , Tc plus two extra vertices q1 and q2 with q1 the root of T and q2 a child of q1.
The paths associated to q1 and q2 are Q1 and Q2, respectively. For each j ∈ {1, . . . , c}, we
make q1 or q2 adjacent to rj, depending whether dj has a neighbor in Q1 or Q2 in T . It is
easy to verify that (T ,P) is a path-partition of T of height at most 2(k−1) + 2 = 2k.

The fact that trees of bounded pathwidth have path-partitions of bounded height is
a natural observation. It is thus likely that this observation was made before though we
are not aware of any relevant reference. We also note that we made no effort to optimize
the bound in Lemma 4 and we do not know whether the factor 2 is unavoidable.

Let T be a tree and fix a path-partition (T ,P) of T . Suppose further that T is
embedded in the plane faithfully to (T ,P). We use the following terminology when
discussing paths in T . First, every path P ∈ P has a corresponding level, which is defined
as the height of the corresponding vertex in T . By extension, every vertex of T has a
level, the level of the path in P it belongs to. Define the base of an arbitrary path P in
T as the subpath induced by the vertices of P of minimum level. Since the base of P is a
subpath of a path in P , its vertices are ordered from left to right by the plane embedding
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of T . The path P is said to be ascending if at least one of its two endpoints belongs to
its base. (We note that in particular all paths in P are ascending, even though they are
drawn horizontally in the embedding of T .) Each ascending path P in T has a source,
defined as the endpoint of P that is in the base of P ; in case both endpoints are in the
base, the left-most one is selected as the source. We typically think of ascending paths
P as being directed from their source to their other endpoint so that the notion of ith
vertex of P is well defined, the first vertex being the source. An ascending path P with
at least two vertices either goes right or goes left or goes up, depending on whether the
second vertex of P is on the base and to the right of the source, or on the base and to the
left of the source, or is one level higher.

Next we generalize the notion of repetition as follows. A near repetition is a sequence
of the form x1 . . . xry1 . . . ygx1 . . . xr, where r > 1 is its length, and g > 0 is said to be its
gap. (Thus for g = 0 this is the usual notion of repetition.) Now, let us return to our tree
T from the previous paragraph, and let φ denote an arbitrary coloring of its vertices. A
slightly technical but key definition for our purposes is the following: An ascending path
P of T is said to be φ-bad if, enumerating its vertices as v1, v2, . . . , vp starting from its
source, the sequence φ(v1)φ(v2) . . . φ(vp) forms a near repetition x1 . . . xry1 . . . ygx1 . . . xr
of length r and gap g where at most r vertices from vr+1, . . . , vr+g lie in the base of P .
(That is, either g 6 r, or g > r but at most r vertices from the ‘gap’ section are in the
base of P .) An ascending path that is not φ-bad is said to be φ-good. We sometimes drop
φ when using these two adjectives if the coloring φ they refer to is clear from the context

Equipped with these definitions we may now state the following technical lemma,
which turns out to be the heart of the proof.

Lemma 5. There is a function f : N × N → N such that, for every ` > 1, every h > 0,
and every tree T faithfully embedded according to a path-partition (T ,P) of T of height h
with lists Lv (v ∈ V (T )) of colors of size f(`, h), one can find sublists Sv ⊆ Lv (v ∈ V (T ))
of size ` such that, for every coloring φ of T with these sublists, every ascending path of
T is φ-good.

In order to motivate Lemma 5, we show that with only a little extra effort (greedy
coloring from the sublists) it implies Theorem 2.

Proof of Theorem 2 (assuming Lemma 5). Let T be a tree of pathwidth k and let Lv

(v ∈ V (T )) be a list assignment for the vertices of T where each list has size b(k) :=
f(2k + 1, 2k), where f is the function from Lemma 5. By Lemma 4 there is a path-
partition (T ,P) of T of height at most 2k. By Lemma 5 there are sublists {Sv}v∈V (T )

with Sv ⊆ Lv and |Sv| = 2k + 1 for each vertex v ∈ V (T ), such that in any coloring φ of
T with these sublists, all ascending paths in T are φ-good.

We define a nonrepetitive coloring φ of T with the lists Sv (v ∈ V (T )) in a greedy
manner. We color the vertices of T one by one in non-decreasing order of their levels. Let
v ∈ V (T ) be a vertex under consideration. Let v1v2 . . . vp denote the shortest path in T
from v1 = v to the root-path (thus it enters the root-path in vertex vp). Recall that every
edge of the form vi−1vi with i ∈ {2, . . . , p} is either horizontal or vertical in T . Let

G(v) :=
{
vi | i ∈ {2, . . . , p} and vi−1vi is a vertical edge

}
.

the electronic journal of combinatorics 23(4) (2016), #P4.40 8



Each vertex in G(v) is said to be a guard for vertex v. Note that |G(v)| is exactly the
level of vertex v in T , and thus in particular |G(v)| 6 2k. We color v as follows: Let φ(v)
be an arbitrarily chosen color from the non-empty set S(v) − φ(G(v)). (Here, φ(G(v))
denotes the set of colors used for vertices in G(v); note that these vertices are already
colored since they lie on lower levels.)

We claim that φ is a nonrepetitive coloring of T . Arguing by contradiction, suppose
that there is a repetitively colored path P = v1 . . . vpw1 . . . wp. Consider the edge e = vpw1.
First we show that e belongs to the base of P . Suppose not, and consider the shortest
subpath of P that includes the edge e and has one endpoint in the base of P . Reversing
P if necessary, we may assume without loss of generality that this subpath is of the form
vpw1 . . . wm, with wm being the only vertex on the base. Observe that wm−1wm is a vertical
edge. This implies that wm is a guard for all the vertices in {v1, . . . , vp, w1, . . . , wm−1}. In
particular, the color φ(wm) cannot have been used for vertex vm since φ(vm) ∈ S(vm) −
φ(G(vm)), contradicting the fact that φ(wm) = φ(vm). Therefore, the edge e must lie in
the base of P .

Let ` and r be the number of vertices in {v1, . . . , vp} and {w1, . . . , wp}, respectively,
that are in the base of P . Reversing P if necessary, we may assume without loss of
generality that ` 6 r. Consider the path P ′ = wrwr−1 . . . w1vp . . . v1. Observe that P ′

is an ascending path as one of its endpoints, namely wr, is in the base of P ′. Now,
φ(wr)φ(wr−1) . . . φ(w1)φ(vp) . . . φ(v1) is a near repetition of length r with gap p − r, and
exactly ` vertices from the gap section are in the base of P ′. Since ` 6 r, we deduce that
P ′ is φ-bad, contradicting the fact that every ascending path is φ-good.

An arborescence is a rooted directed tree where the edges are directed away from the
root. It will be convenient to consider arborescences that are embedded in the plane
without edge crossings in such a way that the root is drawn at the bottom and all arcs
go up (thus the source of an arc is drawn below its sink), which we simply call plane
arborescences. The height of a vertex in an arborescence is defined as its distance to the
root, thus in particular the root has height 0. The rightmost path of a plane arborescence
is the path obtained by starting from the root and always taking the rightmost arc going
up, until reaching a leaf.

We classify directed paths in a plane arborescence A as being good or bad w.r.t. a
given coloring φ of A, similarly as for ascending paths: Say that a directed path P is
φ-bad if, enumerating its vertices as v1v2 . . . vp in order, the sequence φ(v1)φ(v2) . . . φ(vp)
can be written as a near repetition x1 . . . xry1 . . . ygx1 . . . xr of length r and gap g where at
most r vertices from vr+1, . . . , vr+g lie on the rightmost path of A. (That is, either g 6 r,
or g > r but at most r vertices from the ‘gap’ section are on the rightmost path.) If the
directed path P is not φ-bad then it is φ-good.

Lemma 6. Let ` > 1, let A be a plane arborescence, and let Lv (v ∈ V (A)) be lists of
colors of size 32`3 + 1. Then one can find sublists Sv ⊆ Lv (v ∈ V (A)) of size ` such that,
for every coloring φ of A with these sublists, every directed path starting on the rightmost
path is φ-good.
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The interest of Lemma 6 is that Lemma 5 can be proved by iterated applications of
Lemma 6, as we now show.

Proof of Lemma 5 (assuming Lemma 6). The function f(`, h) that will be used is defined
inductively on h as follows: f(`, 0) := 32`3 + 1, and f(`, h) := f(32(32`3 + 1)3 + 1, h− 1)
for h > 0.

Let T be a tree with a path-partition (T ,P) of height h and let Lv (v ∈ V (T )) be
lists of colors of size f(`, h). Suppose further that T is faithfully embedded according to
(T ,P). We prove the lemma by induction on h. For the base case of the induction, h = 0,
we observe that T is then a path and all ascending paths in T are simply subpaths of T .
As f(`, 0) = 32`3 + 1, by Lemma 6 there are sublists Sv ⊆ Lv for each vertex v ∈ V (T )
with |Sv| = ` such that, for every coloring φ of T with these sublists, all ascending paths
of T are φ-good, as required. (As expected, when applying Lemma 6 we first turn the
path T into an arborescence by directing it from left to right.)

For the inductive case h > 0, let x be the root of T and let Px be the root-path of
T . Let also D1, . . . , Dc be the components of the forest T − V (Px). (Note that there is
at least one component.) For each i ∈ {1, . . . , c}, the path-partition (T ,P) induces in
a natural way a path-partition (Ti,Pi) of Di of height at most h − 1, with Ti rooted at
the only vertex that is a neighbor of x in T . Since f(`, h) = f(32(32`3 + 1)3 + 1, h− 1),
applying induction on Di we obtain for each vertex v ∈ V (Di) a sublist S ′v ⊆ Lv of size
32(32`3 + 1)3 + 1 such that, for every coloring φ of Di with these sublists, every ascending
path of Di is φ-good.

Next, for each vertex v ∈ V (Px) let S ′v be an arbitrary subset of Lv of size 32(32`3 +
1)3 + 1. Thus, every vertex v of T now has a corresponding sublist S ′v ⊆ Lv of size
32(32`3 + 1)3 + 1. Moreover, given any coloring φ of the tree T with these sublists, the
only ascending paths that could possibly be φ-bad are those having their sources in Px.
We shall refer to these ascending paths as the risky paths of T .

Enumerate the vertices of the root-path Px as v1v2 . . . vn, from left to right. Define two
plane arborescences A and A′ from T by rooting T at v1 and vn, respectively, and ensuring
that Px is a prefix of the rightmost path in both instances. Note that the rightmost path
of A could extend beyond Px (in case vn is not a leaf of T ), and the same is true for the
rightmost path of A′ (if v1 is not a leaf). What is important for our purposes is to observe
that each risky path of T starts on the rightmost path in both A and A′. Observe also
that each risky path of T that goes right (left) is a directed path in A (respectively A′),
and risky paths that go up are directed in both A and A′.

First, apply Lemma 6 on A with list assignment S ′v (v ∈ V (A)), giving for each vertex
v ∈ V (T ) a sublist S ′′v ⊆ S ′v ⊆ Lv of size 32`3 + 1. Next, apply Lemma 6 on A′ with list
assignment S ′′v (v ∈ V (A)), giving for each vertex v ∈ V (T ) a sublist Sv ⊆ S ′′v ⊆ S ′v ⊆ Lv of
size `. Since every risky path of T is mapped to a directed path starting on the rightmost
path in A or A′, by the properties of the sublists S ′′v and Sv (v ∈ V (T )) guaranteed by
Lemma 6 we know that, for every coloring φ of T with the lists Sv (v ∈ V (T )), all risky
paths of T are φ-good. Therefore, the lists Sv (v ∈ V (T )) have the desired properties.

It remains to prove Lemma 6. As alluded to in the introduction, we will do so by
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adapting the algorithmic method used in [6, 10, 13].

Proof of Lemma 6. Let N := 32`3 + 1 denote the size of the lists. For v ∈ V (A), let
UP(v) denote the set of vertices w ∈ V (A) that can be reached via a directed path from
v in A. (Note that v ∈ UP(v).) In the proof, we will often abbreviate ‘subset of size k’
and ‘sublist of size k’ into ‘k-subset’ and ‘k-sublist’, respectively.

We define a simple randomized algorithm, Algorithm 1, that tries to find an `-sublist
Sv of Lv for each vertex v ∈ V (A) such that, for every coloring φ of A with these sublists,
every directed path starting on the rightmost path of A is φ-good. The following informal
description of the algorithm is complemented by the more formal description given in
Algorithm 1. The algorithm explores the arborescence A via a depth-first, left-to-right
search starting from the root. The algorithm maintains at all time `-sublists Sv ⊆ Lv

for all vertices v encountered before the current vertex u in the depth-first search of A.
These sublists have the following property: For every coloring φ of these vertices with
these sublists (φ being thus a partial coloring of A), every directed path starting on the
rightmost path of A that is fully colored is φ-good. We say that such a partial sublist
assignment is valid.

Next, the algorithm treats the current vertex u and tries to maintain the above prop-
erty. To do so, the algorithm first chooses an `-sublist Su ⊆ Lu uniformly at random. If
this new sublist Su triggers the existence of a φ-bad path in A for some (partial) coloring
φ with the current sublists—that is, the current sublist assignment is no longer valid—it
erases some of these sublists as follows: Say v1 . . . v2r+g with v2r+g = u is a φ-bad path
with color sequence φ(v1) . . . φ(v2r+g) of the form x1 . . . xry1 . . . ygx1 . . . xr. The algorithm
then erases the choice for the list Sv for all vertices v contributing to the second occur-
rence of the repeated sequence and their descendants, that is, for all v ∈ UP(vr+g+1).
At the next iteration, vr+g+1 becomes the new current vertex, that is, the next vertex to
be treated. Notice that this makes the algorithm backtrack a number of steps w.r.t. the
depth-first left-to-right search of A.

If on the other hand, the new sublist Su does not trigger any such bad configuration,
then the current sublist assignment remains valid. In this case, before proceeding to
the next random choice the algorithm first tries to extend the current sublist assignment
deterministically as much as possible. (While it might not be clear at first glance why
this deterministic extension step is needed, we remark that it is actually a key feature
of the algorithm without which we could not do the analysis below.) This is done as
follows: The algorithm considers the children u1, . . . , uk of u one by one in left-to-right
order, until a problematic child is identified: When considering uj, the algorithm checks
whether there exist `-subsets Sv ⊆ Lv for all v ∈ UP(uj) such that, taken together, they
extend the current sublist assignment in such a way that it remains valid. If these subsets
exist, the current sublist assignment is extended in this way to the whole subtree rooted
at uj, and the algorithm considers the next child of u. (If there are more than one valid
choice for these sublists, the algorithm chooses one according to a deterministic rule.) If
no such extension of the current sublist assignment can be found for vertices in UP(uj),
then uj is identified as being a problematic child of u, and uj becomes the next vertex to
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be treated. Observe that this effectively makes the algorithm proceed with the depth-first
left-to-right search of A for some number of steps.

Let us make some observations concerning the algorithm: Right at the beginning,
after selecting a sublist for the root of A, two situations can occur: (1) No child of the
root is problematic. Thus a valid sublist assignment for all vertices of A has been found,
and the lemma is proved. (2) Some child of the root is problematic. In this case, it is
important to observe that later on each vertex u for which a random sublist Su is chosen
was problematic when its parent was considered. It follows in turn that some child of u
will be problematic, since otherwise we could extend the sublist assignment to the whole
subtree rooted at u.

To summarize, we may assume that we are in case (2) at the beginning, since otherwise
we are done. This implies that the vertex u that is currently being treated by the algorithm
always has a problematic child. Moreover, the algorithm will never stop, simply because
while it can erase the choices of sublists for some vertices of A it cannot do so for the
root, as is easily checked. Our proof will then proceed in the following way: We run the
algorithm until it made M random choices of sublists and then stop it, where M will be
some large number which is a function of |V (A)| and `. We then carefully set up a concise
description (called log) of its execution that is precise enough to allow us to recover from
it all random choices that were made by the algorithm. Finally, we count the number of
distinct logs that can occur after M random choices, and show that, for sufficiently large

M , this number is strictly less than
(
N
`

)M
. From this we deduce that not all sequences of

M random choices of sublists can occur in case (2). In other words, there is a choice for
the sublist of the root of A leaving us in case (1), which then finishes the proof.

This concludes our informal description of the algorithm, see Algorithm 1 for the
pseudo code. A few remarks about the latter are in order: First, we assume that the
`-subsets of Lv have been enumerated for each v ∈ V (A), so that the j-th `-subset of Lv is
well defined for j ∈

[(
N
`

)]
. This ordering also induces an ordering on every subcollection

of the collection of `-subsets of Lv. We also use this enumeration in the proof. Second, for
simplicity we model the random choices made by the algorithm by a sequence r1, r2, . . . , rM
of numbers given in input, each between 1 and

(
N
`

)
, where ri will be the number used for

the i-th random choice. We call this sequence the random input. Third, in line 8, the
φ-bad path is chosen according to some fixed rule. Similarly, in line 15, the sublists Sv

are chosen according to some fixed rule. (In each case, the actual rule is irrelevant, as
long as it is deterministic.)

In the following, by the i-th iteration of the algorithm, we mean the i-th iteration
of the while loop. We call operations in lines 8-10 a retraction of the near repetition
x1 . . . xry1 . . . ygx1 . . . xr. With a slight abuse of terminology, we will also say that the
corresponding φ-bad path has been retracted.

From now on we argue by contradiction and suppose that the desired sublists for the
vertices of A do not exist. In other words, we assume that every choice for the sublist
of the root at the beginning of the algorithm leaves us in case (2) described above. In
particular, for all M and all random inputs r1, r2, . . . , rM , Algorithm 1 runs for M steps
and then reports failure.
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Algorithm 1: Attempts to find sublists Sv of Lv for all v ∈ V (A), each of size `,
such that for every coloring φ of A with these sublists, every directed path starting
on the rightmost path of A is φ-good.

1 input: Lists Lv for all v ∈ V (A) and random input r1, r2, . . . , rM
2 i← 1
3 u← root of A
4 Sv ← undefined for each v ∈ V (A)
5 while i 6M do
6 Su ← ri-th subset of size ` of Lu

7 if there is a φ-bad path starting on the rightmost path of A for some coloring
φ with the lists Sv (v ∈ V (A)) then

8 let v1 . . . v2r+g with v2r+g = u be a φ-bad path and let
φ(v1) . . . φ(v2r+g) be a sequence of the form x1 . . . xry1 . . . ygx1 . . . xr

9 Sv ← undefined for each v ∈ UP(vr+g+1)
10 u← vr+g+1

11 else
12 let u1, . . . , uk denote the children of u ordered from left to right
13 j ← 1
14 while j 6 k and there is a valid extension of the current sublist

assignment by some Sv ⊆ Lv for all v ∈ UP(uj) do
15 choose such sublists Sv ⊆ Lv for all v ∈ UP(uj)
16 j ← j + 1

17 if j = k + 1 then
(in this case i = 1 and u is the root of A)

18 return Sv for all v ∈ V (A)

19 else u← uj
20 i← i+ 1

21 report failure

We are going to create a concise description of what Algorithm 1 does during the
M steps of its execution. This description is completely determined by the lists and the
random input. We see the lists Lv (v ∈ V (A)) as being fixed and thus treat the description
as a function of the random input r1, r2, . . . , rM . The description, which we call an M-log,
consists of a 4-tuple (D,S, B,Γ) defined as follows:

(i) D = (d1, . . . , dM) and di (i ∈ [M ]) is the height of the vertex u in Algorithm 1 at
the end of iteration i, when reaching line 20 after u was updated in the if–else
block. (Thus, for i < M , di is simply the height of vertex u at the beginning of
iteration i+ 1.)

(ii) S : V (A) →
[(

N
`

)]
∪ {undefined} is a function encoding the final partial sublist

assignment to vertices of A at the end of iteration M . More precisely, for each
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v ∈ V (A) we have S(v) = j if sublist Sv is defined at that moment and Sv is the
j-th `-subset of Lv, and S(v) = undefined if Sv is not defined.

(iii) B = (b1, . . . , bM) and bi (i ∈ [M ]) are defined as follows: If no bad path was
retracted during the i-th iteration then bi = 0. Otherwise, bi is the number
of vertices in the prefix v1 . . . vr+g of the retracted bad path v1 . . . v2r+g that
are on the rightmost path of A. Observe that bi 6 2r in the latter case since
at most r vertices from the gap section of a bad path lie on the rightmost path of A.

(iv) Γ = (Γ1, . . . ,ΓM), where Γi (i ∈ [M ]) is defined as follows. If no bad path
was retracted during the i-th iteration then Γi = undefined. Otherwise, letting
v1 . . . v2r+g be the retracted bad path, we set Γi = (γ1, . . . , γr) with γj (j ∈ [r])
defined as follows: Let Xj denote the collection of `-subsets of Lvr+g+j

that have
a non-empty intersection with Svj . Then γj is the index of the set Svr+g+j

in the
collection Xj.

Now, our aim is to bound from above the number of distinct M -logs (D,S, B,Γ) by
a relatively small function of M, |V (A)|, and `. Recall that the lists Lv (v ∈ V (A)) are
fixed, thus ` and |V (A)| are fixed, and only M and the random input r1, . . . , rM vary.

There are exactly
(
N
`

)M
distinct random inputs of length M , and our goal in the following

analysis is to deduce that there are o
((

N
`

)M)
distinct M -logs. (The asymptotic notation

is to be interpreted with respect to the variable M of course.) This is then a contradiction
for M large enough, as mentioned earlier.

We start by estimating the number of M -tuples D = (d1, . . . , dM). Each se-
quence D = (d1, . . . , dM) can be injectively mapped to its sequence of differences
(d2 − d1, . . . , dM − dM−1). (Note that d1 = 1.) All numbers in this new sequence be-
long to the set {1, 0,−1,−2, . . .}, as is easily seen. Next we transform that sequence into
yet another sequence by replacing each number k by 1 followed by 1−k consecutive occur-
rences of −1. For instance, the sequence of differences (1, 1, 1, 1, 1,−2,−1, 1) gets mapped
to (1, 1, 1, 1, 1, 1,−1,−1,−1, 1,−1,−1, 1). It is easy to see that the second transformation
is also injective. The resulting sequence D′ is a sequence over the alphabet {−1, 1}. The
number of 1’s in D′ corresponds to the number of times the algorithm assigns a value to
some variable Su in line 6, and is thus equal to the number of iterations, that is, M . The
number of −1’s in D′ is the sum of all values of r over all bad paths v1 . . . v2r+g considered
in lines 8-9 during the execution. One can see this as the number of times the algorithm
‘erases’ a value of Sv for some v ∈ V (A) that was set earlier using the random input (note
that an execution of line 9 erases r such values). Thus, this number is at most the total
number of executions of line 6, that is, the number of 1’s in D′, which is M . Hence, D′

has size between M and 2M , and there are at most 2M + 2M+1 + · · ·+ 22M 6 22M+1 such
sequences D′.

Next we bound the number of different functions S. Note that this number depends
only on N , `, and |V (A)|, so it can be treated as a constant w.r.t. M . We denote this
number by c (its exact value being irrelevant for the analysis).
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Now we turn our attention to the number of possible tuples B = (b1, . . . , bM) in an
M -log (D,S, B,Γ). Recall that if bi 6= 0 then bi 6 2r, where r is the size of the repeated
part in the near repetition retracted during the i-th iteration. Hence, the sum of the bi’s
is at most twice the total number of −1’s in D′. This implies that b =

∑M
i=1 bi 6 2M .

The number of such sequences is easily seen to be at most 23M , as one can encode each
such sequence as a binary word 1b101b201b30 . . . 1bM 012M−b of length 3M (the i-th section
1bi0 encodes the number bi for i = 1, . . . ,M , and the padding 12M−b at the end of the
word ensures that the length is 3M).

It remains to estimate the number of possible tuples Γ = (Γ1, . . . ,ΓM) which can
occur for fixed D, S, and B. Consider an index i ∈ [M ]. If Γi 6= undefined, then each
number in the sequence Γi is the index of some `-subset of some list Lv (v ∈ V (A)) among
those that intersect some other list S of size `. Clearly, the number of `-subsets of Lv

intersecting S is at most
(
`
1

)
·
(
N−1
`−1

)
+
(
`
2

)
·
(
N−2
`−2

)
+ · · ·+

(
`

`−1

)
·
(
N−(`−1)

1

)
+
(
`
`

)
·
(
N−`

0

)
. Since

N is much bigger than ` (recall that N > 32`3), each term in the previous sum is upper
bounded by the first term ` ·

(
N−1
`−1

)
, and we obtain that the sum is at most `2 ·

(
N−1
`−1

)
.

(Of course, this is a rather crude upper bound but it is good enough for our purposes.)
Hence all numbers in the sequence Γi are between 1 and `2 ·

(
N−1
`−1

)
. Note also that the

length of the sequence Γi is exactly the length of the near repetition retracted during the
i-th iteration. Hence, given D we know exactly which Γi are defined and what are their
lengths. The sum of these lengths is the total number of −1’s in D′, which is at most M .

Therefore, for a fixed D there can be at most
(
`2 ·
(
N−1
`−1

))M
distinct sequences Γ.

Putting all the previous observations together, we deduce that the number of distinct
tuples (D,S, B,Γ) is at most

22M+1 · c · 23M ·
(
`2

(
N − 1

`− 1

))M

= O

(
32M ·

(
`3

N

(
N

`

))M
)

= o

((
N

`

)M
)
,

as desired. (The o(·) follows from the fact that N > 32`3.) This shows that, if M is

sufficiently large, then the number of possible M -logs is strictly smaller than
(
N
`

)M
, the

number of random inputs of length M . To obtain the desired contradiction, it remains
to show that runs of the algorithm on different sources produce distinct M -logs, that is,
that any M -log (D,S, B,Γ) uniquely determines the random input used by the algorithm
to produce it. This is exactly what we show next.

Consider an M -log (D,S, B,Γ) and let r1, . . . , rM be any random input that can lead
to its production. We prove that r1, . . . , rM are uniquely determined by induction on M .
This is clearly true if M = 1, since the function S tells us explicitly which sublist was
chosen for the root of A. So assume M > 1 for the inductive case. Let D = (d1, . . . , dM),
B = (b1, . . . , bM), and Γ = (Γ1, . . . ,ΓM).
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First suppose that dM = dM−1 + 1. Then no near repetition was retracted during the
M -th iteration. The vertex u that was the current vertex at the beginning of the M -th
iteration is determined by the function S: It is the last vertex w ∈ V (A) in the depth-first
left-to-right search order from the root such that S(w) 6= undefined that has a child w′

with S(w′) = undefined. (Note that the first such child w′ is the problematic child uj
of u identified when exiting the inner while-loop.) Now, observe that rM is simply the
index of S(u) among `-subsets of Lu, and is thus completely determined by our M -log
(D,S, B,Γ).

Having determined rM , we can use the inductive hypothesis to deduce that r1, . . . , rM−1

are also fully determined by the log as follows. Let (D∗,S∗, B∗,Γ∗) be the (M − 1)-log
resulting from the execution of the algorithm for M − 1 iterations on random input
r1, . . . , rM−1. By induction, the latter sequence is uniquely determined by the (M−1)-log
(D∗,S∗, B∗,Γ∗). Hence, it is enough to show that (D∗,S∗, B∗,Γ∗) is in turn uniquely
determined by our initial M -log (D,S, B,Γ). Clearly,

D∗ = (d1, . . . , dM−1),

B∗ = (b1, . . . , bM−1),

Γ∗ = (Γ1, . . . ,ΓM−1).

As for S∗, it is simply obtained from S by letting the value of each vertex v ∈ UP(u) be
undefined. That is,

S∗(v) =

{
undefined if v ∈ UP(u);

S(v) otherwise

for each v ∈ V (A) (recall that u ∈ UP(u)).
In the case when dM = dM−1−r+1 with r > 0, a near repetition was retracted during

the M -th iteration with a repeated part of size r. Here we first show that r1, . . . , rM−1

are uniquely determined, and then we prove that the same holds for rM .
Let (D∗,S∗, B∗,Γ∗) denote the (M − 1)-log resulting from the execution of the algo-

rithm for M − 1 iterations on random input r1, . . . , rM−1. We thus have:

D∗ = (d1, . . . , dM−1),

B∗ = (b1, . . . , bM−1),

Γ∗ = (Γ1, . . . ,ΓM−1).

Let us show that S∗ is completely determined by (D,S, B,Γ). Let u denote the current
vertex at the beginning of the M -th iteration. (Remark: The vertex u can be deduced
from the log (D,S, B,Γ), as follows from the discussion below.) During the M -th iteration
the sublist Su of u was assigned the rM -th `-subset of Lu. This triggered the existence
of a bad path v1, . . . , v2r+g with v2r+g = u, which was subsequently retracted, i.e. Sv was
then set to undefined for all v ∈ UP(vr+g+1).

Now, we determine the first r + g + 1 vertices v1, . . . , vr+g+1 of the bad path from the
log. First, we show that vr+g+1 is easily determined: Since S∗ differs from S only on the
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vertices from UP(vr+g+1), vertex vr+g+1 is the first vertex v of A in depth-first left-to-right
order from the root with S(v) = undefined. (We remark that vr+g+1 would have been
the next ‘current vertex’ considered by the algorithm if it were run for an extra iteration.)

Next, we determine the vertices v1, . . . , vr+g from the log. Let w be the first vertex
on the rightmost path of A that is encountered when walking down towards the root of
A from vr+g+1 (note that we could have w = vr+g+1). By definition of the sequence B,
among the r + g vertices v1, . . . , vr+g the first bM vertices are on the rightmost path of
A, and none of the remaining r + g − bM vertices are. Since bM > 1, we may identify
vertex v1 by starting at vertex w and walking down towards the root of A either bM steps
(if w = vr+g+1) or bM − 1 steps (if w 6= vr+g+1). Now, since we know vertices v1, vr+g+1

and the integer r, looking at the path from v1 to vr+g+1 gives us all intermediate vertices
v2, . . . , vr+g (if any), as well as the size g of the gap section. Hence, v1, . . . , vr+g+1 are
determined by the log (D,S, B,Γ), as claimed.

Building on this, we now complete the proof. Let ΓM = (γ1, . . . , γr). We first consider
a simple case, namely r = 1. Then u = vr+g+1, and at the beginning of the M -th iteration,
the rM -th `-sublist X of Lu was assigned to variable Su, which triggered the existence
of the bad path. By the definition of the sequence ΓM , the sublist X is the γ1-th `-
sublist of Lvr+g+1 having a non-empty intersection with S(v1). We can thus deduce X
from the log (D,S, B,Γ), and obtain in turn rM from X. Notice that in this case the
sublist assignments to vertices of A at the end of the (M − 1)-th and at the end of the
M -th iterations are exactly the same, that is, S∗ = S. (Indeed, this is what makes the
case r = 1 simpler.) Hence, (D∗,S∗, B∗,Γ∗) is completely determined by (D,S, B,Γ).
By induction, the sequence r1, . . . , rM−1 is uniquely determined by (D∗,S∗, B∗,Γ∗), and
therefore it is also uniquely determined by (D,S, B,Γ). Since we have seen that rM is
uniquely determined as well, this concludes the r = 1 case.

Now, suppose that r > 2. We can obtain S∗(vr+g+1) from (D,S, B,Γ), since S∗(vr+g+1)
is the γ1-th `-sublist of Lvr+g+1 having a non-empty intersection with S(v1). Knowing
S∗(vr+g+1), we can identify vertex vr+g+2 as follows. Consider the last time the variable
Svr+g+1 was modified during the execution of the algorithm before the M -th iteration,
say this is during the p1-th iteration. Thus, during that iteration, Svr+g+1 was assigned
the set S∗(vr+g+1), and this did not trigger the existence of a bad path. Then, the
children w1, . . . , wk of vr+g+1 were inspected one by one in order, until a problematic child
wj was found. This problematic child wj is vertex vr+g+2. This process is completely
deterministic, thus we can simulate it. (Indeed, we know the whole sublist assignment
for vertices of A at the beginning of the p1-th iteration, and we know the sublist that
was sampled for vr+g+1 during that iteration, namely, S∗(vr+g+1)). Thus, for each vertex
v ∈ UP(w1) ∪ · · · ∪ UP(wj−1), we can figure out how the sublist Sv was set during
that iteration, and this is exactly the value of S∗(v), since those sublists have not been
modified afterwards prior to iteration M . Notice also that S∗(v) = undefined for all
v ∈ UP(wj+1) ∪ · · · ∪ UP(wr), so it only remains to determine S∗(v) for v ∈ UP(vr+g+2).

We can iterate this argument and discover step by step vertices vr+g+2, . . . , v2r+g and
the missing entries of S∗. We spell out the general argument now, for the sake of com-
pleteness (the reader who is already convinced that it can be done is invited to skip this
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paragraph). For each index i = 2, . . . , r − 1, we proceed as follows. The set S∗(vr+g+i) is
the γi-th `-sublist of Lvr+g+i

having a non-empty intersection with S(vi), and is thus deter-
mined by (D,S, B,Γ). Knowing S∗(vr+g+i), we now identify vertex vr+g+i+1. Say Svr+g+i

was modified for the last time during the pi-th iteration of the algorithm before the M -th
iteration. During that iteration, variable Svr+g+i

was assigned the set S∗(vr+g+i), and this
did not result in the existence of any bad path. Next, the children w1, . . . , wk of vr+g+i

were inspected until a problematic child wj was found, which is vertex vr+g+i+1. We know
the whole sublist assignment for vertices of A at the beginning of the pi-th iteration; in-
deed, this is exactly the one at the end of the pi−1-th iteration (as is easily checked), which
we already know. We also know the sublist that was sampled for vertex vr+g+i during the
pi-th iteration. Hence, we can simulate the execution of lines 12–16 of the algorithm for
the pi-th iteration. This implies that, for each vertex v ∈ UP(w1)∪· · ·∪UP(wj−1), we can
determine how the sublist Sv was set during that iteration, and that sublist is precisely
the set S∗(v). Also, we have that S∗(v) = undefined for all v ∈ UP(wj+1)∪· · ·∪UP(wr).

This way we completely determined S∗(v) for all vertices v ∈ UP(vr+g+i) −
UP(vr+g+i+1) for each i ∈ [r − 1]. For all other vertices v of A, we have S∗(v) = S(v).
Thus, S∗ is completely determined by (D,S, B,Γ), and hence so is the (M − 1)-th log
(D∗,S∗, B∗,Γ∗), as claimed.

Equipped with the knowledge of S∗, we may now finish the proof in a manner similar
to the r = 1 case. Let X denote the rM -th `-sublist X of Lv2r+g . The sublist X is the γr-th
`-sublist of Lv2r+g having a non-empty intersection with S(vr), which is thus determined
by the log (D,S, B,Γ). Hence, we can obtain rM from (D,S, B,Γ). Moreover, as we have
seen, (D∗,S∗, B∗,Γ∗) is completely determined by the log (D,S, B,Γ). By induction,
the sequence r1, . . . , rM−1 is uniquely determined by (D∗,S∗, B∗,Γ∗), and therefore it is
uniquely determined by (D,S, B,Γ). This concludes the proof.

We remark that no effort has been made to optimize the bound of 32`3+1 in Lemma 6.
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